实验38 模拟集成电路的版图设计
集成电路设计3-版图设计

版图设计的重要性
1
版图设计是集成电路制造过程中的关键环节,它 决定了集成电路的性能、功能和可靠性。
2
通过版图设计,可以将电路设计转化为实际制造 的物理结构,从而实现电路设计的目标。
3
版图设计的精度和质量直接影响到集成电路的性 能和制造良率,因此需要高度的专业知识和技能。
在芯片内部加入自测试模块,实现自动测试和 故障诊断。
可测性增强
通过增加测试访问端口和测试控制逻辑,提高芯片的可测性。
05
集成电路版图设计的挑 战与解决方案
设计复杂度挑战
总结词
随着集成电路规模不断增大,设计复杂 度呈指数级增长,对设计效率提出巨大 挑战。
VS
详细描述
随着半导体工艺的不断进步,集成电路设 计的规模越来越大,晶体管数量成倍增加 ,导致设计复杂度急剧上升。这不仅增加 了设计时间和成本,还对设计精度和可靠 性提出了更高的要求。
03
还需要考虑存储器的功耗和散热问题,以确保在各种应用场景下的稳 定运行。
04
高密度存储器版图设计需要具备高容量、高速、低功耗和高可靠性等 特点,以满足大数据、云计算等领域的需求。
THANKS FOR WATCHING
感谢您的观看
04
还需要考虑散热设计,以确保在高负载情况下CPU的 稳定运行。
案例二:低功耗MCU版图设计
低功耗MCU版图设计需要重点 关注功耗优化,采用低功耗工 艺和电路技术,如CMOS工艺
、低功耗逻辑门等。
还需要考虑低电压供电和电源 管理设计,以确保MCU在各种 应用场景下的稳定运行。
设计过程中需要优化芯片内部 结构和电路布局,降低芯片的
模拟集成电路的设计流程

模拟集成电路的设计流程一、需求分析与规格确定1. 应用场景:了解电路将用于何种设备,如手机、电脑、汽车电子等,以及这些设备对电路的特殊要求。
2. 性能指标:根据应用场景,确定电路的关键性能参数,如增益、带宽、功耗、线性度、噪声等。
3. 工作条件:明确电路的工作电压、温度范围、湿度、震动等环境条件。
4. 成本与尺寸:考虑电路的成本目标和封装尺寸,确保设计在商业上是可行的。
5. 制定规格书:将上述分析结果整理成详细的技术规格书,为后续设计工作提供依据。
二、电路架构设计与仿真在规格确定后,设计师开始进行电路架构的设计。
这一阶段,设计师需要运用专业知识,选择合适的电路拓扑,并进行初步的仿真验证。
1. 电路拓扑选择:根据规格书要求,选择合适的电路拓扑,如运算放大器、滤波器、稳压器等。
2. 元器件选型:根据电路拓扑,选取合适的晶体管、电阻、电容等元器件。
3. 原理图绘制:使用电路设计软件,绘制电路的原理图。
4. 参数调整与优化:通过仿真软件,对电路参数进行调整,以优化电路性能。
5. 仿真验证:进行直流分析、交流分析、瞬态分析等仿真,验证电路在不同工作条件下的性能是否符合规格要求。
三、版图布局与设计规则检查1. 版图绘制:根据原理图,绘制电路的版图,包括元器件布局、连线、焊盘等。
2. 设计规则检查(DRC):确保版图设计符合制造工艺的设计规则,如线宽、线间距、寄生效应等。
3. 版图与原理图一致性检查(LVS):通过软件工具,比较版图与原理图是否一致,确保没有设计错误。
4. 参数提取:从版图中提取寄生参数,为后续的版图后仿真做准备。
四、版图后仿真与优化版图设计完成后,需要进行版图后仿真,以验证实际制造出的电路性能。
1. 版图后仿真:利用提取的寄生参数,对版图进行后仿真,检查电路性能是否受到影响。
2. 性能优化:根据仿真结果,对版图进行必要的调整,以优化电路性能。
3. 设计迭代:如果仿真结果不理想,可能需要返回前面的步骤,对电路架构或版图进行重新设计。
集成电路EDA与验证技术课件:模拟集成电路设计与仿真

模拟集成电路设计与仿真
常用命令格式: (1) DEFINE 格式:DEFINE <库名> <库路径> 例: DEFINE sample /export/cadence/IC615USER5/tools.lnx86/dfII/samples/cdslib/sa mple (2) INCLUDE 格式:INCLUDE <另外一个cds.lib 的全路径>
