消声器选型

消声器选型
消声器选型

六、风机消音器

1.本公司所生产的GF型风机消声器系列产品是用于治理风机对环境所导致空气动力性噪声的消声装置。供各类离心式及轴流式通风机进、出风道的消声之用。

2.风机是一种通用机械设备,使用范围很广,电力、矿山、机械、冶金、化工等各行业的行产均离不开风机。风机在运转中产生的噪声常常成为影响工人健康和干扰环境的祸源。特别是邻近生活区的风机,其进风口和出风口所辐射出的空气动力性噪声,更是污染环境的主要因素,形成公害,是近年来我国工业部门治理噪声污染的主要对象之一。

3.工业用风机,属连续运转之设备。国际标准化组织机构(ISO)对此类设备所规定的噪声标准为≤90分贝,我国的新标准与此相同,这也是工业企业连续性噪声达标的依据,但在不采用消声措施的情况下,风机进出风口向环境所射出的噪声可达110-120分贝大大超过了达标要求。

4.该消声器系列产品为阻抗声流型。本厂根据对发电厂各类风机运行现场噪声源进行实际测试所取得的频特性资料来确定在哪些频谱范围内需要多大消声量作为设计吸声片结构及流体通道的主要依据,同时采用了具有较大吸声材料饰面的狭矩形通道,以增强吸收效果。我们知道,风机的噪声源在最大噪声级时,其频谱值往往不止一种,而对不同频谱带,对其消声量的要求也不相同。为此本产品采用了对高、中频噪声起消声作用的阻式结构及对中、低频在噪声起消声作用的抗式结构,同时在阻式通道中采用了高频及低频两种消声区,用以最大限度地增宽消声频带,以实现良好的效果。

5.本产品当用户按要求安装后,其极限噪声级将不超过85-90分贝。本说明书所介绍的消声器适用于各类离心式、轴流式通风机,此外,本厂还设计生产燃气轮机,罗茨风机、空压机及柴油机排气等各类用途的消声器,欢迎用户垂询、选购。

消声器选型计算

燃气发电机组消声器选型书 燃气发电机组配置465Q-1发动机,发动机相关参数如下: 型式:四冲程、水冷、自然吸气式 发动机排量:0.97L 额定转速:3000r/min 气缸数:4 一、消声器主要结构形式 1.抗性消声器:通常对低、中频带消声效果好,高频消声效果差。 2.阻性消声器:对中、高频消声效果好,通常与抗性消声器组合起来使用 3.阻抗性符合型消声器:对低、中、高频噪声都有很好的消声效果 二、消声器性能要求 1.插入损失 D=L1-L2 式中:D-插入损失,dB; L1-安装消声器前在某点测量的排气声压级,dB;取 111 dB; L2-安装消声器后在某点测量的排气声压级,dB;取91.5 dB; D= 19.5 Db 2.消声器功率损失 R=(P1-P2)/P1×100% 式中:R-发动机额定功率点的功率损失比,%; P1-不带消声器而带空管时的发动机功率,kW; P2-带消声器后发动机功率,kW; 我国汽车消声器行业对不同车型的功率损失要求为:重型汽车R≤3%;中型汽车R≤5%;轻型汽车R≤6%,轿车R≤8%。 功率损失<5% 三、消声器的消声量 首先要确定降低排气噪声的目标值,即由发动机排气噪声大小,频谱特性和消声器所匹配车辆的噪声标准限制来决定消声器消声量大小。根据整车噪声限制来计算消声器出口噪声限制,假设声源特性属线性声源,声衰减量L为: L=10lg(R2/R1) (dB)(A) 式中:R1-消声器出口处噪声限制点到声源点距离;取1m(按试验测试收归返要求); R2-整车噪声限制测点到声源点距离。取7m(按试验测试要求) L=8.45dB 消声量Lm按以下公式计算: Lm=L1-( La+Lb) 式中:La-整机噪声限制,取68bB; Lb-机柜降低的噪声,91.5-72=19.5,取19.5 dB; Lm=111-(68+19.5)=23.5 dB 国华配YH465Q:>25 dB ,可满足要求。 7m处噪声限定值为:

吸收塔的设计和选型

烟气脱硫工艺主要设备吸收塔设计和选型 4.1吸收塔的设计 吸收塔是脱硫装置的核心,是利用石灰石和亚硫酸钙来脱去烟气中二氧化硫气体的主要设备,要保证较高的脱硫效率,必须对吸收塔系统进行详细的计算,包括吸收塔的尺寸设计,塔内喷嘴的配置,吸收塔底部搅拌装置的形式的选择、吸收塔材料的选择以及配套结构的选择(包括法兰、人孔等)。 4.1.1 吸收塔的直径和喷淋塔高度设计 本脱硫工艺选用的吸收塔为喷淋塔,喷淋塔的尺寸设计包括喷淋塔的高度设 计、喷淋塔的直径设计 4.1.1.1 喷淋塔的高度设计 喷淋塔的高度由三大部分组成,即喷淋塔吸收区高度、喷淋塔浆液池高度和喷淋塔除雾区高度。但是吸收区高度是最主要的,计算过程也最复杂,次部分高度设计需将许多的影响因素考虑在内。而计算喷淋塔吸收区高度主要有两种方法: (1) 喷淋塔吸收区高度设计(一) 达到一定的吸收目标需要一定的塔高。通常烟气中的二氧化硫浓度比较低。吸收区高度的理论计算式为 h=H0×NTU (1) 其中:H0为传质单元高度:H 0=G m /(k y a)(k a 为污染物气相摩尔差推动力的总传质系数,a 为塔内单位体积中有效的传质面积。) NTU 为传质单元数,近似数值为NTU=(y 1-y 2)/ △y m ,即气相总的浓度变化除于平均推动力△y m =(△y 1-△y 2)/ln(△y 1/△y 2)(NTU 是表征吸收困难程度的量,NTU 越大,则达到吸收目标所需要的塔高随之增大。 根据(1)可知:h=H0×NTU= ) ln( ) ()(* ** 2 2*11*2 2*1 12 121y y y y y y y y y y a k G y y y a k G y m m y m ------=?- a k y =a k Y =9.81×1025.07.04W G -] 4[ 82.0W a k L ?=] 4[ (2) 其中:y 1,y 2为脱硫塔内烟气进塔出塔气体中SO 2组分的摩尔比,kmol(A)/kmol(B) *1y ,*2y 为与喷淋塔进塔和出塔液体平衡的气相浓度,kmol(A)/kmol(B) k y a 为气相总体积吸收系数,kmol/(m 3.h ﹒kp a )

