研究方法丨系统动力学模型构建步骤
系统动力学及vensim建模与模拟技术

系统行为分析
预测系统行为
在构建系统动力学模型时,需要对系统的行为进行预测和分析,了 解系统在不同条件下的响应和变化规律。
分析行为特征
通过对系统行为的深入分析,可以了解系统的动态特性和变化趋势, 为模型建立提供依据。
确定行为目标
在分析系统行为的基础上,需要确定系统的行为目标,即希望系统 达到的状态或结果,以便对模型进行有效的优化和控制。
定义模型规则
根据系统行为的特点,定义模型规则,如时 间延迟、逻辑规则等。
参数化模型
根据已知数据和经验,为模型中的参数赋值。
模型验证与测试
01
模型验证
通过对比历史数据和模拟结果,验 证模型的准确性和可靠性。
模型测试
通过多种情景模拟,测试模型的预 测能力和适用范围。
03
02
敏感性分析
分析模型对参数变化的敏感性,了 解参数对系统行为的影响。
详细描述
城市交通系统是一个复杂的网络,包括道路、交通信号、车辆、行人等。通过 建立城市交通系统模型,可以模拟不同交通政策或基础设施改进方案的效果, 为城市交通规划提供决策支持。
案例三:企业运营系统模拟
总结词
企业运营系统模拟是应用系统动力学和Vensim建模与模拟技术的实际应用案例 ,用于优化企业资源配置和提高运营效率。
03 系统动力学模型构建
系统边界设定
1 2
确定研究范围
在构建系统动力学模型时,首先需要明确系统的 研究范围,即确定系统的边界,以避免不必要的 复杂性和不确定性。
排除外部因素
在设定系统边界时,应将注意力集中在系统内部 的相互关系上,暂时忽略外部因素的影响。
3
确定主要变量
在确定系统边界后,应确定对系统行为有重要影 响的主要变量,这些变量将成为模型中的状态变 量。
系统动力学建模 PPT

因果关系图
因果图重要性
• 因果关系图在构思模型的初级阶段起着非 常重要的作用,它既可以在构模过程中初步 明确系统中诸变量间的因果关系,又可以 简化模型的表达,使人们能很快地了解系 统模型的结构假设,使实际系统抽象化和 概念化,非常便于交流和讨论。
流图法
• 流图法又叫结构图法,它采用一套独特的符 号体系来分别描述系统中不同类型的变量 以及各变量之间的相互作用关系。流图中 所采用的基本符号及涵义见图
国民经济流转模型方框问和交流
10
因果关系图法
• 在因果关系图中,各变量彼此之间的因果关系是 用因果链来连接的。因果链是一个带箭头的实线 (直线或弧线),箭头方向表示因果关系的作用方 向,箭头旁标有“+”或“-”号,分别表示两种极性 的因果链。
• a.正向因果链 A→+B:表示原因A 的变化(增或 减)引起结果B 在同一方向上发生变化(增或减)。
系统分析
• 这一步骤首先要对所需研究的系统作深入、广泛 的调查研究,通过与用户及有关专家的共同讨论、 交换意见,确定系统目标,明确系统问题,收集 定性、定量两方面的有关资料和数据,了解和掌 握国内外在解决类似系统问题方面目前所处的水 平、状况及未来的发展动向,并对前人所做工作 的长处与不足作出恰如其份的分析。对其中合理 的思想和方法要注意借鉴、吸收,对其中不足之 处要探究其原因,提出改进的设想。
模型的基本模块
• 根据系统动力学关于系统基本结构的理论, 任何大规模的复杂系统都可以用多个系统 基本结构按照特定的方式联结而成。系统 的基本模块是典型基本结构的形式,也是 由系统的基本单元、单元的运动以及单元 的信息反馈三大部分组成。
• 了解和掌握系统基本模块的性能、特性和 作用,有助于分析和构造系统模型,尤其 是分析和构造大规模复杂系统的模型。
基于数据驱动的机械系统动力学模型研究

基于数据驱动的机械系统动力学模型研究现代工程中,机械系统的动力学分析对于设计与优化至关重要。
传统的方法依赖于物理方程和数值解析。
然而,近年来,随着大数据和机器学习的兴起,数据驱动的方法在机械系统动力学模型研究中逐渐得到应用。
本文将探讨基于数据驱动的机械系统动力学模型研究的相关技术和应用。
一、引言动力学模型是描述机械系统运动行为的重要工具。
