双曲线焦点三角形的几个性质
双曲线抛物线焦点三角形面积公式

双曲线抛物线焦点三角形面积公式1. 概述双曲线和抛物线是数学中常见的曲线类型,它们在几何、物理、工程等领域都有广泛的应用。
而三角形则是几何学中的基本图形之一,研究三角形的性质和面积公式对于理解空间形态和解决实际问题都具有重要意义。
本文将结合双曲线和抛物线的性质,推导出利用焦点和顶点坐标计算三角形面积的公式。
2. 双曲线和抛物线的定义双曲线是平面上满足特定性质的点的集合,它的数学定义是平面上两条直线L1和L2,满足这两条直线的距离的差是一个常数,且常数小于0,那么平面上的点P(x, y)满足L1到P点的距离减去L2到P点的距离等于一个常数。
而抛物线则是平面上满足特定性质的点的集合,它的数学定义是平面上的一个点P(x, y)和一条直线L,使得点P到直线L的距离等于点P到定点F的距离。
其中,定点F称为焦点。
3. 双曲线和抛物线的焦点性质双曲线和抛物线都具有焦点的性质,利用这一性质可以推导出三角形的面积公式。
对于双曲线而言,对于平面上的两点A和B,满足A点到焦点的距离减去B点到焦点的距离等于一个常数。
而对于抛物线而言,对于平面上的三点A、B和C,满足A点到焦点的距离等于B点到焦点的距离等于C点到焦点的距离,并且这个距离等于直线L到焦点的距离。
4. 根据焦点坐标计算三角形面积公式根据双曲线和抛物线的焦点性质,我们可以推导出利用焦点和顶点坐标计算三角形面积的公式。
以双曲线为例,假设A(x1, y1), B(x2, y2)为双曲线上的两个点,F(p, q)为焦点坐标,则三角形FAB的面积可以表示为S = |(x1 - p)(y2 - q) - (x2 - p)(y1 - q)|而以抛物线为例,假设A(x1, y1), B(x2, y2),C(x3, y3)为抛物线上的三个点,F(p, q)为焦点坐标,则三角形ABC的面积可以表示为S = |x1(y2 - y3)+x2(y3 - y1)+x3(y1 - y2)|/25. 应用举例通过以上公式,我们可以快速、准确地计算双曲线和抛物线上任意三角形的面积。
双曲线知识点与性质大全

【知识梳理】 1、双曲线的定义(1)平面内,到两定点1F 、2F 的距离之差的绝对值等于定长()1222,0a F F a a >>的点的轨迹称为双曲线,其中两定点1F 、2F 称为双曲线的焦点,定长2a 称为双曲线的实轴长,线段12F F 的长称为双曲线的焦距.此定义为双曲线的第一定义.【注】12122PF PF a F F -==,此时P 点轨迹为两条射线.(2)平面内,到定点的距离与到定直线的距离比为定值()1e e >的点的轨迹称为双曲线,其中定点称为双曲线的焦点,定直线称为双曲线的准线,定值e 称为双曲线的离心率.此定义为双曲线的第二定义. 2、双曲线的简单性质3、渐近线双曲线()22221,0x y a b a b -=>的渐近线为22220x y a b -=,即0x y a b ±=,或by x a=±.【注】①与双曲线22221x y a b -=具有相同渐近线的双曲线方程可以设为()22220x y a b λλ-=≠;②渐近线为by x a=±的双曲线方程可以设为()22220x y a b λλ-=≠;③共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线叫做原双曲线的共轭双曲线.共轭双曲线具有相同的渐近线.④等轴双曲线:实轴与虚轴相等的双曲线称为等轴双曲线. 4、焦半径双曲线上任意一点P 到双曲线焦点F 的距离称为焦半径.若00(,)P x y 为双曲线()22221,0x y a b a b -=>上的任意一点,1(,0)F c -,2(,0)F c 为双曲线的左、右焦点,则10||PF ex a =+,20||PF ex a =-,其中ce a=. 5、通径过双曲线()22221,0x y a b a b -=>焦点F 作垂直于虚轴的直线,交双曲线于A 、B 两点,称线段AB 为双曲线的通径,且22b AB a=.6、焦点三角形P 为双曲线()22221,0x y a b a b-=>上的任意一点,1(,0)F c -,2(,0)F c 为双曲线的左右焦点,称12PF F ∆为双曲线的焦点三角形.若12F PF θ∠=,则焦点三角形的面积为:122cot 2F PF S b θ∆=.7、双曲线的焦点到渐近线的距离为b (虚半轴长).8、双曲线()22221,0x y a b a b-=>的焦点三角形的内心的轨迹为()0x a y =±≠9、直线与双曲线的位置关系直线:0l Ax By C ++=,双曲线Γ:()22221,0x y a b a b-=>,则l 与Γ相交22222a A b B C ⇔->;l 与Γ相切22222a A b B C ⇔-=;l 与Γ相离22222a A b B C ⇔-<.10、平行于(不重合)渐近线的直线与双曲线只有一个交点.【注】过平面内一定点作直线与双曲线只有一个交点,这样的直线可以为4条、3条、2条,或者0条. 11、焦点三角形角平分线的性质点(,)P x y 是双曲线()22221,0x y a b a b-=>上的动点,12,F F 是双曲线的焦点,M 是12F PF ∠的角平分线上一点,且20F M MP ⋅=,则OM a =,即动点M 的点的轨迹为()222x y a x a +=≠±.【推广2】设直线()110l y k x m m =+≠:交双曲线()22221,0x y a b a b -=>于C D 、两点,交直线22l y k x =:于点E .若E为CD 的中点,则2122b k k a=.13、中点弦的斜率直线l 过()()000,0M x y y ≠与双曲线()22221,0x y a b a b -=>交于,A B 两点,且AM BM =,则直线l 的斜率2020AB b x k a y =.14、点(,)(0,0)P x y x y >>是双曲线()22221,0x y a b a b-=>上的动点,过P 作实轴的平行线,交渐近线于,M N 两点,则PM PN =定值2a .15、点(,)(0,0)P x y x y >>是双曲线()22221,0x y a b a b-=>上的动点,过P 作渐近线的平行线,交渐近线于,M N 两点,则OMPNS=定值2ab.【典型例题】例1、双曲线的渐近线方程为20x y ±=,焦距为10,这双曲线的方程为_________.【变式1】若曲线22141x y k k+=+-表示双曲线,则k 的取值范围是_________.【变式2】双曲线22148x y -=的两条渐近线的夹角为_________.【变式3】已知椭圆2222135x y m n +=和双曲线2222123x y m n-=有公共的焦点,那么双曲线的渐近线方程为_________.【变式4】若椭圆221(0)x y m n m n +=>>和双曲线221(0,0)x y a b a b-=>>有相同焦点1F 、2F ,P 为两曲线的一个交点,则12PF PF ⋅=_________.【变式5】如果函数2y x =-的图像与曲线22:4C x y λ+=恰好有两个不同的公共点,则实数λ的取值范围是( )A .[1,1)-B . {}1,0-C . (,1][0,1)-∞-D . [1,0](1,)-+∞【变式6】直线2=x 与双曲线14:22=-y x C 的渐近线交于B A ,两点,设P 为双曲线C 上的任意一点,若OB b OA a OP +=(O R b a ,,∈为坐标原点),则下列不等式恒成立的是( )A .222a b +≥B .2122≥+b a C .222a b +≤ D .2212a b +≤【变式7】设连接双曲线22221x y a b -=与22221y x b a-=的四个顶点为四边形面积为1S ,连接其四个焦点的四边形面积为2S ,则12S S 的最大值为_________.例2、设12F F 、分别是双曲线2219y x -=的左右焦点,若点P 在双曲线上,且12=0PF PF ,则12PF PF +=_________.【变式1】过双曲线221109x y -=的左焦点1F 的弦6AB =,则2ABF ∆(2F 为右焦点)的周长为_________.【变式2】双曲线2211620x y -=的左、右焦点1F 、2F ,P 是双曲线上的动点,且19PF =,则2PF =_________.例3、设12F F 、是双曲线2214x y -=的两个焦点,点P 是双曲线的任意一点,且123F PF π∠=,求12PF F ∆的面积.例4、已知直线1y kx =+与双曲线2231x y -=有A B 、两个不同的交点,如果以AB 为直径的圆恰好过原点O ,试求k 的值.例5、已知直线1y kx =+与双曲线2231x y -=相交于A B 、两点,那么是否存在实数k 使得A B 、两点关于直线20x y -=对称?若存在,求出k 的值;若不存在,说明理由.例6、已知双曲线221124x y -=的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,求此直线的斜率的取值范围为_________.【变式1】已知曲线C :21(4)x y y x -=≤; (1)画出曲线C 的图像;(2)若直线l :1y kx =-与曲线C 有两个公共点,求k 的取值范围; (3)若()0P p ,()0p >,Q 为曲线C 上的点,求PQ 的最小值.【变式2】直线l :10ax y --=与曲线C :2221x y -=. (1)若直线l 与曲线C 有且仅有一个交点,求实数a 的取值范围;(2)若直线l 被曲线C 截得的弦长PQ =,求实数a 的取值范围;(3)是否存在实数a ,使得以PQ 为直径的圆经过原点,若存在,求出a 的值;若不存在,请说明理由.例7、已知F 是双曲线221412x y -=的左焦点,(14)A ,,P 是双曲线右支上的动点,求PF PA +的最小值.【变式】P 是双曲线221916x y -=的右支上一点,,M N 分别是圆()2254x y ++=和()2251x y -+=上的点,则PM PN -的最大值等于_________.例8、已知动圆P 与两个定圆()2251x y -+=和()22549x y ++=都外切,求动圆圆心P 的轨迹方程.【变式1】ABC ∆的顶点为()50A -,,()5,0B ,ABC ∆的内切圆圆心在直线3x =上,则顶点C 的轨迹方程是_________.【变式2】已知双曲线的中心在原点,且一个焦点为)F,直线1y x =-与其相交于M N 、两点,线段MN的中点的横坐标为23-,求此双曲线的方程.