找等量关系

合集下载

找等量关系式的四种方法

找等量关系式的四种方法

找等量关系式的四种方法在数学中,等量关系式是指具有相等关系的数学表达式,即两个或多个数学表达式之间的数值相等。

寻找等量关系式的四种方法如下:1.代换法:通过代换法可以求得等量关系式。

首先,我们将一个数或变量代入另一个数或变量的表达式中,然后求解出两者之间的数值关系。

这种方法常见于解方程问题,例如解一次方程、二次方程或其他高次方程。

例如,对于方程2x+3=11,我们可以通过代换法找到等量关系式。

首先,我们将x代入方程中,得到2*4+3=11,进而可以得到等量关系式2x+3=112.化简法:通过化简法可以找到等量关系式。

化简就是对一个数学表达式进行简化,将复杂的表达式转化为简单的形式。

通过将两个或多个数学表达式化简为同一形式,可以得到等量关系式。

例如,对于表达式2x+3x,我们可以进行化简得到5x。

因此,可以得到等量关系式2x+3x=5x。

3.分解法:通过分解法可以找到等量关系式。

分解就是将一个复杂的数学表达式分解为几个简单的数学表达式之和或乘积的形式。

通过将两个或多个数学表达式进行分解,可以得到等量关系式。

例如,对于表达式4x+5,我们可以将其分解为2x+2x+1+1+1,进而得到等量关系式4x+5=2x+2x+1+1+14.变换法:通过变换法可以找到等量关系式。

变换就是对一个数学表达式进行等式变形,得到等价但形式不同的数学表达式。

通过对数学表达式进行变换,可以得到等量关系式。

例如,对于表达式4x=2x+6,我们可以通过变换法得到等量关系式4x-2x=6总结起来,寻找等量关系式的方法有代换法、化简法、分解法和变换法。

每种方法都有其应用的场景,根据具体问题选择适应的方法可以更快有效地求得等量关系式。

矿产

矿产

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

数学方程找等量关系式的几种方法

数学方程找等量关系式的几种方法

找等量关系式的几种方法1、根据题目中的关键句找等量关系。

应用题中反映等量关系的句子,如“合唱队的人数比舞蹈队的3倍多15人”、“桃树和杏树一共有180棵”这样的句子叫做应用题的关键句。

在列方程解应用题时,同学们可以根据关键句来找等量关系。

2、用常见数量关系式作等量关系。

我们已学过了如“工效×工时=工作总量”、“速度×时间=路程”、“单价×数量=总价”、“单产量×数量=总产量”等常见数量关系式,可以把这些常见数量关系式作为等量关系式来列方程。

3、把公式作为等量关系。

在解答一些几何形体的应用题时,我们可以把有关的公式作为等量关系。

4、画出线段图找等量关系对于数量关系比较复杂,等量关系不够明显的应用题我们可以先画出线段图,再根据线段图找出等量关系。

例如:东乡农场计划耕6420公顷耕地,已经耕了5天,平均每天耕780公顷,剩下的要3天耕完,平均每天要耕多少公顷?根据题意画出线段图:780×5 3XX6420公顷从图中我们可以看出等量关系是:“已耕的公顷数+剩下的公顷数=6420”列出方程:设:平均每天要耕X公顷780×5+3X=6420想一想:根据上面的线段图还可以找出哪些等量关系。

1.牢记计算公式,根据公式来找等量关系。

这种方法一般适用于几何应用题,教师要让学生牢记周长公式、面积公式、体积公式等,然后根据公式来解决问题。

2.熟记数量关系,根据数量关系找等量关系。

这种方法一般适用于工程问题、路程问题、价格问题,教师在教学这三类问题时,不但要让学生理解,还应让学生记熟工作效率×工作时间=工作总量;速度×时间=路程;单价×件数=总价”等关系式。

