《推理与证明》知识点
数学中的逻辑推理知识点总结

数学中的逻辑推理知识点总结一、引言逻辑推理是数学中重要的思维方式,它涉及到命题、推理规则和推理方法等方面知识。
本文将对数学中的逻辑推理知识点进行总结,帮助读者更好地理解和应用数学中的逻辑推理。
二、命题与逻辑符号命题是陈述性语句,可以判断为真或假。
在数学中,常用字母或字母组合表示命题,在逻辑推理过程中,可以使用逻辑符号对命题进行操作。
常见的逻辑符号包括:1. 否定符号(¬)表示取反;2. 合取符号(∧)表示逻辑与;3. 析取符号(∨)表示逻辑或;4. 条件符号(→)表示蕴含关系;5. 等价符号(↔)表示等价关系。
三、命题联结词及其真值表命题联结词是将多个命题组合成复合命题的符号。
常见的命题联结词有否定(¬)、合取(∧)、析取(∨)、条件(→)、双条件(↔)等。
通过构建命题联结词的真值表,可以确定复合命题的真假。
四、命题的等价关系等价关系是指两个命题在所有情况下都具有相同的真值。
在逻辑推理中,等价关系用双条件符号(↔)表示。
常见的等价关系有以下几种:1. 否定律:¬(p∧q)↔(¬p∨¬q)2. 交换律:(p∧q)↔(q∧p)3. 结合律:((p∧q)∧r)↔(p∧(q∧r))4. 分配律:(p∧(q∨r))↔((p∧q)∨(p∧r))5. 互补律:p∨¬p6. 同一律:p∨T↔T, p∧F↔F五、推理规则推理规则是指根据已知条件和逻辑关系进行推理得出新结论的规则。
在数学中常用的推理规则包括:1. 假言推理:如果p→q是真命题,且已知p为真,则可以推断q为真。
2. 拒取式:如果p→q是真命题,且已知q为假,则可以推断p为假。
3. 析取三段论:如果p∨q为真命题,且已知p为假,q为真,则可以推断q为真。
4. 假言三段论:如果p→q和q→r都是真命题,且已知p为真,则可以推断r为真。
六、数学证明中的逻辑推理逻辑推理在数学证明中起着重要的作用。
数学证明一般包括假设、证明主体和结论等部分,其中证明主体部分的推理过程需要严密的逻辑推理。
讲练测·三位一体春高中数学人教A版选修1-2教学课件:2-1-1《合情推理》

∴g(n)=(1+2+3+…+n)+1
=n(n+2 1)+1=n2+2n.+2
第二章 推理与证明
[点评] 在几何中随着点、线、面等元素的增加,探
究相应的线段、交点、区域部分等的增加情况常用归纳推 人 教
A
理解决,分析时递推关系的寻找是重点.
版
数
学
第二章 推理与证明
[例 3] 已知 O 是△ABC 内任意一点,连结 AO、BO、
去17等于4,所以应填入括号里的数是17+4=21.
第二章 推理与证明
(2)像(1)那样考虑难以发现规律,改变一下角
度,把各数改写为
23,1,32,94,287
人
可以发现:
教 A
版
数
1÷23=32,32÷1=32,
学
94÷32=32.287÷94=32. 后一个数是前一个数的32倍,按照这个规律,括号中的
版 数 学
∴OVEE+DOFF+OBGG+OCHH =VO-BCD+VO-VBC+VO-VCD+VO-VBD
VV-BCD
=VVVV--BBCCDD=1.
第二章 推理与证明
[点评] 在类比推理中,找出两类事物之间的相似性
或一致性,特别是由平面向空间类比中,注意研究空间和 人 教
A
平面的根本区别.
版
数
第二章 推理与证明
人 教 A 版 数 学
第二章 推理与证明
[例1] 下面各列数都依照一定规律排列,在括号里填
上适当的数:
(1)1,5,9,13,17,( );
人 教
A
版
(2)23,1,112,214,338,( );
数 学
(3)34,58,12,292,3112,( );
中学数学几何证明与推理方法

中学数学几何证明与推理方法数学几何是中学数学的重要内容之一,它不仅有助于提高学生的空间想象力和逻辑思维能力,还培养了学生分析问题、证明结论和推理推导的能力。
本文将介绍中学数学几何中常用的证明与推理方法,帮助学生更好地掌握这一知识点。
一、数学几何证明方法数学几何证明是通过已知条件和已经得到的结论,通过逻辑推理和推导方法,得出新的结论的过程。
在数学几何证明中,常见的证明方法包括:直接证明法、间接证明法、反证法、数学归纳法等。
1. 直接证明法直接证明法是最常见的证明方法之一,它通过列出已知条件和所要证明的结论,利用几何性质和定理进行逻辑推导,直接得出所要证明的结论。
例如,当要证明两个三角形全等时,可以通过已知的对应相等的边和角来进行推导,最终得到两个三角形的全部对应边和角都相等,从而证明了它们全等。
2. 间接证明法间接证明法是通过假设所要证明的结论不成立,然后推导出与已知条件矛盾的结论,从而得出所要证明的结论成立。
例如,要证明一个三角形是等腰三角形,可以假设该三角形不等腰,然后通过推导得到两边相等的结论,与已知条件矛盾,因此原假设不成立,得证。
3. 反证法反证法是通过假设所要证明的结论不成立,然后推导出与已知条件矛盾的结论,从而推翻了原来的假设,得出所要证明的结论成立。
与间接证明法相比,反证法更加直接和简洁。
例如,要证明勾股定理(直角三角形斜边平方等于两直角边平方和),可以假设定理不成立,然后推导出与已知条件矛盾的结论,得出结论成立。
4. 数学归纳法数学归纳法是一种证明自然数性质的有力方法。
它是通过证明当n取任意正整数时性质成立,再证明当n取n + 1时性质也成立,从而得出性质对所有正整数都成立的结论。
在几何证明中,数学归纳法常常用于证明递推关系式和图形的一般性质。
二、数学几何推理方法推理是数学几何中的重要思维方式,它通过观察、分析和推导,从已知条件得出新的结论。
在数学几何推理中,常见的推理方法包括:直观推理、转化推理、类比推理、逆向推理等。
人教A版高中数学选修1-2《二章 推理与证明 2.1 合情推理与演绎推理 2.1.2 演绎推理》优质课教案_18

2.1.2演绎推理教学设计整体设计教材分析《演绎推理》是高中数学中的基本思维过程,是根据一个或几个已知的判断来确定一个新的判断的思维过程,也是人们学习和生活中经常使用的思维方式,是正确进行逻辑推理必不可少的基础知识,是高考热点.演绎推理具有证明结论、整理和构建知识体系的作用,是公理体系中的基本推理方法.本节内容相对比较抽象,教学中应紧密结合已学过的生活实例和数学实例,让学生了解演绎推理的含义,并在上一节学习的基础上,了解合情推理与演绎推理之间的联系与差异,同时纠正推理过程中可能犯的典型错误,增强学生的好奇心,激发出潜在的创造力,使学生能正确应用合情推理和演绎推理去进行一些简单的推理,证明一些数学结论.课时划分1课时.教学目标1.知识与技能目标了解演绎推理的含义,了解合情推理与演绎推理之间的联系与差别,能正确地运用演绎推理,进行简单的推理.2.过程与方法目标了解和体会演绎推理在日常生活和学习中的应用,培养学生的逻辑推理能力,使学生学会观察,大胆猜想,敢于归纳、挖掘其中所包含的推理思路和思想;明确演绎推理的基本过程,提高学生的创新能力.3.情感、态度与价值观通过本节课的学习,体验推理源于实践,又应用于实践的思想,激发学生学习的兴趣,培养学生勇于探索、创新的个性品质.重点难点重点:正确地运用演绎推理进行简单的推理证明.难点:了解合情推理与演绎推理之间的联系与差别.教学过程引入新课观察与思考:新学期开始了,班里换了新的老师,他们是林老师、王老师和吴老师,三位老师分别教语文、数学、英语.已知:每个老师只教一门课;林老师上课全用汉语;英语老师是一个学生的哥哥;吴老师是一位女教师,她比数学老师活泼.问:三位老师各上什么课?活动设计:让学生带着浓厚的兴趣,先独立思考,然后小组交流.引导分析:启发学生把自己的思考过程借助于下列表格展示出来,从而解决问题.注意与学生交流.学情预测:开始学生的回答可能不全面、不准确,但在其他学生的不断补充、纠正下,会趋于准确.活动结果:林老师——数学,王老师——英语,吴老师——语文.设计意图本着“兴趣是最好的老师”的原则,结合生活中具体的实例,激发学生学习的兴趣,让学生体会“数学来源于生活”,创造和谐积极的学习气氛,体会演绎推理的现实意义.探究新知判断下列推理是合情推理吗?分析推理过程,明确它们的推理形式.(1)所有的金属都能导电,铜是金属,所以,铜能够导电.(2)一切奇数都不能被2整除,(2100+1)是奇数,所以,(2100+1)不能被2整除.(3)三角函数都是周期函数,tanα是三角函数,所以,tanα是周期函数.活动设计:学生口答,教师板书.学情预测:学生积极思考片刻,有学生举手回答且回答准确.活动结果:以上推理不是合情推理,它们的推理形式如下:(1)所有的金属都能导电,第一段铜是金属,第二段所以,铜能够导电.第三段(2)一切奇数都不能被2整除,第一段(2100+1)是奇数,第二段所以,(2100+1)不能被2整除.第三段(3)三角函数都是周期函数,第一段tanα是三角函数,第二段所以,tanα是周期函数.第三段提出问题:对于上面的三个推理,它们的推理形式有什么特点?活动设计:学生独立思考,并自由发言.学情预测:通过观察和分析,学生有足够的能力来解决上面所提问题.活动结果:上面的例子都有三段,是以一般的判断为前提,得出一些个别的、具体的判断:(1)所有的金属都能导电,大前提铜是金属,小前提所以,铜能够导电.结论(2)一切奇数都不能被2整除,大前提(2100+1)是奇数,小前提所以,(2100+1)不能被2整除.结论(3)三角函数都是周期函数,大前提tanα是三角函数,小前提所以,tanα是周期函数.结论教师:演绎推理的定义:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理.1.