例9、已知双曲线221916x y -=,若点M 为双曲线上任一点,则它到两渐近线距离的乘积为_________.例10、焦点在x 轴上的双曲线C 的两条渐近线经过原点,且两条渐近线均与以点P 为圆心,以1为半径的圆相切,又知双曲线C 的一个焦点与P 关于直线y x =对称(1)求双曲线的方程;(2)设直线1y mx =+与双曲线C 的左支交于,A B 两点,另一直线l 经过点(2,0)M -及AB 的中点,求直线l 在轴上的截距n 的取值范围.【变式】设直线l 的方程为1y kx =-,等轴双曲线C :222x y a -=右焦点为).(1)求双曲线的方程;(2)设直线l 与双曲线的右支交于不同的两点A B 、,记AB 中点为M ,求实数k 的取值范围,并用k 表示点M 的坐标;(3)设点()1,0Q -,求直线QM 在y 轴上的截距的取值范围.例11、已知双曲线C 方程为:2212y x -=. (1)已知直线0x y m -+=与双曲线C 交于不同的两点A B 、,且线段AB 的中点在圆225x y +=上,求m 的值;(2)设直线l 是圆O :222x y +=上动点00(,)P x y (000x y ≠)处的切线,l 与双曲线C 交于不同的两点A B 、,证明AOB ∠的大小为定值.例12、已知中心在原点,顶点12A A 、在x 轴上,其渐近线方程是y x =,双曲线过点()6,6P .(1)求双曲线的方程;(2)动直线l 经过12A PA ∆的重心G ,与双曲线交于不同的两点M N 、,问:是否存在直线l ,使G 平分线段MN ,证明你的结论.例13、已知点1F 、2F 为双曲线C :()01222>=-b by x 的左、右焦点,过2F 作垂直于x 轴的直线,在x 轴上方交双曲线C 于点M ,且︒=∠3021F MF .圆O 的方程是222b y x =+. (1)求双曲线C 的方程;(2)过双曲线C 上任意一点P 作该双曲线两条渐近线的垂线,垂足分别为1P 、2P ,求21PP PP ⋅的值;(3)过圆O 上任意一点()00y ,x Q 作圆O 的切线l 交双曲线C 于A 、B 两点,AB 中点为M ,例14、已知双曲线C :()222210,0x y a b a b-=>>的一个焦点是()22,0F ,且a b 3=.(1)求双曲线C 的方程;(2)设经过焦点2F 的直线的一个法向量为)1,(m ,当直线l 与双曲线C 的右支相交于B A ,不同的两点时,求实数m 的取值范围;并证明AB 中点M 在曲线3)1(322=--y x 上.(3)设(2)中直线l 与双曲线C 的右支相交于B A ,两点,问是否存在实数m ,使得AOB ∠为锐角?若存在,请求出m 的范围;若不存在,请说明理由.。
双曲线经典知识点总结

双曲线知识点总结班级姓名知识点一:双曲线的定义在平面内,到两个定点、的距离之差的绝对值等于常数(大于0且)的动点的轨迹叫作双曲线.这两个定点、叫双曲线的焦点,两焦点的距离叫作双曲线的焦距.注意:1. 双曲线的定义中,常数应当满足的约束条件:,这可以借助于三角形中边的相关性质“两边之差小于第三边”来理解;2. 若去掉定义中的“绝对值”,常数满足约束条件:(),则动点轨迹仅表示双曲线中靠焦点的一支;若(),则动点轨迹仅表示双曲线中靠焦点的一支;3. 若常数满足约束条件:,则动点轨迹是以F1、F2为端点的两条射线(包括端点);4.若常数满足约束条件:,则动点轨迹不存在;5.若常数,则动点轨迹为线段F1F2的垂直平分线。
知识点二:双曲线的标准方程1.当焦点在轴上时,双曲线的标准方程:,其中;2.当焦点在轴上时,双曲线的标准方程:,其中.注意:1.只有当双曲线的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到双曲线的标准方程;2.在双曲线的两种标准方程中,都有;3.双曲线的焦点总在实轴上,即系数为正的项所对应的坐标轴上.当的系数为正时,焦点在轴上,双曲线的焦点坐标为,;当的系数为正时,焦点在轴上,双曲线的焦点坐标为,.知识点三:双曲线的简单几何性质 双曲线(a>0,b>0)的简单几何性质(1)对称性:对于双曲线标准方程(a>0,b>0),把x换成―x,或把y换成―y,或把x、y 同时换成―x、―y,方程都不变,所以双曲线(a>0,b>0)是以x轴、y轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为双曲线的中心。
(2)范围:双曲线上所有的点都在两条平行直线x=―a和x=a的两侧,是无限延伸的。
因此双曲线上点的横坐标满足x≤-a或x≥a。
(3)顶点:①双曲线与它的对称轴的交点称为双曲线的顶点。
②双曲线(a>0,b>0)与坐标轴的两个交点即为双曲线的两个顶点,坐标分别为A1(―a,0),A2(a,0),顶点是双曲线两支上的点中距离最近的点。
双曲线概念性质一览表

双曲线概念性质一览表
双曲线概念性质一览表,是对双曲线的分类和性质进行全面总结的表格,总结出双曲线的不同特征,以便于我们更好地理解双曲线的基本性质。
双曲线的概念性质一览表主要包括四个方面:
1、双曲线的定义:双曲线是一类代数曲线,它可以用一般方程式表示,它的曲线方程为y2=x2a2-1。
2、双曲线的特征:双曲线有两个焦点和一条渐近线(即y=a),当a>0时,双曲线是抛物线,当a<0时,双曲线是圆锥曲线。
3、双曲线的性质:双曲线的性质是它的轴对称,它的焦点距离和它的离心率有关,它的离心率为|a|,而它的焦点距离则等于|a|。
4、双曲线的应用:双曲线在几何中有着广泛的应用,它可以用来求解三角形的内接圆,可以用来计算两个圆之间的外切线以及两个圆的相交点,还可以应用于几何图形的构造等。
双曲线概念性质一览表,是对双曲线的性质和应用作出概括性总结,它有助于我们更加全面地理解双曲线,并能够用双曲线更好地解决几何问题。
双曲线的简单几何性质(2)

第2章 圆锥曲线与方程
复习 双曲线的标准方程与几何性质
双曲线定义
图形
方程 范围 对称性 顶点 焦点焦距 实轴、虚轴 渐近线 离心率 a,b,c 关系
一、焦点三角形、焦半径的最值
双曲线 x2 y2 1 上有一点 P 到右焦点的距离为 7 ,
9 16
则 P 到左焦点的距离等于_____
【练习】与圆 x2 y2 1以及圆 x2 y2 8x 12 0
都外切的圆的圆心在( )
A.一个椭圆上
B.双曲线的一支上
C.一个双曲线上
D.一个圆上
【思考】将“外切”变为“相切”?
教材54页B组第三题
作业
《小黄》
y2 b2
1 与直线 y
2x 有交点,
则其离心率的取值范围为
四、双曲线相关的轨迹问题(教材48页)
四、双曲线相关的轨迹问题(教材55页)
四、双曲线相关的轨迹问题
例 2.已知点 P 圆 M : (x 2)2 y2 4 上动点,
A(2,0),线段 PA 的中垂线与直线 PM 交于点 Q, 求 Q 的轨迹方程
若椭圆xm2+y2=1(m>1)与双曲线xn2-y2=1(n>0)有相同的焦点 F1,F2,
P 是两曲8 线的一个交点,则△F1PF2 的面积是( )
A.4 B6 .2
C.1
1 D.2
4
P
2
5
F1
O
2
4
F2
5
10
15
20
二、通径
5
4
3
2
1
O
8
6
4
双曲线的基本性质与解题技巧

⑴范围:x≤-a,或x≥a
⑵图像关于x轴、y轴、原点对称,
⑶两顶点是 ,实轴长为2a,虚轴长为2b。
⑷离心率
⑸渐近线方程为 ,准线方程是 。
【例1】
已知双曲线 的离心率为2,焦点与椭圆 的焦点相同,那么双曲线的焦点坐标为______;渐近线方程为________。
⑹实轴和虚轴相等的双曲线叫等轴双曲线,记作: ,等轴双曲线的离心率 ,且两条渐近线互相垂直。
⑶定量(建立关于基本量的方程或方程组,解得基本量a,b的值。)
【例2】
一炮弹在某处爆炸,在F1(-5000,0)处听到爆炸声的时间比在F2(5000,0)处晚 秒,已知坐标轴的单位长度为1米,声速为340米/秒,爆炸点应在什么样的曲线上,并求爆炸点所在的曲线方程。
【例3】
已知双曲线 的离心率为 ,右准线方程为 ,求双曲线C的方程。
四、“离心率”
突破口:根据题目条件找的关系,从而求出离心率。
【例8】
已知双曲线 的左右焦点分别为F1,F2,点A在双曲线上,且 轴,若 ,则双曲线的离心率等于( )
本讲小结:
1.双曲线的定义及基本性质
2.焦半径、焦点三角形的定义及其应用。
3.离心率的定义及其应用。
练习:
1.双曲线 的虚轴长是实轴长的2倍,则m=_______。
双曲线定义:
⑴双曲线的第一定义:平面内与两个定点F1,F2的距离差的绝对值是常数(小于|F1F2|)的点的轨迹叫做双曲线
⑵双曲线的第二定义:平面内到一个定点F的距离和到一条定直线的距离比是常数e(e>1)的点的轨迹叫做双曲线
双曲线的标准方程:
⑴中心在原点、焦点在x轴上的双曲线:
椭圆或双曲线中焦点三角形的一个性质及应用
椭圆或双曲线中焦点三角形的一个性质及应用
吴爱龙;黄园军;徐招平
【期刊名称】《中学生数理化:高二数学、高考数学》
【年(卷),期】2017(0)14
【摘要】椭圆或双曲线的两个焦点与曲线上的一点为顶点组成的三角形称为焦点三角形,焦点三角形涉及圆锥曲线的定义,具有许多性质。
下面介绍其一个有趣性质,然后举例说明该性质的应用。
【总页数】2页(P9-9)
【关键词】焦点三角形;双曲线;性质;应用;椭圆;圆锥曲线;举例说明;顶点
【作者】吴爱龙;黄园军;徐招平
【作者单位】江西省丰城中学
【正文语种】中文
【中图分类】G633.6
【相关文献】
1.椭圆、双曲线焦点三角形的一个性质 [J], 王元明
2.椭圆、双曲线焦点三角形的一个性质 [J], 王元明
3.椭圆与双曲线焦点三角形的一个斜率性质 [J], 刘才华
4.椭圆与双曲线焦点三角形角平分线的一个性质 [J], 刘才华[1]
5.椭圆与双曲线焦点三角形的一个斜率性质的推广 [J], 刘刚
因版权原因,仅展示原文概要,查看原文内容请购买。
高中数学双曲线知识点与性质大全