传统的动力学模型常常基于牛顿运动定律、能量守恒或假设理想化等原理,来分析系统的力学特性。
然而,这些模型的参数和假设都是基于人为设定,往往存在局限性。
通过数据驱动的方法构建的动力学模型,可以根据实际测量数据来自动提取系统的动力学特性,从而更准确地描述机械系统的行为。
二、数据驱动的机械系统动力学模型构建数据驱动的机械系统动力学模型构建的基本步骤包括数据采集、特征提取和模型训练等。
1. 数据采集数据采集是构建数据驱动模型的基础。
可以通过传感器、仪器等设备实时获取机械系统的振动、位移、力等相关数据。
通过大量的数据采集,可以得到系统在各种工况下的运动特性。
2. 特征提取特征提取是对采集到的原始数据进行加工处理,提取出能够描述系统运动特性的关键特征参数。
常用的特征提取方法包括时域特征、频域特征、小波变换等。
通过对特征参数的提取,可以减少数据的维度,方便后续的模型训练和分析。
3. 模型训练模型训练是基于数据的机械系统动力学模型构建的核心步骤。
常用的机器学习方法包括支持向量机、神经网络、深度学习等。
通过将采集到的数据及其对应的特征参数作为输入,系统运动行为作为输出,训练出一个能够准确预测机械系统运动行为的模型。
三、数据驱动的机械系统动力学模型应用数据驱动的机械系统动力学模型可以在多个领域得到应用。
1. 故障诊断与预测通过构建机械系统的数据驱动动力学模型,可以实时监测系统的运行状态,并进行故障诊断与预测。
通过对系统运动行为的变化进行分析,可以及时发现潜在问题,预测故障发生的可能性,提前进行维护与修复,降低故障对系统运行的影响。
多自由度振动系统的动力学模型构建

多自由度振动系统的动力学模型构建引言:多自由度振动系统是指由多个自由度的质点组成的系统,在这样的系统中,每个自由度都可以独立地进行运动。
动力学模型的构建是研究和理解振动系统行为的基础。
本文将介绍多自由度振动系统动力学模型的构建方法及应用。
一、质点模型多自由度振动系统的最基本组成单位是质点。
质点的运动可以用坐标形式以及质点的质量、刚性等参数来描述。
对于一个有n个自由度的振动系统,可以通过将每个自由度的质点模型相连接构成整个系统。
二、约束关系与广义坐标在多自由度振动系统中,质点之间相互约束,其运动不再是自由的,而是受到约束的影响。
为了描述约束关系,引入广义坐标来表示系统各个自由度的相对运动。
广义坐标是将实际坐标通过约束条件变换得到的坐标表示。
三、拉格朗日方程与振动方程拉格朗日方程是多自由度振动系统的基本动力学方程。
通过对系统的动能和势能进行推导和求导,可以得到描述系统运动的拉格朗日方程。
对于振动系统而言,通过求解拉格朗日方程,可以得到系统的振动方程,进一步描述系统的运动行为。
四、模态分析与特征频率模态分析是研究振动系统固有特性的方法。
对于多自由度振动系统,可以通过模态分析得到系统的固有模态和特征频率。
固有模态是指系统在自由振动时,各个自由度的振动模式。
特征频率是指系统在不同固有模态下的振动频率。
五、系统的耦合与动态响应多自由度振动系统中的各个质点之间存在耦合关系,一个自由度的振动会对其他自由度的振动产生影响。
通过研究系统的耦合关系,可以得到系统的动态响应。
动态响应是指系统对外界激励的响应行为,可以通过求解振动方程得到。
六、应用案例:建筑结构振动多自由度振动系统的应用广泛,尤其在建筑结构的振动研究中起到了重要作用。
通过对建筑结构的多自由度振动系统进行建模和分析,可以评估结构的稳定性、抗震性能等。
振动模型的构建和分析可以提供设计和改进建筑结构的依据。
结论:多自由度振动系统的动力学模型构建是研究振动系统行为的关键步骤。
系统动力学模型构建与Vensim软件应用教程

系统动力学模型构建与Vensim 软件应用教程第一部分系统动力学与Vensim 软件一、系统动力学概述系统动力学(SystemDynamics)是一门分析研究信息反馈系统的学科,也是一门认识系统问题和解决系统问题交叉的综合性的新学科。
系统动力学认为,系统的行为模式与特性主要地取决于其内部的动态结构与反馈机制。
系统:相互作用诸单元的复合体,例如:社会、经济、生态系统。