阻尼器设计

1.结构设计 2.工作原理 2.1磁流变液 磁流变液是在1948 年被Rabinow,J.发明的一种由非磁性基液(如矿物油、硅油等)、微小磁性颗粒、表面活性剂(也称稳定剂)等组合而成的智能型流体材料。在无磁场加入的条件下,磁流变液将表现为低粘度较强流动性的牛顿流体特性,加入磁场后,则会表现为高粘度低流动性的Bingham 流体特性。 非磁性基液是一种绝缘、耐腐蚀、化学性能稳定的有机液体。基液所拥有的特征是:粘度较低,磁流变液在没有磁场加入的条件下表现为低粘度状态,这样能够较好的降低磁流变液的零场粘度; 沸点高、凝固点较低,这样就可以确保磁流变液在温度变化波动较大的环境下工作依然可以保持较高的稳定性;较高的密度,能够保证磁流变液不会因沉降问题而无法正常使用; 无毒无味、廉价,保障其安全性的同时做到能够广泛使用。 微小磁性颗粒是一种可离散、可极化的软磁性固体颗粒,其单位是微米数量级的。其主要的特征有[5]: 低矫顽力,对于已经磁化过的液体,加较小的磁场就能够使其恢复零磁场状态,即拥有较高的保磁能力; 高磁导率,能够在弱磁场中获得较强的磁感应强度从而节约能量;磁滞回线狭窄、内聚力小; 磁性颗粒的体积应相对大一些,用于存贮更多的能量。 表面活性剂是可以增加溶液或混合物等稳定性的化学物质。在实际使用过程中,磁流变液比较容易出现沉降分层现象,所以需要在磁流变液中加入表面活性剂保证物理化学性能的平衡,减少分层、降低沉降。 2.2磁流变液的工作模式 磁流变液在外加磁场影响下出现磁流变效应现象,改变流体的表观粘度、流动状态,从而改变剪切屈服应力等参数,使输出的阻尼力能够实时变化,达到所期望的目的。现如今,磁路变液的一般工作模式有三类:流动式、剪切式及挤压式,如下图所示。 (a)流动式(b)剪切式(c)挤压式 图1-3 磁流变液工作模式 Fig. 1-3 MR fluid working mode 流动式:如图1-3(a)所示,在两块固定静止的磁极板中间具有充足的磁流变液,对磁流变液施加一个压力使其流过两磁极板,其中,两极板之间外加了与磁流变液运动方向垂直的磁场。当磁性液体经过磁场时,其流体特性与流动状态被改变从而产生剪切应力即阻尼力。改变线圈的输入电流强弱从而使磁场强度发生变化,阻尼力也会跟着变化,实现实时调节的效果。流动式多用于控制阀、阻尼器、电磁元件等的设计。

消音器设计计算书

消音器设计计算书 由于我国目前对消音器的设计,还没有统一的标准规范可以遵照执行,大多数厂家均根据自己的经验来设计制作,且技术又相对保密的。因此本消音器的设计,经查阅大量资料,采用科学院声学研究所马大猷教授等人提出的小孔喷注噪声极其控制理论,采用节流降压与小孔消音的原理结合现场实际情况来设计解决环境噪声超标的难题。 消音器的工艺参数为:蒸汽排放绝对压力:40 kg/ cm2,排汽温度:390℃,蒸汽比容ρ:0.0721 m3/ kg,排汽流量Q:8t/h; 噪声达到110dB以上,要求消音器的噪声小于85dB的环保要求。 一、设计原理。 复合式小孔喷注消音器是利用节流作用降低小孔喷注前的驻压,预先消耗部分声能,再dB与小孔降噪相结合,达到较高的消声量;其原理是利用节流降压与小孔喷注两种消声机理,通过适当结构复合而成的。 1. 小孔喷注消音器 小孔喷注消音器的设计机理是根据科学院声学研究所马大猷教授等人提出的小孔喷注噪声极其控制理论,从发声机理上使它的干扰噪声减少,由于喷注噪声峰值频率与喷口直径成反比,若喷口直径变小,喷口辐射的噪声能量将丛低频移向高频,于是低频噪声被降低,高频噪声反而增高,当孔径小到一定值(达到mm 级),实验表明,当孔径≤4mm时具有移频作用,喷注噪声将移

到人耳不敏感的频率范围(听觉最敏感的区域250~5000赫兹); 根据这一机理将一个大的喷口改为许多小孔来代替,便能达到降低可听声的目的。从实用角度考虑,孔径不能选得过小,因为过小的孔径不仅难于加工,同时易于堵塞,影响排汽。一般选用直径1~3mm的小孔为宜。 2.节流降压消音器 节流降压消音器是利用节流降压原理而制成的。根据排汽流量的大小,适当设计通流截面,使高压气体通过节流孔板时,压力都能最大限度地降低到临界值。这样通过多级节流孔板串联,就能把排空的一次压降分散到若干个小的压降。由于排汽噪声功率与压力降的高次方成正比例,所以把压力突变排空改为压力在消音器内就逐渐降下来再排空,这样能使消音器内流速控制在临界流速下,不致产生激波噪声,压力在最大限度地降到临界值,使消音器获得较好的消声效果。同时节流降压后小孔喷注层的驻压大大变小,小孔喷注层强度设计所需的壁厚也大为减薄,这样给小孔喷注层的钻孔加工减小难度。 消音器入口处的压力通常是给定的,当排放压力较高时,为了取得所需的消声值,经过几次节流降压,使汽体进入小孔喷注前的压力由消音器入口处的压力P1按比例降低设计;通常情况下,节流降压消音器的各级压力选择为等比级数下降,设节流孔板级数为n,临界压力比为q (q<1) ,可得: n g P P q (1)后前 根据气体状态方程、连续性方程和临界流速公式,由资料可

