解耦控制

合集下载

解耦控制设计与仿真

解耦控制设计与仿真

解耦控制系统设计与仿真姓名:专业:学号:第一章解耦控制系统概述1.1背景及概念在现代化旳工业生产中,不停出现某些较复杂旳设备或装置,这些设备或装置旳自身所规定旳被控制参数往往较多,因此,必须设置多种控制回路对该种设备进行控制。

由于控制回路旳增长,往往会在它们之间导致互相影响旳耦合作用,也即系统中每一种控制回路旳输入信号对所有回路旳输出都会有影响,而每一种回路旳输出又会受到所有输入旳作用。

要想一种输入只去控制一种输出几乎不也许,这就构成了“耦合”系统。

由于耦合关系,往往使系统难于控制、性能很差。

所谓解耦控制系统,就是采用某种构造,寻找合适旳控制规律来消除系统中各控制回路之间旳互相耦合关系,使每一种输入只控制对应旳一种输出,每一种输出又只受到一种控制旳作用。

解耦控制是一种既古老又极富生命力旳话题,不确定性是工程实际中普遍存在旳棘手现象。

解耦控制是多变量系统控制旳有效手段。

1.2重要分类三种解耦理论分别是:基于Morgan问题旳解耦控制,基于特性构造配置旳解耦控制和基于H_∞旳解耦控制理论。

在过去旳几十年中,有两大系列旳解耦措施占据了主导地位。

其一是围绕Morgan问题旳一系列状态空间措施,这种措施属于全解耦措施。

这种基于精确对消旳解耦措施,碰到被控对象旳任何一点摄动,都会导致解耦性旳破坏,这是上述措施旳重要缺陷。

其二是以Rosenbrock为代表旳现代频域法,其设计目旳是被控对象旳对角优势化而非对角化,从而可以在很大程度上防止全解耦措施旳缺陷,这是一种近似解耦措施。

1.3有关解法选择合适旳控制规律将一种多变量系统化为多种独立旳单变量系统旳控制问题。

在解耦控制问题中,基本目旳是设计一种控制装置,使构成旳多变量控制系统旳每个输出变量仅由一种输入变量完全控制,且不一样旳输出由不一样旳输入控制。

在实现解耦后来,一种多输入多输出控制系统就解除了输入、输出变量间旳交叉耦合,从而实现自治控制,即互不影响旳控制。

互不影响旳控制方式,已经应用在发动机控制、锅炉调整等工业控制系统中。

解耦控制系统

解耦控制系统

2023/5/24
5
9.1.2 被控对象的典型耦合结构
对于具有相同数目的输入量和输出量的被控对象,典型的 耦合结构可分为P规范耦合和V规范耦合。
图9-3为P规范耦合对象。
2023/5/24
6
它有n个输入和n个输出,并且每一个输出变量
Yi(i=1,2,3,…,n)都受到所有输入变量Ui(i=1,2,3,…,n)的影响。 如果用pij(s)表示第j个输入量Uj与第 i个输出量Yi之间的传递函数, 则P规范耦合对象的数学描述式如下:
2023/5/24
13
对于一个耦合系统,因为每一个控制变量不只影响一 个被控变量,所以只计算在所有其他控制变量都固定 不变的情况下的开环增益是不够的。因此,特定的被 控变量Yi对选定的控制变量的响应还取决于其他控制 变量处于何种状况。
对于一个多变量系统,假设 Y是包含系统所有被
控变量Yi的列向量;U是包含所有控制变量Uj的列向量。 为了衡量系统的关联性质首先在所有其它回路均为开
从而求得耦合系统的相对增益ij。
2023/5/24
25
(2) 直接计算法 现以图9-7所示双变量耦合系统为例说明如何由第一放
大系数直接求第二放大系数。引入P矩阵,式(9-10)可写 成矩阵形式,即
Y Y 1 2 p p1 21 1p p1 2 2 2 U U 1 2 K K 1 21 1K K 1 2 2 2 U U 1 2 (9-14)
(9-13)
2023/5/24
24
从上述分析可知,第一放大系数pij是比较容易 确定的,但第二放大系数qij则要求其他回路开环增 益为较为复杂,特别是多变量系统。
事实上,由式(9-12)和式(9-13)可看出,第 二放大系数qij完全取决于各个第一放大系数pij,这 说明有可能由第一放大系数直接求第二放大系数,