如“汽车平均每小时行45千米,从甲地到乙地共225千米,汽车共需行多少小时?”就可以根据“速度×时间=路程”这一数量关系,列出方程45X=225。

3.抓住关键字词,根据字词的提示找等量关系。

找等量关系式的四种方法

找等量关系式的四种方法

找等量关系式的四种方法
等量关系式指的是具有相同数值的两个或多个数的关系。

以下是四种方法来找到等量关系式:
1.字母代换法:通过字母代换法,我们可以用一个字母或符号代替一个或多个未知数。

通过这种方式,我们可以将一个问题转化为一个或多个方程,从而找到等量关系式。

例如,假设一个数字与它本身加上12的和的两倍之差等于36,则可以设这个数字为x。

根据给定条件,我们可以列出等式2x-(x+12)=36、通过解这个方程,我们可以找到等量关系式x=24
2.图形法:图形法通过绘制图表或图形来找到等量关系式。

例如,如果给定一个线性方程y=2x+3,并要求找到使得y=7的x的值,我们可以绘制这个线性方程的图表。

通过在图表中找到y=7对应的x值,我们可以找到等量关系式x=2
3.实例法:实例法通过列举具体的实例来找到等量关系式。

例如,假设一辆汽车每小时以60公里的速度行驶,我们可以通过具体的实例来找到等量关系式。

如果汽车行驶了2小时,那么汽车行驶的总距离为60公里/小时×2小时=120公里。

通过这一实例,我们可以找到等量关系式总距离=60公里/小时×时间。

4.探究法:探究法通过不断的探究和推断来找到等量关系式。

例如,在解决几何问题时,我们可以根据已知条件和几何关系来推断出等量关系式。

通过不断地探究几何图形的特征和性质,我们可以找到等量关系式来解决问题。

需要注意的是,在寻找等量关系式时,我们还需要考虑问题的上下文和特定要求。

在确定等量关系式后,我们还需要进行验证和求解,以确保等量关系式的准确性和可行性。

[五年级数学]找等量关系式的四种方法

[五年级数学]找等量关系式的四种方法

[五年级数学]找等量关系式的四种方法找等量关系式的四种方法,、根据题目中的关键句找等量关系。

应用题中反映等量关系的句子,如“合唱队的人数比舞蹈队的,倍多,,人”、“桃树和杏树一共有,,,棵”这样的句子叫做应用题的关键句。

在列方程解应用题时,同学们可以根据关键句来找等量关系。

例如:买,支钢笔比买,支圆珠笔要多花0.9元。

每支圆珠笔的价钱是0.6元,每支钢笔多少钱,我们可以根据题目中的关键句“3支钢笔比5支圆珠笔要多花0.9元”找出等量关系:,支钢笔的价钱,,支圆珠笔的价钱,0.9元设:每支钢笔,元。

,,,0.6×,,0.9,、用常见数量关系式作等量关系。

我们已学过了如“工效×工时,工作总量”、“速度×时间,路程”、“单价×数量,总价”、“单产量×数量,总产量”等常见数量关系式,可以把这些常见数量关系式作为等量关系式来列方程。

例如:甲乙两辆汽车同时从相距,,,千米的两个车站相向开出,经过,小时两车相遇,甲车每小时行,,千米,乙车每小时行多少千米,我们可以根据“速度(和)×时间,路程”找出等量关系:“(甲速,乙速)×相遇时间,路程”设:乙车每小时行,千米(,,,,)×,,,,,,、把公式作为等量关系。

在解答一些几何形体的应用题时,我们可以把有关的公式作为等量关系。

例如:一个梯形的面积是,,平方分米,它的上底是,分米,下底是,分米。

求梯形的高。

我们就把梯形的面积公式作为等量关系即:“(上底,下底)×高?,,梯形的面积”列出方程。

设:梯形的高是,分米(,,,)×,?,,,,,、画出线段图找等量关系对于数量关系比较复杂,等量关系不够明显的应用题我们可以先画出线段图,再根据线段图找出等量关系。

例如:东乡农场计划耕6420公顷耕地,已经耕了,天,平均每天耕780公顷,剩下的要,天耕完,平均每天要耕多少公顷,根据题意画出线段图:从图中我们可以看出等量关系是:“已耕的公顷数,剩下的公顷数,6420”列出方程:设:平均每天要耕,公顷780×,,,,,6420想一想:根据上面的线段图还可以找出哪些等量关系。

寻找等量关系的方法

寻找等量关系的方法

在用方程解决实际问题时,找准等量关系是关键。

怎样找准等量关系呢?下面给同学们介绍如下方法:一、抓住题目中的关键词例1:食堂原有一批大米,吃了360千克,还剩130千克,食堂原有多少千克大米?分析:设食堂原有x 千克大米。

根据题目中的关键词“原有”“吃了”“还剩”可得等量关系:原有的大米千克数-吃了的大米千克数=还剩的大米千克数,由此可列出方程:x -360=130,x =490。