双曲线与方程【知识梳理】 1、双曲线的定义(1)平面内,到两定点1F 、2F 的距离之差的绝对值等于定长()1222,0a F F a a >>的点的轨迹称为双曲线,其中两定点1F 、2F 称为双曲线的焦点,定长2a 称为双曲线的实轴长,线段12F F 的长称为双曲线的焦距.此定义为双曲线的第一定义.【注】12122PF PF a F F -==,此时P 点轨迹为两条射线.(2)平面内,到定点的距离与到定直线的距离比为定值()1e e >的点的轨迹称为双曲线,其中定点称为双曲线的焦点,定直线称为双曲线的准线,定值e 称为双曲线的离心率.此定义为双曲线的第二定义.3、渐近线双曲线()22221,0x y a b a b -=>的渐近线为22220x y a b -=,即0x y a b ±=,或by x a=±.【注】①与双曲线22221x y a b -=具有相同渐近线的双曲线方程可以设为()22220x y a bλλ-=≠;②渐近线为by x a=±的双曲线方程可以设为()22220x y a b λλ-=≠;③共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线叫做原双曲线的共轭双曲线.共轭双曲线具有相同的渐近线.④等轴双曲线:实轴与虚轴相等的双曲线称为等轴双曲线. 4、焦半径双曲线上任意一点P 到双曲线焦点F 的距离称为焦半径.若00(,)P x y 为双曲线()22221,0x y a b a b -=>上的任意一点,1(,0)F c -,2(,0)F c 为双曲线的左、右焦点,则10||PF ex a =+,20||PF ex a =-,其中ce a=. 5、通径过双曲线()22221,0x y a b a b-=>焦点F 作垂直于虚轴的直线,交双曲线于A 、B 两点,称线段AB 为双曲线的通径,且22b AB a=.6、焦点三角形P 为双曲线()22221,0x y a b a b-=>上的任意一点,1(,0)F c -,2(,0)F c 为双曲线的左右焦点,称12PF F ∆为双曲线的焦点三角形.若12F PF θ∠=,则焦点三角形的面积为:122cot 2F PF S b θ∆=.7、双曲线的焦点到渐近线的距离为b (虚半轴长).8、双曲线()22221,0x y a b a b-=>的焦点三角形的内心的轨迹为()0x a y =±≠9、直线与双曲线的位置关系直线:0l Ax By C ++=,双曲线Γ:()22221,0x y a b a b-=>,则l 与Γ相交22222a A b B C ⇔->; l 与Γ相切22222a A b B C ⇔-=; l 与Γ相离22222a A b B C ⇔-<.10、平行于(不重合)渐近线的直线与双曲线只有一个交点.【注】过平面内一定点作直线与双曲线只有一个交点,这样的直线可以为4条、3条、2条,或者0条. 11、焦点三角形角平分线的性质点(,)P x y 是双曲线()22221,0x y a b a b-=>上的动点,12,F F 是双曲线的焦点,M 是12F PF ∠的角平分线上一点,且20F M MP ⋅=,则OM a =,即动点M 的点的轨迹为()222x y a x a +=≠±.【推广2】设直线()110l y k x m m =+≠:交双曲线()22221,0x y a b a b -=>于C D 、两点,交直线22l y k x =:于点E .若E为CD 的中点,则2122b k k a=.13、中点弦的斜率直线l 过()()000,0M x y y ≠与双曲线()22221,0x y a b a b -=>交于,A B 两点,且AM BM =,则直线l 的斜率2020AB b x k a y =.14、点(,)(0,0)P x y x y >>是双曲线()22221,0x y a b a b-=>上的动点,过P 作实轴的平行线,交渐近线于,M N 两点,则PM PN =定值2a .15、点(,)(0,0)P x y x y >>是双曲线()22221,0x y a b a b-=>上的动点,过P 作渐近线的平行线,交渐近线于,M N 两点,则OMPNS =定值2ab .【典型例题】例1、双曲线的渐近线方程为20x y ±=,焦距为10,这双曲线的方程为_________.【变式1】若曲线22141x y k k+=+-表示双曲线,则k 的取值范围是_________.【变式2】双曲线22148x y -=的两条渐近线的夹角为_________.【变式3】已知椭圆2222135x y m n +=和双曲线2222123x y m n-=有公共的焦点,那么双曲线的渐近线方程为_________.【变式4】若椭圆221(0)x y m n m n +=>>和双曲线221(0,0)x y a b a b-=>>有相同焦点1F 、2F ,P 为两曲线的一个交点,则12PF PF ⋅=_________.【变式5】如果函数2y x =-的图像与曲线22:4C x y λ+=恰好有两个不同的公共点,则实数λ的取值范围是( )A .[1,1)-B . {}1,0-C . (,1][0,1)-∞-D . [1,0](1,)-+∞【变式6】直线2=x 与双曲线14:22=-y x C 的渐近线交于B A ,两点,设P 为双曲线C 上的任意一点,若b a +=(O R b a ,,∈为坐标原点),则下列不等式恒成立的是( )A .222a b +≥B .2122≥+b a C .222a b +≤ D .2212a b +≤【变式7】设连接双曲线22221x y a b -=与22221y x b a-=的四个顶点为四边形面积为1S ,连接其四个焦点的四边形面积为2S ,则12S S 的最大值为_________.例2、设12F F 、分别是双曲线2219y x -=的左右焦点,若点P 在双曲线上,且12=0PF PF ,则12PF PF +=_________.【变式1】过双曲线221109x y -=的左焦点1F 的弦6AB =,则2ABF ∆(2F 为右焦点)的周长为_________.【变式2】双曲线2211620x y -=的左、右焦点1F 、2F ,P 是双曲线上的动点,且19PF =,则2PF =_________.例3、设12F F 、是双曲线2214x y -=的两个焦点,点P 是双曲线的任意一点,且123F PF π∠=,求12PF F ∆的面积.例4、已知直线1y kx =+与双曲线2231x y -=有A B 、两个不同的交点,如果以AB 为直径的圆恰好过原点O ,试求k 的值.例5、已知直线1y kx =+与双曲线2231x y -=相交于A B 、两点,那么是否存在实数k 使得A B 、两点关于直线20x y -=对称?若存在,求出k 的值;若不存在,说明理由.例6、已知双曲线221124x y -=的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,求此直线的斜率的取值范围为_________.【变式1】已知曲线C :21(4)x y y x -=≤; (1)画出曲线C 的图像;(2)若直线l :1y kx =-与曲线C 有两个公共点,求k 的取值范围; (3)若()0P p ,()0p >,Q 为曲线C 上的点,求PQ 的最小值.【变式2】直线l :10ax y --=与曲线C :2221x y -=. (1)若直线l 与曲线C 有且仅有一个交点,求实数a 的取值范围;(2)若直线l 被曲线C 截得的弦长PQ =,求实数a 的取值范围;(3)是否存在实数a ,使得以PQ 为直径的圆经过原点,若存在,求出a 的值;若不存在,请说明理由.例7、已知F 是双曲线221412x y -=的左焦点,(14)A ,,P 是双曲线右支上的动点,求PF PA +的最小值.【变式】P 是双曲线221916x y -=的右支上一点,,M N 分别是圆()2254x y ++=和()2251x y -+=上的点,则PM PN -的最大值等于_________.例8、已知动圆P 与两个定圆()2251x y -+=和()22549x y ++=都外切,求动圆圆心P 的轨迹方程.【变式1】ABC ∆的顶点为()50A -,,()5,0B ,ABC ∆的内切圆圆心在直线3x =上,则顶点C 的轨迹方程是_________.【变式2】已知双曲线的中心在原点,且一个焦点为)F,直线1y x =-与其相交于M N 、两点,线段MN的中点的横坐标为23-,求此双曲线的方程.例9、已知双曲线221916x y -=,若点M 为双曲线上任一点,则它到两渐近线距离的乘积为_________.例10、焦点在x 轴上的双曲线C 的两条渐近线经过原点,且两条渐近线均与以点P 为圆心,以1为半径的圆相切,又知双曲线C 的一个焦点与P 关于直线y x =对称 (1)求双曲线的方程;(2)设直线1y mx =+与双曲线C 的左支交于,A B 两点,另一直线l 经过点(2,0)M -及AB 的中点,求直线l 在轴上的截距n 的取值范围.【变式】设直线l 的方程为1y kx =-,等轴双曲线C :222x y a -=右焦点为).(1)求双曲线的方程;(2)设直线l 与双曲线的右支交于不同的两点A B 、,记AB 中点为M ,求实数k 的取值范围,并用k 表示点M 的坐标;(3)设点()1,0Q -,求直线QM 在y 轴上的截距的取值范围.例11、已知双曲线C 方程为:2212y x -=. (1)已知直线0x y m -+=与双曲线C 交于不同的两点A B 、,且线段AB 的中点在圆225x y +=上,求m 的值; (2)设直线l 是圆O :222x y +=上动点00(,)P x y (000x y ≠)处的切线,l 与双曲线C 交于不同的两点A B 、,证明AOB ∠的大小为定值.例12、已知中心在原点,顶点12A A 、在x 轴上,其渐近线方程是3y x =±,双曲线过点()6,6P . (1)求双曲线的方程;(2)动直线l 经过12A PA ∆的重心G ,与双曲线交于不同的两点M N 、,问:是否存在直线l ,使G 平分线段MN ,证明你的结论.例13、已知点1F 、2F 为双曲线C :()01222>=-b by x 的左、右焦点,过2F 作垂直于x 轴的直线,在x 轴上方交双曲线C 于点M ,且︒=∠3021F MF .圆O 的方程是222b y x =+. (1)求双曲线C 的方程;(2)过双曲线C 上任意一点P 作该双曲线两条渐近线的垂线,垂足分别为1P 、2P ,求21PP PP ⋅的值; (3)过圆O 上任意一点()00y ,x Q 作圆O 的切线l 交双曲线C 于A 、B 两点,AB 中点为M ,例14、已知双曲线C :()222210,0x y a b a b-=>>的一个焦点是()22,0F ,且a b 3=.(1)求双曲线C 的方程;(2)设经过焦点2F 的直线的一个法向量为)1,(m ,当直线l 与双曲线C 的右支相交于B A ,不同的两点时,求实数m 的取值范围;并证明AB 中点M 在曲线3)1(322=--y x 上.(3)设(2)中直线l 与双曲线C 的右支相交于B A ,两点,问是否存在实数m ,使得AOB ∠为锐角?若存在,请求出m 的范围;若不存在,请说明理由.仰望天空时,什么都比你高,你会自卑; 俯视大地时,什么都比你低,你会自负; 只有放宽视野,把天空和大地尽收眼底, 才能在苍穹泛土之间找准你真正的位置。