解耦控制的基本原理

解耦控制的基本原理

解耦控制的基本原理解耦控制是一种常见的设计原则和方法,它旨在将复杂的系统分解成独立的模块,以降低系统的耦合度,提高可维护性和可扩展性。

本文将从解耦控制的基本原理、实现方法、应用场景等方面进行介绍和分析。

一、解耦控制的基本原理解耦控制的基本原理是通过降低模块之间的依赖程度,使得系统中的各个模块可以独立地进行开发、测试和维护。

具体来说,解耦控制主要包括以下几个方面的原理:1. 模块化设计:将系统划分为多个模块,每个模块负责处理特定的功能或任务。

模块之间通过定义清晰的接口进行通信,而不是直接依赖于具体的实现细节。

2. 松耦合:模块之间的依赖关系应尽量降低,使得修改一个模块不会对其他模块产生影响。

常见的实现方式包括使用接口、回调函数等。

3. 单一职责原则:每个模块应该只负责一个特定的功能或任务,避免一个模块承担过多的责任,以减少模块之间的依赖。

4. 分层架构:将系统划分为多个层次,每个层次负责不同的功能。

上层的模块只依赖于下层模块的接口,而不依赖于具体的实现。

二、解耦控制的实现方法解耦控制的实现方法多种多样,根据具体的应用场景和需求可以选择不同的方法。

以下是一些常用的实现方法:1. 接口隔离原则:定义清晰的接口,每个模块只依赖于自己需要的接口,而不依赖于其他模块不需要的接口。

这样可以避免模块之间的不必要的耦合。

2. 依赖注入:通过将依赖关系的创建和管理交给外部容器来实现解耦。

模块只需要声明自己需要的依赖,由外部容器来负责注入具体的实现对象。

3. 事件驱动:模块之间通过发布-订阅模式进行通信,一个模块发生的事件会被其他模块接收并进行相应的处理。

这样可以实现模块之间的解耦。

4. 消息队列:模块之间通过消息队列进行通信,一个模块将消息发送到队列中,其他模块从队列中获取消息并进行相应的处理。

消息队列可以实现模块之间的异步解耦。

三、解耦控制的应用场景解耦控制在软件开发中有着广泛的应用场景,下面列举几个常见的场景:1. 分布式系统:在分布式系统中,各个节点之间需要进行通信和协作。

工业过程控制工程课件10.解耦控制

工业过程控制工程课件10.解耦控制

C1
C2
C1 y20 C1 C2
y20 C2
C1
C2
变量配对举例(续)
6. 进行合适的变量配对 ( 假设C1 >y20 >C2 ):
u10
y20 C2 C1 C2
y10 , u20
C1 y20 C1 C2
y10
y20 C2
C1 C1
C2 y20
C1 C2
C1 y20 C1 C2 y20 C2 C1 C2
12 22
1 j 2 j
1n
2n
• • • • • •
yi
i1
i 2
ij
in
• • • • • •
yn n1
n2
nj
nn
相对增益系数的计算方法1
输入输出稳态方程
u1(s)
y1(s) y1 K11u1 K12u2
u2(s)
y2(s) y2 K21u1 K22u2
p11
多变量系统中的耦合
u1(s)
y1(s)
u2(s) ...
MIMO 过程
y2(s) ...
un(s)
yn(s)
基本问题:若采用SISO控制器,如何进行 输入输出变量之间的配对?
多回路PID 控制
相对增益的概念
第一放大系数 pij:在其它控制量 ur (r≠j)均不变的前
提下, uj 对yi 的开环增益
y1 u1
u2
K11
y1
K11u1 K12
y2
K21u1 K 22
q11
y1 u1
y2
K11
K12 K21 K 22
11
1
1 K12 K21

