基于隶属度改进的模糊K均值算法6

合集下载

模糊c均值算法

模糊c均值算法

模糊c均值算法模糊c均值算法概述模糊c均值算法(FCM)是一种聚类分析方法,用于将一组数据分成多个类别。

该算法通过最小化数据点与其所属的聚类中心之间的平方误差来实现聚类。

与传统的k均值算法相比,FCM可以处理更加复杂的数据集,因为它允许每个数据点属于多个聚类。

原理FCM的核心思想是将每个数据点表示为一个向量,并将这些向量分配到多个聚类中心。

这些聚类中心由算法自动确定,并且通常是随机初始化的。

在每次迭代中,FCM计算每个数据点与所有聚类中心之间的距离,并将其分配到最近的聚类中心。

然后,它重新计算每个聚类中心作为其所有成员向量的平均值,并使用这些新的聚类中心再次计算距离和分配。

这个过程重复进行直到满足某些收敛准则,例如固定数量的迭代或达到一定程度上的稳定性。

然而,在传统k均值算法中,一个数据点只能属于一个簇,但在FCM 中,一个数据点可以属于多个簇。

这是通过将每个数据点与每个聚类中心之间的距离表示为一个模糊值来实现的。

这个模糊值称为隶属度,它表示了数据点属于每个聚类中心的程度。

具体而言,对于一个数据点i和聚类中心j,隶属度u_ij表示数据点i属于聚类中心j的程度。

隶属度必须满足以下条件:1. $0 \leq u_{ij} \leq 1$ 对于所有的i和j2. $\sum_{j=1}^{c} u_{ij} = 1$ 对于所有的i在每次迭代中,FCM计算每个数据点与所有聚类中心之间的距离,并使用这些距离计算新的隶属度。

然后,它重新计算每个聚类中心作为其所有成员向量加权平均值,并使用这些新的聚类中心再次计算距离和分配。

优缺点优点:1. FCM可以处理多维数据,并且可以应用于各种各样的应用程序。

2. FCM允许数据点属于多个簇,因此更加灵活。

3. FCM不需要指定簇数量,因此更加自适应。

缺点:1. FCM对初始值敏感。

2. FCM的计算成本很高,特别是对于大型数据集。

3. FCM需要指定一些参数,例如模糊程度和收敛准则。

模糊数学教程第6章 确定隶属函数的方法

模糊数学教程第6章 确定隶属函数的方法

iM
m,
i
n
其中 M { i e ; i 1 , 2 , . . . , n } , i
表示集合 M 的元素的个数,而 [0,1] 是事先给
定的标准。 (7)以 m 作为 A(u0 ) 的估计值,或直接计算
1 m n
m
i 1
n
i
,
1 e n
e
i 1
n
i 1 n
i
, 1 , , )是权重向 ( u , u , , u ) U ,( 其中 u 1 n 1 2 n
( u ) [,] 0 1 量,b是一个适当选取的常数,以保证 A
(3)混合型 如果决定 A(u) 的 Ai (ui ) 可分成两部分,一部分是累加 因素,一部分是乘积因素,则可令
用Dephi法确定 A 的隶属函数 A ( u ) 的步骤如下:
~
~
⑴ 提出影响 A 的主要因素,连同较为详尽的资料 发送选定的n位专家,请专家对于取定的 u 0 U , 给 出隶属度 A(u0 ) 的估值 m ⑵设第i位专家第一次给出的估计值为 m i 1 ,2 ,. . . ,n ) . 1 i(
(5) -型分布;
(6) Cauchy-型分布;
用模糊数学处理带有模糊性的问题时 (7) 岭型分布选择适当的模糊分布函数很重要,否 见教材! 则会脱离实际情况,从而影响效果, 各式中的参数由实际问题决定!
三分法(Trichotomy ) 基本思想:用随机区间的思想来处理模糊性的试 验模型,在某些场合适用此法来求隶属函数。
§6.3 模糊统计法
模糊统计法简言之即通过模糊试验来得元素 隶属度。模糊试验四个要素: (1)论域U,所论问题之范围; (2)U中的一个确定元素u; (3)U中的一个随机运动的普通集合A*,A* 联系着一个模糊集 A , A*的每一次确定,都是对