专题3.4双曲线的简单几何性质(九个重难点突破)(解析版)-高二数学上学期重难点和易错点突破
双曲线的简单几何性质专题3.4离心率1c e a=>渐近线b y xa=±a y xb=±知识点二等轴双曲线实轴和虚轴等长的双曲线叫做等轴双曲线,它有以下性质:(1)方程形式为22)0(x y λλ-=≠;(2)渐近线方程为y x =±,它们互相垂直;(3)离心率2e =重难点1已知方程求焦距、实轴、虚轴1.已知12,F F 是双曲线2221(0)3y x a a-=>的两个焦点,若双曲线的左、右顶点和原点把线段12F F 四等分,则该双曲线的焦距为()A .1B .2C .3D .4【答案】D【分析】根据题意列出方程组222243c a c a ⎧=⎨=+⎩进行求解即可.【详解】因为12,F F 是双曲线2221(0)3y x a a-=>的两个焦点,若双曲线的左、右顶点和原点把线段12F F 四等分,所以24c a =,即2c a =,即224c a =,又因为223c a =+,解得2214a c ⎧=⎨=⎩,所以c =2,所以该双曲线的焦距为2224c =⨯=.故选:D2.双曲线221x y m-=的实轴长是虚轴长的3倍,则m 的值为()A .9B .-9C .19D .19-【答案】C【分析】根据双曲线的方程,求得1,a b ==.【详解】由双曲线221x y m-=,可得0m >,且1,a b ==因为双曲线的实轴长是虚轴长的3倍,可得3a b =,即1=19m =.故选:C.3.已知双曲线C :()222210,0x y a b a b-=>>的左顶点为A ,右焦点为F ,焦距为6,点M 在双曲线C 上,且MF AF ⊥,2MF AF =,则双曲线C 的实轴长为()A .2B .4C .6D .8【答案】A【分析】运用代入法,结合已知等式进行求解即可.【详解】把x c =代入22221x y a b -=中,得2b y a =±,即2b MF a=,因为AF a c =+,2MF AF =,所以()22b a c a=+⇒22222c a ac a -=+,又3c =,所以2230a a +-=,解得1a =,3a =-舍去,则22a =.故选:A4.如图,这是一个落地青花瓷,其外形被称为单叶双曲面,可以看成是双曲线C :22221x y a b-=的一部分绕其虚轴所在直线旋转所形成的曲面.若该花瓶横截面圆的最小直径为8cm ,瓶高等于双曲线C 的虚轴长,则该花瓶的瓶口直径为()A .cmB .24cmC .32cmD .cm【答案】D【分析】求出4a =,设出(),M r b ,代入双曲线方程,求出r =.【详解】因为该花瓶横截面圆的最小直径为8cm ,所以4a =.设M 是双曲线C 与瓶口截面的一个交点,该花瓶的瓶口半径为r ,则(),M r b ,所以222214r b b-=,解得r =2r =.故选:D5.若实数m 满足05m <<,则曲线221155x y m -=-与曲线221155x y m -=-的()A .离心率相等B .焦距相等C .实轴长相等D .虚轴长相等【答案】B【分析】根据双曲线的性质逐一分析判断即可.【详解】因为05m <<,所以50,150m m ->->,所以曲线221155x y m -=-与曲线221155x y m -=-都是焦点在x 轴上的双曲线,15520155m m m +-=-=-+,所以两曲线的焦点和焦距都相同,故B 正确;因为20201515m m m--≠-,所以离心率不相等,故A 错误;因为1515m ≠-,所以实轴长不相等,故C 错误;因为55m -≠,所以虚轴长不相等,故D 错误.故选:B.6.等轴双曲线2221(0)x y a a-=>的焦距为.【答案】【分析】根据等轴双曲线定义得到221a b ==,进而求出c =.【详解】由题意得,221a b ==,故2222c a b =+=,故c =2c =.故答案为:7.已知椭圆22122:1(0)x y C a b a b +=>>的左、右焦点分别为1F ,2F ,M 是1C 上任意一点,12MF F △的面积的1C 的焦距为2,则双曲线22222:1y x C a b-=的实轴长为.【答案】4【分析】根据椭圆焦点三角形的性质即可列方程求解2,a b =⎧⎪⎨=⎪⎩,进而可求解.【详解】由于12MF F △的面积为122M c y cb ⨯⨯≤,由题意知22222,,c b c a b c ⎧⋅=⎪=⎨⎪=+⎩所以2,a b =⎧⎪⎨⎪⎩故双曲线2C 的方程为22143y x -=,则2C 的实轴长为4.故答案为:4重难点2已知方程求双曲线的渐近线8.双曲线()22102y x a a a-=≠的渐近线方程为()A .2y x =±B .12y x =±C.y =D.2y x =【答案】C【分析】利用双曲线渐近线方程定义计算即可.【详解】由题意可得:双曲线()22102y x a a a-=≠渐近线斜率为k ==,则其渐近线方程为:y =.故选:C9.已知双曲线22221(0,0)x y a b a b-=>>的离心率为e,若点(与点(),2e 都在双曲线上,则该双曲线的渐近线方程为()A .y x=±B.y =C.y =D .2y x=±【答案】B【分析】根据给定条件,列出方程组,结合离心率的意义求出,a b 作答.【详解】由点,2)e 在双曲线22221x y a b -=上,得2222241461e a b a b ⎧-=⎪⎪⎨⎪-=⎪⎩,则222420e a b --=,即2222214b e e a==--,整理得42560e e -+=,解得22e =或23e =,当22e =时,22a b =,此时方程22461a b -=无解,当23e =时,222b a =,而22461a b -=,解得1,a b ==,所以该双曲线的渐近线方程为y =.故选:B10.双曲线22139x y -=的两条渐近线的夹角为()A .30︒B .45︒C .60︒D .120︒【答案】C【分析】根据题意求得双曲线的渐近线方程,进而求得其夹角.【详解】由双曲线22139x y -=,可得3a b ==,所以双曲线的渐近线的方程为by x a=±=,所以两渐近线y =的夹角为60︒.故选:C.11.在平面直角坐标系xOy 中,双曲线2221x y -=的渐近线方程为()A.2y x =±B.y =C .y x =±D.y x =【答案】B【分析】化简双曲线的方程为标准方程,求得,a b 的值,结合双曲线的几何性质,即可求解.【详解】由双曲线2221x y -=,可得其标准方程为22112x y -=,所以12a b ==,则双曲线的渐近线方程为by x a=±=.故选:B.12.已知双曲线()2222:10,0x y C a b a b-=>>的一个焦点是F ,点F 到C 的渐近线的距离为d ,则d ()A .与a 有关B .与a 无关C .与b 有关D .与b 无关【答案】BC【分析】根据双曲线标准方程可求得焦点坐标,再利用点到直线距离即可求出d b =,便可得出结论.【详解】设双曲线C 的焦距为2c ,不妨取右焦点F 的坐标为(),0c,如下图所示:双曲线C 的渐近线方程是by x a=±,即bx ay ±=0,所以===bcd b c,所以d 与a 无关,与b 有关.故选:BC.13.双曲线2221(0)36x y a a -=>的渐近线方程为2y x =±,则=a .【答案】3【分析】根据双曲线的渐近线方程即可求解.【详解】2221(0)36x y a a -=>的渐近线方程为6y x a =±,所以623a a =⇒=,故答案为:314.已知双曲线()22:10y C x n n-=>的一条渐近线为0nx =,则C 的离心率为.2n ==,进而求出双曲线的离心率.【详解】双曲线的一条渐近线方程为0nx =,即y x =,2n =⇒=,故双曲线22:12y C x -=,所以双曲线的离心率为1e =重难点3由双曲线的几何性质求标准方程15.已知双曲线2222:1y x C a b-=的一条渐近线斜率为2-,实轴长为4,则C 的标准方程为()A .2214x y -=B .221416y x -=C .2214y x -=D .221164y x -=【答案】C【分析】根据双曲线的基本量关系,结合渐近线方程求解即可.【详解】由题意双曲线2222:1y x C a b-=的焦点在y 轴上,则24a =,2a =,又2a b -=-,则1b =,故C 的标准方程为2214y x -=.故选:C16()2,0,则双曲线的标准方程为()A .22144x y -=B .22144-=y x C .2214y x -=D .2214x y -=【答案】A【分析】根据条件列关于a ,b ,c 的方程组求解即可.【详解】设双曲线的标准方程为22221x y a b-=,由已知得222222a b a a b c ⎧+=⎪=⎨⎪+=⎩,解得22a b =⎧⎨=⎩,所以双曲线的标准方程为22144x y -=故选:A.17.已知双曲线2222:1(0,0)x y C a b a b-=>>的焦点到渐近线的距离为4,实轴长为6,则C 的方程为()A .22149x y -=B .22194x y -=C .221169x y -=D .221916x y -=【答案】D【分析】由距离公式得出4b =,进而由双曲线的性质得出方程.【详解】右焦点2(,0)F c 到渐近线0bx ay -=4b ==,因为实轴长为26a =,所以3a =,即C 的方程为221916x y -=.故选:D18.求双曲线以椭圆22185x y +=的焦点为顶点,且以椭圆的顶点为焦点,则双曲线的方程是()A .22135x y -=B .22153x y -=C .22135y x -=D .22153y x -=【答案】A【分析】根据椭圆22185x y +=方程,可得出其焦点坐标、顶点坐标,进而得到双曲线的焦点坐标、顶点坐标,即可得到双曲线的方程.【详解】在椭圆22185x y +=中,c =,椭圆的焦点坐标为,(,左右顶点坐标分别为,()-,则双曲线的顶点坐标为,(,焦点坐标为0),()-,且双曲线的焦点在x 轴上,所以a =c =222835b c a =-=-=,所以双曲线的方程为:22135x y -=.故选:A.19.已知双曲线C :22221x y a b-=(0a >,0b >)的实轴长为4.若点()P m 是双曲线C 位于第一象限内的一点,则m =()A .2B .1CD【答案】B【分析】根据已知条件求得,a b ,从而求得双曲线的方程,代入P 点坐标,由此求得m 的值.