例2:小华有360元钱,比小红多60元,小红有多少元钱?分析:设小红有x 元钱。

根据题目中的关键句“小华有360元钱,比小红多60元”可得等量关系:小红的钱+60=小华的钱,由此可列出方程:x +60=360,x =300。

寻找等量系的方法◎刘小燕二、抓住相关的计算公式例3:已知一个三角形的底长12米,面积是54平方米,它的高是多少米?分析:设它的高是x米。

根据三角形的面积计算公式:三角形的面积=底×高÷2,列方程:12x÷2=54,x=9。

三、抓住四则运算的意义应用题中数量关系大多用和、差、倍等术语来表达。

在解题时可凭借这些术语,按事情发展的关系去找等量关系。

例4:一批粮食,先运走230吨,又运走63吨后,还剩127吨,这批粮食原来有多少吨?分析:设这批粮食原来有x吨。

题中的“还剩”就表示了运走两次后剩下的数量,根据事情发展的顺序可找到等量关系:原有的-先运走的-又运走的=剩下的,列方程为:x-230-63=127,x=420。

四、抓住常见的数量关系常见的数量关系有:单价×数量=总价;亩产量×亩数=总产量;工作效率×工作时间=工作总量等。

在掌握数量关系的基础上,根据题意找等量关系。

例5:每千克苹果12.5元,225元钱可以买多少千克苹果?分析:根据“单价×数量=总价”能很快找出等量关系。

设可以买x千克苹果,可列出方程:12.5x=225,x=18。

找等量关系的四种方法

找等量关系的四种方法
课外拓展知识阅读
汇报人姓名 汇报日期
1.根据题目中的关键句找等量关系
应用题中反应等量关系的句子,如“合唱队的人数比舞蹈队 的3倍多15人”“桃树和杏树一共有180棵”等叫作应用题的 关键句。在列方程解应用题时,同学们可以根据关键句来找 等量关系。
○ 例如 ○ 我们可以根据题目中的关键句“买3支钢笔比买5支圆珠笔要多花0.9元”找出等
量关系:3支钢笔的价钱﹣5支圆珠笔的价钱=0.9元。 ○ 设每支钢笔的价钱为x元,3x-0.6×5=0.9单击Fra bibliotek处添加大标题内容
单击此处添加正文,文字是您思想的提炼,为了演示发布的良好效果,请言简意赅地阐述您的观点。您的内容已经简明 扼要,字字珠玑,但信息却千丝万缕、错综复杂,需要用更多的文字来表述;但请您尽可能提炼思想的精髓,否则容易 造成观者的阅读压力,适得其反。正如我们都希望改变世界,希望给别人带去光明,但更多时候我们只需要播下一颗种 子,自然有微风吹拂,雨露滋养。恰如其分地表达观点,往往事半功倍。当您的内容到达这个限度时,或许已经不纯粹 作用于演示,极大可能运用于阅读领域;无论是传播观点、知识分享还是汇报工作,内容的详尽固然重要,但请一定注 意信息框架的清晰,这样才能使内容层次分明,页面简洁易读。如果您的内容确实非常重要又难以精简,也请使用分段 处理,对内容进行简单的梳理和提炼,这样会使逻辑框架相对清晰。为了能让您有更直观的字数感受,并进一步方便使 用,我们设置了文本的最大限度,当您输入的文字到这里时,已濒临页面容纳内容的上限,若还有更多内容,请酌情缩 小字号,但我们不建议您的文本字号小于14磅,请您务必注意。单击此处添加正文,文字是您思想的提炼,为了演示 发布的良好效果,请言简意赅地阐述您的观点。您的内容已经简明扼要,字字珠玑,但信息却千丝万缕、错综复杂,需 要用更多的文字来表述;但请您尽可能提炼思想的精髓,否则容易造成观者的阅读压力,适得其反。正如我们都希望改 变世界,希望给别人带去光明,但更多时候我们只需要播下一颗种子,自然有微风吹拂,雨露滋养。恰如其分地表达观 点,往往事半功倍。当您的内容到达这个限度时,或许已经不纯粹作用于演示,极大可能运用于阅读领域;无论是传播 观点、知识分享还是汇报工作,内容的详尽固然重要,但请一定注意信息框架的清晰,这样才能使内容层次分明,页面 简洁易读。如果您的内容确实非常重要又难以精简,也请使用分段处理,对内容进行简单的梳理和提炼,这样会使逻辑 框架相对清晰。为了能让您有更直观的字数感受,并进一步方便使用,我们设置了文本的最大限度,当您输入的文字到 这里时,已濒临页面容纳内容的上限,若还有更多内容,请酌情缩小字号,但我们不建议您的文本字号小于14磅,请 您务必注意。单击此处添加正文,