模糊C均值聚类算法实现与应用

模糊C均值聚类算法实现与应用

模糊C均值聚类算法实现与应用聚类算法是一种无监督学习方法,在数据挖掘、图像处理、自然语言处理等领域得到广泛应用。

C均值聚类算法是聚类算法中的一种经典方法,它将数据对象划分为若干个不相交的类,使得同一类中的对象相似度较高,不同类之间的对象相似度较低。

模糊C均值聚类算法是对C均值聚类的扩展,它不是将每个数据对象划分到唯一的类别中,而是给每个对象分配一个隶属度,表示该对象属于不同类的可能性大小。

本文主要介绍模糊C均值聚类算法的实现方法和应用。

一、模糊C均值聚类算法实现方法模糊C均值聚类算法可以分为以下几个步骤:1. 确定聚类数k与参数m聚类数k表示将数据分成的类别数目,参数m表示隶属度的度量。

一般地,k和m都需要手动设定。

2. 随机初始化隶属度矩阵U随机初始化一个k×n的隶属度矩阵U,其中n是数据对象数目,U[i][j]表示第j个对象隶属于第i个类别的程度。

3. 计算聚类中心计算每个类别的聚类中心,即u[i] = (Σ (u[i][j]^m)*x[j]) / Σ(u[i][j]^m),其中x[j]表示第j个对象的属性向量。

4. 更新隶属度对于每个对象,重新计算它对每个类别的隶属度,即u[i][j] = 1 / Σ (d(x[j],u[i])/d(x[j],u[k])^(2/(m-1))),其中d(x[j],u[i])表示第j个对象与第i个聚类中心的距离,k表示其他聚类中心。

5. 重复步骤3和4重复执行步骤3和4,直到满足停止条件,例如聚类中心不再变化或者隶属度矩阵的变化趋于稳定。

二、模糊C均值聚类算法应用模糊C均值聚类算法可以应用于多个领域,包括图像处理、文本挖掘、医学图像分析等。

下面以图像分割为例,介绍模糊C均值聚类算法的应用。

图像分割是图像处理中的一个重要应用,旨在将一幅图像分割成多个区域,使得同一区域内的像素具有相似度较高,不同区域之间的像素相似度较低。

常见的图像分割算法包括全局阈值法、区域生长法、边缘检测法等。

隐隶属度模糊c均值聚类算法

隐隶属度模糊c均值聚类算法

隐隶属度模糊c均值聚类算法文传军;汪庆淼;詹永照【摘要】针对基于粒子群的模糊聚类算法运算效率较低的问题,提出隐隶属度模糊c均值聚类算法HMFCM(hidden-membership fuzzy c-means clustering).HMFCM算法将FCM模糊隶属度迭代公式代入FCM目标函数中约简,得到无模糊隶属度的HMFCM目标函数,并利用PSO算法对聚类中心进行编码寻优,最后利用样本与聚类中心距离进行类别判决.HMFCM算法无需计算样本模糊隶属度,降低了聚类算法复杂度,提高了算法的计算效率及精度,而且该方法可以推广到其他基于生物寻优的聚类算法.通过仿真实验验证了所提出算法的有效性和时效性.【期刊名称】《计算机应用与软件》【年(卷),期】2015(032)012【总页数】4页(P245-248)【关键词】模糊c均值聚类;隐隶属度;粒子群算法;目标函数;算法复杂度【作者】文传军;汪庆淼;詹永照【作者单位】常州工学院理学院江苏常州213002;苏州大学计算机学院江苏苏州215021;江苏大学计算机科学与通信工程学院江苏镇江212013【正文语种】中文【中图分类】TP391聚类分析是数据挖掘和模式分类中的一个重要研究部分,是非监督分类的重要方法。

模糊C均值聚类FCM[1,2]是聚类分析领域的一种典型算法,它将聚类问题采用数学形式表达、并以非线性规划优化理论作支撑、求解过程依靠计算机实现、并具有良好的聚类性能,因此成为聚类分析领域的研究热点及主流。

FCM算法及改进算法[3-5]被广泛应用于图像处理[6-8]、模式识别、故障检测等领域。

FCM算法也存在一些不足,如容易陷入局部最优解;对类别K值的选择没有准则可依循;对初始赋值及异常数据较为敏感等。

为获得全局最优解,研究者主要依靠并行生物优化算法对FCM算法进行求解,目的在于克服FCM梯度爬山法局部极小点的缺陷。

文献[4]在FCM算法中引入生物遗传算法(GA)求解,以期提高FCM算法全局寻优性能,类似的方法还包括文献[5],文献[5]引入粒子群算法(PSO)实现对FCM算法的求解;Zhang等人[6]利用PSO和PCM实现基于马氏距离的图像分割方法;文献[7]提出不确定c均值聚类算法VCM(Vague C-means Clustering algorithm),引入真实聚类隶属度和虚假聚类隶属度,并利用QPSO 进行算法求解;文献[8]提出基于PSO的动态加权FCM算法,以达到提高雷达跟踪目标精度的目的;文献[9]将FCM及fuzzy PSO算法结合起来,从而有效提高聚类算法的性能。