【详解】法一:双曲线的几何性质由题知22224,,a c e abc a =⎧⎪⎪==⎨⎪⎪=-⎩,解得21a b c ⎧=⎪=⎨⎪=⎩,所以双曲线C :2214x y -=.又点()P m 是双曲线C 位于第一象限内的一点,所以2814m -=(0m >),解得1m =.法二:由题知242a c e a =⎧⎪⎨===⎪⎩,解得21a b =⎧⎨=⎩,所以双曲线C :2214x y -=.又点()P m 是双曲线C 位于第一象限内的一点,所以2814m -=(0m >),解得1m =.故选:B20.双曲线()2210,0x y m n m n -=>>的渐近线方程为2y x =±,实轴长为2,则m n -为()A .14-B.1C .12D.1【答案】A【分析】根据渐近线方程、实轴长求得,m n ,由此求得m n -.【详解】依题意222222a m a b n a m ⎧⎪⎪=⎪=⎨⎪⎪==⎪⎝⎭⎩,解得511,,44m n m n ==-=-.故选:A21.如果中心在原点,对称轴在坐标轴上的等轴双曲线的一个焦点为()10,6F -,那么此双曲线的标准方程为.【答案】2211818y x -=【分析】根据焦点坐标及题意,设方程为22221(0)y x a a a-=>,根据焦点坐标,可求得2a ,即可得答案.【详解】因为一个焦点是()10,6F -,所以6c =,且焦点在y 轴,所以设等轴双曲线方程为22221(0)y x a a a-=>,所以22236c a a =+=,解得218a =,所以双曲线标准方程为2211818y x -=,故答案为:2211818y x -=.重难点4求共渐近线的双曲线方程22.若双曲线C 与双曲线2211612x y -=有相同的渐近线,且经过点(,则双曲线C 的标准方程是.【答案】221912y x -=【分析】设双曲线C 的方程为221612x y λ-=,根据双曲线C 经过的点求得λ,从而求得双曲线C 的标准方程.【详解】由双曲线C 与双曲线2211612x y -=有相同的渐近线,可设双曲线C 的方程为221612x y λ-=,又C过点(,所以34λ=-,22316124x y -=-,整理得双曲线C 的标准方程是221912y x -=.故答案为:221912y x -=23.与双曲线221169x y -=渐近线相同,且一个焦点坐标是()0,5的双曲线的标准方程是.【答案】221916y x -=【分析】设所求双曲线的方程为22221y x a b -=,由题意有2225a b +=且34a b =,解出22,a b 即可.【详解】双曲线221169x y -=的渐近线方程为34y x =±,由焦点坐标是()0,5,可设所求双曲线的方程为22221y x a b-=(0,0)a b >>,得2225a b +=,双曲线渐近线的方程为a y x b =±,由题意有34a b =,解得29a =,216b =,所以双曲线的方程为221916y x -=.故答案为:221916y x -=.24.若双曲线C 与2219x y -=有共同渐近线,且与椭圆2214020x y +=有相同的焦点,则该双曲线C 的方程为.【答案】221182x y -=【分析】根据双曲线与椭圆的标准方程,求得渐近线方程与焦点坐标,由双曲线标准方程,建立方程,可得答案.【详解】由方程2219x y -=,则其渐近线方程为13y x =±,由椭圆2214020x y +=,则其焦点为()±,由题意可知,双曲线C 的标准方程设为22221x ya b -=,则221320b a a b ⎧=⎪⎨⎪+=⎩,解得22182a b ⎧=⎨=⎩,则双曲线C 的标准方程为221182x y -=,故答案为:221182x y -=.25.双曲线22:12y C x -=,写出一个与双曲线C 有共同的渐近线但离心率不同的双曲线方程.【答案】2212y x -=(答案不唯一)【分析】根据有共同渐近线的双曲线方程的性质进行求解即可.【详解】与双曲线C 有共同的渐近线的双曲线方程可设为222y x λ-=,当1λ=-时,得到双曲线方程为2212y x -=,显然该双曲线与双曲线C 有共同的渐近线但离心率不同,故答案为:2212y x -=26.求与双曲线22143y x -=有共同的渐近线,且经过点()3,2M -的双曲线的标准方程.【答案】22168x y -=【分析】利用待定系数法即可得到所求双曲线的标准方程.【详解】与双曲线22143y x -=有相同的渐近线的双曲线可设为22(0)43y x λλ-=≠又所求双曲线过点()3,2M -,则()222343λ--=,则2λ=-则所求双曲线的方程为22243y x -=-,即22168x y -=.27.已知双曲线E 与双曲线221169x y -=共渐近线,且过点()3A -,若双曲线M 以双曲线E 的实轴为虚轴,虚轴为实轴,试求双曲线M 的标准方程.【答案】221944x y -=【分析】设双曲线E 的方程为()220169-=≠x y t t ,代入点A 可得双曲线E 的标准方程,从而得到双曲线双曲线M 的标准方程.【详解】由题意,设双曲线E 的方程为()220169-=≠x y t t ,∵点()3A -在双曲线E上,∴(()223169--=t ,∴14t =-,∴双曲线E 的标准方程为221944y x -=,又双曲线M 以双曲线E 的实轴为虚轴,虚轴为实轴,∴双曲线M 的标准方程为221944x y -=.28.已知双曲线()2222:10,0x y C a b a b-=>>的两个焦点分别为()1F ,)2F ,且过点)2P.(1)求双曲线C 的虚轴长;(2)求与双曲线C 有相同渐近线,且过点()3,6Q -的双曲线的标准方程.【答案】(1)(2)221189y x -=【分析】(1)由双曲线的定义可知,12||||2PF PF a -=,又222+=a b c ,求得b (2)设与双曲线C 有相同渐近线的双曲线的方程为22(0)2y x λλ-=≠,将点()3,6Q -的坐标代入上述方程得λ即可.【详解】(1)由题意,易知22PF =,12F F =212PF F F ⊥.在21Rt PF F △中,14PF ==由双曲线的定义可知,122PF PF a -=,22a =,即1a =.∵双曲线C 的两个焦点分别为()1F ,)2F ,∴c =又∵222+=a b c ,∴b =故双曲线C 的虚轴长为(2)由(1)知双曲线C 的方程为2212y x -=.设与双曲线C 有相同渐近线的双曲线的方程为()2202y x λλ-=≠将点()3,6Q -的坐标代入上述方程,得9λ=-故所求双曲线的标准方程为221189y x -=重难点5根据,,a b c 齐次式关系求渐近线方程29.过原点的直线l 与双曲线E :()222210,0x y a b a b-=>>交于A ,B 两点(点A 在第一象限),AC x ⊥交x 轴于C 点,直线BC 交双曲线于点D ,且1AB AD k k ⋅=,则双曲线的渐近线方程为()A .2y x =±B .12y x =±C .y =D .y x =【答案】D【分析】由题可设,000011(,),(,),(,)A x y B x y D x y --,0(,0)C x ,分别表示出,,AB BC AD k k k ,逐步转化,即可求得本题答案.【详解】因为,A B 直线过原点,所以,A B 关于原点对称,设000011(,),(,),(,)A x y B x y D x y --,因为AC 与x 轴垂直,所以0(,0)C x ,设123,,AB BC AD k k k k k k ===,则00121001,22y y k k k x x ===,而222222210101012232222222101010101(1)(1)y y y y y y x x b k k b b x x x x x x x x a a a ⎡⎤+--⋅=⋅==---=⎢⎥+---⎣⎦所以,213232221b k k k k a⋅=⋅==,所以,222,a b a ==所以渐近线方程为2y x =±.故选:D30.双曲线2222:1(0,0)x y E a b a b-=>>,点A ,B 均在E 上,若四边形OACB 为平行四边形,且直线OC ,AB的斜率之积为3,则双曲线E 的渐近线的倾斜角为()A .π3B .π3或2π3C .π6D .π6或5π6【答案】B【分析】利用点差法,结合双曲线渐近线方程、平行四边形的性质、中点坐标公式进行求解即可.【详解】设()()1122,,,A x y B x y ,显然线段AB 的中点坐标为1212,22x x y y ++⎛⎫⎪⎝⎭,因为四边形OACB 为平行四边形,所以线段OC 的中点坐标和线段AB 的中点坐标相同,即为1212,22x x y y ++⎛⎫⎪⎝⎭,因此C 点坐标为()1212,x x y y ++,因为直线OC ,AB 的斜率之积为3,所以221212122212121233y y y y y y x x x x x x +--⋅=⇒=+--,因为点A ,B 均在E 上,所以2222112222221,1x y x y a b a b-=-=,两式相减得:22212222123y y b bx x a a-==⇒=-所以两条渐近线方程的倾斜角为π3或2π3,故选:B【点睛】关键点睛:本题的关键是应用点差法和平行四边形的性质.31.已知双曲线2222:1(0,0)x y C a b a b -=>>)A .12y x =±B .2y x=±C .y =D .y x =【答案】B【分析】由离心率求得ba即得渐近线方程.【详解】c e a ==222225c a b a a+==,2ba =,故选:B32.设12,F F 分别是双曲线22221x ya b-=()0,0a b >>的左、右焦点,若双曲线右支上存在一点P 满足212PF F F =,且124cos 5PF F ∠=,则双曲线的渐近线方程为()A .340x y ±=B .430x y ±=C .350x y ±=D .540x y ±=【答案】B【分析】结合双曲线的定义,以及条件,得到425a c c +=,再根据222c ab =+,即可求解双曲线渐近线的斜率.【详解】作21F Q PF ⊥于点Q ,如图所示,因为122F F PF =,所以Q 为1PF 的中点,由双曲线的定义知|122PF PF a -=,所以122PF a c =+,故1FQ a c =+,因为124cos 5PF F ∠=,所以11212cos FQ PF F F F =∠,即425a c c +=,得35c a =,所以5a =,得43b a =,故双曲线的渐近线方程为43y x =±,即430x y ±=.