可降阶的高阶微分方程,高阶线性微分方程及其通解结构..24页PPT
可降解的高阶微分方程

得新函数z( x)的(n 1)阶方程
f ( x, z, z, , z(n1) ) 0.
例 4 求方程 x2 yy ( y xy)2 的通解.
解
设
y
e zdx ,
代入原方程,得
z
2 x
z
1 x2
,
解其通解为
z
1 x
C1 x2
,
原方程通解为
y
e
(
1 x
C1 x2
)
dx
C1
C2 xe x .
,
y
C1 120
x5
C2 6
x3
C3 2
x2
C4 x
C5
,
原方程通解为 y d1 x5 d2 x3 d3 x2 d4 x d5
二、 y(n) f ( x, y(k) , , y(n1) )型
特点: 右端不显含自变量 x.
解法: 设 y p( y) 则 y dp dy p dP ,
3、 y 3
y
,
y
x0
1,
y
x
0
2.
三、试 求 y x 的 经 过 点 M (0 , 1) 且 在 此 点 与 直 线 y x 1相切的积分曲线 . 2
练习题答案
一、1、 y
xe x
3e x
C1 2
x
C2 x
C3;
2、 y ln cos( x C1 ) C2 ;
3、 y arcsin(C2e x ) C1 ;
dy dx dy
y P 2 d 2 P P(dP )2 , ,
dy 2
dy
代入原方程得到新函数 P( y)的(n 1)阶方程,
求得其解为 dy dx
第三节 可降阶的高阶微分方程

例5
求方程 yy′′ − y′2 0 的通解 。 =
dp 解 令 p = y′ ,则 y′′ = p 。 dy dp yp − p2 = 0 。 于是, 于是,原方程化为 dy dy = 0 ,故此时有解 y = C 。 若 p = 0 ,则 dx dp dy = 。 若 p ≠ 0 ,则原方程化为 p y dy p = 0 对应于 C1 = 0 = p = C1 y 。 两边积分,得 两边积分, dx y = C2 eC1x。 运用分离变量法, 运用分离变量法,得此方程的通解为
2 2
(***)
此处取负号是因为物体运动的方向与y轴的正向相反. 在(***)中令 y=R,就得到物体到达地面时的速度为
2 gR(l − R) v=− l
最后求物体落到地面所需的时间. 由(***)式有
1 1 dy = v = −R 2g − , y l dt
分离变量,得
1 l y dt = − dy. R 2g l − y
1 y′′ = 1 + y ′2 a
取原点 O 到点 A 的距离为定值 a ,即 |OA|= a ,则初始条件为:
y x =0 = a, y′ x =0 = 0.
故初值问题为
′′ 1 y = 1 + y ′2 , a y x = 0 = a, y ′ x = 0 = 0
′′ 1 y = 1 + y ′2 , a y x = 0 = a, y ′ x = 0 = 0
令 y ′ = p,
y′′ = p′ 代入上方程,得
dx = a 1 + p2 dp
1 2 p′ = 1+ p . a
x ln( p + 1 + p ) = + C1 a
可降阶的高阶微分方程

可降阶的高阶微分方程高阶微分方程在数学中有着广泛的应用,例如在物理学、工程学和经济学等学科中。
但是,高阶微分方程一般而言难以解析求解,因此研究可降阶的高阶微分方程具有重要的理论和实际意义。
一、什么是可降阶的高阶微分方程可降阶的高阶微分方程是指高于二阶的微分方程可以通过一定的代数变换转化为至多二阶的微分方程。
这种转化通常使用代数变换法、非线性变换、Laplace变换等方法实现,具体方法依据问题不同而异。
例如,对于形如$f(y'', y', y, x) = 0$的四阶微分方程,通过令$y'= v$,$y'' = v'$,可以将该微分方程转化为关于$v$和$x$的一阶微分方程$f(v', v, x) = 0$,进一步可以使用一阶微分方程的解法进行求解。
二、为什么要研究可降阶的高阶微分方程对于高阶微分方程,直接求解通常是非常困难的,因此找到一些可降阶方法可以降低计算的难度。
这对于实际应用中的问题求解非常有帮助,也可以进一步推动微分方程理论的发展。
此外,由于可降阶的高阶微分方程可以转化为至多二阶微分方程,因此在不同的数学领域中有着广泛的应用。
三、可降阶方法举例(1)代数变换法代数变换法是一种直接的可降阶方法,通过对微分方程中的项进行代数运算,将高阶项消去,转化为无常系数二阶微分方程。
例如,对于形如$y'''' - 3y'' + 2y = 0$的四阶微分方程,通过令$y' = v$,$y'' = v'$,可以得到$v'''' - 3v'' + 2v = 0$。
此时,在微分方程的两侧同时乘以$v'$,然后再次对$v$求导,可以得到$v'''(v''')^2 -3v''(v'')^2 + 2v'(v')^2 = 0$,这是个可以简化的式子。
可降阶的高阶微分方程

一、 y(n) f ( x) 型
特点: 左端是未知函数 y 的n 阶导数, 右端是
自变量x 的一个已知函数,且不含未知函数 y 及其
导数 y.