反馈:系统内同一单元或同一子块其输出与输入间的关系。
对整个系统而言,"反馈"则指系统输出与来自外部环境的输入的关系。
反馈可以从单元或子块或系统的输出直接联至其相应的输入,也可以经由媒介其他单元、子块、甚至其他系统实现。
所谓反馈系统就是包含有反馈环节与其作用的系统。
它要受系统本身的历史行为的影响,把历史行为的后果回授给系统本身,以影响未来的行为。
例如:库存控制系统是一个反馈系统,如图:发货使库存量减少,当库存低于期望水平以下一定数值后,库存管理人员即按预定的方针向。
生产部门订货,货物经一定延迟到达,然后使库存量逐渐回升。
反映库存当前水平的信息经过订货与生产部门的传递最终又以来自生产部门的货物的形式返回库存。
正反馈的特点是,能产生自身运动的加强过程,在此过程中运动或动作所引起的后果将回授,使原来的趋势得到加强;负反馈的特点是,能自动寻求给定的目标,未达到(或者未趋近)目标时将不断作出响应;具有正反馈特性的回路称为正反馈回路,具有负反馈特点的回路则称为负反馈回路(或称寻的回路);分别以上述两种回路起主导作用的系统则称之为正反馈系统与负反馈系统(或称寻的系统)。
回路的概念最简单的表示方法是图形,系统动力学中常用三种图形表示法:系统结构框图(structurediagram)因果关系图(causalrelationshipdiagram)流图(stockandflowdiagram)系统动力学解决问题大体可分为五步:第一步要用系统动力学的理论、原理和方法对研究对象进行系统分析。
复杂系统的建模与分析方法介绍

复杂系统的建模与分析方法介绍复杂系统是由大量互相关联和互动的组成部分组成的系统。
这些组成部分和它们之间的关系的复杂性使得理解和预测整个系统的行为变得非常困难。
因此,为了研究和解决复杂系统的问题,我们需要使用一些特定的建模和分析方法。
一、系统动力学建模系统动力学是一种以时间为基础的建模方法,用于研究系统的行为如何随时间变化。
系统动力学建模广泛应用于复杂系统的研究,特别是在社会经济领域。
该方法主要关注系统各个部分之间的相互作用,并通过建立描述这些相互作用的方程来模拟系统的行为。
系统动力学建模过程包括以下步骤:1. 确定模型的边界和组成部分:在构建系统动力学模型之前,必须确定模型的边界和系统中的关键变量。
这些变量可以是数量、比例、概率或其他类型的变量。
2. 建立模型的结构:根据系统的特性和问题的要求,选择适当的结构来描述系统各个部分之间的相互作用。
常用的结构包括库存和流量。
3. 决策变量和参数设定:从现实情况中收集数据以填充模型中的变量和参数。
这些数据可以是从实验、观察或文献中获取的。
4. 确定方程和模型形式:使用差分方程或微分方程来描述系统动力学模型,根据系统的特性和问题的要求,选择适当的方程和模型形式。
5. 模拟和分析:使用数值方法来模拟和分析系统动力学模型。
通过模拟和分析,可以预测系统行为,在潜在的问题出现之前采取相应的措施。
二、网络建模与分析网络建模与分析方法将系统组织结构看作一个网络,通过研究节点和边的关系来揭示系统行为和性质。
网络建模与分析在复杂系统研究中得到广泛应用,如社交网络、物流网络等。
网络建模与分析的主要步骤包括:1. 节点和边的定义:根据系统的性质和问题的要求,确定节点和边。
节点可以是个体、组织、机构等,而边则表示它们之间的关系。
2. 网络特性分析:根据系统的结构和拓扑特性,计算网络的度、聚集系数、中心度等指标,以了解网络的性质和特点。
3. 社区检测:通过识别密集连接的节点子集,将网络划分为多个社区。
系统动力学建模
系统分析
? 这一步骤首先要对所需研究的系统作深入、广泛 的调查研究,通过与用户及有关专家的共同讨论、 交换意见,确定系统目标,明确系统问题,收集 定性、定量两方面的有关资料和数据,了解和掌 握国内外在解决类似系统问题方面目前所处的水 平、状况及未来的发展动向,并对前人所做工作 的长处与不足作出恰如其份的分析。对其中合理 的思想和方法要注意借鉴、吸收,对其中不足之 处要探究其原因,提出改进的设想。