故选:B33.已知F 为双曲线C :22221x y a b-=(0a >,0b >)的右焦点,过点F 作x 轴的垂线与双曲线及它的渐近线在第一象限内依次交于点A 和点B .若A B A F =,则双曲线C 的渐近线方程为()A0y ±=B .0x =C 0y ±=D .0x =【答案】B【分析】分别求出点A,B 的坐标,利用线段相等建立方程求出ba即可得解.【详解】由题意得(),0F c ,双曲线C 的渐近线方程为by x a=±.设点A ,B 的纵坐标依次为1y ,2y ,因为221221c y a b -=,所以21b y a =,所以2b AF a=.因为2bc y a=,所以bc BF a =.因为A B A F =,所以22bc ba a=,得2c b =,所以a ==,故b a C 的渐近线方程为y x =,即0x =,故选:B .34.如图,已知1F ,2F 为双曲线()222210,0x ya b a b-=>>的焦点,过2F 作垂直于x 轴的直线交双曲线于点P ,且1230PF F ∠=︒,则双曲线的渐近线方程为.【答案】y =【分析】利用点在双曲线上及直角三角形中30︒所对的直角边等于斜边的一半,结合双曲线的定义和渐近线方程即可求解.【详解】设()()2,00F c c >,()0,P c y ,则220221y c a b -=,解得20b y a=±,∴22b PF a=.在21Rt PF F △中,1230PF F ∠=︒,则122PF PF =①.由双曲线的定义,得122PF PF a -=②.由①②得22PF a =.∵22b PF a=,∴22b a a=,即222b a =.∴ba=.∴双曲线的渐近线方程为y =.故答案为:y =.35.过双曲线2222:1-=y W x a b的右焦点F 作x 轴的垂线,与两条渐近线的交点分别为A ,B ,若OAB 为等边三角形,则W 的渐近线方程为,W 的离心率为.【答案】3y x =±3【分析】根据图形则得到tan 303b a ==,再利用离心率公式即可.【详解】双曲线渐近线方程为by x a=±,因为OAB 是等边三角形,则tan 303b a == ,则渐近线方程为3y x =±,即e ===,故答案为:y x =重难点6求双曲线的离心率36.设12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过点1F 作双曲线的一条渐近线的垂线,垂足为M .若2MF ,则双曲线C 的离心率为()AB C .3D 【答案】A【分析】根据题意,先求得焦点1F 到渐近线的距离为b ,在直角1MOF △中,求得1cos bOF M c∠=,再在12MF F △中,利用余弦定理求得222343b c b =-,结合222b c a =-和离心率的定义,即可求解.【详解】由双曲线2222:1(0,0)x y C a b a b -=>>,可得1(,0)F c -,渐近线方程为b y x a=±,如图所示,则焦点1F 到渐近线by x a=-的距离为1MF b =,在直角1MOF △中,可得111cos MF bOF M OF c∠==,在12MF F △中,由余弦定理得222212112112cos MF F F MF F F MF OF M =+-∠,即22222342243bb c b cb c b c=+-⨯⨯=-,所以2223c b =,又由222b c a =-,所以22223()c c a =-,可得223c a =,所以双曲线的离心率为==ce a.故选:A.37.已知F 为双曲线C :()222210,0x y a b a b-=>>的右焦点,平行于x 轴的直线l 分别交C 的渐近线和右支于点A ,B ,且90OAF ∠=︒,OBF OFB ∠=∠,则C 的离心率为()ABC .32D【答案】B【分析】设(),B m n ,联立方程组求得,an A n b ⎛⎫⎪⎝⎭,根据90OAF ∠=︒,得到1AF OA k k ⋅=-,求得ab n c =,再由(),B m n 在双曲线C 上,化简得到22422a c a m c+=,结合OB OF =,化简得到222a c =,进而求得双曲线的离心率.【详解】双曲线C :()222210,0x y a b a b -=>>的渐近线方程为b y x a =±.设(),B m n ,联立方程组b y x a y n⎧=⎪⎨⎪=⎩,解得,an A n b ⎛⎫⎪⎝⎭.因为90OAF ∠=︒,所以1AF OAk k ⋅=-,即1n ban a c b⋅=--,可得ab n c =.又因为点(),B m n 在双曲线C 上,所以22221m n a b -=,将ab n c =代入,可得22422a c a m c +=,由OBF OFB ∠=∠,所以OB OF =,所以222m n c +=,即22422222a c a a bc c c++=,化简得222a c =,则ce a==.故选:B.38.设1F 、2F 分别为双曲线22221(0,0)x y a b a b-=>>的左右焦点,O 为坐标原点,过左焦点1F 作直线1F P 与圆222x y a +=切于点E ,与双曲线右支交于点P ,且121||2OP F F =,则双曲线的离心率为()A B .2CD【答案】A【详解】因为直线1F P 与圆222x y a +=切于点E ,则1OE F P ⊥,又121||2OP F F =,所以12||OP OF OF ==,所以E 为1F P 的中点,而O 为12F F 中点,于是2//OE PF ,有12PF PF ⊥,且222PF OE a ==,则1224PF PF a a =+=,令双曲线焦距为2c ,由2222112||||||PF PF F F +=,得222(2)(4)(2)a a c +=,即225c a =,所以25e =,所以双曲线的离心率e =故选:A39.已知双曲线2222>:1(00,)>x y C a b a b-=的左右焦点12F F ,,点2F 关于一条渐近线的对称点在另一条渐近线上,则双曲线C 的离心率是()A BC .2D .3【答案】C【分析】利用双曲线的渐近线方程及点关于线对称的特点,结合双曲线的离心率公式即可求解.【详解】双曲线2222>:1(00,)>x y C a b a b-=的右焦点()2,0F c ,设点2F 关于一条渐近线b y x a =-的对称点为,b m m a ⎛⎫⎪⎝⎭,由题意知,()1122b bm c m a a -⨯+=⨯,解得2c m =-.又知bma a m c b=-,解得223b a =,所以22224c a b a =+=,即2c a =,所以双曲线C 的离心率是 2.c e a==故选:C.40.若0m >,双曲线1C :2212x y m -=与双曲线2C :2218x y m-=的离心率分别为1e ,2e ,则()A .12e e 的最小值为94B .12e e 的最小值为32C .12e e 的最大值为94D .12e e 的最大值为32【答案】B.【详解】由题意可得212e m m +=,2288e m =+,则()2128252488m e m m m e m +=⋅+=++,由基本不等式,()21252594844m e e m =++≥+=,即1232e e ≥,当且仅当28mm =,即4m =时等号成立,故12e e 的最小值为32.故选:B.41.已知双曲线2222:1(0,0)y x C a b a b-=>>,过其上焦点F 的直线与圆222x y a +=相切于点A ,并与双曲线C 的一条渐近线交于点(,B A B 不重合).若25FB FA =,则双曲线C 的离心率为.【答案】3【分析】设出过上焦点F 的直线方程为y c kx -=,由圆心到直线距离等于半径得到bk a=±,再分别联立直线与圆,直线与渐近线,求出A ab x c =,22B abc x b a =-,根据比例关系得到方程,得到,,a b c 的关系式,求出离心率.【详解】由题意得()0,F c ,渐近线方程a y x b=±,设过其上焦点F 的直线方程为y c kx -=,则圆心O 到直线y c kx -=a =,解得b k a =±,不妨取负值,如图所示,故过其上焦点F 的直线方程为b y c x a-=-,联立b y c x a -=-与222x y a +=可得,222220c bc x x b a a-+=,解得A ab x c=,联立b y c x a -=-与a y x b=,可得B abx c =,此时,,A B 重合,舍去,联立b y c x a -=-与a y x b =-,可得22B abcx b a=-,此时,A B 不重合,满足要求,因为25FB FA = ,所以25B A x x =,故2225abc ab b a c=-,化简得222255c b a =-,又222b c a =-,故2222510c c a =-,即22310c a =,解得c a =,双曲线C故答案为:342.已知双曲线C :22221(0,0)x y a b a b-=>>的右焦点为F ,过F 分别作C 的两条渐近线的平行线与C 交于A ,B 两点,若||AB =,则C 的离心率为2/2【分析】设直线方程为()b y x c a=-与双曲线方程22221(0,0)x y a b a b -=>>联立,根据||AB =求解.【详解】解:如图所示:设直线方程为()b y x c a=-与双曲线方程22221(0,0)x y a b a b -=>>联立,解得223,22a c b x y c ac+==-,因为||AB =,所以322b ac⨯=,即2b =,即220c a --=,解得2ce a==,2+43.已知双曲线()2222:10,0x y C a b a b-=>>的右顶点为A ,左、右焦点分别为1F ,2F ,渐近线在第一象限的部分上存在一点P ,且1OP OF =,直线1PF ,则该双曲线的离心率为.【答案】2【分析】根据题意,设点P 的坐标为00,b x x a ⎛⎫⎪⎝⎭,根据1OP OF =,求得点P 的坐标为(),a b ,再由1PF 的斜a c =+,化简得到离心率e 的方程,即可求解.