两边积分 y(n1) f ( x)dx C1
再积分
y(n2) [ f ( x)dx C1]dx C2
……
接连积分n 次,得到含有n 个任意常数的通解.
例1 求微分方程 y e2x cos x 的通解.
解
y
(e 2 x
cos
x)dx
1 e2x 2
sin x
C1 ,
y
1 2
e2x
sin
x
C1
dx
1 4
e2x
cos
x
C1 x
C2,
通解为 y
1 4
e2x
cos
x
C1 x
C2
dx
1 8
e2x
sin
x
C1 x2
C2 x
C3 .
二、y f (x, y) 型
可得
p C1 y,
dy dx
C1
y,
即
dy y
C1dx,
原方程通解为 y C2ec1x .
F( x, p,, p(nk) ) 0
求出通解后, 再积分k次,即可求得原方程的通解.
例3 解方程 y(5) 1 y(4) 0. x
解 令 y(4) p( x), 则方程变为
p 1 p 0, 可分离变量方程 x
由分离变量法解得 p C1 x. 于是
y(4) C1 x,
所以原方程的通解为
解 设 y p,代入原方程, 得
dp 2 x dx p 1 x2
可降阶的高阶微分方程

主讲教师 杨文杰可降阶的高阶微分方程一、可降阶的高阶微分方程1.高阶微分方程的定义 '''()(,,,,)0 n F x y y y = K 2.可降阶的高阶微分方程类型及其解法 (1) 型()() n yf x = (2) 型 (,) y f x y¢¢¢ = 解法:逐次积分,降为一阶微分方程.解法:设y ¢=p (x ),则y ¢¢=p ¢,代入方程中得 p ¢ =f (x , p ) , 降为一阶微分方程.(3) 型 (,) y f y y¢¢¢ = 二、可降阶的高阶微分方程的解题方法可降阶的高阶微分方程,是通过引入变量进行降阶,转化为成一阶微 分方程,通过判定一阶微分方程的类型,求出通解. 解题方法见流程图.解法:设y ¢=p (y ),则 , dp dy dpy p dy dx dy¢¢ =×= 代入方程中得 降为一阶微分方程. (,), dpp f y p dy=解题方法流程图逐次积分), ( y x f y ¢ = ¢ ¢ 解一阶微分方程解一阶微分方程), ( y y f y ¢ = ¢ ¢ 可降阶的高阶微分方程)( ) ( x f y n = 转化为一阶方程) , ( p x f p = ¢ ), , , , ( n c c c x y K 2 1 j = 通解 Yes令 y p ¢ = 转化为一阶方程(,) pp f y p ¢= No特点:不显含 y特点:不显含 x 令 y p ¢ =三、典型例题【例1】求方程 的通解.2xy y x ¢¢¢ -= 解:由于不显含 ,令 ,则 y () y p x ¢ = y p¢¢¢ = 代入原方程整理得 1p p x x¢-= 为一阶线性方程,21 y p C x x¢ ==+ 再积分,得原方程的通解为23 12 11 23y C x x C =++ 32 121 3 x C x C =++ 代入求解公式得解:由于不显含 () y p y ¢ = y pp¢¢¢ = x ,令 ,则 代入原方程得 2ypp p ¢+= 所以0 p = 或 0yp p ¢+= 当 0 yp p ¢+= 时,此方程为可分离变量的方程, 分离变量得:dp dyp y=- 【例2】求方程 2()0 y y y¢¢¢ += 满足初始条件 0 12x y = ¢ = 的特解. 0 1, x y = =积分得:ln ||ln || p y C=-+ 所以 1 1 () C C p C e y==± 即 1 C y y ¢= 将 00 1 1, 2 x x y y == ¢ == 代入得 11 2C = ,从而 1 2 y y ¢ = 分离变量后积分得 22 , y x C =+ 将 01 x y = = 代入得2 1 C = 所求方程的特解为:21y x =+ 特解为 1 y = ,含在 内.2 1 y x =+ 当 时,即 0 y ¢= 积分得 , y C = 0 p =。
高等数学-第七章-微分方程ppt课件全篇

求它落到地面时的速度和所需时间
两端积分得
因此有
注意“-”号
由于 y = R 时
由原方程可得
因此落到地面( y = R )时的速度和所需时间分别为
内容小结
1. 一阶线性方程
方法1 先解齐次方程 , 再用常数变易法微分方程的解法
—— 降阶法
逐次积分
令
令
思考与练习
第七章
一、齐次方程
形如
的方程叫做齐次方程 .