演绎推理是由一般到特殊的推理;2.“三段论”是演绎推理的一般模式,包括(1)大前提——已知的一般原理;(2)小前提——所研究的特殊情况;(3)结论——根据一般原理,对特殊情况做出的判断.设计意图通过对演绎推理概念的学习,体会以“三段论”模式来说明演绎推理的特点,从中概括出演绎推理的推理过程,对演绎推理是一般到特殊的推理有一个直观的认识,训练和培养学生的演绎推理能力.理解新知提出问题:在应用“三段论”进行推理的过程中,得到的推理结论一定正确吗?为什么?例如:(1)所有阔叶植物都是落叶的,葡萄树是阔叶植物,所以,葡萄树都是落叶的.(2)因为所有边长都相等的凸多边形是正多边形,而菱形是所有边长都相等的凸多边形,所以菱形是正多边形.(3)英雄难过美人关,我难过美人关,所以,我是英雄.活动设计:学生独立思考,先有学生自由发言,然后教师小结并形成新知.学情预测:学生们在积极思考,对(2)(3)两个小题的结论产生分歧,意见不统一.活动结果:(1)推理形式正确,前提正确,结论正确.(2)推理形式正确,大前提错误,结论错误.(3)推理形式错误(大、小前提没有连接起来),结论错误.教师:通过上面的学习,学生们对演绎推理和“三段论”模式都有了更深的了解,其中特别注意:(1)三段论的基本格式M—P(M是P)(大前提)S—M(S是M)(小前提)S—P(S是P)(结论)(2)三段论推理的依据,用集合的观点来理解:若集合M的所有元素都具有性质P,S 是M的一个子集,那么S中所有元素也都具有性质P.(3)在演绎推理中,只有前提和推理形式都正确,结论才是正确的.设计意图通过所举的例子,教师可以了解学生对演绎推理和三段论模式的理解程度,明确概念的内涵和外延,加深理解,及时更正学生在认识推理中产生的错误和偏差.提出问题:合情推理与演绎推理有什么区别与联系?活动设计:学生独立思考,先由学生自由发言,然后教师小结并形成新知.活动结果:设计意图通过比较合情推理与演绎推理的区别与联系,有助于学生更清晰地理解和掌握这两种推理方法,并能灵活应用.运用新知例1如图,在锐角三角形ABC 中,AD ⊥BC ,BE ⊥AC ,D ,E 是垂足,求证:AB 的中点M 到D ,E 的距离相等.思路分析:根据三段论的推理过程进行证明.证明:(1)因为有一个内角是直角的三角形是直角三角形,——大前提 在△ABC 中,AD ⊥BC ,即∠ADB =90°,——小前提 所以△ABD 是直角三角形.——结论(2)因为直角三角形斜边上的中线等于斜边的一半,——大前提 因为DM 是直角三角形ABD 斜边上的中线,——小前提 所以DM =12AB.——结论同理EM =12AB.所以DM =EM.点评:通过对上述问题的证明,挖掘其中包含的推理思路,使学生明确演绎推理的基本过程,突出演绎推理中的“大前提”“小前提”和“结论”.巩固练习由①正方形的对角线相等;②平行四边形的对角线相等;③正方形是平行四边形,根据“三段论”推理得出一个结论,则这个结论是( )A .正方形的对角线相等B .平行四边形的对角线相等C .正方形是平行四边形D .其他 答案:A例2证明函数f(x)=-x 2+2x 在(-∞,1)内是增函数.思路分析:证明本例所依据的大前提是:在某个区间(a ,b)内,如果f ′(x)>0,那么函数y =f(x)在这个区间内单调递增.小前提是f(x)=-x 2+2x 在(-∞,1)内有f ′(x)>0,这是证明本例的关键. 证明:f ′(x)=-2x +2,因为当x ∈(-∞,1)时,有1-x>0, 所以f ′(x)=-2x +2=2(1-x)>0,于是,根据“三段论”,可知f(x)=-x 2+2x 在(-∞,1)内是增函数.点评:通过对上述问题的证明,挖掘其中包含的推理思路,使学生明确演绎推理的基本过程,并加深对演绎推理的认识.教师:许多学生能写出证明过程,但不一定非常清楚证明的逻辑规则,因此在表述证明过程时往往显得杂乱无章,通过这两个例子的教学,应当使这种状况得到改善.变练演编(1)已知a ,b ,m 均为正实数,且b<a ,求证:b a <b +ma +m.(2)已知△ABC 的三条边分别为a ,b ,c ,则1+ <1+.思路分析:(1)中根据演绎推理的证明过程进行证明;(2)中不必证明,答案不唯一. 证明:(1)不等式两边乘以同一个正数,不等式仍成立,——大前提 b<a ,m>0,——小前提 所以mb<ma.——结论不等式两边加上同一个数,不等式仍成立,——大前提 mb<ma ,ab =ab ,——小前提所以ab +mb<ab +ma ,即b(a +m)<a(b +m).——结论 不等式两边除以同一个正数,不等式仍成立,——大前提 b(a +m)<a(b +m),a(a +m)>0,——小前提所以,b (a +m )a (a +m )<a (b +m )a (a +m ),即b a <b +m a +m .——结论(2)c 1+c <a +b 1+a +b (答案不唯一,例如a1+a <c +b 1+c +b). 点评:通过证明(1)中不等式成立,感知条件与结论的不唯一性,例如:已知a ,b ,m 均为正实数,若a<b ,求证:a b <a +mb +m.(2)中加强学生思维的灵活性、分析问题的深刻性.活动设计:学生讨论交流并回答问题,老师对不同的合理答案给予肯定,将所有发现的结论一一列举,并由学生予以评价.设计意图通过变练演编,使学生对演绎推理的认识不断加深,同时培养学生逻辑思维的严谨性. 达标检测1.下列表述正确的是( )①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理.A .①②③B .②③④C .②④⑤D .①③⑤2.有这样一段演绎推理“有些有理数是真分数,整数是有理数,则整数是真分数”,结论显然是错误的,是因为( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误3.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内的所有直线;已知直线平面α,直线平面α,直线b ∥平面α,则直线b ∥直线a ”,结论显然是错误的,这是因为( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误 答案:1.D 2.C 3.A课堂小结1.知识收获:(1)演绎推理的定义:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理.演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括大前提——已知的一般原理;小前提——所研究的特殊情况;结论——根据一般原理,对特殊情况做出的判断.2.方法收获:利用演绎推理判断进行证明的方法与步骤:①找出大前提;②找出小前提;③根据“三段论”推出结论.3.思维收获:培养和训练学生严谨缜密的逻辑思维.布置作业课本本节练习1、2、3.补充练习基础练习1.把“函数y=x2+x+1的图象是一条抛物线”恢复成三段论.2.下面说法正确的有()(1)演绎推理是由一般到特殊的推理;(2)演绎推理得到的结论一定是正确的;(3)演绎推理的一般模式是“三段论”形式;(4)演绎推理的结论的正误与大前提、小前提和推理形式有关.A.1个B.2个C.3个D.4个3.下列几种推理过程是演绎推理的是()A.5和22可以比较大小B.由平面三角形的性质,推测空间四面体的性质C.东升高中高二年级有15个班,1班有51人,2班有53人,3班有52人,由此推测各班都超过50人D.预测股票走势图4.已知△ABC,∠A=30°,∠B=60°,求证:a<b.证明:∵∠A=30°,∠B=60°,∴∠A<∠B,∴a<b,画线部分是演绎推理的()A.大前提B.小前提C.结论D.三段论5.用演绎推理法证明y=x是增函数时的大前提是______.答案:1.解:二次函数的图象是一条抛物线(大前提),函数y=x2+x+1是二次函数(小前提),所以,函数y=x2+x+1的图象是一条抛物线(结论).2.C 3.A 4.B 5.增函数的定义拓展练习6.S为△ABC所在平面外一点,SA⊥平面ABC,平面SAB⊥平面SBC.求证:AB⊥BC.证明:如图,作AE⊥SB于E.∵平面SAB⊥平面SBC,∴AE⊥平面SBC,∴AE⊥BC.又∵SA⊥平面ABC,∴SA⊥BC.∵SA∩AE=A,SA⊂平面SAB,AE⊂平面SAB,∴BC⊥平面SAB.∵AB⊂平面SAB,∴AB⊥BC.设计说明由于这节课概念性、理论性较强,一般的教学方式会使学生感到枯燥乏味,为此,激发学生的学习兴趣是上好本节课的关键.教学中始终要注意以学生为主,让学生在自我思考、相互交流中去总结概念“下定义”,去体会概念的本质属性.学生对于演绎推理和三段论的理解,需要经过一定时间的体会,先给出学生常见问题的解决步骤,结合以前所学的知识来解决问题,在教学中经常借助这些概念表达、阐述和分析问题.引导学生从日常生活中的推理问题出发,激发学生的学习兴趣,结合学生熟知的旧知识归纳新知识,同时在应用新知的过程中,将所学的知识条理化,使学生的认知结构更趋于合理.备课资料例1小王、小刘、小张参加了今年的高考,考完后在一起议论.小王说:“我肯定考上重点大学.”小刘说:“重点大学我是考不上了.”小张说:“要是不论重点不重点,我考上肯定没问题.”发榜结果表明,三人中考取重点大学、一般大学和没考上大学的各有一个,并且他们三个人的预言只有一个人是对的,另外两个人的预言都同事实恰好相反.可见() A.小王没考上,小刘考上一般大学,小张考上重点大学B.小王考上一般大学,小刘没考上,小张考上重点大学C.