状态变量
? 状态变量又称作位,它是表征系统状态的内部变 量,可以表示系统中的物质、人员等的稳定或增 减的状况。状态变量的流图符号是一个方框,方 框内填写状态变量的名字。显然,能够对状态变 量的变化产生影响的只是速率变量(见图)。
? 状态方程可根据有关基本定律来建立,如连续性 原理、能量质量守恒原理等。状态方程有三种最 基本的表达方式:微分方程表达、差分方程表达 和积分方程表达。在一定的条件下,这三种表达 方式可以互相转化。
混合图
? 值得一提的是,在实际构模过程中还经常采用一 种混合图法。
? 将系统中物质流线上的状态变量和速率变量按流 图的方式画出,而将信息流线上的各种反馈变量 按因果关系图的方式画出,如图 所示。混合图法 汲取了因果关系图法和流图法的优点 ,既保持了因 果关系图简单明了的特点,又将系统中的重要变 量鲜明地突出出来。因此,混合图法得到了比较 广泛的应用。
? 外生变量的流图符号是两个同心圆,内部填外生 变量的名字。外生变量是系统边界以外对系统发 生作用或产生影响的环境因素,外生变量也可以 是政策变量。
常数和表函数
? 在特殊的情况下,外生变量呈现出固定不 变的状态时就退化成常数。常数的流图符 号是一杠上加小圆圈。
? 系统中变量与变量之间的关系除了可以用 各种代数形式的函数来表示之外,还可以 用图表的方式来表示,这样的图表函数称 为表函数,它的流图符号是圆圈内加两横, 内部填表函数的名字。表函数反映了两个 变量之间某种特定的非线性关系。
系统动力学模型教学课件
THANKS
感
系统动力学模型在可持续发展领域的应用
总结词
随着可持续发展理念的深入人心,系统动力 学模型将在可持续发展领域发挥更大的作用, 为解决环境、经济和社会问题提供有力支持。
详细描述
系统动力学模型可以用于研究可持续发展中 的复杂问题,如气候变化、资源利用和人口 发展等。通过模拟不同政策或措施对可持续 发展的影响,系统动力学模型可以为政策制 定者提供决策支持,促进可持续发展目标的
02
系力学模型的基本念
系统元素
变量
状态变量
速率变量
辅助变量
系统中随时间变化的因 素,可以是状态变量、 速率变量或辅助变量。
描述系统状态变化的变 量,其值在特定时刻确定。
描述状态变量变化速率 的变量,即状态变量的
导数。
用于描述系统内部机制 或相互作用的变量。
系统结构
01
02
03
04
反馈回路
描述系统内部各元素之间相互 作用的路径,是系统行为产生
04
系力学模型的分析法
仿真分析
总结词
仿真分析是系统动力学模型的核心分析方法,通过构建模型 并模拟系统行为,帮助理解系统的动态特性和行为模式。
详细描述
仿真分析基于系统动力学模型,通过设定不同的参数和初始 条件,模拟系统在不同情况下的行为表现。通过比较模拟结 果和实际数据,可以对系统的未来行为进行预测,并评估不 同政策或策略对系统的影响。
系统动力学模型的应用领域
总结词
系统动力学模型在多个领域都有广泛的应用,如企业 管理、城市规划、生态保护等。
详细描述
在企业管理领域,系统动力学模型可以用于研究企业的 战略规划、市场营销、生产管理等各个方面,帮助企业 优化资源配置,提高管理效率。在城市规划领域,系统 动力学模型可以用于研究城市的人口、经济、环境等各 个方面的动态行为和发展趋势,为城市规划提供科学依 据。在生态保护领域,系统动力学模型可以用于研究生 态系统的结构和功能,预测生态系统的发展趋势和变化 规律,为生态保护提供技术支持。
生态恢复中生态系统动力学模型的构建和分析
生态恢复中生态系统动力学模型的构建和分析生态恢复是指对被破坏、退化或受到人为干扰的生态系统进行恢复、重建和保护的工作。
在保护和修复生态系统时,我们需要了解生态系统的动态变化过程。
对于生态系统动力学的研究可以帮助我们理解不同环境变化对生态系统的影响,以及我们应该采取什么样的行动以实现生态恢复目标。
建立生态系统动力学模型可以帮助我们更好地理解这些情况。
什么是生态系统动力学模型?生态系统动力学模型是指对生态系统中生物多样性、生态过程和生态功能等因素以及它们之间的相互作用、反馈机制和稳定性等进行数学模拟和分析的模型。