令
代入原方程得
两边积分, 得
积分后再用
代替 u,
便得原方程的通解.
解法:
分离变量:
例1. 解微分方程
解:
代入原方程得
分离变量
两边积分
得
故原方程的通解为
( 当 C = 0 时, y = 0 也是方程的解)
( C 为任意常数 )
此处
例2. 解微分方程
1. 方程
如何代换求解 ?
答: 令
或
一般说, 用前者方便些.
均可.
有时用后者方便 .
例如,
2. 解二阶可降阶微分方程初值问题需注意哪些问题 ?
答: (1) 一般情况 , 边解边定常数计算简便.
(2) 遇到开平方时, 要根据题意确定正负号.
例6
例7
作业
P309 2 (2); P315 1 (3), (6); 2 (5); P323 1 (5), (7); 2 (3); 4
运动,
在开始时刻
随着时间的增大 , 此力 F 均匀地减
直到 t = T 时 F(T) = 0 .
如果开始时质点在原点,
解: 据题意有
t = 0 时
设力 F 仅是时间 t 的函数: F = F (t) .
可降阶的高阶微分方程
三、形如y″=f(y,y′)型的微分方程
【例4】
求微分方程yy″-y′2-y′=0的通解. 解方程不显含自变量x,设y′=p,则
,代入方程得
在y≠0,p≠0时,约去p并整理,得
这是关于p的一阶线性微分方程,利用公式解之得 p=C1y-1,即y′=C1y-1,再分离变量并两端积分,便得方程 的通解为
这是一阶方程,设其通解为
因y′=p(x),于是
p=φ(x,C1),
dydx=φ(x,C1),
两端积分,得
y=∫φ(x,C1) dx+C2.
二、形如y″=f(x,y′)型的微分方程
【例2】
解方程xy″=y′lny′.
解设y′=p(x),则
,方程化为
分离变量,得
为所求方程的通解.
二、形如y″=f(x,y′)型的微分方程
【例3】
三、形如y″=f(y,y′)型的微分方程
方程 y″=f(y,y′)(6-19)
中不显含自变量x.为了求出它的解,我们令y′=p,并利用复合函数 的求导法则把y″化为对y的导数,即
这样,方程(6-19)就成为
这是一个关于y,p变量的一阶微分方程.设它的通解为 y′=p=φ(y,C1),
分离变量并积分,便得方程的通解为
可降阶的高阶 微分方程
一、形如y″=f(x)型的微分方程
对于微分方程
y″=f(x),
其右端仅含自变量x,如分得
y′=∫f(x)dx+C1,
y=∫(∫f(x)dx)dx+C1x +C2. 以此类推,对于n阶微分方程,连续积分n次,便得含
有n个任意常数的通解.
一、形如y″=f(x)型的微分方程
【例1】
高阶常系数线性微分方程
特征方程为 r 2 4r 4 0, r1 r2 2,
则通解为 y (C1 C2 x)e2x .
9
Ⅲ 有一对共轭复根 ( 0)
设特征根为 r1 i , r2 i ,
4
10-5 高阶常系数线性微分方程
定义 在n阶线性方程y(n) P1( x) y(n1) Pn1( x) y Pn( x) y f ( x)中,
如果未知函数y及其各阶导数y, y, , y(n)的系数全都是常数时,
则称该方程为常系数线性微分方程. 一般形式 : y(n) p1 y(n1) p2 y(n2) pn1 y pn y f ( x),
定义 由常系数齐次线性方程的特征方程的根确定其 通解的方法称为特征方程法.