小王没考上,小刘考上重点大学,小张考上一般大学D.小王考上一般大学,小刘考上重点大学,小张没考上解析:根据推理知识得出结论.答案:C例2已知直线l、m,平面α、β,且l⊥α,m∥β,给出下列四个命题:(1)若α∥β,则l⊥m;(2)若l⊥m,则α∥β;(3)若α⊥β,则l∥m;(4)若l∥m,则α⊥β.其中正确命题的个数是()A.1 B.2C.3 D.4解析:根据演绎推理的定义,逐一判断结论的正误.由直线和平面、平面和平面平行和垂直的判定定理、性质定理,可知应选B.答案:B点评:以准确、完整地理解条件为基础,才能判断命题的正误.例3函数y=f(x)在(0,2)上是增函数,函数y=f(x+2)是偶函数,则f(1),f(2.5),f(3.5)的大小关系是______.解析:根据函数的性质进行判断.∵函数y=f(x)在(0,2)上是增函数,∴0<x+2<2,即-2<x<0.∴函数y=f(x+2)在(-2,0)上是增函数.又∵函数y=f(x+2)是偶函数,∴函数y=f(x+2)在(0,2)上是减函数.由图象可得f(2.5)>f(1)>f(3.5).故应填f(2.5)>f(1)>f(3.5).答案:f(2.5)>f(1)>f(3.5)点评:根据函数的基本性质,结合三段论的推理模式可得.例4已知lg2=m,计算lg0.8.分析:利用所学的推理知识解决问题.解:lga n=nlga(a>0),——大前提lg8=lg23,——小前提lg8=3lg2.——结论lg ab=lga-lgb(a>0,b>0),——大前提lg0.8=lg 810,——小前提所以lg0.8=lg8-1=3lg2-1=3m-1.——结论点评:找出三段论的大前提与小前提即可得到答案.设计者:李效三2018年5月22日星期二。
小学数学逻辑推理知识点整理

小学数学逻辑推理知识点整理数学是一门理性思维的学科,其中的逻辑推理是数学思维的重要组成部分。
逻辑推理能够培养学生的思维能力、观察力和分析能力,帮助他们理解和解决问题。
在小学数学教学中,逻辑推理也是不可或缺的一环。
下面,我将整理一些小学数学中常见的逻辑推理知识点。
1. 数字规律数字规律是小学数学中重要的逻辑推理知识点之一。
通过观察数字的变化规律,学生可以推理出下一个数字。
例如,给出一个数字序列:2,4,6,8,__,学生可以通过观察到每个数字都比前一个数字大2,因此下一个数字应该是10。
这种数字规律的训练可以帮助学生提高观察力和分析能力。
2. 图形推理图形推理是小学数学中常见的逻辑思维题型。
通过观察图形的形状、结构、大小等特点,学生可以推理出下一个图形。
例如,给出一系列图形:正方形,正方形,长方形,正方形,__,学生可以推理出下一个图形应该是正方形,因为这个序列在形状上有规律:正方形,正方形,长方形,正方形,正方形。
图形推理可以帮助学生培养空间思维和观察力。
3. 题意理解在小学数学中,题意理解是解题的重要环节。
学生需要通过阅读和理解题目描述,把握问题的核心内容。
理解题目的特点和要求可以帮助学生进行正确的逻辑推理。
例如,给出一个问题:小明家有8个苹果,他吃掉了3个,那么还剩下__个。
学生需要理解题目中给出的初始条件和要求,通过减法进行逻辑推理,得出答案为5。
题意理解是培养学生逻辑思维和解决问题能力的重要一环。
4. 条件判断条件判断是数学逻辑推理中非常常见的一种形式。
学生需要根据已知的条件推断出结果。
例如,给出一个问题:如果1只鸭子的体重是2千克,那么20只鸭子的体重是多少千克?学生需要根据已知条件(1只鸭子的体重是2千克)和问题的要求进行逻辑推理,得出结果是40千克。
条件判断可以培养学生的逻辑思维和分析能力。
5. 推理证明在小学数学中,推理证明是数学逻辑推理的高阶能力要求。
学生需要通过已知条件和推理过程,来得出结论。
深圳华胜实验学校选修1-2第三章《推理与证明》测试题(有答案解析)

一、选择题1.天干地支纪年法源于中国,包含十天干与十二地支,十天干即甲、乙、丙、丁、戊、己、庚、辛、壬、癸,十二地支即子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如说第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”……依此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”,“乙亥”,……依此类推.已知一个“甲子”为60年,即天干地支纪年法的一个周期,1949年为“己丑”年,那么到新中国成立80周年时,即2029年为( ) A .己申年B .己酉年C .庚酉年D .庚申年2.李雷、韩梅梅、张亮、刘静四人考上大学后,就读于法学、教育学、医学和管理学四个学科,就他们分别就读于哪个学科,同学们做了如下猜测: 同学甲猜,李雷就读于管理学,张亮就读于法学; 同学乙猜,韩梅梅就读于管理学,刘静就读于医学; 同学丙猜,李雷就读于管理学,张亮就读于教育学; 同学丁猜,韩梅梅就读于法学,刘静就读于教育学.结果恰有三位同学的猜测各对一半,只有一位同学全部猜对,那么李雷、韩梅梅、张亮、刘静四人分别就读的学科是( ) A .管理学、医学、法学、教育学 B .教育学、管理学、医学、法学 C .管理学、法学、教育学、医学D .管理学、教育学、医学、法学3.在数学兴趣课堂上,老师出了一道数学思考题,某小组的三人先独立思考完成,然后一起讨论.甲说:“我做错了!”乙对甲说:“你做对了!”丙说:“我也做错了!”老师看了他们三人的答案后说:“你们三人中有且只有一人做对了,有且只有一人说对了.”请问下列说法正确的是( ) A .丙做对了B .甲做对了C .乙说对了D .乙做对了4.如图中的三角形图案称为谢宾斯基三角形.在四个三角形图案中,着色的小三角形的个数依次构成数列{}n a 的前4项,则{}n a 的通项公式可以为( )A .21n a n =-B .21nn a =- C .3nn a =D .13-=n n a5.已知a ,b ,c ,R d ∈,且满足1a b +=,1c d +=,1ac bd +>,对于a ,b ,c ,d 四个数的判断,给出下列四个命题:①至少有一个数大于1;②至多有一个数大于1;③至少有一个数小于0;④至多有一个数小于0.其中真命题的是( ) A .①③ B .②④C .①④D .②③6.一位老师有两个推理能力很强的学生甲和乙,他告诉学生他手里拿着与以下扑克牌中的一张相同的牌:黑桃:3,5,Q ,K 红心:7,8,Q 梅花:3,8,J ,Q 方块:2,7,9老师只给甲同学说这张牌的数字(或字母),只给乙同学说这张牌的花色,接着老师让这两个同学猜这是张什么牌:甲同学说:我不知道这是张什么牌,乙同学说:我知道这是张什么牌. 甲同学说:现在我们知道了. 则这张牌是( ) A .梅花3B .方块7C .红心7D .黑桃Q7.明代朱载堉创造了音乐学上极为重要的“等程律”.在创造律制的过程中,他不仅给出了求解三项等比数列的等比中项的方法,还给出了求解四项等比数列的中间两项的方法.比如,若已知黄钟、大吕、太簇、夹钟四个音律值成等比数列,则有=⨯大吕黄钟太簇,()23=⨯大吕黄钟夹钟,()23=⨯太簇黄钟夹钟.据此,可得正项等比数列{}n a 中,k a =( )A .11n k n k n a a --+⋅B .11n k n k n a a --+⋅C .111n k k n n a a ---⋅D .111k n k n n a a ---⋅8.已知222233+=,333388+=,44441515+=,⋅⋅⋅,若66n nm m+=(m 、n 均为正实数),根据以上等式,可推测m 、n 的值,则m n +等于( )A .40B .41C .42D .439.在二维空间中,圆的一维测度(周长),二维测度(面积);在三维空间中,球的二维测度(表面积),三维测度(体积).应用合情推理,若在四维空间中,“特级球”的三维测度,则其四维测度为( ) A .B .C .D .10.已知正三角形ABC 的边长是a ,若D 是ABC 内任意一点,那么D 到三角形三边3.若把该结论推广到空间,则有:在棱长都等于a 的正四面体ABCD 中,若O 是正四面体内任意一点,那么O 到正四面体各面的距离之和等于( )A .33a B .63a C .69a D .39a 11.现有A B C D 、、、四位同学被问到是否去过甲,乙,丙三个教师办公室时,A 说:我去过的教师办公室比B 多,但没去过乙办公室;B 说:我没去过丙办公室;C 说:我和A B 、去过同一个教师办公室;D 说:我去过丙办公室,我还和B 去过同一个办公室.由此可判断B 去过的教师办公室为( ) A .甲 B .乙 C .丙 D .不能确定12.甲、乙、丙三位同学获得某项竞赛活动的前三名,但具体名次未知.3人作出如下预测:甲说:我不是第三名;乙说:我是第三名;丙说:我不是第一名.若甲、乙、丙3人的预测结果有且只有一个正确,由此判断获得第三名的是 A .甲B .乙C .丙D .无法预测二、填空题13.有甲、乙、丙、丁四位同学竞选班长,其中只有一位当选.有人走访了四位同学,甲说:“是乙或丙当选”,乙说:“甲、丙都未当选”,丙说:“我当选了”,丁说:“是乙当选了”,若四位同学的话只有两句是对的,则当选的同学是______.14.已知函数2()42(0)f x x x x =++≥,若1()()f x f x =,1()(())n n f x f f x +=,*n N ∈,则2020()f x 在[0,1]上的最大值为____________.15.