除雾器设计

1 除雾器 1)除雾器功能简介[孙琦明湿法脱硫工艺吸收塔及塔内件的设计选型中国环保产业 2007.4 研究进展18-22] 除雾器用来分离烟气所携带的液滴。在吸收塔内,由上下二级除雾器(水平式或菱形)及冲洗水系统(包括管道、阀门和喷嘴等)组成。经过净化处理后的烟气,在流经两级卧式除雾器后,其所携带的浆液微滴被除去。从烟气中分离出来的小液滴慢慢凝聚成较大的液滴,然后沿除雾器叶片往下滑落至浆液池。在一级除雾器的上、下部及二级除雾器的下部,各有一组带喷嘴的集箱。集箱内的除雾器清洗水经喷嘴依次冲洗除雾器中沉积的固体颗粒。经洗涤和净化后的烟气流出吸收塔,最终通过烟气换热器和净烟道排入烟囱。 2)除雾器本体 除雾器本体由除雾器叶片、卡具、夹具、支架等按一定的结构形成组装而成。其作用是捕集烟气吕中的液滴及少量的粉尘,减少烟气带水,防止风机振动。除雾器叶片是组成除雾器的最基本、最重要的元件,其性能的优劣对整个除雾系统的运行有着至关重要的影响。除雾器叶片通常由高分子材料(如聚丙稀、FRP等)或不锈钢(如317L)2大类材料制作而成。除雾器叶片种类繁多。按几何形状可分为折线型(a、d)和流线型(b、c),按结构特征可分为2通道叶片和3通道叶片。 除雾器布置形式通常有:水平型、人字型、V字型、组合型等大型脱硫吸收塔中多采用人字型布置,V字型布置或组合型布置(如菱形、X型)。吸收塔出口水平段上采用水平型

除雾器从工作原理上可分为折流板和旋流板两种形式。在大湿法中折流板除雾器应用的较多。折流板除雾器中两板之间的距离为30~50mm,烟气中的液滴在折流板中曲折流动与壁面不断碰撞凝聚成大颗粒液滴后在重力作用下沿除雾器叶片往下滑落,直到浆液池,从而除去烟气所携带的液滴。折流板除雾器从结构形式上,又可分为平板式和屋顶式两种。屋脊式除雾器设计流速大,经波纹板碰撞下来的雾滴可集中流下,减轻产生烟气夹带雾滴现象,除雾面积也比水平式大,因 此除雾效率高,出口排放的液滴浓度≤50 3 mg。一般常规设计要求除雾器出 /m 口排放的液滴浓度≤753 mg。本工程吸收塔选择除雾效果相对好的屋脊式除 /m 雾器。 3).除雾器冲洗系统 除雾器冲洗系统主要由冲洗喷嘴、冲洗泵、管路、阀门、压力仪表及电气控制部分组成。作用是定期清除除雾器叶片捕集的液滴、粉尘,保持叶片表面清洁,防止叶片结垢和堵塞。除雾器堵塞后,会增加烟气阻力,结垢严重时会导致除雾器变形、坍塌和折断。对于正常的二级除雾器,第2级除雾器后端面仅在必要时才进行冲洗,避免烟气携带太多液滴。旁路取消后,为避免浆液在第2级除雾器上部沉积引起堵塞,要求厂家在除雾器设计时,增加了二级除雾器后端面手动冲洗系统,防止除雾器堵塞时无法进行清除。除雾器冲洗水阀门是动作十分频繁的阀门,应选择质量可靠的产品。除雾器冲洗水喷头距除雾器间距。按0.5 m~0.6m 计,两层除雾器之间还设有上下冲水的两层水管,其间隔应考虑到便于安装维修。加上两层波形除雾器高度,最底部上冲水管至最上部下冲水管总高差约3.4 m~3.5 m。以上尺寸适于平铺波纹板式除雾器。如用菱形除雾器,其空问高度将可降l m左右。 4)除雾器的主要性能及设计参数 ①烟气流速:烟气流速是以空床气速u表示,也有用空床气体动能因子F,它是一个重要技术参数,其取值大小会直接影响到设备的除雾效率和压降损失,也是设备设计或核算生产能力的重要依据。通过除雾器断面的烟气流速过高或过低都不利于除雾器的正常运行,流速的增加将造成系统阻力增加,使得能耗增加。同时流速的增加有一定的限度,流速过高会造成二次带水,从而降低除雾效率。常将通过除雾器断面的最高且又不致二次带水时的烟气流速定义为临界气流速度,该速度与除雾器结构、系统带水负荷、气流方向、除雾器布置方式

减振器机构类型及主要参数的选择计算

4.7减振器机构类型及主要参数的选择计算 4.7.1分类 悬架中用得最多的减振器是内部充有液体的液力式减振器。汽车车身和车轮振动时,减振器内的液体在流经阻尼孔时的摩擦和液体的粘性摩擦形成了振动阻力,将振动能量转变为热能,并散发到周围空气中去,达到迅速衰减振动的目的。如果能量的耗散仅仅是在压缩行程或者是在伸张行程进行,则把这种减振器称之为单向作用式减振器,反之称之为双向作用式减振器。后者因减振作用比前者好而得到广泛应用。 根据结构形式不同,减振器分为摇臂式和筒式两种。虽然摇臂式减振器能够在比较大的工作压力(10—20MPa)条件下工作,但由于它的工作特性受活塞磨损和工作温度变化的影响大而遭淘汰。筒式减振器工作压力虽然仅为2.5~5MPa ,但是因为工作性能稳定而在现代汽车上得到广泛应用。筒式减振器又分为单筒式、双筒式和充气筒式三种。双筒充气液力减振器具有工作性能稳定、干摩擦阻力小、噪声低、总长度短等优点,在轿车上得到越来越多的应用。 设计减振器时应当满足的基本要求是,在使用期间保证汽车行驶平顺性的性能稳定。 4.7.2相对阻尼系数ψ 减振器在卸荷阀打开前,减振器中的阻力F 与减振器振动速度v 之间有如下关系 v F δ= (4-51) 式中,δ为减振器阻尼系数。 图4—37b 示出减振器的阻力-速度特性图。该图具有如下特点:阻力-速度特性由四段近似直线线段组成,其中压缩行程和伸张行程的阻力-速度特性各占两段;各段特性线的斜率是减振器的阻尼系数v F /=δ,所以减振器有四个阻尼系数。在没有特别指明时,减振器的阻尼系数是指卸荷阀开启前的阻尼系数而言。通常压缩行程的阻尼系数Y Y Y v F /=δ与伸张行程的阻尼系数S S S v F /=δ不等。 图4—37 减振器的特性 a) 阻力一位移特性 b)阻力一速度特性 汽车悬架有阻尼以后,簧上质量的振动是周期衰减振动,用相对阻尼系数ψ的大小来评定振动衰减的快慢程度。ψ的表达式为 s cm 2δ ψ= (4-52)