模拟集成电路设计与仿真
图3.2 Spectre中包含的各种仿真器
模拟集成电路设计与仿真
2.精确的晶体管模型 Spectre为所有的仿真器提供一致的器件模型,这有利于 消除不同模型间的相关性,从而得到快速收敛的仿真结果。 模型的一致性也保证了器件模型在升级时可以同时应用于所 有的仿真器。 3.高效的程序语言和网表支持 Spectre仿真平台支持多种设计提取方法,并兼容绝大多 数SPICE输入平台。Spectre可以读取Spectre、SPICE以及 Verilog-A格式的器件模型,并支持标准的Verilog-AMS、 VHDL-AMS、Verilog-A、Verilog以及VHDL格式的文本输 入。
模拟集成电路设计与仿真
5.有力衔接了版图设计平台 对于完整的版图设计平台而言,Spectre是不可或缺的重 要环节,它能方便地利用提取的寄生元件参数来快速完成后 仿真(post-layout simulation)的模拟,并与前仿真(pre-layout simulation)的模拟结果作比较,紧密的连接了电路 (Schematic)和版图(layout)的设计。 6.交互的仿真模式 设计者可以在仿真过程中快速改变参数,并在不断调整 参数和模拟之中找到最佳的电路设计结果,减少电路设计者 模拟所花费的时间。
《模拟集成电路》课件

,以便对设计的电路进行全面的测试和评估。
PART 05
模拟集成电路的制造工艺
REPORTING
半导体材料
硅材料
硅是最常用的半导体材料,具有 稳定的物理和化学性质,成熟的 制造工艺以及低成本等优点。
化合物半导体
如砷化镓、磷化铟等化合物半导 体材料,具有高电子迁移率、宽 禁带等特点,常用于高速、高频 和高温电子器件。
《模拟集成电路》课 件
REPORTING
• 模拟集成电路概述 • 模拟集成电路的基本元件 • 模拟集成电路的分析方法 • 模拟集成电路的设计流程 • 模拟集成电路的制造工艺 • 模拟集成电路的优化与改进
目录
PART 01
模拟集成电路概述
REPORTING
定义与特点
定义
模拟集成电路是指由电阻、电容、电 感、晶体管等电子元件按一定电路拓 扑连接在一起,实现模拟信号处理功 能的集成电路。
围和失真。
信号分析方法
01
02
03
04
频域分析
将时域信号转换为频域信号, 分析信号的频率成分和频谱特
性。
时域分析
研究信号的幅度、相位、频率 和时间变化特性,分析信号的
波形和特征参数。
调制解调分析
研究信号的调制与解调过程, 分析信号的调制特性、解调失
真等。
非线性分析
研究电路的非线性效应,分析 信号的非线性失真和互调失真
音频领域
模拟集成电路在音频领域中主要用于 音频信号的放大、滤波、音效处理等 功能,如音响设备、耳机等产品中的 模拟集成电路。
模拟集成电路的发展趋势
集成度不断提高
随着半导体工艺的不断发展,模 拟集成电路的集成度不断提高, 能够实现更加复杂的模拟信号处
Bandgap集成电路掩模版图设计

摘要集成电路掩模版图设计是实现集成电路制造所必不可少的设计环节,它不仅关系到集成电路的功能是否正确,而且也会极大程度地影响集成电路的性能、本钱与功能。
模拟版图设计对电路的性能有更高的要求,要求模拟版图设计者使用更多的方法去优化电路,减小电路的寄生参数,提高电路的稳定性。
本论文首先介绍半导体制造技术、模拟IC版图设计的根本流程,然后通过bandgap 的单元版图设计到整体版图设计流程具体介绍模拟版图设计的一些细节和一些问题的解决方法,最后介绍一些平面布局与封装技术。
本设计使用cadence 全定制设计工具IC610进展bandgap的版图设计,其后使用diva对版图进展物理验证。