找等量关系式的四种方法

找等量关系式的四种方法1、根据题目中的关键句找等量关系;应用题中反映等量关系的句子,如“合唱队的人数比舞蹈队的3倍多15人”、“桃树和杏树一共有180棵”这样的句子叫做应用题的关键句;在列方程解应用题时,同学们可以根据关键句来找等量关系;2、用常见数量关系式作等量关系;我们已学过了如“工效×工时=工作总量”、“速度×时间=路程”、“单价×数量=总价”、“单产量×数量=总产量”等常见数量关系式,可以把这些常见数量关系式作为等量关系式来列方程;3、把公式作为等量关系;在解答一些几何形体的应用题时,我们可以把有关的公式作为等量关系;4、画出线段图找等量关系对于数量关系比较复杂,等量关系不够明显的应用题我们可以先画出线段图,再根据线段图找出等量关系;例如:东乡农场计划耕6420公顷耕地,已经耕了5天,平均每天耕780公顷,剩下的要3天耕完,平均每天要耕多少公顷根据题意画出线段图:从图中我们可以看出等量关系是:“已耕的公顷数+剩下的公顷数=6420”列出方程:设:平均每天要耕X公顷780×5+3X=6420想一想:根据上面的线段图还可以找出哪些等量关系;1.牢记计算公式,根据公式来找等量关系;这种方法一般适用于几何应用题,教师要让学生牢记周长公式、面积公式、体积公式等,然后根据公式来解决问题;2.熟记数量关系,根据数量关系找等量关系;这种方法一般适用于工程问题、路程问题、价格问题,教师在教学这三类问题时,不但要让学生理解,还应让学生记熟“工作效率×工作时间=工作总量;速度×时间=路程;单价×件数=总价”等关系式;如“汽车平均每小时行45千米,从甲地到乙地共225千米,汽车共需行多少小时”就可以根据“速度×时间=路程”这一数量关系,列出方程45X=225;3.抓住关键字词,根据字词的提示找等量关系;这种方法一般适用于和差关系、倍数关系的应用题,在题中常有这样的提示:“一共有”、“比……多少”、“是……的几倍”、“比……的几倍多少”等;在解题时,可根据这些关键字词来找等量关系,按叙述的顺序列出方程;如“四年级有学生250人,比三年级的2倍少70人,三年级有学生多少人”,根据题中“比……少”可知:三年级的2倍减去70人等于四年级的人数,从而列出方程2X-70=250;4.找准单位“1”,根据“量率对应”找等量关系;这种方法一般适用于分数应用题,有时也适用“倍比关系”应用题;对于分数应用题来说,每一个分率都对应着一个具体的量,而每一个具体的量也都对应着一个分率;在倍比关系的应用题中,也应找准标准量;因此,正确地确定“量率对应”是解题的关键;5.补充缺省条件,根据句子意思找等量关系;这类应用题的特征是含有“比……多少”、“比……增加减少”等特定词,如:甲比乙多“几分之几”、少“几分之几”、增加“几分之几”、减少“几分之几”等类型的语句,题目中由于常缺少主语,造成学生理解上的困难;因此,教师在平时一定要强调让学生说“谁与谁比”、“以谁为标准”等,在缺少主语的情况下,让学生先把主语补充完整;如“小明第一天看书60页,比第二天少看 ,第二天看了多少页”一题中,就缺少了“第一天”这个主语,通过读题、析题,要让学生明白“这里的少的 是指第二天的 ”,于是可列方程X - X=60;6.利用好线段图,根据线段图找等量关系;有些应用题光从字面上来看,不容易理解,有时教师可辅以线段图帮助学生理解;当然,如果学生会画线段图,题目往往很容易解开;画线段图的关键仍是找准谁是单位“1”,其它量都是与单位“1”相比较而言的;而理解单位“1”,又往往可以从“比”、“是”等词语后面找到,也即“比”、“是”后面的量通常是标准量,是单位“1”;以上所举只是一些比较简单的应用题,如果遇到较复杂的应用题,还要采取灵活的方法,如“抓住不变量解”、“换一种说法解”、“根据题意逐步解”、“逆向思考推导解”等等,这些都要求学生在解决具体问题时,采取不同的方法,以求顺利解答;当然,这里更离不开教师平时的引导与启迪;方程组是解决实际问题的一个有效数学模型.列方程组的关键是挖掘出隐含在题目中的等量关系.