【详解】由双曲线()2222:10,0x y C a b a b-=>>,可得渐近线方程为b y x a =±,设点P 的坐标为00,b x x a ⎛⎫⎪⎝⎭,且00x >,因为1OP OF =,即2222002b x x c a+=,解得220x a =,即0x a =,所以点P 的坐标为(),a b ,又因为直线1PFb ac =+a c =+,两边平方得22232b ac ac =++,即2220c ac a --=,两边同时除以2a ,可得220e e --=,即()()210e e -+=,解得2e =或1e =-(舍去).故答案为:2.重难点7求双曲线离心率的取值范围44.过双曲线22221(0,0)x y a b a b-=>>的左焦点且垂直于x 轴的直线与双曲线交于,A B 两点,D 为虚轴上的一个端点,且ADB ∠为钝角,则此双曲线离心率的取值范围为()A.(B.C.)2D.)+∞【答案】D【分析】根据双曲线的性质求出,,A B D 的坐标,写出向量,DA DB,根据∠ADB 为钝角,结合向量的数量积公式化简求解即可.【详解】设双曲线22221(0,0)x y a b a b-=>>的左焦点为1(,0)F c -,令x c =-,得2by a=±,可设22,,,b b A c B c a a ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭由对称性,不妨设(0,)D b ,可得2,b DA c b a ⎛⎫=-- ⎪⎝⎭ ,2,b DB c b a ⎛⎫=--- ⎪⎝⎭,由题意知,,A D B 三点不共线,所以∠ADB 为钝角0DA DB ⇔⋅<,即为2220b b c b b a a ⎛⎫⎛⎫-+-< ⎪⎪⎝⎭⎝⎭,将222b c a =-代入化简得4224420e a c a -+>,由ce a=,可得42420e e -+>,又1e >,解得22e >+e ,综上,离心率的取值范围为)+∞.故选:D.45.已知1F ,2F 是双曲线()222210,0x ya b a b-=>>的左、右焦点,若双曲线上存在点P 满足2212PF PF a ⋅=- ,则双曲线离心率的最小值为()A B C .2D【答案】D【分析】设P 的坐标,代入双曲线的方程,利用数量积的坐标表示,结合双曲线离心率的计算公式求解即得.【详解】设00(,)P x y ,双曲线的半焦距为c ,则有0||x a ≥,2200221x y a b-=,12(,0),(,0)F c F c -,于是200100(,),(,)PF c x y PF c x y =--=---,因此22222222222222220210000222(1)c c PF PF x c y x b c x b c a b c b a a a ⋅=-+=+--=⋅--≥⋅--=- ,当且仅当0||x a =时取等号,则222a b -≥-,即222b a ≥,离心率c e a ==≥,故选:D46.已知双曲线22221E y x a b-=:(0a >,0b >)的离心率为e ,若直线2y x =±与E 无公共点,则e 的取值范围是.【答案】⎛ ⎝⎦【分析】确定双曲线的渐近线方程,由题意可得关于,a b 的不等关系,即可求得离心率范围.【详解】因为双曲线22221:y x E a b-=(0a >,0b >)的渐近线为a y x b =±,因为,要使直线2y x =±与E 无公共点,则2ab≥,所以,102b a ≤<,所以双曲线的离心力的范围1e <=所以满足条件的离心率的范围是⎛ ⎝⎦,故答案为:2⎛⎤⎝⎦47.已知双曲线2222:1(0,0),x y C a b F a b-=>>为双曲线的右焦点,过点F 作渐近线的垂线()0MN MN k <,垂足为M ,交另一条渐近线于N ,若()2NM MF λλ=≥,则双曲线C 的离心率的取值范围是()A .)+∞B .(C .D .233⎡⎫+∞⎪⎢⎣⎭【答案】C【分析】设MOF θ∠=,根据()2NM MF λλ=≥ 列式,根据λ的取值范围求得22b a的取值范围,进而求得离心率的取值范围.【详解】依题意可知M 在第一象限,N 在第二象限,(),0F c 到渐近线0bx ay -=bcb c==,即MF b =,设MOF θ∠=,则tan ba θ=,()2222tan 2tan tan 2tan2tan 1ab NOM b a θ∠πθθθ=-=-==--,由()2NM MF λλ=≥ 得,tan bMN b NOM a λλ∠=∴=,故()2222ab b b a a λλ=≥-,22221b a λλλ+==+,212,b c e a a ⎛⎫∴<≤∴==⎪⎝⎭.故选:C48.双曲线2221y x b-=的左焦点为F ,()0,A b -,M 为双曲线右支上一点,若存在M ,使得5FM AM +=,则双曲线离心率的取值范围为()A .(B .(C .)+∞D .)+∞【答案】B【分析】双曲线的右焦点1F ,5FM AM +=等价于13F M AM +=,所以13F A ≤,3≤可求双曲线离心率的取值范围.【详解】取双曲线的右焦点1F ,由双曲线定义12FM F M =+,如图所示,故存在点M 使得5FM AM +=等价为存在点M 使得13F M AM +=,所以13F A ≤,当且仅当1,,A M F 三点共线时等号成立,3≤,由221b c =-,解得c ≤1a =,故离心率1e <≤故选:B49.如图为陕西博物馆收藏的国宝——唐·金筐宝钿团化纹金杯,杯身曲线内收,玲珑娇美,巧夺天工,是唐朝金银细作的典范之作.该杯的主体部分可以近似看作是双曲线C :()222210,0x y a b a b -=>>的部分的旋转体.若该双曲线右支上存在点P ,使得直线PA ,PB (点A ,B 为双曲线的左、右顶点)的斜率之和为83,则该双曲线离心率的取值范围为.【答案】51,3⎛⎫⎪⎝⎭【分析】(),0A a -,(),0B a ,设()00,P x y ,计算22PA PB b k k a⋅=,根据均值不等式计算得到43b a <,得到离心率范围.【详解】(),0A a -,(),0B a ,设()00,P x y ,22022200222220000010PA PBx b a y y y b k k x a x a x a x a a ⎛⎫- ⎪⎝⎭⋅=⋅===>+---,83PA PB k k +=,故0PA k >,0PB k >,823PA PB bk k a=+≥=,PA PB k k ≠,故等号不成立,故43b a <,53c e a ==<,即51,3e ⎛⎫∈ ⎪⎝⎭.故答案为:51,3⎛⎫⎪⎝⎭.50.已知双曲线C :22221x y a b-=(0a >,0b >)的左、右焦点分别为1F ,2F ,若在C 上存在点P (不是顶点),使得21123PF F PF F ∠∠=,则C 的离心率的取值范围为.【答案】2)【分析】1PF 与y 轴交点Q ,连接2QF ,由双曲线的定义和对称性,结合已知条件得12QF a =,有11QF OF >且11||cos 45OF QF ︒>,可求离心率的取值范围.【详解】设1PF 与y 轴交点Q ,连接2QF ,由对称性可知,1221QF F QF F ∠=∠,如图所示,又∵21123PF F PF F ∠∠=,∴22122PF Q PQF PF F ∠=∠=∠,∴2PQ PF =.又∵122PF PF a -=,∴12112PF PF PF PQ QF a -=-==,在1Rt QOF 中,11QF OF >,∴2a c >,∴2ce a=<,由21123PF F PF F ∠∠=,且三角形的内角和为180,12180454PF F ︒︒∴∠<=1121cos cos 45OF PF F QF ︒>=∴∠,即2c a >ce a =>综上,2)e ∈.故答案为:2).重难点8根据离心率求参数51.已知有公共焦点的椭圆与双曲线的中心为原点,焦点在x 轴上,左右焦点分别为1F ,2F ,且它们在第一象限的交点为P ,12PF F △是以1PF 为底边的等腰三角形.若110PF =,双曲线的离心率的取值范围为(1,2),则该椭圆的焦距的取值范围是()A .55,32⎛⎫⎪⎝⎭B .205,3⎛⎫ ⎪⎝⎭C .10,53⎛⎫ ⎪⎝⎭D .510,23⎛⎫ ⎪⎝⎭【答案】B【分析】设椭圆的焦距为2c ,双曲线的实轴长为2a ,根据双曲线的定义及双曲线的离心率的取值范围求出c 的范围,进而可得出答案.【详解】解:设椭圆的焦距为2c ,双曲线的实轴长为2a ,则1222F F PF c ==,双曲线的半实轴长为12502PF PF a c -==->,则05c <<,又双曲线的离心率的取值范围为(1,2),所以125c c a c <=<-,所以51023c <<,所以20523c <<,即该椭圆的焦距的取值范围是205,3⎛⎫⎪⎝⎭.故选:B.52.设双曲线2222:1y x C a b-=(0,0)a b >>的上、下焦点分别为12,F F P 是C 上一点,且12PF PF ⊥.若12PF F △的面积为4,则=a ()A .8B .4C .2D .1【答案】D可得c =①,又因为12PF PF ⊥.若12PF F △的面积为4,设P 在双曲线C 的上半支,12||,||PF m PF n ==,则有2142n m a mn -=⎧⎪⎨=⎪⎩,整理化简得224416c a =+,结合①,即可求得a 的值.所以ce a==,即有c =①,又因为12PF PF ⊥,12PF F △的面积为4,由对称性,设P 在双曲线C 的上半支,12||,||PF m PF n ==,则有2142n m a mn -=⎧⎪⎨=⎪⎩,所以2222()2416n m n m nm a +=-+=+,即224416c a =+,由①可得225c a =,所以2220416a a =+,解得1a =.故选:D.53.设k 为实数,已知双曲线2214x y k-=的离心率(2,3)e ∈,则k 的取值范围为【答案】(12,32)【分析】根据双曲线离心率公式进行求解即可【详解】因为2214x y k-=表示双曲线的方程,所以有0k >,因此2,a b c ===因为2c e a ==,所以由()2,32346e ∈⇒<⇒<164361232k k ⇒<+<⇒<<,即k 的取值范围为(12,32),故答案为:(12,32).54.已知1F ,2F 是双曲线C 的两个焦点,P 为C 上一点,且1260F PF ∠=︒,()121PF PF λλ=>,若C 的离心率为2,则λ的值为.【答案】3【分析】根据双曲线的定义及条件,表示出12,PF PF ,结合余弦定理求解即可.【详解】由12(1)PF PF λλ=>及双曲线的定义可得122(1)2PF PF PF a λ-=-=,所以221a PF λ=-,121aPF λλ=-,因为1260F PF ∠=︒,在12F PF △中,由余弦定理可得222222442242cos60(1)(1)11a a a ac λλλλλλ=+-⨯⋅⋅︒----,即2222(1)(1)c a λλλ-=-+,所以2222217(1)4c e a λλλ-+===-,即231030λλ-+=,解得3λ=或13λ=(舍去).