除雾器的选型

除雾器的选型 为了提高除雾效果,一般采用两级叶片,第一级为粗除,第二级为精除。屋脊型除雾器布置在烟气垂直流动的吸收塔上层,多采用单层梁支撑两级叶片的固定方式。但为了检修方便,也有用户要求用两层梁支撑。平板型除雾器可以布置在烟气垂直流动的吸收塔内,也可以布置在烟气水平流动的烟道中,一般采用双层梁支撑或固定。 屋脊型除雾器的优点是烟气通过叶片法线的流速要小于塔内水平截面的平均流速,这样,即使塔内烟气流速偏高,在通过除雾器时,由于流通面积增大而使得烟气流速减小。但是,由于屋脊型除雾器需要在吸收塔的截面上留出矩形通道,而吸收塔是圆形的,所以部分面积需要用盲板封起来,从而部分抵消了一部分优势。另外,屋脊型除雾器的结构较平板型除雾器更稳定,可以耐受的温度较高,因此,当脱硫系统不设GGH时,建议采用屋脊型除雾器。单层梁的屋脊型除雾器高度一般为2 850mm,而两级平板型除雾器高度为3 230mm,即单层梁的屋脊型除雾器占用空间较小。但是,考虑到减小携带水量,通常要求烟气在除雾器叶片以上1m 处开始改变流向和提高流速,这样可以使大的颗粒落回到除雾器。如果加上这预留的1m空间,屋脊型和平板型除雾器占用总空间接近。 另外,从经济角度分析,平板型除雾器的成本比屋脊型稍低一些,所以,一般情况下最好选择平板型,只有在烟温相对较高时,为了提高安全性才选择屋脊型除雾器。 3结垢原因分析及冲洗系统设计 3. 1结垢原因分析 (1)吸收剂浆液附着于除雾器叶片上。SO2溶于水的电离产物主要是H+和HSO3 - ,为了促进SO2的吸收和溶解,采取了2种措施:加入石灰石以中和溶液中的H+ ;向浆池中鼓入过量空气,以促进石膏的形成和结晶。吸收塔底部的石膏浆液与新鲜的石灰石浆液混合后由喷嘴喷出,与烟气充分接触后,其中很小一部分被烟气携带附着于除雾器的叶片或其他零部件上。如果浆液在叶片上停留的时间较长,就会在叶片表面形成垢层。 (2)吸收剂过量。过量的吸收剂会导致溶液中钙离子浓度过高,过饱和度增大,结垢加快。 (3)吸收塔内烟气流动不均匀。这种情况会在烟气流速较快的位置产生二次携带,导致除雾器结垢,其根本原因是吸收塔流场设计不合理。 除雾器叶片一旦开始结垢,发展将十分迅速。 因为结垢层的存在减小了通道面积,导致该处的烟气流速增大,加大了二次携带的风险。 3. 2除雾器冲洗系统设计 在设计除雾器冲洗系统时要考虑的因素有:冲洗面选择、冲洗水压力、冲洗强度、喷嘴角度、冲洗频率、冲洗水水质等。 为了减少烟气通过除雾器后的携带水量,冲洗系统通常设计成只冲洗除雾器初级叶片的迎风面和背风面。冲洗水的压力一般要求200 kPa以上,冲洗强度在40 L/ (m2?min)左右,喷嘴角度一般选择90°或110°, 200%重叠。 通过调整各冲洗通道的间隔时间可调节补充水量,冲洗通道可以按空间顺序依次冲洗,也可以将一个周期内的冲洗次数调整为迎风面多于背风面。冲洗频率一般取决于吸收塔每小时的蒸发水流量,当吸收塔内的水位低于设定值时,自动控制系统将执行除雾器冲洗程序。

脉冲阻尼器原理及选型

脉动阻尼器 脉动阻尼器是一种用于消除管道内液体压力脉动或者流量脉动的压力容器。可起到稳定流体压力和流量、消除管道振动、保护下游仪表和设备、增加泵容积效率等作用。 脉动阻尼器的原理主要有两种。 1.气囊式:利用气囊中惰性压缩气体的收缩和膨胀来吸收液体的压力或者流量脉动, 此类脉动阻尼器适用于脉动频率小于7Hz的应用,因为如果频率太高则膜片或气囊来不及响应,起不到消除脉动的效果; 2.无移动部件式:利用固体介质直接拦截流体从而达到缓冲压力脉动或流量脉动的效果,此类脉动阻尼器适用于高频脉动的应用。 脉动阻尼器分类: 1.按照缓冲介质分类: 分为压缩惰性气体缓冲式和无移动部件式,其中压缩惰性气体缓冲式又分为膜片式和气囊式等,无移动部件式分为金属结构式和陶瓷结构式等: 分为三元乙丙橡胶、丁纳橡胶、氟橡胶、聚四氟、金属、陶瓷等内部材质类型; 分为单孔式和双孔式; 分为直通式和非直通式; 消除管道振动;减小压力脉动;减小流量浮动;保护下游仪器和设备;装在泵的前端,增加泵的容积效率,提高输出功率。 选择适合的脉动阻尼器,应首先根据现场实际情况和工艺要求确定所需达到的脉动消除率指标,然后根据此技术指标进行定量选型。 准确的脉动阻尼器选型应根据流量、压力、泵类型、泵转速、泵缸数、泵相位差(多级泵)、脉动消除率、应用目的、管道流体成分、管道流体密度、管道流体粘度、管道流体温度等参数综合计算和分析后确定。 通过以上参数,关键需要计算出流体的脉冲量(即1次脉冲所输送的液体体积)和脉动频率。再结合脉动消除率指标,即可初步计算出所需要的脉动阻尼器类型和容积。

例如,要求残余脉动控制在10%以内、脉冲量为1升/次、脉动频率为2次/秒,则脉动阻尼器可选用膜片式或气囊式,容积至少为10升。 根据客户不同的实际应用,最高可以达到99.9%以上的脉动消除率,即残余脉动控制在0.1%以内。 例如:用于消除管道振动推荐残余压力脉动控制在3%以内; 用于保证涡街流量计精度则推荐残余流量脉动控制在0.75%以内。 脉动阻尼器是一种压力容器,由于材料、制造技术及实际应用的限制,脉动阻尼器一般承压在500公斤/平方厘米左右(特殊应用也可以更高),耐温大约数百摄氏度。