从11,14(12),149123,14916(1234),=-=-+-+=++-+-=-+++⋅⋅⋅,概括出第n 个式子为___________. 16.把数列121n ⎧⎫⎨⎬-⎩⎭的所有数按照从大到小的原则写成如下数表:111351111791113111115172729⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅第k 行有12k -个数,第t 行的第s 个数(从左数起)记为(),A t s ,则()11,4A =________. 17.我国古代数学名著《九章算术》记载:“勾股各自乘,并之,为弦实”,用符号表示为a 2+b 2=c 2(a ,b ,c ∈N *),把a ,b ,c 叫做勾股数.下列给出几组勾股数:3,4,5;5,12,13;7,24,25;9,40,41,以此类推,可猜测第5组勾股数的第二个数是________.18.我国南宋数学家杨辉所著的《详解九章算术》一书中,用图①的数表列出了一些正整数在三角形中的一种几何排列,俗称“杨辉三角形”,该数表的规律是每行首尾数字均为1,从第三行开始,其余的数字是它“上方”左右两个数字之和.现将杨辉三角形中的奇数换成1,偶数换成0,得到图②所示的由数字0和1组成的三角形数表,由上往下数,记第n 行各数字的和为n S ,如123451,2,2,4,2,S S S S S =====⋯⋯,则33S =____________① ②19.甲、乙、丙三个同学同时做标号为A 、B 、C 的三个题,甲做对了两个题,乙做对了两个题,丙做对了两个题,则下面说法正确的是_____.(1)三个题都有人做对;(2)至少有一个题三个人都做对;(3)至少有两个题有两个人都做对.20.对于大于1的自然数m ,其三次幂可用奇数按一下方式进行“分裂”:3235,=+3337911,413151719,.=++=+++⋅⋅⋅对此,若3m 的“分裂数”中有一个是2017,则m=_____.三、解答题21.已知正数a ,b ,c ,求证:4a b +,9b c+,1c a +这三个数中,至少有一个不小于4.22.若0<<3a ,03b <<,03c <<,求证:()3a b -,()3b c -,()3c a -不可能同时大于94. 23.设a ,b ,c ,d 均为正数,且a b c d +=+,若ab cd >,证明: (1)2222a b c d +<+; (2<24.()1已知()f x =,[)x 0,∞∈+,如1x ,[)2x 0,∞∈+,且12x x ≠,求证:()()1212x x 1f x f x f 22+⎛⎫⎡⎤+< ⎪⎣⎦⎝⎭; ()2用数学归纳法证明:当*n N ∈时,2n 1n 232+++能被7整除.25.若10a >,11a ≠,12(1,2,)1nn na a n a +==+. (1)用反证法证明:1+≠n n a a ;(2)令112a =,写出2a ,3a ,4a ,5a 的值,观察并归纳出这个数列的通项公式n a ;并用数学归纳法证明你的结论正确.26.设n 个正数12,,,n a a a 满足*12(n a a a n N ≤≤≤∈且3)n ≥.(1)当3n =时,证明:233112123312a a a a a a a a a a a a ++++≥; (2)当4n =时,不等式2334124112343412a a a a a a a a a a a a a a a a ++++++≥也成立,请你将其推广到n *(n N ∈且3)n ≥个正数12,,,n a a a 的情形,归纳出一般性的结论并用数学归纳法证明.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由题意可得数列天干是以10为等差的等差数列,地支是以12为公差的等差数列,以1949年的天干和地支分别为首项,即可求出答案.【详解】解:天干是以10为公差构成的等差数列,地支是以12为公差的等差数列,从1949年到2029年经过80年,且1949年为“己丑”年,以1949年的天干和地支分别为首项,÷=,则2029的天干为己,则80108÷=余8,则2029的地支为酉,80126故选:B.【点睛】本题考查了学生合情推理的能力,涉及等差数列在实际生活中的应用,属于中档题.2.C解析:C【分析】根据只有一位同学全部猜对,逐项一一假设,利用合情推理求解.【详解】假设同学甲猜全正确,即李雷就读于管理学,张亮就读于法学;则同学乙猜,韩梅梅就读于管理学错误,故刘静就读于医学正确;同学丁猜,韩梅梅就读于法学错误,刘静就读于教育学正确;矛盾,假设错误;假设同学乙猜全正确,即韩梅梅就读于管理学,刘静就读于医学;则同学甲猜,李雷就读于管理学错误,张亮就读于法学正确;同学丙猜,李雷就读于管理学错误,张亮就读于教育学正确;矛盾,假设错误;假设同学丙猜全正确,即李雷就读于管理学,张亮就读于教育学;则同学乙猜,韩梅梅就读于管理学错误,刘静就读于医学正确;同学甲猜,李雷就读于管理学正确,张亮就读于法学错误;同学丁猜,韩梅梅就读于法学错误,刘静就读于教育学正确.假设同学丁猜全正确,即韩梅梅就读于法学,刘静就读于教育学.则同学甲猜,李雷就读于管理学正确,张亮就读于法学错误;同学乙猜,韩梅梅就读于管理学错误,刘静就读于医学正确;矛盾,假设错误;综上:李雷、韩梅梅、张亮、刘静四人分别就读的学科是管理学、法学、教育学、医学,. 故选:C 【点睛】本题主要考查合情推理的应用,还考查了逻辑推理的能力,属于中档题.3.A解析:A 【分析】根据题意分析,分别假设甲、乙、丙做对了,由此推出结论. 【详解】假设甲做对了,则乙和丙都做错了,乙和丙说的都对了,这不合题意; 假设乙做对了,则甲和丙都说对了,也不合题意; 假设丙做对了,则甲说对了,乙和丙都说错了,符合题意. 所以,说对的是甲,做对的是丙. 故选:A . 【点睛】本题考查了阅读理解能力以及逻辑思维能力的应用问题,是中档题.4.D解析:D 【分析】着色的小三角形个数构成数列{}n a 的前4项,分别得出,即可得出{}n a 的通项公式. 【详解】着色的小三角形个数构成数列{}n a 的前4项,分别为:11a =,23a =,23333a =⨯=,234333a =⨯=,因此{}n a 的通项公式可以是:13-=n n a . 故选:D . 【点睛】本题考查了等比数列的通项公式,考查了观察分析猜想归纳推理能力与计算能力,属于中档题.5.A解析:A 【分析】根据对a ,b ,c ,d 取特殊值,可得②,④不对,以及使用反证法,可得结果. 【详解】当2a c ==,1b d ==-时, 满足条件,故②,④为假命题; 假设,,,1a b c d ≤,由1a b +=,1c d +=,得0,,,1a b c d ≤≤,则1()()a b c d ac bd ad bc =++=+++, 由1ac bd +>,111ad bc >++≥所以矛盾, 故①为真命题,同理③为真命题. 故选:A 【点睛】本题主要考查反证法,正所谓“正难则反”,熟练掌握反证法的证明方法,属基础题.6.B解析:B 【分析】根据老师告诉甲牌的点数,告诉乙的是花色,结合甲乙对话进行推理判断即可. 【详解】解:甲不知道,说明通过数字不能判断出来,因此排除有单一数字的牌:黑桃5,K,梅花J ,方块2,9.而乙知道牌的颜色,如果是方片的话,即可断定是方片7, 故选:B 【点睛】本题主要考查合情推理的应用,结合甲乙了解的情况进行推理是解决本题的关键.考查学生的推理分析能力.7.C解析:C 【分析】根据题意可得三项等比数列的中项可由首项和末项表示,四项等比数列的第2、第3项均可由首项和末项表示,从而类比出正项等比数列{}n a 中的k a 可由首项1a 和末项n a 表示. 【详解】因为三项等比数列的中项可由首项和末项表示, 四项等比数列的第2、第3项均可由首项和末项表示, 所以正项等比数列{}n a 中的k a 可由首项1a 和末项n a 表示,因为11n n a a q -=,所以=q所以11=k k a a -⎛ ⎝1111=k n n a a a --⎛⎫ ⎪⎝⎭1111=n k k n n na a ----⋅=故选:C. 【点睛】本题以数学文化为背景,考查类比推理能力和逻辑推理能力,求解时要先读懂题目的文化背景,再利用等比数列的通项公式进行等价变形求解.8.B解析:B 【分析】根据前面几个等式归纳出一个关于k 的等式,再令6k =可得出m 和n 的值,由此可计算出m n +的值. 【详解】2222222232121+=+=--,2233333383131+=+=--,22444444154141+=+=--,由上可归纳出()222,11k k k k k k N k k *+=≥∈--, 当6k =时,则有2266666161+=--,26135m ∴=-=,6n =,因此,41m n +=,故选B. 【点睛】本题考查归纳推理,解题时要根据前几个等式或不等式的结构进行归纳,考查推理能力,属于中等题.9.B解析:B 【解析】 【分析】根据所给的示例及类比推理的规则得出,高维度的测度的导数是低一维的测度,从而得到,求出所求。
高中数学选修2-2知识点总结(最全版)
高中数学选修2-2知识点总结第一章、导数1.函数的平均变化率为=∆∆=∆∆xfx y x x f x x f x x x f x f ∆-∆+=--)()()()(111212 注1:其中x ∆是自变量的改变量,平均变化率 可正,可负,可零。
注2:函数的平均变化率可以看作是物体运动的平均速度。