故答案为:355.已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别是1F ,2F ,P 是双曲线右支上一点,2120PF F F ⋅= ,O为坐标原点,过点O 作1F P 的垂线,垂足为点H,若双曲线的离心率2e =,存在实数m 满足1OH m OF =,则m =.【答案】19【分析】由题意,可得相似三角形,根据相似三角形性质,建立等量关系,结合离心率的公式,建立方程,可得答案.【详解】当x c =时,代入双曲线可得2by a=±,由2120PF F F ⋅=可得212PF F F ⊥,由题易得112F OH F PF △△.由相似三角形的性质可知,121||OF OH PF PF =,则222b am b a a=+,2222a m b m b ∴+=,整理得2221b m a m =-.22b PF a= ,22222251114c b m e a a m ∴==+=+=-,解得19m =.故答案为:19.56.已知双曲线22:113x y C m m-=+-m 的取值范围是()A .()1,1-B .()1,3-C .(),1-∞D .()0,1【答案】A【分析】根据双曲线方程,讨论实轴位置,求出离心率,由已知离心率范围列出不等式可解得m 的范围.【详解】当双曲线实轴在x 轴上时,1030m m +>⎧⎨->⎩,解得13m -<<,此时2134c m m =++-=,所以c e a ==>解得1m <,所以11m -<<,当双曲线实轴在y 轴上时,1030m m +<⎧⎨-<⎩,解得m ∈∅,不符合题意.综上,解得11m -<<.故选:A .57.点P 是双曲线C :()222210,0x y a b a b-=>>右支上一点,1F ,2F 分别是双曲线C 的左,右焦点,M 为12PF F △的内心,若双曲线C 的离心率32e =,且121MPF MPF MF F S S S λ=+ 2,则λ=()A .12B .34C .1D .23【答案】D【分析】设出12PF F △内切圆的半径,表示出1221,,MPF MPF MF F S S S ,由121MPF MPF MF F S S S λ=+ 2得1212PF PF F F λ-=,结合双曲线的定义及离心率即可求解.【详解】设12PF F △内切圆的半径为r ,则11221212111,,222MPF MPF MF F S r PF S r PF S r F F =⋅⋅=⋅⋅=⋅⋅ ,由121MPF MPF MF F S S S λ=+ 2可得1212111222r PF r PF r F F λ⋅⋅=⋅⋅+⋅⋅⋅,化简得1212PF PF F F λ=+,又12122,2,32PF PF a F F c e -===,故121223PF PF a F F c λ-===.故选:D.重难点9双曲线的实际应用58.某中心接到其正东、正西、正北方向三个观测点的报告;正西、正北两个观测点同时听到了一声巨响,正东观测点听到的时间比其它两观测点晚2s ,已知各观测点到该中心的距离是680m ,则该巨响发生在接报中心的()处(假定当时声音传播的速度为340m/s ,相关各点均在同一平面上)A .西偏北45°方向,距离B .东偏南45°方向,距离C .西偏北45°方向,距离D .东偏南45°方向,距离【答案】A【分析】建立平面直角坐标系,由条件确定该巨响发生的轨迹,联立方程组求其位置.【详解】如图,。
双曲线及其性质基础。知识梳理
双曲线【考纲要求】1.了解双曲线图形的实际背景及形成过程;2.掌握双曲线的定义、几何图形、标准方程及简单性质;3.掌握双曲线的简单应用;4.理解解析几何中数形结合思想的运用. 【知识网络】【考点梳理】【高清课堂:双曲线及其性质404777 知识要点】考点一、双曲线的定义在平面内,到两个定点1F 、2F 的距离之差的绝对值等于定长2a (21212F F a PF PF <=-)的动点P 的轨迹叫作双曲线.这两个定点1F 、2F 叫双曲线的焦点,两焦点的距离叫作双曲线的焦距.要点诠释:(1)双曲线的定义中,常数2a 应当满足的约束条件:21212F F a PF PF <=-,这可以借助于三角形中边的相关性质“两边之差小于第三边”来理解;(2)若常数a 满足约束条件:12122PF PF a F F -=<(0a >),则此时的曲线是双曲线的靠2F 的一支;(3)若常数a 满足约束条件:12122PF PF a F F -==,则此时的曲线是两条射线; (4)若常数a 满足约束条件:12122PF PF a F F -=>,则此时的曲线不存在. 考点二、双曲线的标准方程(1)当焦点在x 轴上时,双曲线的标准方程:22221x y a b -=(0,0)a b >>,其中222c a b =+;(2)当焦点在y 轴上时,双曲线的标准方程:22221y x a b-=(0,0)a b >>,其中222c a b =+.要点诠释:(1)只有当双曲线的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到双曲线的标准双曲线数形结合思想标准方程及简单性质 双曲线的实际背景及定义方程;(2)在双曲线的两种标准方程中,都有222c a b =+;(3)双曲线的焦点总在实轴上,即系数为正的项所对应的坐标轴上.当2x 的系数为正时,焦点在x 轴上,双曲线的焦点坐标为(,0)c ,(,0)c -; 当2y 的系数为正时,焦点在y 轴上,双曲线的焦点坐标为(0,)c ,(0,)c -. 考点三、双曲线的简单几何性质双曲线22221x y a b-=(0,0)a b >>的简单几何性质(1)范围:{}x x a x a ≤-≥或,y R ∈;(2)焦点)0(,c ±,顶点(0)a ±,,实轴长=a 2,虚轴长=2b ,焦距=2c ; (3)离心率是1ce a=>; (4)渐近线:x ab y ±=. 双曲线22221y x a b-=)0(>>b a 的简单几何性质(1)范围:{}y y a y a ≤-≥或,x R ∈;(2)焦点(0,)c ±,顶点(0,)a ±,,实轴长=a 2,虚轴长=2b ,焦距=2c ; (3)离心率是1ce a=>; (4)渐近线:a y x b=±. 考点四、有关双曲线的渐近线的问题 (1)已知双曲线方程求渐近线方程:若双曲线方程为12222=-b y a x ⇒渐近线方程⇒=-02222b y a x 0=±b y a x ⇒x aby ±=(2)已知渐近线方程求双曲线方程:若渐近线方程为x aby ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222b y a x(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上)(4)特别地当⇔=时b a 离心率2=e ⇔两渐近线互相垂直,分别为y x =±,此时双曲线为等轴双曲线,可设为λ=-22y x .考点五、双曲线图像中线段的几何特征:双曲线22221x y a b-=(0,0)a b >>的图像如图所示:(1)实轴长122A A a =,虚轴长2b ,焦距122F F c =,(2)离心率:2121122212112211PF PF A F A F c b e e PM PM A K A K a a======+>;(3)顶点到焦点的距离:11A F =22A F c a =-,12A F =21A F a c =+;(4)21F PF ∆中结合定义a PF PF 221=-与余弦定理,将有关线段1PF 、2PF 、21F F 和角结合起来. 【典型例题】类型一:求双曲线的标准方程例1. 求与椭圆2212736x y +=有共同的焦点,且过点(15,4)的双曲线的标准方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文[1]给出了椭圆焦点三角形的一些性质,受此启发,经过研究,本文总结出双曲线焦点三角形如下的一些性质:
设若双曲线方程为
22
22
xy
1ab
,F1,F2分别为它的左右焦点,P为双曲线上任意一点,则有:
性质1、若
12
FPF,
则122FPFSbcot2;特别地,当12FPF90时,有122FPFSb。
222
121212
22
12121212
22
1212
22
12
22
12
2
2PFPFcos|PF||PF||FF|2PFPFcos(|PF||PF|)2|PF||PF||FF|2PFPFcos(2a)2|PF||PF|(2c)2PFPF(cos1)4(ac)bbPFPF21cossin2
,
12
FPF12
1S|PF||PF|sin2 22b2sincos222sin22bcot2
易得90时,有
12
2
FPF
Sb
性质2、双曲线焦点三角形的内切圆与F1F2相切于实轴顶点;且当P点在双曲线左支时,切点为左顶点,且当P点在双曲线右支时,切点为右顶点。
证明:设双曲线
22
22
xy
1ab
的焦点三角形的内切圆且三边F1F2,PF1,PF2于点A,B,C,双曲线的两个顶点为A1,A2
121212
|PF||PF||CF||BF||AF||AF|
12|PF||PF|2a,12
|AF||AF|2a
,
12
12
AAFFAxA,A在双曲线上,又在上,
是双曲线与轴的交点即点
性质3、双曲线离心率为e,其焦点三角形PF1F2的旁心为A,线段PA的延长线交F1F2的延长线于点B,则
|BA|
e|AP|
证明:由角平分线性质得
1212
1212
|FB||FB||FB||FB||BA|2ce|AP||FP||FP||FP||FP|2a
性质4、双曲线的焦点三角形PF1F2中,
1221
PFF,PFF,
当点P在双曲线右支上时,有e1tancot;22e1
当点P在双曲线左支上时,有e1cottan22e1
证明:由正弦定理知2112|FP||FP||FF|sinsinsin()
由等比定理,上式转化为2112|FP||FP||FF|sinsinsin()
2a2c
sinsinsin()2sincossinsincoscossincsin()2222222asinsin2cossinsinsincoscossin2222222
分子分母同除以cossin22,得
tancot1e122etancot22e1tancot122