关键词:版图;bandgap;cadence;ICAbstractIC mask layout are essential to achieve the design of integrated circuit manufacturing sectors, it is not only related to the IC's functions are correct, but also great extent affect IC performance, cost and functionality. Simulate the performance of the circuit layout have higher demands to analog layout designers to use more methods to optimize the circuit, reducing the parasitic circuit parameters, to improve the stability.This paper first introduces the semiconductor manufacturing technology, analog IC layout design of the basic flow, then bandgap of the cell layout to the overall layout design process specific analog layout design introduced some of the details and some solution to the problem, and finally introduce some layout and packaging technology. The design of full custom design using cadence tools IC610 for bandgap of the layout design, then use the diva of the physical layout verification.Keywords: layout; bandgap; cadence; physical verification目录1 绪论12 工艺简介22.1光刻22.2掺杂42.3淀积42.4CMOS工艺42.5PNP工艺62.6POLY电阻工艺73 CADENCE简介84 BANDGAP版图设计流程104.1原理图104.1.1 原理图信息114.1.2 Bandgap简介114.1.3 Bandgap仿真124.2模块划分134.3单元版图设计144.3.1 模块MP1_MP3版图设计144.3.2 模块MP2_MP4版图设计154.3.3 模块MP9,MP10版图设计164.3.4 模块MN1_MN3版图设计174.3.5 模块MN2_MN4版图设计184.3.6 模块MN5_MN8版图设计194.3.7 模块NCH版图设计204.3.8 模块R1版图设计214.3.9 模块R2版图设计214.3.10 模块Q1_Q2版图设计224.3.11 模块Q3,Q4,Q5版图设计23 4.4整体版图设计244.4.1 平面布局254.4.2 布线264.5验证264.5.1 设计队如此检查〔DRC〕264.5.2 版图与原理图的对照〔LVS〕274.5.3 版图几声参数提取〔LPE〕274.5.4 寄生电阻提取〔PRE〕27结论28致谢28参考文献28附录A 英文文献29附录B 中文译文33附录CBANDGAP的SCHEMATIC网表35附录D BANDGAP的LAYOUT网表381 绪论无论是数字集成电路设计还是模拟、混合集成电路设计,版图设计都是必不可少的重要设计环节。
集成电路版图设计与验证课件

5 常用工艺之二:光刻
❖ 目的:按照集成电路的设计要求,在SiO2或 金属层上面刻蚀出与光刻掩膜版完全相对应 的几何图形,以实现选择性扩散或金属布线 的目的。
5 常用工艺之二:光刻