2、导函数的概念:函数)(x f y =在0x x =处的瞬时变化率是xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或|'x x y =,即)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(lim lim 0000.3.函数的平均变化率的几何意义是割线的斜率; 函数的导数的几何意义是切线的斜率。
4导数的背景(1)切线的斜率;(2)瞬时速度;5、常见的函数导数 函数 导函数 (1)y c ='y =0 (2)n y x =()*n N ∈ 1'n y nx -= (3)x y a =()0,1a a >≠ 'ln x y a a =(4)x y e ='x y e =(5)log a y x =()0,1,0a a x >≠> 1'ln y x a =(6)ln y x = 1'y x=(7)sin y x = 'cos y x =(8)cos y x = 'sin y x =-6、常见的导数和定积分运算公式:若()f x ,()g x 均可导(可积),则有: 和差的导数运算[]'''()()()()f x g x f x g x ±=± 积的导数运算[]'''()()()()()()f x g x f x g x f x g x ⋅=±特别地:()()''Cf x Cf x =⎡⎤⎣⎦商的导数运算[]'''2()()()()()(()0)()()f x f x g x f x g x g x g x g x ⎡⎤-=≠⎢⎥⎣⎦ 特别地:()()21'()'g x g x g x ⎡⎤-=⎢⎥⎣⎦复合函数的导数x u x y y u '''=⋅微积分基本定理()baf x dx =⎰F(a)--F(b)(其中()()'F x f x =)和差的积分运算1212[()()]()()b bbaaaf x f x dx f x dx f x dx±=±⎰⎰⎰ 特别地:()()()bb aakf x dx k f x dx k =⎰⎰为常数积分的区间可加性()()()()bcbaacf x dx f x dx f x dx a c b =+<<⎰⎰⎰其中.用导数求函数单调区间的步骤: ①求函数f (x )的导数'()f x②令'()f x >0,解不等式,得x 的范围就是递增区间. ③令'()f x <0,解不等式,得x 的范围,就是递减区间; [注]:求单调区间之前一定要先看原函数的定义域。
高考数学压轴专题荆州备战高考《推理与证明》技巧及练习题附答案解析
数学高考《推理与证明》试题含答案一、选择题1.观察下列各式:2749=,37343=,472401=,…,则10097的末两位数字为( ) A .49 B .43C .07D .01【答案】C 【解析】 【分析】先观察前5个式子的末两位数的特点,寻找规律,结合周期性进行判断即可. 【详解】观察2749=,37343=,472401=,572401716807=⨯=,67168077117649=⨯=,…,可知末两位每4个式子一个循环,2749=到10097一共有1008个式子,且10084252÷=,则10097的末两位数字与57的末两位数字相同,为07. 故选:C. 【点睛】本题主要考查归纳推理的应用,根据条件寻找周期性是解决本题的关键.2.下面几种推理中是演绎推理的为( )A .由金、银、铜、铁可导电,猜想:金属都可导电B .猜想数列111122334⋯⋯⨯⨯⨯,,,的通项公式为1()(1)n a n N n n *=∈+ C .半径为r 的圆的面积2S r π=,则单位圆的面积S π=D .由平面直角坐标系中圆的方程为222()()x a y b r -+-=,推测空间直角坐标系中球的方程为2222()()()x a y b z c r -+-+-= 【答案】C 【解析】 【分析】根据合情推理与演绎推理的概念,得到A 是归纳推理,B 是归纳推理,C 是演绎推理,D 是类比推理,即可求解. 【详解】根据合情推理与演绎推理的概念,可得:对于A 中, 由金、银、铜、铁可导电,猜想:金属都可导电,属于归纳推理; 对于B 中, 猜想数列111122334⋯⋯⨯⨯⨯,,,的通项公式为1()(1)n a n N n n *=∈+,属于归纳推理,不是演绎推理;对于C 中,半径为r 的圆的面积2S r π=,则单位圆的面积S π=,属于演绎推理; 对于D 中, 由平面直角坐标系中圆的方程为222()()x a y b r -+-=,推测空间直角坐标系中球的方程为2222()()()x a y b z c r -+-+-=,属于类比推理,综上,可演绎推理的C 项,故选C . 【点睛】本题主要考查了合情推理与演绎推理的概念及判定,其中解答中熟记合情推理和演绎推理的概念,以及推理的规则是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.3.观察下列等式:332123+=,33321236++=,33332123410+++=,记()3333123f n n =+++⋅⋅⋅+.根据上述规律,若()225f n =,则正整数n 的值为( )A .8B .7C .6D .5【答案】D 【解析】 【分析】由规律得()()()22211234n n f n n +=+++⋅⋅⋅+=再解方程即可 【详解】由已知等式的规律可知()()()22211234n n f n n +=+++⋅⋅⋅+=,当()225f n =时,可得5n =. 故选:D 【点睛】本题考查归纳推理,熟记等差数列求和公式是关键,考查观察转化能力,是基础题4.观察下列各式:a+b=1.a 2+b 2=3,a 3+b 3=4 ,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( ) A .28 B .76C .123D .199【答案】C 【解析】 【分析】 【详解】 由题观察可发现,347,4711,71118+=+=+=, 111829,182947+=+=,294776,4776123+=+=,即1010123a b +=, 故选C.考点:观察和归纳推理能力.5.已知数列{}n a 满足132n n a -=⨯,*n N ∈,现将该数列按下图规律排成蛇形数阵(第i行有i 个数,*i N ∈),从左至右第i 行第j 个数记为(),i j a (*,i j N ∈且j i ≤),则()21,20a =( )A .20932⨯B .21032⨯C .21132⨯D .21232⨯【答案】C 【解析】 【分析】由题可观察得到第i 行有i 个数,当i 为奇数时,该行由右至左i 逐渐增大,()21,20a 表示第21行第20个数,即为第21行倒数第2个数,则先求得前20行的数的个数,再加2即为()21,20a 对应的数列的项,即可求解. 【详解】由题可知,第i 行有i 个数,当i 为奇数时,该行由右至左i 逐渐增大,()21,20a 表示第21行第20个数,即为第21行倒数第2个数,则前20行共有()1+2020=2102⨯个数,即第21行倒数第1个数为211a,所以()21121221,2032a a ==⨯,故选:C 【点睛】本题考查合情推理,考查归纳总结能力,考查等差数列求和公式的应用.6.在平面直角坐标系中,方程1x ya b+=表示在x 轴、y 轴上的截距分别为,a b 的直线,类比到空间直角坐标系中,在x 轴、y 轴、z 轴上的截距分别为(),,0a b c abc ≠的平面方程为( ) A .1x y z a b c++= B .1x y z ab bc ca++= C .1xy yz zx ab bc ca ++= D .1ax by cz ++=【答案】A 【解析】 【分析】平面上直线方程的截距式推广到空间中的平面方程的截距式是1x y za b c++=. 【详解】由类比推理得:若平面在x 轴、y 轴、z 轴上的截距分别为,,a b c ,则该平面的方程为:1x y za b c ++=,故选A. 【点睛】平面中的定理、公式等类比推理到空间中时,平面中的直线变为空间中的直线或平面,平面中的面积变为空间中的体积.类比推理得到的结论不一定正确,必要时要对得到的结论证明.如本题中,可令0,0x y ==,看z 是否为c .7.平面上有n 个圆,其中每两个都相交于两点,每三个都无公共点,它们将平面分成()f n 块区域,有(1)2f =,(2)4f =,(3)8f =,则() f n =( ).A .2nB .22n n -+C .2(1)(2)(3)n n n n ----D .325104n n n -+-【答案】B 【解析】 【分析】分析可得平面内有n 个圆时, 它们将平面分成()f n 块,再添加第1n +个圆时,因为每两个都相交于两点,每三个都无公共点,故会增加2n 个圆.再求和即可. 【详解】由题, 添加第1n +个圆时,因为每两个都相交于两点,每三个都无公共点,故会增加2n 个圆. 又(1)2f =,故()()12f n f n n +-=.即()()()()()()212,32 4...122f f f f f n f n n -=-=--=-. 累加可得()()()21222224 (2222)2n n n n f n n -+-=++++-=-++=.故选:B 【点睛】本题主要考查了根据数列的递推关系求解通项公式的方法,需要画图分析进行理解.或直接计算(4),(5) f f 等利用排除法判断.属于中档题.8.甲、乙、丙三人参加某公司的面试,最终只有一人能够被该公司录用,得到面试结果以后甲说:丙被录用了;乙说:甲被录用了;丙说:我没被录用.