消声静压箱选型计算方法

百科名片 静压箱是送风系统减少动压、增加静压、稳定气流和减少气流振动的一种必要的配件,它可使送风效果更加理想。 静压箱的作用 1、可以把部分动压变为静压使风吹得更远; 2、可以降低噪音 3、风量均匀分配 4、静压箱可用来减少噪声,又可获得均匀的静压出风,减少动压损失。而且还有万能接头的作用。把静压箱很好地应用到通风系统中,可提高通风系统的综合性能。 消声器静压箱选型计算方法: 什么NR曲线,声学计算撇开不谈了,P601也不说了。收录网友言论仅供参考(排名不分先后)! 1、在设计静压箱时,如果按着规定的风速成进行设计,箱体将会很大;一般的静压箱长边要宽出风管边400mm,高度要宽出风管高度400mm。数值是从约克设计手册上搞来的,那是估算。 2、静压箱一般老工程师的经验是5~10db(a)/m,阻抗复合型(似乎空调通风系统一般都用这个)消声器10~15db(a)/m 3、控制风速在2.5以内若体积太大可适当得提高一下风速关于长度一般大于1米没有其他得强制要求 4、高度×深度=静压箱截面面积,静压箱截面面积×2.5m/s=风机风量,至于高度和深度怎么配,自己把握吧~~ 5、用你机组的风量L÷3米/秒,可得到你静压箱一个面的面积,然后你根据你房子的高度,假如是4米,可你的机组是2米高,在减去软接头大概0.5米,上面留高0.5米,那你的静压箱只有1米高,那你就可以确定宽度了,有了两个数,第三个数也就容易确定了,这里最主要的是要看自己的空调机房够不够位置,如果够位置就尽量的大点!!长度的计算方法也是一样的,你知道了宽度,那么你的宽度乘以长度不也是有个面积吗?这个面积也要等于L/3,不过在设计院里的面风速是取用2m/s的,如果够空间,就做大点吧。 6、静压箱厚度最好大于600mm,断面风速小于2m/s,另外注意接出位置与接入位置间有点气流缓冲区,以前在上海和华东院的师兄草根时,师兄告诉我华东院老总强烈不建议用静压箱,造价高阻力大,有条件尽量用裤衩三通加消声弯头或管道消声器。 7、华东院的老总高见呀,我看到过有很多这样的设计了,起初我不明白他们为什么不用静压箱,其实现在说的静压箱只是铁皮箱,并不是贴有消音棉的静压箱,造价上可能不太紧要,如果真的是贴消音棉的静压箱,那就要好好考虑一下成本了,另外的消声器要注意流速的控制,大部分的都是控制在8m/s以内,只

吸收塔的设计和选型

XXXXXXXXXXXXXXXXXXXXX-环境工程部 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX. Environmental Engineering Department 脱硫塔设计及选型指导手册 Guide Handbook for design and selection of desulphurizing tower 签署: 日期:

目录 1.1吸收塔的设计 (3) 1.1.1 吸收塔的直径和喷淋塔高度设计 (3) 1.1.2吸收塔喷淋系统的设计(喷嘴的选择配置) (13) 1.1.3 吸收塔底部搅拌器及相关配置 (16) 1.1.4 吸收塔材料的选择 (17) 1.1.5吸收塔壁厚的计算(包括计算壁厚和最小壁厚) (17) 1.1.6吸收塔封头选择计算 (19) 1.1.7吸收塔裙式支座选择计算 (21) 1.1.8吸收塔配套结构的选择 (21) 1.2吸收塔最终参数的确定 (22) 1.2.1设计条件 (22) 1.2.2吸收塔尺寸的确定 (22) 1.2.3吸收塔的强度和稳定性校核 (24)

1.1吸收塔的设计 吸收塔是脱硫装置的核心,是利用石灰石和亚硫酸钙来脱去烟气中二氧化硫气体的主要设备,要保证较高的脱硫效率,必须对吸收塔系统进行详细的计算,包括吸收塔的尺寸设计,塔内喷嘴的配置,吸收塔底部搅拌装置的形式的选择、吸收塔材料的选择以及配套结构的选择(包括法兰、人孔等)。 1.1.1 吸收塔的直径和喷淋塔高度设计 本脱硫工艺选用的吸收塔为喷淋塔,喷淋塔的尺寸设计包括喷淋塔的高度设计、喷淋塔的直径设计 1.1.1.1 喷淋塔的高度设计 喷淋塔的高度由三大部分组成,即喷淋塔吸收区高度、喷淋塔浆液池高度和喷淋塔除雾区高度。但是吸收区高度是最主要的,计算过程也最复杂,次部分高度设计需将许多的影响因素考虑在内。而计算喷淋塔吸收区高度主要有两种方法: (1) 喷淋塔吸收区高度设计(一) 达到一定的吸收目标需要一定的塔高。通常烟气中的二氧化硫浓度比较低。吸收区高度的理论计算式为 h=H0×NTU (1) 其中:H0为传质单元高度:H 0=G m /(k y a)(k a 为污染物气相摩尔差推动力的总传质系数,a 为塔内单位体积中有效的传质面积。) NTU 为传质单元数,近似数值为NTU=(y 1-y 2)/ △y m ,即气相总的浓度变化除于平均推动力△y m =(△y 1-△y 2)/ln(△y 1/△y 2)(NTU 是表征吸收困难程度的量,NTU 越大,则达到吸收目标所需要的塔高随之增大。 根据(1)可知:h=H0×NTU= )ln() ()(*** 2 2* 11* 22*112 121y y y y y y y y y y a k G y y y a k G y m m y m ------=?- a k y =a k Y =9.81×1025.07.04W G -]4[