❖ 主要步骤 ❖ (1)在晶圆上涂一层光刻胶,并将掩膜版
放在其上。 ❖ (2)曝光。正胶感光部分易溶解,负胶则
相反。 ❖ (3)显影、刻蚀。 ❖ (4)去除光刻胶
3.3 工艺集成
❖ 1 制作流程 ❖ 2 无源器件 ❖ 3 双极集成电路制造流程 ❖ CMOS工艺
1 制作流程
1 制作流程
2 无源器件
❖ 1、电阻 ❖ (1)淀积:淀积电阻层,然后光刻刻蚀 ❖ (2)扩散或离子注入:在硅衬底上热生长的
氧化层上开出一个窗口,注入或扩散与衬底 类型相反的杂质。
电阻
❖ (3)掺杂工艺:包括扩散工艺和离子注入工 艺。
3 工艺流程
❖ 以上工艺重复、组合使用,就形成集成电路 的完整制造工艺。
❖ 光刻掩模版(mask):版图完成后要交付给 代工厂,将版图图形转移到晶圆上,就需要 经过一个重要的中间环节——制版,即制造 一套分层的光刻掩膜版。
3 工艺流程
❖ 制版——光刻掩膜版就是讲电路版图的各个 层分别转移到一种涂有感光材料的优质玻璃 上,为将来再转移到晶圆做准备,这就是制 版。
❖ 每层版图都有相对应的掩膜版,并对应于不 同的工艺。
4 常用工艺之一:外延生长
❖ 半导体器件通常不是直接做在衬底上的, 而是先在沉底上生长一层外延层,然后将 器件做在外延层上。外延层可以与沉底同 一种材料,也可以不同。
❖ 在双极型集成电路中:可以解决原件间的 隔离;减小集电极串联电阻。
❖ 在CMOS集成电路中:可以有效避免闩锁 效应。
第六章模拟集成电路设计1PPT课件
T1电流放大,以减少从参考电流中分出的基极电流。 使一个参考电流较准确地控制多个电流源
2020/8/2
专用集成电路设计实验室
20
四川大学物理科学与技术学院
3、微电流恒流源(Widlar源)
V B1 E V B2 EIE2R e2
Re2
VBE1VBE2 IE2
16
四川大学物理科学与技术学院
基本型恒流源 r
1. 镜像电流源
基准电流:
IREF=Ir
VCCVBE R
V CC R
因为:VB E2=VB E1 IE2 = IE1
所以:IC2 =IC1 IREF
最后得到公式6-29
R上 r 电流I的 r T 变 管 2化 基极 I变 2 r 化
增加了双极型晶体管工作点的稳定性
四川大学物理科学与技术学院
模拟集成电路
2020/8/2
专用集成电路设计实验室
1
四川大学物理科学与技术学院
第一部分
整体概述
THE FIRST PART OF THE OVERALL OVERVIEW, PLEASE SUMMARIZE THE CONTENT
专用集成电路设计实验室
2
四川大学物理科学与技术学院
集成电路概述
• 模拟IC就是能对模拟量进行运算和处理的一种IC, 直接对连续可变的模拟量进行计算与处理
• 模拟集成电路的种类
– 根据输入、输出电压的变化关系分类
• 线性IC:输出信号随输入信号的变化成线性关系 • 非线性IC:具有非线性的传输特点 • 接口电路:AD/DA转换器
– 按工作频率分类
• 低频、高频、射频、微波、毫米波
模拟集成电路的设计流程
共88页
12
Tools菜单
在Tools菜单下,比较常 用的菜单项有
Library Manager
Library Path Editor
Technology File Manager
Library Manager项打开的是库管 理器。在窗口的各部分中,分别 显示的是Library、Category、Cell、 View相应的内容。
2019/10/4
注意! View要选择symbol
共88页
18
常用analoglib库的元器件
器件 电阻 电容 电感 NMOS PMOS
npn管
Cell 名称 res cap ind
nmos4 pmos4
npn
pnp管 地
直流电压源 直流电流源 方波发生源
可编程方波发 生源
正弦波发生源
2019/10/4
共88页
5
Cadence中Spectre的模拟仿真