若这三人中仅有一人说法错误,则下列结论正确的是( ) A .丙被录用了 B .乙被录用了C .甲被录用了D .无法确定谁被录用了 【答案】C【解析】【分析】假设若甲被录用了,若乙被录用了,若丙被录用了,再逐一判断即可.【详解】解:若甲被录用了,则甲的说法错误,乙,丙的说法正确,满足题意,若乙被录用了,则甲、乙的说法错误,丙的说法正确,不符合题意,若丙被录用了,则乙、丙的说法错误,甲的说法正确,不符合题意,综上可得甲被录用了,故选:C.【点睛】本题考查了逻辑推理能力,属基础题.9.我们在求高次方程或超越方程的近似解时常用二分法求解,在实际生活中还有三分法.比如借助天平鉴别假币.有三枚形状大小完全相同的硬币,其中有一假币(质量较轻),把两枚硬币放在天平的两端,若天平平衡,则剩余一枚为假币,若天平不平衡,较轻的一端放的硬币为假币.现有 27 枚这样的硬币,其中有一枚是假币(质量较轻),如果只有一台天平,则一定能找到这枚假币所需要使用天平的最少次数为()A.2 B.3 C.4 D.5【答案】B【解析】【分析】根据提示三分法,考虑将硬币分为3组,然后将有问题的一组再分为3组,再将其中有问题的一组分为3,此时每组仅为1枚硬币,即可分析出哪一个是假币.【详解】第一步将27枚硬币分为三组,每组9枚,取两组分别放于天平左右两侧测量,若天平平衡,则假币在第三组中;若天平不平衡,假币在较轻的那一组中;第二步把较轻的9枚金币再分成三组,每组3枚,任取2组,分别放于天平左右两侧测量,若天平平衡,则假币在第三组,若天平不平衡则假币在较轻的一组;第三步再将假币所在的一组分成三组,每组1枚,取其中两组放于天平左右两侧测量若天平平衡,则假币是剩下的一个;若天平不平衡,则较轻的盘中所放的为假币.因此,一定能找到假币最少需使用3次天平.故选:B.【点睛】本题考查类比推理思想的应用,难度一般.处理该类问题的关键是找到题干中的提示信息,由此入手会方便很多.10.某游泳馆内的一个游泳池设有四个出水量不同的出水口a,b,c,d,当游泳池内装满水时,同时打开其中两个出水口,放完水所需时间如下表:则a ,b ,c ,d 四个出水口放水速度最快的是( ) A .d B .bC .cD .a【答案】A 【解析】 【分析】利用所给数据,计算出每个出水口分别的放水时间,比较大小即可. 【详解】由题易解得a ,b ,c ,d 放水时间分别为70,100,90,50,所以d 出水速度最快. 故选:A. 【点睛】本题考查了方程的思想,属于基础题.11.用数学归纳法证明“l+2+3+…+n 3=632n n +,n ∈N*”,则当n=k+1时,应当在n=k 时对应的等式左边加上( ) A .k 3+1 B .(k 3+1)+(k 3+2)+…+(k+1)3C .(k+1)3D .63(1)(1)2k k +++【答案】B 【解析】分析:当项数从n k =到1n k =+时,等式左边变化的项可利用两个式子相减得到。
高中数学《推理与证明》练习题(附答案解析)
高中数学《推理与证明》练习题(附答案解析)一、单选题1.记凸k 边形的内角和为f (k ),则凸k +1边形的内角和f (k +1)=f (k )+( ) A .2π B .πC .32π D .2π2.用数学归纳法证明()11111231n n n n ++++>∈+++N ,在验证1n =时,左边的代数式为( ) A .111234++ B .1123+C .12D .13.两个正方体1M 、2M ,棱长分别a 、b ,则对于正方体1M 、2M 有:棱长的比为a:b ,表面积的比为22:a b ,体积比为33:a b .我们把满足类似条件的几何体称为“相似体”,下列给出的几何体中是“相似体”的是( ) A .两个球B .两个长方体C .两个圆柱D .两个圆锥4.用数学归纳法证明1115 (1236)n n n +++≥++时,从n k =到1n k =+,不等式左边需添加的项是( ) A .111313233k k k +++++ B .11113132331k k k k ++-++++ C .131k + D .133k + 5.现有下列四个命题: 甲:直线l 经过点(0,1)-; 乙:直线l 经过点(1,0); 丙:直线l 经过点(1,1)-; 丁:直线l 的倾斜角为锐角.如果只有一个假命题,则假命题是( ) A .甲B .乙C .丙D .丁6.用数学归纳法证明242123()2n n n n N *+++++=∈,则当1n k =+时,等式左边应该在n k =的基础上加上( ) A .21k +B .2(1)k +C .2(2)k +D .222(1)(2)(1)k k k ++++++7.已知数列{}n a 中,11a =,()*111nn na a n a +=+∈+N ,用数学归纳法证明:1n n a a +<,在验证1n =成立时,不等式右边计算所得结果是( )A .12B .1C .32D .28.设平面内有k 条直线,其中任何两条不平行,任何三条不共点,设k 条直线的交点个数为()f k ,则()1f k +与()f k 的关系是( ) A .()()11f k f k k +=++ B .()()11f k f k k +=+- C .()()1f k f k k +=+D .()()12f k f k k +=++9.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为 ( ) A .甲、乙、丙 B .乙、甲、丙 C .丙、乙、甲D .甲、丙、乙10.在正整数数列中,由1开始依次按如下规则取它的项:第一次取1;第二次取2个连续偶数2,4;第三次取3个连续奇数5,7,9;第四次取4个连续偶数10,12,14,16;第五次取5个连续奇数17,19,21,23,25,按此规律取下去,得到一个子数列1,2,4,5,7,9,10,12,14,16,17,19…,则在这个子数列中第2 020个数是( ) A .3976 B .3974 C .3978D .3973二、填空题11.用数学归纳法证明111111111234212122n n n n n-+-++-=+++-++(n 为正整数)时,第一步应验证的等式是______.12.用数学归纳法证明命题“1+1123++…+1222n n +>(n ∈N +,且n ≥2)”时,第一步要证明的结论是________.13.用反证法证明“自然数a ,b ,c 中至多有一个偶数”时,假设应为_______.14.已知等差数列{}()*n a n N ∈中,若10100a =,则等式()121220192019,*n n a a a a a a n n N -+++=+++<∈恒成立;运用类比思想方法,可知在等比数列{}()*n b n N ∈中,若1001b =,则与此相应的等式_________________恒成立.三、解答题15.(1)请用文字语言叙述异面直线的判定定理;(2)把(1)中的定理写成“已知:...,求证:...”的形式,并用反证法证明.16.把空间图形“正四面体”与平面图形“正三角形”对应,类比“正三角形内一点到三边距离之和是一个定值”得到的相应结论为___________.17.下列各题在应用数学归纳法证明的过程中,有没有错误?如果有错误,错在哪里? (1)求证:当N*n ∈时,1=+n n .证明:假设当(*)n k k N =∈时,等式成立,即1k k =+. 则当1n k =+时,左边1(11)k k =+=++=右边. 所以当1n k =+时,等式也成立.由此得出,对任何N*n ∈,等式1=+n n 都成立. (2)用数学归纳法证明等差数列的前n 项和公式是1()2n n n a a S +=. 证明,∈当1n =时,左边=11S a =,右边1a =,等式成立. ∈假设当(*)n k k N =∈时,等式成立,即1()2k k k a a S +=.则当1n k =+时, 11231k k k S a a a x a a ++=+++++, 11121k k k k S a a a a a ++-=+++++.上面两式相加并除以2,可得 111(1)()2k k k a a S ++++=,即当1n k =+时,等式也成立.由∈∈可知,等差数列的前n 项和公式是1()2n n n a a S +=18.一本旧教材上有一个关于正整数n 的恒等式22211223(1)(1)12n n n n ⨯+⨯+++=+? 其中问号处由于年代久远,只能看出它是关于n 的二次三项式,具体的系数已经看不清楚了.请你猜想这个恒等式的形式,并用数学归纳法证明.参考答案与解析:1.B【分析】根据题意相当于增加了一个三角形,从而得出选项. 【详解】由凸k 边形变为凸k +1边形时, 增加了一个三角形,故f (k +1)=f (k )+π. 故选:B 2.A【分析】将1n =代入计算可得结果. 【详解】解:1111231n n n ++++++代入1n =为:111234++. 故选:A 3.A【分析】分别使用表面积公式、体积公式计算后即可发现结论. 【详解】设两个球的半径分别为R ,r . 这两个球的半径比为::R r , 表面积比为:22224:4:R r R r ππ=, 体积比为:333344::33R r R r ππ=, 所以,两个球是相似体. 故选:A . 4.B【分析】比较n k =、1n k =+时不等式左边代数式的差异后可得需添加的项,从而得到正确的选项. 