它可以帮助我们更好地理解生态系统内部的复杂关系以及外界的影响。
生态系统动力学模型的构建生态系统动力学模型的构建过程需要考虑多个因素。
首先,我们需要收集有关生态系统不同组成部分的数据以及它们之间的关系数据。
例如,可以考虑植物和动物种群的生长速度、种群密度、生命周期等信息;还可以收集不同物种之间的相互作用和食物网等信息。
这些数据需要通过实地采样或基于遥感等手段获得。
通过收集数据,可以建立生态系统中重要组成部分的数学模型。
其次,我们需要考虑生态系统的环境因素对其演变过程的影响。
例如,不同海拔、气候、土地利用等变化会影响物种的适应性和多样性,从而对整个生态系统的稳定性产生影响。
因此,在构建生态系统动力学模型时,需要考虑环境变化的场景,以及不同因素之间的相关性。
最后,我们需要确定模型的参数和初始条件。
模型参数是指实际数据中无法获得的某些变量,需要通过估计或优化方法获得。
初始条件是指模型开始运行时,所有变量的初始值。
初始条件需要根据实际情况进行估计。
生态系统动力学模型的分析了解生态系统动力学模型可以帮助我们更好地了解生态系统内部动态变化过程。
为此,我们需要对模型进行分析。
现在我们介绍两种典型的方法。
1. 灵敏度分析灵敏度分析主要是研究模型的响应情况对输入参数的敏感程度。
在生态系统动力学模型中,有时我们难以获得准确的参数值。
123思维模型:系统动力学模型
123思维模型:系统动力学模型一、系统动力学的定义系统动力学(简称SD—system dynamics)的创始人为美国麻省理工学院(MIT)的福瑞斯特(J.W.Forrester)教授。
是福瑞斯特教授于1958年为分析生产管理及库存管理等企业问题而提出的系统仿真方法,最初叫工业动态学,是一门分析研究信息反馈系统的学科,也是一门认识系统问题和解决系统问题的交叉综合学科。
简单而言,“系统动力学是研究社会系统动态行为的计算机仿真方法”。
具体而言,系统动力学包括如下几点。
1、系统动力学将生命系统和非生命系统都作为信息反馈系统来研究,并且认为,在每个系统之中都存在着信息反馈机制,而这恰恰是控制论的重要观点,所以系统动力学是以控制论为理论基础的;2、系统动力学把研究对象划分为若干子系统,并且建立起各个子系统之间的因果关系网络,立足于整体以及整体之间的关系研究,以整体观替代传统的元素观;3、系统动力学的研究方法是建立计算机仿真模型和构造方程式,实行计算机仿真试验,验证模型的有效性,为战略与决策的制定提供依据。
随着系统动力学渗透到社会、经济、政治等多个领域,很快成为了系统科学与管理科学的一个重要分支,成为沟通自然科学和社会科学等领域的横向学科。
二、系统动力学的原理系统是一个由相互区别、相互作用的元素有机地联结在一起,为同一目的完成某种功能的集合体。
系统动力学研究的系统必须是远离平衡的有序的耗散结构。
耗散结构是指处在远离平衡态的复杂系统在外界能量流或物质流的维持下,通过自组织形成的一种新的有序结构。
系统动力学主要研究的是开放复杂系统,例如:人脑系统、生命系统、生态系统、企业系统、经济系统和国家系统等。
开放复杂系统的一个重要特征就是多变量、高阶次、多回路和非线性,在非平衡状态下运动、发展和进化。
开放系统在不断与外界进行信息流、物流、能流的交换过程中,获得外部动力;同时,在系统内部的各组成部分相互耦合、作用,形成自然约束与相互协调,产生内部动力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
系统动力学(System Dynamics,简称SD)始创于1956年,在20世纪50年代末成为一
门独立完整的学科,其创始者为美国麻省理工学院(MIT)的福瑞斯特(Forrester J. W.)教授。
系统动力学是一门分析研究信息反馈系统的学科,也是一门认识系统问题
和解决系统问题的综合性交叉学科。
它是系统科学与管理科学的一个分支,也是一门
沟通自然科学和社会科学等领域的横向学科。
使用系统动力学模型进行研究,就是将