一种感应电机的解耦控制

一种感应电机的解耦控制
工作原理:当定子绕组中通入三相交流电时,产生旋转的磁 场,该磁场切割转子绕组,在转子绕组中产生感应电流。感 应电流与旋转磁场相互作用,产生转矩,驱动电机旋转。
感应电机的数学模型
01
02
03
04
电压方程
描述了定子绕组电压与电流之 间的关系。
磁链方程
描述了定子与转子绕组之间的 磁链关系。
转矩方程
描述了转矩与电流和磁链之间 的关系。
解耦控制对感应电机稳态性能的影响
总结词
解耦控制对感应电机稳态性能具有积极影响,能够提高电机在稳态运行时的性能指标。
详细描述
解耦控制通过优化电机的控制策略,减小了稳态运行时各变量间的耦合效应,提高了电 机在稳态运行时的性能表现。解耦控制能够减小稳态误差,优化电机的运行状态,提高 电机的效率和功率因数等性能指标。同时,解耦控制还可以减小电机在稳态运行时的振
优化
根据性能评估结果,对解耦控制策略进行改进和优化,以提高系统的整体性能。
04 解耦控制对感应电机性能 的影响
解耦控制对感应电机效率的影响
总结词
解耦控制可以有效提高感应电机的效率,减少能量损失,优化电机运行状态。
详细描述
解耦控制通过优化电机的输入输出关系,减小了各变量间的耦合程度,使得电机在运行过程中能够更加精准地跟 踪控制信号,从而提高了电机的效率。解耦控制能够减小转矩和磁通之间的耦合,降低铁损和铜损,进一步优化 了电机的效率。
一种感应电机的解耦控制
目 录
• 感应电机的基本原理 • 解耦控制的基本原理 • 一种感应电机的解耦控制方法 • 解耦控制对感应电机性能的影响 • 结论与展望
01 感应电机的基本原理
感应电机的定义与工作原理
感应电机是一种基于电磁感应原理的交流电机,通过定子绕 组产生的旋转磁场与转子绕组中的感应电流相互作用,实现 电能与机械能的转换。

(工业过程控制)10.解耦控制

(工业过程控制)10.解耦控制
动态解耦
在系统运行过程中,通过动态调整控制参数或策略,实现耦合的 实时解耦。
解耦控制的方法与策略
状态反馈解耦
通过引入状态反馈控制 器,对系统状态进行实 时监测和调整,实现解
耦。
输入/输出解耦
通过合理设计输入和输 出信号,降低变量之间
的耦合程度。
参数优化解耦
通过对系统参数进行优 化调整,改善耦合状况, 实现更好的解耦效果。
通过线性化模型,利用线性控制理论设计控制器,实现系统 解耦。
非线性解耦控制
针对非线性系统,采用非线性控制方法,如滑模控制、反步 法等,实现系统解耦。
状态反馈与动态补偿解耦控制
状态反馈解耦控制
通过状态反馈技术,将系统状态反馈 到控制器中,实现系统解耦。
动态补偿解耦控制
通过动态补偿器对系统进行补偿,消 除耦合项,实现系统解耦。
特点
解耦控制能够简化系统分析和设计过 程,提高系统的可维护性和可扩展性 ,同时降低系统各部分之间的相互影 响,增强系统的鲁棒性。
解耦控制的重要性
01
02
03
提高系统性能
通过解耦控制,可以减小 系统各部分之间的相互干 扰,提高系统的整体性能。
简化系统设计
解耦控制能够将复杂的系 统分解为若干个独立的子 系统,简化系统的分析和 设计过程。
调试和维护困难
耦合问题增加了系统调试和维护的难度,提高了运营成本。
解耦控制在工业过程控制中的实施
建立数学模型
01
对工业过程进行数学建模,明确各变量之间的耦合关系。
选择合适的解耦策略
02
根据耦合程度和系统特性,选择合适的解耦策略,如状态反馈、
输出反馈等。
控制器设计
03

第6章 解耦控制_747506481.doc1

第6章 解耦控制_747506481.doc1

第六章 解耦控制解耦控制是多输入多输出系统的重要问题,目的是寻找合适的控制规律使系统的参考输入和输出之间实现一一对应的控制,成为若干个互不影响的单输入单输出系统,使系统的控制和分析简单化。

本章仅讨论输入输出维数相同的线性定常系统的解耦问题。

§1 串联补偿器方法设受控系统的传递函数阵是)(s O G ,串联补偿器方法的设想如下图所示:用原系统的逆系统“抵消”原系统,得到所希望的新系统)(s L G 。

为了实现解耦控制,)(s L G 应为非奇异对角阵。

图1-1 串联补偿解耦控制显然,给定)(s O G 和)(s L G ,串联补偿器的设计如下:)()()(1s s s L O C G G G -=(1-1)注意,)(s O G 中每个元素的分母与分子均为s 的多项式,通常分母的幂次高于分子,对)(1s O -G 而言(若数学上存在的话),则是分子的幂次高于分母(非因果)。

为了保证)(s C G 在物理上可实现,)(s L G 分母的幂次应高于分子,一个最简单的形式如下:m ,,i n,α,s s s i ααL m1111)(1=≤≤⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=G (1-2)[定义1-1] 传递函数阵为非奇异对角阵的系统称为输入输出解耦系统,简称为解耦系统。

[定义1-2] 对角元素为α阶积分器的解耦系统称为α阶积分型解耦系统,简称为D I 系统。

uv)(s C G(s O G )(s O G (sO G )(s L G(sO G )(1s O -G(sO G y[例1-1] 求一个串联补偿器使下述系统实现解耦控制。

⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡++-+-=11)1(1111)(s s s s s ss O G 解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--++=-s s s s s s s O 2)1(212121)(221G 由于)()()(1s s s L O C G G G -=,为了保证)(s C G 可实现,可选:⎥⎦⎤⎢⎣⎡=s s s L 1,1diag)(G 从而得到:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+--++=22222)1(212121)(s s ss s s ss s CG思考:本例中,)(s L G 还可以取其它形式吗?如:⎥⎦⎤⎢⎣⎡s 1,1diag , ⎥⎦⎤⎢⎣⎡21,1diag s s §2状态反馈+输入变换串联补偿器增加了系统的动态,实现起来也比较复杂。

解耦控制的名词解释

解耦控制的名词解释

解耦控制的名词解释解耦控制是计算机科学中一个重要概念,被广泛应用于软件设计及程序开发中。

解耦控制的含义是将单一的程序模块或对象之间的依赖性降至最低限度,从而提高软件的灵活性、可重用性和可维护性。

本文将从以下几个方面对解耦控制的定义、原则及应用进行简要解释。

一、解耦控制的定义解耦控制是一种软件设计方法,旨在降低程序模块或对象之间的相互依赖性,从而提高可维护性、可扩展性和可重用性。

通过解除模块间的强关联关系,使各模块之间的独立性增加,也便于实现模块的替换和改写。

二、解耦控制的原则1.高内聚、低耦合原则高内聚指的是一个模块或对象内部的操作之间高度相关,而与其他模块或对象的关系较少;低耦合是指各个模块或对象之间的依赖关系较少,相对独立。

这两项原则是解耦控制的核心观念,是实现代码可维护性和可扩展性的必备条件。

2.接口分离原则该原则指在设计类或对象的接口时应尽量避免出现过于复杂的接口。

应该根据调用方的需要,将类或对象的接口分成多个小的接口,以便实现多个功能之间的解耦。

3.依赖倒置原则该原则指依赖于抽象,而不是具体的实现。

在软件设计中,应该从抽象层面出发,尽量避免直接依赖于具体的实现。

三、解耦控制的应用在软件设计中,采用解耦控制的方法可以实现更好的模块化设计,促进模块化的开发和重用。

1.模块化设计通过在系统架构上采用模块化的设计思路,可以将系统中的功能模块分解为相对独立的模块。

这样可以使模块之间的耦合度降低,便于模块的调整、维护和替换。

2.代码复用通过将一些独立的功能实现为软件库或者模块,可以提高代码复用率,节省重复的开发时间。

同时,采用解耦控制的方法,也可以使复用的代码与原有的代码相对独立,从而更好地实现复用代码的维护和升级。

总之,解耦控制是一种非常重要的软件设计原则,具有实际的应用意义。

采用解耦控制的方法可以使软件更加健壮、易于维护,同时也有助于提高代码的重用率和程序的可扩展性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章复杂控制系统的仿真研究
3.4 解耦控制系统
3.4.1 系统分析及控制策略
随着工业的发展,生产规模越来越复杂,而且在一个过程中,需要控制的变量以及操作变量常不止一对,一个生产装置要求若干个控制回路来稳定各被控量。

一个过程变量的变化必然会波及到其它过程变量的变化,这种现象称之为耦合。

严重耦合的系统对于工程实际很不利,直接影响控制质量甚至导致系统无法运行。

例如,对于一个精馏塔而言,其顶部产品成分和流量、回流、送料量、上下塔板温度等,都是一些彼此有关的量,那么在这种情况下,对某一个参数的控制不可避免地要考虑另一些有关联的参数或操作变量的影响,因此这些单个参数的控制系统之间就必定有通道互相交错,就涉及到多变量控制的问题,必须进行解耦控制。

常规解耦方法有前馈补偿法、对角矩阵法和单位矩阵法[2]。

1、前馈补偿法
前馈补偿是自动控制里最早出现的一种克服干扰的方法,它同样适用于解耦控制系统,方框图如图3-12。

图3-12 前馈解耦控制方框图
其中D21和D12是补偿器,利用补偿器原理:
K21g21(s) + D21K22g22(s) = 0
K12g12(s) + D12K11g11(s) = 0
- 33 -
第三章 复杂控制系统的仿真研究
- 34 -
解得补偿器的数学模型为:
)()(2222212121s g K s g K D -= )()(1111121221s g K s g K D -= (3-9) 采用前馈解耦,解耦器形控制器环节比较简单。