燃煤电厂烟气高效除尘技术的选择及应用

燃煤电厂烟气高效除尘技术的选择及应用 发表时间:2018-07-05T15:20:25.287Z 来源:《电力设备》2018年第6期作者:王硕 [导读] 摘要:在当下供电系统当中,通过燃煤供电是供电的主要方式,但是在燃煤供电对社会提供用电便利的同时,也制造出了对环境污染的有害气体,如一氧化硫、二氧化碳等。 (国电南京自动化股份有限公司 210032) 摘要:在当下供电系统当中,通过燃煤供电是供电的主要方式,但是在燃煤供电对社会提供用电便利的同时,也制造出了对环境污染的有害气体,如一氧化硫、二氧化碳等。本文通过对当前燃煤电厂所排放的烟气组成和造成的危害进行研究分析,进而对烟气排放治理提出相关策略,并对燃煤电厂烟气高效除尘技术阐述。 关键词:燃煤电厂;除尘技术;选择;应用 现阶段,随着社会经济的不断进步和发展,工业化发展的速度也在不断的加快,这直接导致环境污染的程度越来越严重。雾霾天气的天数增加,对人们的生活和工作产生了严重的影响。因此国家也越来越重视和关注环境污染问题。我国针对空气污染问题,使用了很多的方法和技术对空气的质量进行保护。燃煤电厂烟气高效除尘技术在我国环境污染治理的过程中发挥着重要的作用。它不但在发展的过程中能够在最大程度上对环境进行保护,同时它可以促进我国国民经济的进步和发展。 1 烟气排放组成及危害影响 煤炭经历上亿年物理、化学变化而逐渐形成,包含碳、氮、硫和氧等多种元素,通过燃烧会产生大量烟气,其主要成分包括二氧化碳、一氧化碳、二氧化硫、二氧化氮以及许多杂质和矿物质微粒。当前部分燃煤电厂,已经针对自身的生产情况对其环保策略开展研究工作,比如说使用发电专用特种锅炉、将可吸收碳元素、硫元素的物质添加至燃烧的煤炭原料中等方法,以起到促进降低排放烟气中有害物质的含量。然而,相比其他工厂,燃煤电力工厂是依靠蒸汽发电作为动力来源,因此额定的蒸发量要相比其他工厂大,继而产生的有害气体量也巨大。 煤炭燃烧后产生的烟气中的有害微小颗粒,进入到大气后,造成大气质量下降,导致工农业生产的严重损失同时,还会对社会人群带来呼吸道疾病的隐患、困扰。在煤炭燃烧排放烟气中的二氧化碳、二氧化硫等物质会与大气中所含的水蒸气结合,致使雨水的pH值降低,继而形成酸雨。另外,燃煤电厂排放烟气中的微小颗粒,是促进空气中雾霾形成的重要原因。酸雨会导致地下水变质、土壤变质,影响农业发展的雾霾中包含20多种类的有毒、有害物质,对人体的健康危害极大,进入人体支气管,会导致肺部炎症,呼吸道、脑血管等多种病症。 2 燃煤电厂烟气的主要除尘技术 2.1 机械式除尘 机械式除尘该方式原理是烟气被机械设备带动旋转,在离心力作用下,将烟气之中的大颗粒烟尘向边缘偏离,该设备对漂浮在烟气中的尘埃物有有效吸附的作用。但是,其弊端在于直径小于10um的微小颗粒所受到的离心力小,机械除尘设备无法对其进行有效吸附。所以,其只能应用于初级除尘的领域。 2.2 布袋除尘 布袋除尘的原理是将燃烧后所产生的烟尘,通过无纺布、针刺毡等原料制作成的布袋进行过滤。但是,虽然布袋过滤除尘的效率极高,却也有问题存在,那就是烟气的硫、高温以及湿度都对布料性能提出巨大的考验,致使布袋除尘在应用上会有一定的限制。 2.3 联合除尘机制 静电除尘器和布袋除尘器本身都有一定的局限性和优缺点,因此很多专家把袋式除尘器和静电除尘器进行联合使用,以达到更好的应用效果。联合使用多种除尘系统的除尘机构将之有机结合,从而结合不同过滤器的优点,避免各种除尘系统的缺点,使整个联合除尘机构形成有效的补充形式。这种联合除尘机理的除尘效果和广泛的应用范围值得称道,但目前联合除尘机理正属于高效除尘技术的尖端研究方向。 2.4 电除雾器 目前,国内很多电厂都已经将电除雾器处理废弃的方式引入日常废弃处理工作中,该方法具有拖出效率高、能耗水品很低、设备寿命长、施工周期较短、成本低的多项有点,是发电企业十分理想的废弃处理手段。电除雾器的工作原理为通过静电对滞留高压发生装置进行控制,向除雾装置中将交流电转换成的直流电进行输送,进而在雾酸捕集板和电晕线之间产生强大电场,将空气分子电离,瞬间产生大量的正负离子以及电子,在电场力的作用下,电子、正负离子定向运动,构成媒介对酸雾进行捕集,令酸雾微粒荷电,使其在电场力作用下,向阳极板运动。最后,荷电将电子在极板上释放,酸雾被聚集,重力作用使其下流至储酸槽中,进而达到净化目的。 3 现行燃煤电厂烟气的高效除尘技术的选择和应用 除尘设备虽然能缓解排烟治理压力、以及自然的雾霾、酸雨现象,却无法从根本治理污染。因此,在保证经济可持续发展的前提下,应推动除尘技术的创新,实施技术创新的驱动战略,燃煤电厂须积极跟上国际治理烟气技术形式,不断将新技术、新设备引进到生产环境中,同时要注意发电设备的更新换代,有计划地推进环保。 3.1 脱硫技术在燃煤电厂烟气的高效除尘技术中的应用方法 3.1.1 炉内喷钙加尾部增湿活化脱硫工艺 炉内喷钙加尾部增湿活化脱硫工艺,主要使用石灰石粉作为吸收剂,在气力的作用下,将石灰石粉喷入炉膛850~1150℃温度区,在热力的作用下,石灰石粉分解为二氧化碳和氧化钙,氧化钙和烟气中的二氧化硫会产生反应,从而形成亚硫酸钙。因为在气固两相之间进行反应,在传质过程的作用下,反应速度缓慢,吸收剂的利用率也低。在尾部增湿活化反应过程中,增湿水以雾的形状喷进,和没有反应的氧化钙共同反应,形成Ca(OH)2,Ca(OH)2和烟气中的二氧化硫共同作用,再次对二氧化硫进行脱除。如果Ca/S大于等于2.5,则系统脱硫率在65%~80%之间。 3.1.2 吸收剂喷射同时脱硫脱硝技术 炉膛石灰(石)/尿素喷射工艺,主要是结合炉膛喷钙和选择非催化还原(SNCR),以此达到同步脱除烟气中的二氧化硫和氮氧化物的目的。由尿素溶液和各种钙基构成喷射浆液,其总含固量是30%,pH值在5~9之间,相比较

消音器计算说明书

消音器计算说明书 位号:HX-6465计算书 一、以知数据 以知设计参数 名称流量(kg/hr)温度(℃)压力(kg/cm2g) 蒸汽消声器41371170.1 以知声频率带功率级 二、设计计算结果 1、根据声率级表格数据可知;该噪音源八个倍频带总声压级为90dB(A)。根据相关环保卫士标准,我们需要将消声器后A声级降到85dB(A)以下。所需消音量如下: △LA=90-85=5dB(A);及消声器最低消音量不得小于5dB(A)。消声片长度我们设计为L=1.0m; 根据△LAo=ψ×a o×(P/S)×L △LAo=1.2×0.8×(1.33/0.085)×1=18.4dB(A)>5dB(A)。 消声后:△Lo=90-18.4=71.6dB(A) 故消音量满足设计要求。 2、消声器外筒钢板采用5mm厚的钢板;根据质量定理可以计算出隔音量为28dB(A);28dB(A)>5dB(A)满足消声器设计要求。 3、消声器上限频率:消声器通道宽度我们设计为0.15m,经计算消声器上限截止频率为3594H Z。倍频带为4000~8000的声功率为80dB(A)<85dB(A);故消声器宽度符合设计要求。 4、消声器下限频率:吸声片宽度我们设计为0.1m,经计算消声器下限截止频