【详解】当n k =时,所假设的不等式为1115 (1236)k k k +++≥++, 当1n k =+时,要证明的不等式为1111115 (2233132336)k k k k k k ++++++≥+++++, 故需添加的项为:11113132331k k k k ++-++++, 故选:B.【点睛】本题考查数学归纳法,应用数学归纳法时,要注意归纳证明的结论和归纳假设之间的联系,必要时和式的开端和结尾处需多写几项,便于寻找差异.本题属于基础题. 5.C【分析】设(0,1)A -,(1,0)B ,(1,1)C -,计算AB k 和BC k ,可判断三点共线,可知假命题是甲、乙、丙中的一个,再由斜率即可求解.【详解】设(0,1)A -,(1,0)B ,(1,1)C -则10101AB k --==-,101112BC k -==---,因为AB BC k k ≠,所以,,A B C 三点不共线,所以假命题必是甲、乙、丙中的一个,丁是真命题,即直线l 的斜率大于0, 而0AB k >,0BC k <,0AC k <,故丙是假命题. 故选:C. 6.D【分析】由n =k+1时,等式左端2123k =+++++222(1)(2)(1)k k k ++++++可得答案.【详解】当n =k 时,等式左端2123k =++++,当n =k+1时,等式左端2123k =+++++222(1)(2)(1)k k k ++++++,增加了项222(1)(2)(1)k k k ++++++.故选:D . 7.C【分析】将1n =代入即可得结果. 【详解】当1n =时,不等式右边为1211311122a a a =+=+=+. 故选:C. 8.C【分析】考虑当1n k =+时,任取其中1条直线,记为l ,由于直线l 与前面n 条直线任何两条不平行,任何三条不共点,所以要多出k 个交点,从而得出结果. 【详解】当1n k =+时,任取其中1条直线,记为l , 则除l 外的其他k 条直线的交点的个数为()f k , 因为已知任何两条直线不平行,所以直线l 必与平面内其他k 条直线都相交(有k 个交点); 又因为任何三条直线不过同一点, 所以上面的k 个交点两两不相同,且与平面内其它的()f k 个交点也两两不相同, 从而1n k =+时交点的个数是()()1f k k f k +=+, 故选:C 9.A【分析】利用逐一验证的方法进行求解.【详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A .【点睛】本题将数学知识与时政结合,主要考查推理判断能力.题目有一定难度,注重了基础知识、逻辑推理能力的考查. 10.A【分析】根据题意分析出第n 次取n 个数,前n 次共取(1)2n n +个数,且第n 次取的最后一个数为n 2,然后算出前63次共取了2016个数,从而能得到数列中第2 020个数是3976.【详解】由题意可得,奇数次取奇数个数,偶数次取偶数个数,前n 次共取了(1)1232n n n ++++⋯+=个数,且第n 次取的最后一个数为n 2, 当63n =时,()6363120162⨯+=, 即前63次共取了2016个数,第63次取的数都为奇数,并且最后一个数为2633969=, 即第2 016个数为3 969,所以当n =64时,依次取3 970,3 972,3 974,3 976,…,所以第2 020个数是3 976. 故选:A. 11.11122-= 【分析】根据数学归纳法的一般步骤,令1n =即可得出结论. 【详解】依题意,当1n =时, 1112121-=⨯⨯, 即11122-=, 故答案为:11122-=.12.1112212342++++> 【解析】根据数学归纳法的步骤可知第一步要证明2n =时的不等式成立.【详解】因为n ≥2,所以第一步要证的是当n=2时结论成立,即1+111222342+++>. 故答案为:1112212342++++> 13.a ,b ,c 中至少有两个偶数【分析】用反证法证明某命题是,应先假设命题的否定成立,所以找出命题的否定是解题的关键. 【详解】用反证法证明某命题是,应先假设命题的否定成立.因为“自然数a ,b ,c 中至多有一个偶数”的否定是:“a ,b ,c 中至少有两个偶数”,所以用反证法证明“自然数a ,b ,c 中至多有一个偶数”时,假设应为“a ,b ,c 中至少有两个偶数”, 故答案为:a ,b ,c 中至少有两个偶数. 14.()*12112199199,N n n n b b b b b b b n n --=<∈【解析】根据等差数列的性质有12019101020n n a a a +-+==,等比数列的性质有21199100=1n n b b b +-=,类比即可得到结论.【详解】已知等差数列{}()*n a n N ∈中,12122019n n a a a a a a -+++=+++ 1122019n n n a a a a a +-++=++++,12201820190n n n a a a a ++-∴++++=.10100a =,由等差数列的性质得, 1201922018101020n n n n a a a a a +-+-+=+===.等比数列{}()*n b n N ∈,且1001b =,有等比数列的性质得,211992198100===1n n n n b b b b b +-+-=.所以类比等式()*121220192019,n n a n a a a a a n N -+++=+++<∈,可得()*12112199199,N n n n b b b b b b b n n --=<∈. 故答案为:()*12112199199,N n n n b b b b b b b n n --=<∈.【点睛】本题考查等差数列和等比数列的性质,结合类比的规则,和类比积,加类比乘,得出结论,属于中档题.15.(1)见解析; (2)见解析.【分析】(1)将判定定理用文字表述即可;(2)根据(1)中的前提和结论可得定理的形式,利用反证法可证该结论.【详解】(1)异面直线的判定定理:平面外一点与平面内一点的连线与平面内不过该点直线是异面直线. (2)(1)中的定理写成“已知:...,求证:...”的形式如下: ,,,P Q l Q l ααα∉∈⊂∉,求证:,PQ l 为异面直线.证明:若,PQ l 不为异面直线,则,PQ l 共面于β,故,,Q l ββ∈⊂ 而Q l ∉,故,αβ为同一平面,而P β∈,故P α∈, 这与P α∉矛盾,故,PQ l 为异面直线.16.正四面体内一点到四个面的距离之和为定值 【分析】将边类比为面,从而得出正确结论.【详解】把空间图形“正四面体”与平面图形“正三角形”对应,类比“正三角形内一点到三边距离之和是一个定值”得到的相应结论为“正四面体内一点到四个面的距离之和为定值”. 故答案为:正四面体内一点到四个面的距离之和为定值 17.(1)有错误,理由见解析;(2)有错误,理由详见解析.【分析】根据数学归纳法分为两步,∈证明当1n =时,结论成立,∈假设当n k =时,结论成立,当1n k =+时,应用归纳假设,证明1n k =+时,命题也成立,根据数学归纳法的步骤判断过程的错误之处. 【详解】(1)有错误,错误在于没有证明第(1)步,即没有证明1n =时等式成立;(2)有错误,错误在于证明1n k =+时,没有应用n k =时的假设,而是应用了倒序相加法,这不符合数学归纳法的证明过程. 18.222211223(1)(1)(31110)12n n n n n n ⨯+⨯+++=+++,证明见解析 【分析】设222()1223(1)f n n n =⋅+⋅+⋅⋅⋅++即可求得f (1),f (2),f (3);假设存在常数a ,b ,c 使得2(1)()()12n n f n an bn c +=++对一切自然数n 都成立,由f (1),f (2),f (3)的值可求得a ,b ,c ;再用数学归纳法证明即可.【详解】设222()1223(1)f n n n =⋅+⋅+⋅⋅⋅++, f ∴(1)2124=⋅=,f (2)22122322=⋅+⋅=, f (3)22212233470⋅+⋅+⋅=; 假设存在常数a ,b ,c 使得2(1)()()12n n f n an bn c +=++对一切自然数n 都成立, 则f (1)12()412a b c ⨯=++=, 24a b c ∴++=∈,同理,由f (2)22=得4244a b c ++=∈, 由f (3)70=得9370a b c ++=∈ 联立∈∈∈,解得3a =,11b =,10c =.2(1)()(31110)12n n f n n n +∴=++. 证明:1︒当1n =时,显然成立;2︒假设n k =时,2(1)(1)(2)(35)()(31110)1212k k k k k k f k k k ++++=++=, 则1n k =+时,2(1)()(1)[(1)1]f k f k k k +=++++2(1)(2)(35)(1)[(1)1]12k k k k k k +++=++++2(1)(2)(31724)12k k k k ++=++ (1)(2)(3)(38)12k k k k ++++=(1)[(1)1][(2)1][3(1)5]12k k k k +++++++=,即1n k =+时,结论也成立.综合1︒,2︒知,存在常数3a =,11b =,10c =使得2(1)()(31110)12n n f n n n +=++对一切自然数n 都成立。
(必考题)高中数学选修1-2第三章《推理与证明》测试(包含答案解析)(1)