2、对角矩阵法
对角矩阵法与单位矩阵法类似,不同之处在于其使系统传递函数矩阵成
为如下形式:⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡)()()(0
0)()()(21221121s M s M s G s G s Y s Y c c 同样可以求得解耦器为:
⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-)(00)()()()()()()()()(221112221121122211211s G s G s G s G s G s G s D s D s D s D (3-10)
加入解耦器后,各回路保持前向通道特性,互相不再关联影响。

于是针对单回路整定好的控制器可以不加变化地使用。

但其缺点与单位矩阵法相似,即对于复杂对象往往无法实现。

3、单位矩阵法
单位矩阵法和对角矩阵法的原理相似,它们的方框图如图3-13所示。

单位矩阵法求解解耦器的数学模型将使系统传递矩阵成为:
⎥⎦
⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡)()(1001)()(2121s M s M s Y s Y c c ,即: ⎥⎦⎤⎢⎣
⎡=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡1001)()()()()()()()(2221121122211211s D s D s D s D s G s G s G s G 则解耦器为12221121122211211)()()()()()()()(-⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡s G s G s G s G s D s D s D s D (3-11)
第三章 复杂控制系统的仿真研究
- 35 -
图3-13 单位矩阵与对角矩阵解耦框图
此时,在M c1扰动下,Y 2(s)=0 ,在M c2扰动下,Y 1(s)=0。

单位矩阵法最大的优点是加入解耦器后,广义对象特性为1,因而系统性能极佳。

但是,其解耦器实现极其困难,这可以从其表达式中看到。

当对象特性稍微复杂时,解耦器就可能包含不可实现的环节,甚至可能无解。

3.4.2 系统仿真实例
下面以某2×2系统为例,分析的控制对象传递函数矩阵如公式3-12。

⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎣⎡++++++=)144(86.0)1(5.1)12(37.0)12(42.0)(22s s s s s s s G (3-12) 采用Bristol-Shinsky 方法[24]由相对增益λ分析该系统的耦合程度。

相对增益矩阵: Λ = ⎥⎦
⎤⎢⎣⎡22211211λλλλ (3-13) 由相对增益的特性:Λ中同一行诸元素之和为1,同一列诸元素之和为1,静态增益为K ij 由式(4-12)得出:
λ
11= K 11K 22/(K 11K 22-K 12K 21) = -1.86 λ
12 = 1 –λ11 =2.86; (3-14) λ
21 = 1 –λ11 = 2.86;
第三章复杂控制系统的仿真研究
λ22= λ11 = -1.86;
即:|λi,j| > 1,(i,j=1,2) 而耦合指标:
D = λ12/λ11 = -1.5 < 0 ,|D| = 1.5 >1
得出结论:此耦合过程发散,系统不稳定,如图3-14所示。

图3-14 系统未加解耦控制
由以上分析看必须采取有效措施进行解耦。

本例采用对角矩阵方法解耦。

其解耦思想是使对象通道的传递函数成为对角阵。

加入解耦器进行系统解耦后应使原系统解除耦合,各回路保持前向通道特性,互相不再关联影响,得到两个彼此独立的系统,如图3-15所示。

图3-15 解耦后等效图
由此我们设计解耦器,加入解耦器后,由式(3-11)、(3-12)得出解耦器的数学模型为:
D11(s)=0.36/(1.11s2+1.67s+0.19)
- 36 -
第三章复杂控制系统的仿真研究
D12(s)=(1.29s+1.29)/(1.11s2+1.67s+0.19)(3-15)
D21(s)=(0.31s+0.16)/(1.11s2+1.67s+0.19)
D22(s)=0.36/(1.11s2+1.67s+0.19)
由主界面中调出解耦控制系统的仿真模型图3-16所示。

图3-16 解耦控制系统仿真模型
进行解耦控制后,系统得到了解耦控制。

仿真结果如图3-17所示。

图3-17 解耦控制仿真结果
- 37 -
第三章复杂控制系统的仿真研究
对上例解耦控制系统仿真,设定值阶跃响应值分别为:r1=2,r2=0.5。

解耦前的系统仿真结果如图3-14所示,可以看出解耦前系统是发散的,解耦后如图3-17所示。

加入解耦器后,系统耦合得到了很好的控制,获得了令人满意的解耦控制效果。

3.5 小结
本章利用过程控制系统仿真软件,进行了串级控制系统、前馈-反馈控制系统、大迟延控制系统和多变量解耦控制系统等几种复杂控制系统计算机仿真研究,分析了各自的控制效果和适用性。

- 38 -。

相关文档
最新文档