率为78H Z。计算发现消声器对频率低于78H Z倍频带消音效果稍差;但是我们可以通过提高消声器的整体消音量(18.4dB(A))来满足低频消音量的要求。 5、气体流速对消声量影响:消声器总流通面积为0.17m2,计算流速为10.8m/s。 △Lo"=△Lo(1+M)-2 △Lo"=71.6(1+0..032)-2=72.8dB(A)。△Lo"<85dB(A) 故消声器满足设计要求。 位号:HX-6402计算书 一、以知数据 以知设计参数 名称流量(kg/hr)温度(℃)压力(kg/cm2g) 蒸汽消声器63406229.60.5 以知声频率带功率级 二、设计计算结果 1、根据声率级表格数据可知;该噪音源八个倍频带总声压级为90dB(A)。根据相关环保卫士标准,我们需要将消声器后A声级降到85dB(A)以下。所需消音量如下: △LA=90-85=5dB(A);及消声器最低消音量不得小于5dB(A)。消声片长度我们设计为L=1.3m; 根据△LAo=ψ×a o×(P/S)×L △LAo=1.2×0.8×(9.47/0.66)×1.3=17.9dB(A)>5dB(A)。 消声后:△Lo=90-17.9=72.1dB(A)

吸收塔的设计和选型

烟气脱硫工艺主要设备吸收塔设计和选型 吸收塔的设计 吸收塔是脱硫装置的核心,是利用石灰石和亚硫酸钙来脱去烟气中二氧化硫气体的主要设备,要保证较高的脱硫效率,必须对吸收塔系统进行详细的计算,包括吸收塔的尺寸设计,塔内喷嘴的配置,吸收塔底部搅拌装置的形式的选择、吸收塔材料的选择以及配套结构的选择(包括法兰、人孔等)。 4.1.1 吸收塔的直径和喷淋塔高度设计 本脱硫工艺选用的吸收塔为喷淋塔,喷淋塔的尺寸设计包括喷淋塔的高度设计、喷淋塔的直径设计 4.1.1.1 喷淋塔的高度设计喷淋塔的高度由三大部分组成,即喷淋塔吸收区高度、喷淋塔浆液池高度和喷淋塔除雾区高度。但是吸收区高度是最主要的,计算过程也最复杂,次部分高度设计需将许多的影响因素考虑在内。而计算喷淋塔吸收区高度主要有两种方法: (1)喷淋塔吸收区高度设计(一) 达到一定的吸收目标需要一定的塔高。通常烟气中的二氧化硫浓度比较低。吸收区高度的理论计算式为 h=H0×NTU (1) 其中:H0为传质单元高度:H 0=G m /(k y a)(k a 为污染物气相摩尔差推动力的总 传质系数,a为塔内单位体积中有效的传质面积。) NTU为传质单元数,近似数值为NTU=(y 1-y 2 )/ △y m ,即气相总的浓度 变化除于平均推动力△y m =(△y 1 -△y 2 )/ln(△y 1 /△y 2 )(NTU是表征吸收困难程度 的量,NTU越大,则达到吸收目标所需要的塔高随之增大。

根据(1)可知:h=H0×NTU= )ln() ()(*** 2 2* 11* 22*112 121y y y y y y y y y y a k G y y y a k G y m m y m ------=?- a k y =a k Y =×1025.07.04W G -]4[ 82 .0W a k L ?=] 4[ (2) 其中:y 1,y 2为脱硫塔内烟气进塔出塔气体中SO 2组分的摩尔比,kmol(A)/kmol(B) *1y ,*2y 为与喷淋塔进塔和出塔液体平衡的气相浓度,kmol(A)/kmol(B) k y a 为气相总体积吸收系数,kmol/(m 3.h ﹒kp a ) x 2,x 1为喷淋塔石灰石浆液进出塔时的SO 2组分摩尔比,kmol(A)/kmol(B) G 气相空塔质量流速,kg/(m 2﹒h) W 液相空塔质量流速,kg/(m 2﹒h) y 1×=mx 1, y 2×=mx 2 (m 为相平衡常数,或称分配系数,无量纲) k Y a 为气体膜体积吸收系数,kg/(m 2﹒h ﹒kPa) k L a 为液体膜体积吸收系数,kg/(m 2﹒h ﹒kmol/m 3) 式(2)中?为常数,其数值根据表2[4] 表3 温度与?值的关系 采用吸收有关知识来进行吸收区高度计算是比较传统的高度计算方法,虽然计算步骤简单明了,但是由于石灰石浆液在有 喷淋塔自上而下的流动过程中由于石灰石浓度的减少和亚硫酸钙浓度的不断增加,石灰石浆液的吸收传质系数也在不断变化,如果要算出具体的瞬间数值是不可能的,因此采用这种方法计算难以得到比较精确的数值。

计量泵的选型参数

计量泵的选型参数 恰当地选择计量泵都需要哪些信息? 1. 被计量液体的流量。 2. 被计量液体的主要特性,例如化学腐蚀性、黏度和比重等。 3. 系统的背压。 4. 合适的吸升高度。 5. 需要的其他选项,如模拟量控制、脉冲量控制、流量监视和定时器。 电磁驱动计量泵有哪些主要优势? 电磁驱动计量泵只有一个运动部件—电枢轴。通常来讲,运动部件越少则计量泵工作越可靠。计量泵非常适合于低流量、低压力工作场合,并且在供电电压波动时有良好的补偿作用。 与固定频率、改变冲程长度的计量泵相比较,固定冲程长度、改变频率的计量泵有哪些优势? 通过校正,每一个冲程的投加量是已知的。因此总的投加量可以通过计算得出(投加量=每冲程投加量*频率)。总投加量与频率成线性关系(50 % 频率 = 50 % 投加量) 。通过外部的脉冲或模拟量控制,投加量可以在一秒钟之内从最小调到最大。另外它比电机驱动的冲程长度调节成本要低的多。 如何使用计量泵的性能曲线图? 1. 找到与所选用的计量泵相应的性能曲线图。 2. 在下面的图表中标示出当前的背压。 3. 确定修正因数,取以bar为单位的背压值,向上延伸至曲线,在交叉点垂直向左读取修正因数值。 4. 用需要的投加量值除以修正因数值,得出以 ml/min.或 L/h为单位的值。 5. 把计算结果放在投加量刻度的中间。 6. 当把这个值放在投加量刻度上时,可以使用一把直尺,查找出冲程长度设定和冲程频率设定。