1、进入Cadence软件包 2、建立可进行SPECTRE模拟的单元文件 3、编辑可进行SPECTRE模拟的单元文件 4、模拟仿真的设置(重点) 5、模拟仿真结果的显示以及处理 6、分模块模拟(建立子模块) 7、运算放大器仿真实例
2019/10/4
2、setenv DISPLAY 本机ip:0.0(回车),再 键入icfb&,出现的主 窗口如图所示:
2019/10/4
共88页
8
方法二
1、安装winvnc软件 2、运行putty软件键入 用户名和密码,在提示 符处键入 vncserver命 令申请vnc端口 3、运行winvnc,填入 主机名称:端口号码
Hspice: 作为业界标准的电路仿真工具,它自带了许多器 件模型,包括小尺寸的MOSFET和MESFET。Cadence提 供了hspice的基本元件库并提供了与Hspice的全面的接口。
集成电路常用器件版图
5.2 电阻常见版图画法
5.2 电阻常见版图画法
5.2 电阻常见版图画法
5.2 电阻常见版图画法
02
图7.18的实现方式。
01
对于无法使用串、并联关系来构建的电阻,可以在单元电阻内部取阻
02
匹配电阻的宽度要相同,且要足够宽。
首选多晶硅电阻。
对于既有精度要求,又有匹配要求的电阻,可以将这两个电阻交互排列放置。图7.16
在需要匹配的器件两侧或周围增加虚设器件,防止边上的器件被过多的可是,引起不匹配。
5.2 电阻常见版图画法
高精度电阻版图设计方法之二:电阻单元的复用
01
与MOS管类似,电阻也最好使用某一单元进行利用,通常选取一段宽度长度合适,受工艺影响、温度影响总体性能较优的一段电阻作为通用电阻,然后通过串联、并联,获得其他阻值的电阻。图7.17
希望通过这样的输入电路,使集成电路内部得到一个稳定、有效的信号,阻止外部干扰信号进入内部逻辑。
1
2
输入单元
输出单元
输出单元的主要任务是提供一定的驱动能力,防止内部逻辑过负荷而损坏。另一方面,输出单元还承担了一定的逻辑功能,单元具有一定的可操作性。与输入电路相比,输出单元的电路形式比较多。
(1)反相输出 I/O PAD
匹配器件共中心性:又称为四方交叉
在运算放大器的输入差分对中,两管的宽长比都比较大。
2
采用四方交叉的布局方法,使两个管子在X轴上产生的工艺梯度影响和Y轴上的工艺梯度影响都会相互抵消。
3
将M1和M2分别分成两个宽度为原来宽度一半的MOS管,沿对角线放置后并联。
4
5.1 MOS器件常见版图画法
MOS器件常见版图画法
I/0 PAD 输入输出单元(补充)
模拟集成电路版图的匹配和抗干扰设计(精选)PPT文档共35页
•
29、在一切能够接受法律支配的人类 的状态 中,哪 里没有 法律, 那里就 没有Байду номын сангаас 由。— —洛克
•
30、风俗可以造就法律,也可以废除 法律。 ——塞·约翰逊
计(精选)
▪
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
▪
28、知之者不如好之者,好之者不如乐之者。——孔子
▪
29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
35
模拟集成电路版图的匹配和抗干扰设
•
26、我们像鹰一样,生来就是自由的 ,但是 为了生 存,我 们不得 不为自 己编织 一个笼 子,然 后把自 己关在 里面。 ——博 莱索
•
27、法律如果不讲道理,即使延续时 间再长 ,也还 是没有 制约力 的。— —爱·科 克
•
28、好法律是由坏风俗创造出来的。 ——马 克罗维 乌斯
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验38 模拟集成电路的版图设计
模拟集成电路设计是现代集成电路设计的重要组成部分。
模拟集成电路的版图设计是模拟集成电路设计环节中的重要关键环节。
模拟集成电路版图设计的优劣直接影响着整个集成电路的性能和设计的成败。