11
例1 求方程 y 2 y y 0的通解.
解 特征方程为 r 2 2r 1 0 ,
解得 r1 r2 1 ,
故所求通解为 y (C1 C2 x)e x .
例2 求方程 y 2 y 5 y 0的通解.
Ⅱ 有两个相等的实根 ( 0)
特征根为 r1 r2
设另一特解为: y
p,
2 u2( x
)e
一特解为
, r1 x
将 y2 ,y2 ,y2代入原方程并化简得
y1 [
y2
e r1x , u( x)]
y1
u (2r1
p)u
(
r2 1
pr1
q)u
0,
知 u 0, 取 u( x) x, 则 y2 xer1x ,
可降阶的微分方程
再积分
y(n2) [ f ( x)dx C1]dx C2 ……
接连积分n次, 得到含有n个任意常数的通解.
2
例 求解方程 y e3x cos x
解 将方程积分三次, 得
y
1 3
e3x
sin
x
C1
y
1 9
e
3
x
cos
x
C1
x
C2
y
1 e 3 x sin x C1
27
2
x2 C2 x
1,
知C2 = 1
y x4 4x 1
6
对 于 不 含 有y、y、、y( k 1)的n阶 方 程
F( x, y(k) , y(n) ) 0 只须作变换, 令 p y(k ) .
方程就可化为 n k 阶方程
F( x, p,, p(nk) ) 0
求出通解后,
再积分k次,即可求得原方程的通解.
解 设 y p, 则 y p dp , 代入原方程
dy
y
p dp dy
p2
0,
即
p( y dp dy
p)
0
由 y dp dy
p 0,可得
p
C1
y,
dy dx
C1
y
原方程通解为 y C2eC1x
9
作业
习题6.3 (24页) 1.(1)(2)
10
再积分一次, 可求出原方程的通解
y p( x,C1 )dx C2
4
例 解方程
y
3x2 y 1 x3
y 1, y 4
x0
x0
解 因方程中不含未知函数y,
属y f ( x, y)型
令 y p, y p, 代入原方程, 得
可降阶的高阶微分方程
可降阶的高阶微分方程引言高阶微分方程是微积分中的一个重要概念,通常包含二阶及以上的导数。
然而,在某些情况下,我们可能希望将高阶微分方程降阶为一阶微分方程,这样可以更方便地求解和分析。
本文将讨论可降阶的高阶微分方程及其相关概念。
一阶可降阶微分方程一阶可降阶微分方程是指可以通过某种变换将其降为一阶微分方程的高阶微分方程。
例如,考虑一个二阶微分方程:d2y dx2+a(x)dydx+b(x)y=f(x)通过引入新的变量P(x)=dydx,我们可以将上述二阶微分方程转化为一个一阶可降阶微分方程:dPdx+a(x)P+b(x)y=f(x)这样,我们就成功地将高阶微分方程降为了一阶微分方程。
降阶方法降阶高阶微分方程的一般方法是引入新的变量,并通过适当选择这些变量的方式将其转化为一阶微分方程。
下面介绍几种常用的降阶方法。
1. 变量代换法变量代换法是一种常见的降阶方法,通过引入新的变量将高阶微分方程转化为一阶微分方程。
例如,对于一个三阶微分方程:d3y dx3+a(x)d2ydx2+b(x)dydx+c(x)y=f(x)我们可以引入新的变量P(x)=d 2ydx2和Q(x)=dydx,从而将该三阶微分方程转化为一个一阶微分方程:dPdx+a(x)P+b(x)Q+c(x)y=f(x)dQdx+b(x)P+c(x)Q=02. 微分幺正变换法微分幺正变换法是一种通过选择适当的变换矩阵将高阶微分方程转化为一阶微分方程的方法。
具体而言,通过选择一个幺正变换矩阵U(x),我们可以将一个n阶微分方程转化为一个一阶微分方程:d dx [y1y2⋮y n]=U(x)[f1f2⋮f n]其中y i表示原始高阶微分方程的解,f i表示相应的一阶微分方程的解。
3. 特解代换法特解代换法是一种通过引入特解来降低高阶微分方程的阶数的方法。
具体而言,我们假设高阶微分方程的一个特解形式,并代入原方程求解。
将得到的特解代入原方程,我们可以得到一个低阶微分方程。