基于改进PSO与规则约简的模糊系统优化算法

基于改进PSO与规则约简的模糊系统优化算法

总第382期计算机与数字工程Vol.49No.8 2021年第8期Computer&Digital Engineering1525基于改进PSO与规则约简的模糊系统优化算法”蔡际杰陈德旺黄允浒黄玮3(1.福州大学数学与计算机科学学院福州350108)(2.福州大学智慧地铁福建省高校重点实验室福州350108)(3.福州理工学院计算与信息科学学院福州350506)摘要模糊系统是一种具有强可解释性和高鲁棒性的智能方法,但目前仍存在精度不高、产生的模糊规则太多等缺陷。

针对目前存在的问题,论文通过改进粒子群优化算法优化模糊系统高斯型隶属度函数的参数,以及计算规则支持度约简模糊规则,提出了CPSFS和SPSFS两种模糊系统优化算法。

在两个不同领域的经典数据集上的研究结果表明:1)CPSFS 算法在训练集和测试集上的预测精度明显优于传统的BP神经网络、RBF神经网络、线性回归等算法;2)CPSFS算法与SPSFS 算法减少了大量模糊规则,保证了模型的可解释性;3)CPSFS算法在约简模糊规则后预测精度依然表现最优,符合新时代下回归问题对于AI技术的要求。

关键词模糊系统;可解释性;鲁棒性;粒子群优化算法;高斯型隶属度函数中图分类号TP391DOI:10.3969/j.issn.1672-9722.2021.08.005Fuzzy System Optimization Algorithm Based on Improved PSO andRule ReductionCAI Jijie1-2CHEN Dewang1-2HUANG Yunhu1-2HUANG Wei3(1.College of Mathematics and Computer Science-Fuzhou University-Fuzhou350108)(2.Key Laboratory of Intelligent Metro of Universities in Fujian Province-Fuzhou University-Fuzhou350108)(3.School of Computing and Information Science,Fuzhou Institute of Technology,Fuzhou350506)Abstract Fuzzy system is a kind of intelligent method with strong interpretability and high robustness,but at present,there are still some defects,such as low precision,too many fuzzy rules and so on.Aiming at the existing problems,this paper proposes two fuzzy system optimization algorithms,which are CPSFS and SPSFS by improving particle swarm optimization algorithm to opti­mize the parameters of gauss membership function of fuzzy system,and reducing the fuzzy rules by calculating the support degree of rules.The research results on two classical data sets in different fields show that the prediction accuracy of CPSFS algorithm in train­ing set and test set is obviously better than that of traditional BP neural network,RBF neural network and linear regression algo­rithm.CPSFS algorithm and SPSFS algorithm reduce a lot of fuzzy rules and ensure the interpretability of the model.CPSFS algo­rithm still has the best prediction accuracy after reducing the fuzzy rules,which meets the requirements of AI technology for regres­sion problems in the new era.Key Words fuzzy system,interpretability,robustness,particle swarm optimization algorithm,gauss membership function Class Number TP3911引言模糊系统(Fuzzy System,FS)在二十世纪90年代初期间发展迅速,尤其是在模糊控制领域的应用效果突出l1]o但是近年来FS的研究并非主流,究其原因主要是因为目前FS的研究还不够成熟l2],主要*收稿日期:2021年1月13日,修回日期:2021年2月24日基金项目:国家自然科学基金面上项目(编号:61976055);智慧地铁福建省高校重点实验室建设基金项目(编号:53001703,50013203)资助。

模糊综合评判法(原理)

模糊综合评判法(原理)

4、进行单因素模糊评价,确立模糊关
系矩阵R
单独从一个因素出发进行评价,以确定评价对象对评 价集合V的隶属程度,称为单因素模糊评价(one-way evaluation). 在构造了等级模糊子集后,就要逐个对被评价 对象从每个因素ui上进行量化,也就是确定从单因素来看 被评价对象对各等级模糊子集的隶属度,进而得到模糊关 系矩阵:
ai表示第i个因素的权重,要求ai>0,Σai=1. A反映了各因素的重要程度. 在进行模糊综合评价时,权重对最终的评价结果会产 生很大的影响,不同的权重有时会得到完全不同的结 论. 现在通常是凭经验给出权重,但带有主观性. 权重是以某种数量形式对比、权衡被评价事物总体中 诸因素相对重要程度的量值.
因素集
评判集
单因素评判
综合评判
1、确定评价对象的因素集
设U={u1,u2,…,um}为刻画被评价对象的m种评价 因素(评价指标).其中:m是评价因素的个数,有具体的指标 体系所决定. 为便于权重分配和评议,可以按评价因素的 属性将评价因素分成若干类,把每一类都视为单一评价因 素,并称之为第一级评价因素.第一级评价因素可以设置 下属的第二级评价因素,第二级评价因素又可以设置下属 的第三级评价因素,依此类推. 即U=U1∪U2∪…∪Us.(有限不交并) 其中Ui={ui1,ui2,…,uim},Ui∩Uj=Φ,任意 i≠j,i,j=1,2,…,s. 我们称{Ui}是U的一个划分(或剖分),Ui称为类(或块).
r11 r12 r21 r22 B A R a1 , a2 ,, am r m1 rm 2 r1n r2 n b1 , b2 ,, bn rmn
其中:bj表示被评级对象从整体上看对评价等级模 糊子集元素vj的隶属程度。