本实验要求学生在系统地学习了《半导体物理》、《场效应器件物理》、《模拟集成电路设计》和《集成电路制造技术》等专业知识的基础上,使用Tanner公司设计开发的集成电路版图设计工具Ledit软件,独立完成CMOS模拟集成电路单元的版图设计和布局工作,提高模拟集成电路版图设计和布局能力,强化对模拟集成电路制造技术的理解和知识运用能力,培养学生初步的模拟集成电路版图设计能力。
一、实验原理
1. 模拟集成电路版图中的器件与设计规则
在模拟集成电路中,主要器件有NMOS、PMOS、NPN和PNP晶体管,二极管、电阻和电容等。
这些器件在Ledit软件中,实现的方法存在较大差异,但都是遵循器件的定义实现的。
器件的定义存储在以.ext为后缀的器件萃取文件中。
在Ledit软件环境下,P型衬底N阱CMOS 2P2M工艺下(两层多晶两层金属),模拟集成电路版图中器件的设计规则,除去与数字集成电路版图设计中通用的规则外,主要还有:NPN、PNP晶体管设计规则、电容设计规则和电阻设计规则等,表38.1中摘录了这些规则中的部分内容。
使用这些设计规则可以实现NPN、PNP、MOS电容和电阻等器件版图。
=1.0μm部分设计规则
表38.1 P型衬底N阱CMOS工艺下,
182
在绘制模拟集成电路版图时,所绘制的各种基本图形尺寸不能小于这些设计规则要求的尺寸,否则将导致设计规则错误。
在Ledit软件环境下,完成设计规则检查的功能称为设计规则检查(Design Rule Check,DRC)。
在集成电路版图绘制过程中,需要经常性地使用DRC功能来检查版图是否存在错误,这样做可以避免同时有太多违反设计规则的错误产生,决定着版图的完成效率和完成质量。
版图的设计规则是最小尺寸要求,将基本图形的尺寸有意绘制大些,DRC 检查不认为是一种设计规则错误,但在整个集成电路中将造成芯片面积的浪费,所以在布局基本图形时,充分考虑器件必要的几何尺寸的同时,应使用尽量小的基本图形尺寸。
2. 模拟集成电路版图图层定义
在Ledit软件环境中,P型衬底N阱CMOS 2P2M工艺条件下,模拟集成电路版图中除去与数字部分定义相同的基本层外,主要还定义有:一层多晶硅电阻识别标记(Poly Resistor ID)、二层多晶硅电阻识别标记(Poly2 Resistor ID)、N 型扩散电阻识别标记(N Diff Resistor ID)、P型扩散电阻识别标记(P Diff Resistor ID)、P型基区电阻识别标记(P Base Resistor ID)和N阱电阻识别标记(N Well Resistor ID)等电阻类基本层;一层多晶硅与二层多晶硅电容识别标记(Poly12 Capacitor ID)、NMOS电容识别标记(NMOS Capacitor ID)和PMOS电容识别标记(PMOS Capacitor ID)等电容类基本层;NPN晶体管识别标记(NPN ID)、P型基区识别标记(P Base)、横向PNP晶体管识别标记(LPNP ID)、横向PNP 晶体管发射极识别标记(LPNP Emitter ID)和二极管识别标记(DIODE ID)等有源器件类基本层。
所有识别标记都是电路萃取标记。
使用上述模拟集成电路版图的基本层定义,可以用来制作MOS晶体管、双极晶体管、二极管、电阻和电容等器件。
集成电路版图中的基本层就是相关工艺的光刻掩模。
图38.1给出了NMOS、PMOS晶体管的纵向剖面结构。
图中有源区的不同,充分地说明了N型和P型选择区是重要的有源区掺杂类型识别标记。
图中是采用多支晶体管并联结构实现的较大宽长比晶体管。
图38.1 NMOS、PMOS晶体管的纵向剖面结构
图38.2绘出了NPN、PNP晶体管的纵向剖面结构。
左侧NPN晶体管存在P 型基区,右侧PNP晶体管中没有类似结构,这正是纵向NPN晶体管与横向PNP 晶体管的一个重要差别。
在CMOS工艺条件下,可以同时实现纵向NPN晶体管
183
和横向PNP晶体管的制造,实现了CMOS工艺与双极工艺的兼容。
图38.2 NPN、PNP晶体管的纵向剖面结构