一、选择题1.类比推理是一种重要的推理方法.已知1l ,2l ,3l 是三条互不重合的直线,则下列在平面中关于1l ,2l ,3l 正确的结论类比到空间中仍然正确的是( )①若13//l l ,23//l l ,则12l l //;②若13l l ⊥,23l l ⊥,则12l l //;③若1l 与2l 相交,则3l 必与其中一条相交;④若12l l //,则3l 与1l ,2l 相交所成的同位角相等 A .①④B .②③C .①③D .②④2.我国古代数学名著《九章算术》中割圆术有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣,”其体现的是一种无限与有限的转化过程,比如在“…”.即代表无限次重复,但原式却是个定值x,这可以通过方程x =确定出来2x =,类似地不难得到12122+=++⋅⋅⋅( )A .122 B.12- C1 D.13.将正奇数数列1,3,5,7,9,⋅⋅⋅依次按两项、三项分组,得到分组序列如下:(1,3),(5,7,9),(11,13),(15,17,19),⋅⋅⋅,称(1,3)为第1组,(5,7,9)为第2组,依次类推,则原数列中的2021位于分组序列中( ) A .第404组B .第405组C .第808组D .第809组4.曾玉、刘云、李梦、张熙四人被北京大学、清华大学、武汉大学和复旦大学录取,他们分别被哪个学校录取,同学们做了如下的猜想 甲同学猜:曾玉被武汉大学录取,李梦被复旦大学录取 同学乙猜:刘云被清华大学录取,张熙被北京大学录取 同学丙猜:曾玉被复旦大学录取,李梦被清华大学录取 同学丁猜:刘云被清华大学录取,张熙被武汉大学录取结果,恰好有三位同学的猜想各对了一半,还有一位同学的猜想都不对 那么曾玉、刘云、李梦、张熙四人被录取的大小可能是( ) A .北京大学、清华大学、复旦大学、武汉大学 B .武汉大学、清华大学、复旦大学、北京大学 C .清华大学、北京大学、武汉大学 、复旦大学 D .武汉大学、复旦大学、清华大学、北京大学 5.下面几种推理中是演绎推理的为( )A .由金、银、铜、铁可导电,猜想:金属都可导电B .猜想数列111122334⋯⋯⨯⨯⨯,,,的通项公式为1()(1)n a n N n n *=∈+ C .半径为r 的圆的面积2S r π=,则单位圆的面积S π=D .由平面直角坐标系中圆的方程为222()()x a y b r -+-=,推测空间直角坐标系中球的方程为2222()()()x a y b z c r -+-+-= 6.下面几种推理中是演绎推理的为( )A .高二年级有12个班,1班51人,2班53人,3班52人,由此推测各班都超过50人B .猜想数列111,,122334⋯⋯⨯⨯⨯的通项公式为()1(1)n a n N n n +=∈+ C .半径为r 的圆的面积2S r π=,则单位圆的面积S π= D .由平面三角形的性质推测空间四面体的性质7.在数学兴趣课堂上,老师出了一道数学思考题,某小组的三人先独立思考完成,然后一起讨论.甲说:“我做错了!”乙对甲说:“你做对了!”丙说:“我也做错了!”老师看了他们三人的答案后说:“你们三人中有且只有一人做对了,有且只有一人说对了.”请问下列说法正确的是( ) A .乙做对了B .甲说对了C .乙说对了D .甲做对了8.在某次诗词大会决赛前,甲、乙、丙丁四位选手有机会问鼎冠军,,,A B C 三名诗词爱好者依据选手在之前比赛中的表现,结合自己的判断,对本场比赛的冠军进行了如下猜测:A 猜测冠军是乙或丁;B 猜测冠军一定不是丙和丁;C 猜测冠军是甲或乙。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《推理与证明》
一、推理
2.合情推理:
合情推理可分为归纳推理和类比推理两类:
(1)归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象具有这些特征的推理,或
者由个别事实概括出一般结论的推理。简言之,归纳推理是由部分到整体、由个别到一般的推理.
(2)类比推理:由两类对象具有某些类似特征和其中一类对象具有的某些已知特征,推出另一类对象也具
有这些特征的推理,简言之,类比推理是由特殊到特殊的推理.
3.演绎推理:
从一般性的原理出发,推出某个特殊情况下的结论的推理叫演绎推理,简言之,演绎推理是由一般到特殊
的推理。
重难点:利用合情推理的原理提出猜想,利用演绎推理的形式实行证明
题型1 用归纳推理发现规律
1、观察:715211;5.516.5211; 33193211;….对于任意正实数,ab,
试写出使211ab成立的一个条件能够是 ____.
点拨:前面所列式子的共同特征特征是被开方数之和为22,故22ba
2、蜜蜂被认为是自然界中最杰出的建筑师,
单个蜂
巢能够近似地看作是一个正六边形,如图为一组蜂
巢的截面图. 其中第一个图有1个蜂巢,第二个图
有7个蜂巢,第三个图有19个蜂巢,按此规律,以
()fn表示第n幅图的蜂巢总数.则(4)f=_____;()fn
=___________.
【解题思路】找出)1()(nfnf的关系式
推
理
与
证
明
推理 证明 合情推理 演绎推理 直接证明 数学归纳法 间接证明 比较法 类比推理
归纳推理
分析法
综合法
反证法
知识结构
[解析],1261)3(,61)2(,1)1(fff37181261)4(f
133)1(6181261)(2nnnnf
【名师指引】处理“递推型”问题的方法之一是寻找相邻两组数据的关系
题型2 用类比推理猜想新的命题
[例]已知正三角形内切圆的半径是高的13,把这个结论推广到空间正四面体,类似的结论是______.
【解题思路】从方法的类比入手
[解析]原问题的解法为等面积法,即hrarahS3121321,类比问题的解法应为等体积法,
hrSrShV4131431
即正四面体的内切球的半径是高41
【名师指引】(1)不但要注意形式的类比,还要注意方法的类比
(2)类比推理常见的情形有:平面向空间类比;低维向高维类比;等差数列与等比数列类比;实数集的性
质向复数集的性质类比;圆锥曲线间的类比等
二、直接证明与间接证明
三种证明方法:
综合法、分析法、反证法
反证法:它是一种间接的证明方法.用这种方法证明一个命题的一般步骤:
(1) 假设命题的结论不成立;
(2) 根据假设实行推理,直到推理中导出矛盾为止
(3) 断言假设不成立
(4) 肯定原命题的结论成立
重难点:在函数、三角变换、不等式、立体几何、解析几何等不同的数学问题中,选择好证明方法并使用
三种证明方法分析问题或证明数学命题
考点1 综合法
在锐角三角形ABC中,求证:CBACBAcoscoscossinsinsin
[解析]ABC为锐角三角形,BABA22,
xysin
在)2,0(上是增函数,BBAcos)2sin(sin
同理可得CBcossin,ACcossin
CBACBAcoscoscossinsinsin
考点2 分析法
已知0ba,求证baba
[解析]要证baba,只需证22)()(baba
即baabba2,只需证abb,即证ab
显然ab成立,所以baba成立
【名师指引】注意分析法的“格式”是“要证---只需证---”,而不是“因为---所以---”
考点3 反证法
已知)1(12)(axxaxfx,证明方程0)(xf没有负数根
【解题思路】“正难则反”,选择反证法,因涉及方程的根,可从范围方面寻找矛盾
[解析]假设0x是0)(xf的负数根,则00x且10x且12000xxax
112010000xxa
x
,解得2210x,这与00x矛盾,
故方程0)(xf没有负数根
【名师指引】否定性命题从正面突破往往比较困难,故用反证法比较多
三、数学归纳法
一般地,当要证明一个命题对于不小于某正整数N的所有正整数n都成立时,能够用以下两个步骤:
(1)证明当n=n0时命题成立;
(2)假设当n=k(𝑘∈𝑁+,且𝑘≥𝑛0)时命题成立,证明n=k+1时命题也成立.
在完成了这两个步骤后,就能够断定命题对于不小于n0的所有正整数都成立.这种证明方法称为数学归纳
法.
考点1 数学归纳法
题型:对数学归纳法的两个步骤的理解
[例1 ] 已知n是正偶数,用数学归纳法证明时,若已假设n=k(2k且为偶数)时命题为真,,则还需证
明( )
A.n=k+1时命题成立 B. n=k+2时命题成立
C. n=2k+2时命题成立 D. n=2(k+2)时命题成立
[解析] 因n是正偶数,故只需证等式对所有偶数都成立,因k的下一个偶数是k+2,故选B
【名师指引】用数学归纳法证明时,要注意观察几个方面:(1)n的范围以及递推的起点(2)观察首末两
项的次数(或其它),确定n=k时命题的形式)(kf(3)从)1(kf和)(kf的差异,寻找由k到k+1递推
中,左边要加(乘)上的式子
考点2 数学归纳法的应用
题型1:用数学归纳法证明数学命题
用数学归纳法证明不等式2)1(21)1(3221nnn
[解析](1)当n=1时,左=√2,右=2,不等式成立
(2)假设当n=k时等式成立,即2)1(21)1(3221kkk
则)2)(1()1(21)2)(1()1(32212kkkkkkk
02)2()1()2)(1(2)2()2)(1()1(2122kkkkkkkk
2
]1)1[(21)2)(1()1(3221kkkkk
当n=k+1时, 不等式也成立
综合(1)(2),等式对所有正整数都成立
【名师指引】(1)数学归纳法证明命题,格式严谨,必须严格按步骤实行;
(2)归纳递推是证明的难点,应看准“目标”实行变形;
(3)由k推导到k+1时,有时能够“套”用其它证明方法,如:比较法、分析法等,表现出数学归纳法“灵
活”的一面