FCM模糊均值与改进算法

精心整理模糊C均值聚类算法的实现研究背景聚类分析是多元统计分析的一种,也是无监督模式识别的一个重要分支,在模式分类图像处理和模糊规则处理等众多领域中获得最广泛的应用。

它把一个没有类别标记的样本按照某种准则划分为若干子集,使相似的样本尽可能归于一类,而把不相似的样本划分到不同的类中。

硬聚类把每个待识别的对象严格的划分某类中,具有非此即彼的性质,而模糊聚类建立了样本对类别的不确定描述,更能客观的反应客观世界,从而成为聚类分析的主流。

在基于12C 3(x)=1A表示,……,2xn}(6.1)属于每个类的隶属度。

根据这个划分矩阵按照模糊集合中的最大隶属原则就能够确定每个样本点归为哪个类。

聚类中心表示的是每个类的平均特征,可以认为是这个类的代表点。

从算法的推导过程中我们不难看出,算法对于满足正态分布的数据聚类效果会很好,另外,算法对孤立点是敏感的。

聚类算法是一种比较新的技术,基于曾次的聚类算法文献中最早出现的Single-Linkage层次聚类算法是1957年在Lloyd的文章中最早出现的,之后MacQueen独立提出了经典的模糊C均值聚类算法,FCM算法中模糊划分的概念最早起源于Ruspini的文章中,但关于FCM的算法的详细的分析与改进则是由Dunn和Bezdek完成的。

模糊c均值聚类算法因算法简单收敛速度快且能处理大数据集,解决问题范围广,易于应用计算机实现等特点受到了越来越多人的关注,并应用于各个领域。

算法描述模糊C均值聚类算法的步骤还是比较简单的,模糊C均值聚类(FCM),即众所周知的模糊ISODATA,是用隶属度确定每个数据点属于某个聚类的程度的一种聚类算法。

1973年,Bezdek提出了该算法,作为早期硬C均值聚类(HCM)方法的一种改进。

FCM把n个向量xi(i=1,2,…,n)分为c个模糊组,并求每组的聚类中心,使得非相似性指标的价值函数达到最小。

FCM与HCM的主要区别在于FCM用模糊划分,使得每个给定数据点用值在0,1间的隶属度来确定其属于各个组的程度。

基于大数据的改进模糊K-means算法

基于大数据的改进模糊K-means算法
全海金;何映思
【期刊名称】《重庆理工大学学报(自然科学版)》
【年(卷),期】2018(032)012
【摘要】针对传统模糊K-means算法易于采用局部最优解的缺陷,设计了一种基于大数据K-means聚类算法的优化算法.首先针对移动大数据的分析处理方法展开研究,再提出了通过欧氏距离来选出密度最大若干个初始点的改进方法,使数据的聚类的有效性及效率性有了很大的提高.实验仿真表明:该算法具有较好的聚类效果,提高了聚类的速度和准确性.
【总页数】4页(P145-148)
【作者】全海金;何映思
【作者单位】西南大学数学与统计学院,计算机与信息科学学院,重庆 400715;西南大学数学与统计学院,计算机与信息科学学院,重庆 400715
【正文语种】中文
【中图分类】TP18
【相关文献】
1.基于大数据的改进模糊K-means算法 [J], 全海金;何映思;
2.大数据下基于改进K-means聚类算法的税收风险识别 [J], 夏会; 程平; 张砾
3.基于MapReduce和Spark的大数据模糊K-means算法比较 [J], 翟俊海;田石;张素芳;王谟瀚;宋丹丹
4.基于改进K-means算法的电力大数据系统研究 [J], 田园;原野
5.基于改进模糊K-means算法的大数据处理方法 [J], 王天皓
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档