计量泵的基本工作原理 众所周知,计量泵主要由动力驱动、流体输送和调节控制三部分组成。动力驱动装置经由机械联杆系统带动流体输送隔膜实现往复运动: 隔膜(活塞)于冲程的前半周将被输送流体吸入并于后半周将流体排出泵头;所以,改变冲程的往复运动频率或每一次往复运动的冲程长度即可达至调节流体输送量之目的。精密的加工精度保证了每次泵出量进而实现被输送介质的精密计量。 因其动力驱动和流体输送方式的不同,计量泵可以大致划分成柱塞式和隔膜式两大种类。 1、柱塞式计量泵 主要有普通有阀泵和无阀泵两种。柱塞式计量泵因其结构简单和耐高温高压等优点而被广泛应用于石油化工领域。针对高粘度介质在高压力工况下普通柱塞泵的不足,一种无阀旋转柱塞式计量泵受到愈来愈多的重视,被广泛应用于糖浆、巧克力和石油添加剂等高粘度介质的计量添加。因被计量介质和泵内润滑剂之间无法实现完全隔离这一结构性缺点,柱塞式计量泵在高防污染要求流体计量应用中受到诸多限制。 2、隔膜式计量泵 顾名思义,隔膜式计量泵利用特殊设计加工的柔性隔膜取代活塞,在驱动机构作用下实现往复运动,完成吸入-排出过程。由于隔膜的隔离作用,在结构上真正实现了被计量流体与驱动润滑机构之间的隔离。高科技的结构设计和新型材料的选用已经大大提高了隔膜的使用寿命,加上复合材料优异的耐腐蚀特性,隔膜式计量泵目前已经成为流体计量应用中的主力泵型。在隔膜式计量泵家族成员里,液力驱动式隔膜泵由于采用了油均匀地驱动隔膜,克服了机械直接驱动方式下泵隔膜受力过分集中的缺点,提升了隔膜寿命和工作压力上限。为了克服单隔膜式计量泵可能出现的因隔膜破损而造成的工作故障,有的计量泵配备了隔膜破损,实现隔膜破裂时自动连锁保护;具有双隔膜结构泵头的计量进一步提高了其安全性,适合对安全保护特别敏感的应用场合。 作为隔膜式计量泵的一种,电磁驱动式计量泵以电磁铁产生脉动驱动力,省却了电机和变速机构,使得系统小巧紧凑,是小量程低压计量泵的重要分支。 计量泵配件的基本知识

计量泵脉动阻尼器与背压阀

计量泵脉冲阻尼器与背压阀 1 脉冲阻尼器 ⑴概述 脉动阻尼器也叫均流器或缓冲器,是消除管路脉动的常用元件,是计量泵必须配备的附件。脉动阻尼器能够平滑由柱塞泵、隔膜泵等容积泵引起的管路脉动和系统的水锤现象。用于往复式计量泵的投加系统中,以吸收泵产生的脉动峰值。脉动阻尼器能有效改善泵的工作性能,并可使用较小口径的管路。安装适当的脉动阻尼器,能延长往复式计量泵及系统设备的寿命,减少系统的造价。 ⑵主要功能 ①减小除去水锤对系统的危害; ②减小流速波动的峰值; ③保护管路、弯头、接头不受压力波动的冲击; ④为计量泵创造良好的工作环境并改善泵的工作性能; ⑤允许系统使用更小的管径,降低成本; ⑥和背压阀等配合使用可以使管路的压力波动接近为零; ⑦降低系统的能耗。 ⑶工作原理 脉动阻尼器的工作原理是遵循波义尔定律:即在恒定温度下一定量的气体的绝对压力与体积成反比:P1×V1=P2×V2。通过改变气体的体积可以平滑管路脉动,对于流速有正弦曲线特性的系统,波峰时,气室体积变小,脉动阻尼器吸收多余的流量的液体,波谷时,气室体 积变大,释放存储的液体,从而达到平滑脉动的效果。 膜片式脉动阻尼器内装有弹性隔膜,参见右图。隔膜将上部内 腔中的压缩气体和下部外腔中的被输送流体隔开,通过气室容积的 变化平滑管路脉动。当计量泵进入排出行程,液体被压入管路,使 得管路压力不断升高,当此压力超过脉动阻尼器的预充压力,隔膜 被物料顶着向上运动,部分液体将会进入阻尼器。直到隔膜两侧压 力平衡。 当泵排出行程结束,管路压力下降,阻尼器内气体腔中的压力 大于管路的压力,于是,隔膜被气体压回其原始的位置,并将物料 压回管路中。 在泵的每个循环冲程中,计量泵与脉动阻尼器产生两个脉冲 波,并进行叠加。脉动阻尼器起到了“消峰填谷”作用,从而有效 地消除了被输送流体的脉动。 ⑷脉动阻尼器的选用 膜片式脉动阻尼器的特点:可以预充气体,充气后平滑脉动的 效果比空气室式脉动阻尼器的效果好;气体不与管路液体接触,气体不会因溶解到液体里而损失;设有限位装置,防止膜片过度变形。 空气式脉动阻尼器的特点:容积大,耐高压,无需充气,竖直安装,结构简单,气体易流失,单位容积平滑脉动的效果不如膜片式脉动阻尼器。 脉动阻尼器的选型应根据液压管路的波动量来选定,对于容积泵,可根据冲程流量来选定。脉动阻尼器的容积越大平滑脉动效果越好。 考虑到气体压力会随温度的变化而变化。对液体温度超过50℃的系统,预充气体时应考虑预充压力随温度的变化。 膜片式脉动阻尼器最高使用压力为:塑料材质的为1.0MPa,金属材质的为2.5MPa,禁止超压使用,以免壳体破裂发生危险。最高使用温度75℃。最低使用温度5℃,最佳使用温度10~45℃。 一般情况下,脉动阻尼器充气压力控制在管路压力的50-80%间(管路压力小于1.5bar时,需加装背压阀),残余脉动控制在5%左右,脉动阻尼器体积V0选择为泵的每个脉冲排出体积Vb的15-20倍,此值越大效果越好。 某些场合,由于泵型较大,可选择多个阻尼器并联使用。 ⑸安装使用

相关文档
最新文档