图38.3画出了N型和P型扩散电阻,N型扩散电阻制作在P型衬底上,P 型扩散电阻制作在N阱中。
左图电阻层与P型外延层之间、右图电阻层与N阱之间均构成了寄生PN结,通常采取将电阻所在的衬底或阱连接到适合电位,达到PN结反向偏置工作条件,从而减小寄生PN结对电阻性能的影响。
图38.3 N型、P型扩散电阻的纵向剖面结构
图38.4是由多晶硅制作的两种多晶硅电阻,可以看出它们都是制作在两层氧化层之间,通过氧化层实现上下方区域彼此绝缘。
在CMOS工艺条件下,多晶硅通常需要进行重掺杂,所以形成的多晶硅电阻通常具有较小的方块电阻。
图38.4 一层、二层多晶硅电阻的纵向剖面结构
图38.5为N阱电阻和P型基区电阻,由于N阱掺杂浓度较低,P型基区掺杂浓度较高,所以N阱适于制作阻值较大的电阻,P型基区电阻适于制作较小阻值的电阻。
图38.6是NMOS电容和PMOS电容版图的纵向剖面结构。
这些电容是以P 型有源区或N型有源区作为电容的一个极板,一层多晶硅作为电容的另一个极板,采用平行板电容器原理制成的。
184
185
图38.5 N 阱电阻、P 型基区电阻的纵向剖面结构
图38.6 NMOS 、PMOS 电容的纵向剖面结构 3. 模拟集成电路版图单元布局实例
在模拟集成电路版图单元的绘制过程中,合理的版图分割和位置分布是保证版图布局设计品质的基本前提。
图38.7是一个模拟集成运算放大器电路的差分输入级部分,同时跨接了一个电容作为负载,右侧给出了各器件的尺寸参数,要求采用λ=1.0μm ,特征尺寸为2.0μm 的设计规则,在100μm ×90μm 芯片面积内完成版图的布局。
依据大宽长比晶体管版图布局原则,M1、M2采用18μm/2μm ×4支晶体管并联连接,M3、M4采用10μm/2μm ×2支晶体管并联连接,M5采用16μm/2μm ×4支晶体管并联连接,电容C1采用NMOS 电容结构,实现的版图布局形式见图38.8,版图的最终尺寸为90μm ×76μm 。
图38.7 模拟电路单元逻辑电路及其W/L 图38.8 模拟电路单元版图布局结果
二、实验内容
1. 采用
2.0U (λ=1.0μm )设计规则绘制完成N 沟道电流镜负载电路单元版图,具体电路和各器件尺寸见图38.9,总芯片面积不超过80μm ×100μm ;
186
图38.9 N沟道电流镜负载电路与各器件参数
2. 采用2.0U(λ=1.0μm)设计规则完成威尔逊电流镜负载电路单元版图,
具体电路和各器件尺寸见图38.10,总芯片面积不超过120μm×150μm;
图38.10 威尔逊电流镜负载电路和各器件尺寸
3. 采用通用2.0U(λ=1.0μm)设计规则绘制完成高摆幅共源共栅电流漏单元版图,具体电路和各器件尺寸见图38.11,总芯片面积不超过110μm×110μm;
图38.11 高摆幅共源共栅电流漏和各器件尺寸
4. 采用2.0U(λ=1.0μm)设计规则绘制完成标准共源共栅电流漏单元版图,具体电路和各器件尺寸见图38.12,总芯片面积在100μm×100μm以内。
187
图38.12 标准共源共栅电流漏和各器件尺寸
三、实验数据处理
1. 写出生产各集成电路单元芯片所需光刻掩膜板的张数及其名称;
2. 写出各单元电路的电路网表(Spice 语句)。
3. 简要叙述电路所完成的功能。
四、实验思考题
1. 试从工艺角度来解释场区氧化和栅氧的含义与区别。
2. 在P 型衬底N 阱CMOS 工艺中,存在的各种类型电阻,比较其方块电阻大小,说明理由。
3. 较大宽长比MOS 晶体管可以采用多支晶体管并联连接的方式实现,请问宽长比为1/120的NMOS 晶体管在版图设计时如何实现,有何措施?
4. 版图的λ设计规则是否可以不管特征尺寸的大小无条件约束地使用,为什么?
5. 说明数字集成电路与模拟集成电路在版图上的差别。
五、参考资料
[1] 李乃平,《集成电路制造技术》,华中理工大学出版社,1995。
[2]. Allen, R. E.等著,《CMOS 模拟集成电路设计(第二版)》,电子工业出版社,2005。