所研究对象置于系统的形式中加以考察。
在确定好系统边界之后,用计算机程序直接
建立真实系统的模型,并且通过计算机的模拟计算了解系统随时间变化的行为或系统
的特性。
旅游系统是一个多要素构成的复杂动态综合体,旅游研究需要对不同产业或
行业的研究成果和不同时间或空间的统计资料进行汇总分析和跨专业、跨学科、跨部
门的探讨,因此可以运用系统仿真方法对旅游系统进行分析。
国外学者较早的将 SD
应用于旅游研究,主要成果集中在旅游地研究、生态环境、旅游发展、社会经济系统、旅游供应链、旅游和政治等方面;国内学者将SD 方法用于旅行社、旅游经济、城市
旅游、生态旅游等方面的研究(张丽丽, 贺舟 2014)。
SD被称为“战略与策略实验室”, SD在建模时借助于“流图”,它与其它模型方法相比具有的优越性体现在:
①SD是一门可用于研究处理旅游社会学、旅游经济和旅游生态等一类长期性和周期性
的问题。
它可在宏观与微观的层次上对复杂多层次、多部门的大系统进行综合研究。
②SD的研究对象是开放系统,认为系统的行为模式与特性主要根植于其内部的动态结
构与反馈机制。
③SD研究解决问题的方法是一种定性与定量相结合,分析、综合与推
理的方法,适用于对数据不足的问题进行研究。
④SD模型是旅游社会经济系统一类系
统的实验室,适用于处理精度要求不高的复杂的旅游社会经济问题。
一些高阶非线性
动态的问题,应用一般数学方法很难求解(王妙妙, 章锦河 2010)。
建立系统动力学(SD)模型,首先要明确系统仿真的目的,找出要解决的关键问题;其次一定要确定
好系统的边界,因为系统动力学分析的系统行为是基于系统内部要素相互作用而产生的,并假定系统外部环境的变化不给系统行为产生本质的影响,也不受系统内部因素
的控制。
因此系统边界应规定哪一部分要划入模型,哪一部分不应划入模型,在边界
内部凡涉及与所研究的动态问题有重要关系的概念模型不变量均应考虑进模型;反之,在界限外部的那些概念与变量应排除在模型之外。
建立系统动力学模型可以使用的软
件包括:DYNAMO / Powersim / Vensim等。
下面介绍用Vensim软件构建系统动力学
模型的具体步骤:1.绘制因果回路图(分析系统中的要素,界定好箭头及各回路的极性)
2.绘制存量流量图(找出水平变量、辅助变量、常量等,系统庞大时可借助影子变量将系统拆分为几个子系统)
3.建立系统动力学方程(构建模型的核心,包括设置方程、单位、初始值、时长、开始和结束的时间等,一定要界定好系统的界限,做好各种假设)
L 水平变量方程R速率变量方程C常量方程A辅助变量方程N初始值方程4.模型检验(进行模型和单位的检验,可进一步进行现实性检测,以判断是否符合现实情况)
模型检验:菜单栏Model→Check Model单位检验:菜单栏Model→Units Check现实性检测:仿真后按Reality Checks5.模型的仿真模拟(建立模型并进行检验后,可
在软件中查看变量的变化图或通过调节模型参数取值,看模型对参数取值变动如何反应)可微调变量的参数,按键后在参数下方出现拖动条的变量可更改参数
可较大幅度更改变量参数,按键后变蓝色底的变量可更改参数
查看模型中哪些变量会引起该变量发生变化
查看模型中该变量会引起哪些变量发生变化
查看多种变量在该模型现有参数或者不同参数设置下的变化
查看同一变量在该模型现有参数或者不同参数设置下的变化
6.政策优化(参数优化、结构优化、边界优化,寻找最优控制)软件下载及详情介绍请参见Vensim软件官方网站:/在旅游研究中如何使用系统动力学模型,请参考例文:[1] 王妙妙, 章锦河, 张秀玲,等. 系统动力学在旅游研究中的应
用[J]. 云南地理环境研究, 2010, 22(1):105-110.[2] 张丽丽, 贺舟, 李秀婷. 基于系统动力学的新疆旅游业可持续发展研究[J]. 管理评论, 2014, 26(7):37-45.[3] 汪德根,宋玉芹,刘昌雪.商务旅游城市发展的系统动力学仿真研究——以苏州工业园区为例[J].地理科学进展,2013,32(03):486-496.[4]刘立云,雷宏振,邵鹏.基于系统动力学的我国旅游景区门票定价研究[J].旅游科学,2012,26(04):39-51.系统动力学(System Dynamics,简称SD)始创于1956年,在20世纪50年代末成为一门独立完整的学科,其创始者为美国麻省理工学院(MIT)的福瑞斯特(Forrester J. W.)教授。
系统动力学是一门分析研究信息反馈系统的学科,也是一门认识系统问题和解决系统问题的综合性交叉学科。
它是系统科学与管理科学的一个分支,也是一门沟通自然科学和社会科学等领域的横向学科。
使用系统动力学模型进行研究,就是将所研究对象置于系统的形式中加以考察。
在确定好系统边界之后,用计算机程序直接建立真实系统的模型,并且通过计算机的模拟计算了解系统随时间变化的行为或系统的特性。
旅游系统是一个多要素构成的复杂动态综合体,旅游研究需要对不同产业或行业的研究成果和不同时间或空间的统计资料进行汇总分析和跨专业、跨学科、跨部门的探讨,因此可以运用系统仿真方法对旅游系统进行分析。
国外学者较早的将 SD 应用于旅游研究,主要成果集中在旅游地研究、生态环境、旅游发展、社会经济系统、旅游供应链、旅游和政治等方面;国内学者将SD 方法用于旅行社、旅游经济、城市旅游、生态旅游等方面的研究(张丽丽, 贺舟 2014)。
SD被称为“战略与策略实验室”, SD在建模时借助于“流图”,它与其它模型方法相比具有的优越性体现在:①SD是一门可用于研究处理旅游社会学、旅游经济和旅游生态等一类长期性和周期性的问题。
它可在宏观与微观的层次上对复杂多层次、多部门的大系统进行综合研究。
②SD的研究对象是开放系统,认为系统的行为模式与特性主要根植于其内部的动态结构与反馈机制。
③SD研究解决问题的方法是一种定性与定量相结合,分析、综合与推理的方法,适用于对数据不足的问题进行研究。
④SD模型是旅游社会经济系统一类系统的实验室,适用于处理精度要求不高的复杂的旅游社会经济问题。
一些高阶非线性动态的问题,应用一般数学方法很难求解(王妙妙, 章锦河 2010)。
建立系统动力学(SD)模型,首先要明确系统仿真的目的,找出要解决的关键问题;其次一定要确定好系统的边界,因为系统动力学分析的系统行为是基于系统内部要素相互作用而产生的,并假定系统外部环境的变化不给系统行为产生本质的影响,也不受系统内部因素的控制。
因此系统边界应规定哪一部分要划入模型,哪一部分不应划入模型,在边界内部凡涉及与所研究的动态问题有重要关系的概念模型不变量均应考虑进模型;反之,在界限外部的那些概念与变量应排除在模型之外。
建立系统动力学模型可以使用的软件包括:DYNAMO / Powersim / Vensim等。
下面介绍用Vensim软件构建系统动力学模型的具体步骤:1.绘制因果回路图(分析系统中的要素,界定好箭头及各回路的极性)2.绘制存量流量图(找出水平变量、辅助变量、常量等,系统庞大时可借助影子变量将系统拆分为几个子系统)
3.建立系统动力学方程(构建模型的核心,包括设置方程、单位、初始值、时长、开始和结束的时间等,一定要界定好系统的界限,做好各种假设)
L 水平变量方程R速率变量方程C常量方程A辅助变量方程N初始值方程4.模型检验(进行模型和单位的检验,可进一步进行现实性检测,以判断是否符合现实情况)
模型检验:菜单栏Model→Check Model单位检验:菜单栏Model→Units Check现实性检测:仿真后按Reality Checks5.模型的仿真模拟(建立模型并进行检验后,可在软件中查看变量的变化图或通过调节模型参数取值,看模型对参数取值变动如何反应)可微调变量的参数,按键后在参数下方出现拖动条的变量可更改参数
可较大幅度更改变量参数,按键后变蓝色底的变量可更改参数查看模型中哪些变量会引起该变量发生变化
查看模型中该变量会引起哪些变量发生变化
查看多种变量在该模型现有参数或者不同参数设置下的变化查看同一变量在该模型现有参数或者不同参数设置下的变化
6.政策优化(参数优化、结构优化、边界优化,寻找最优控制)。