寻找等量关系有三种常用方法:译式法、列表法和图示法.解题时有意识的学习使用这些方法,可以有效的帮助我们分解难点,寻找出等量关系,进而列出方程组求解.一、译式法例1 4辆小卡车和5辆大卡车共27吨;6辆小卡车和10辆大卡车共运货51吨.问小卡车和大卡车每辆每次各运多少吨分析:本题等量关系比较明显,只需要直接按照题意把日常用语译成代数语言即可.设小卡车和大卡车每辆每次分别运x 、y 吨.则“4辆小卡车和5辆大卡车共27吨”可翻译成数学式子:2754=+y x ;“6辆小卡车和10辆大卡车共运货51吨” 可翻译成数学式子:51106=+y x .由这两个式子组合列出二元一次方程组即可求解.评注: 对实际问题不要产生畏惧心理,不要想一口吃个“胖子”,要一步一步走下去,首先,要多看几遍题目,审清题意,先列出“文字”等量关系,然后用代数式逐步替换,当代数式把“文字”替换完了,方程组也就列出来了.这种将关键词语译成代数式列方程组解决实际问题的方法称为“译式法”.译式法使用非常普遍,对于大多数基础题目较为有效.二、列表法例3 某日小伟和爸爸在超市买12袋牛奶24个面包花了64元.第二天他们又去超市时,发现牛奶和面包均打八折,这次他们花了60元却比上次多买了4袋奶3个面包.求打折前牛奶和面包的单价并根据上表可得方程组⎩⎨⎧=⨯+⨯=+608.0278.016642412y x y x解:略.评注:列表法是指将题目中数量及其关系填在表格内,再据此逐层分析,找到各量之间的内在相等关系,列出方程组的方法.列表时分类整理排列,条理清晰,优点明显.尤其对于题目较为复杂,等量关系较为隐蔽的题目效果较好.三、图示法例4 甲、乙两人都以不变的速度在环形路上跑步.相向而行,每隔2分二人相遇一次;同向而行,每隔6分相遇一次,已知甲比乙跑得快,求甲乙每分各跑多少圈分析:根据题意可以分别画出甲、乙相向而行、同向而行时的示意图如图1和图2 如果设甲每分钟跑x 圈,乙每分钟跑y 圈,根据图1可得12x 2=+y ;根据图2可得166=-y x .评注:图示法是指将条件及它们之间的内在联系用简单明了的示意图表示出来,然后据图找等量关系列方程组的方法.图示法直观、明了,是解决行程等问题的常用方法.评注: 对于较为复杂的题目,可把三种方法结合使用.这三种方法在突破等量关系这一难点问题上,体现的是分步、分层、分散的转化思想,不论容易题、难题,都非常适用.同学们开始接触这些方法时可能觉得有些繁琐,如果有意识加强这方面的训练,形成习惯,自然会省时省力,这类问题也就会迎刃而解了.1.把日常的语言翻译成代数的语言,而代数的语言就是方程,即可得等量关系式;例如,商店原来有一些饺子粉,每袋5千克,卖出7袋以后,还剩40千克;这个商店原来有多少千克饺子粉日常语言:原有的重量减去每袋的重量乘以卖出的袋数等于剩下的重量;代数的语言:χ-5×7=40这里的χ表示原有的重量;又如,望岳小学买来2个足球和25根跳绳,共用元;每个足球的售价元,每根跳绳的售价是多少元日常语言:买2个足球的钱加上买25根跳绳的钱等于共用去的钱代数语言:×2+25χ=这里χ表示每根跳绳的售价;2.掌握常见的基本数量关系,建立等量关系式;根据“行程问题”基本数量关系式:速度×时间=路程根据“工作问题”基本数量关系式:工作效率×工作时间=工作总量3.根据题中关键性词语来理解数量关系从中得到等量关系式;例如,一个花坛里有3行芍药花,每行5棵;另一个花坛里有3行牡丹花,芍药花比牡丹花少9棵,牡丹花每行多少棵根据题中“芍药花比牡丹花少9棵”的关键性词语“比”、“少”,就可以列出:3χ-5×3=9χ表示每行牡丹花的棵数4.利用线段图的直观性,从图中发现等量关系;例如,某农具厂计划生产新式农具144件,现在已经生产了19件,其余的要在4天内完成,平均每天应当生产多少件19件 χ χ χ χ┕━━━┻━━━━┻━━━━┻━━━━┻━━━━┛144件从图中很容易看出:19+4χ=144;5.根据一些定义、公式,列出等量关系式;例如,李家营建造一个养鸡场,用110米长的篱笆围成一个长方形场地;如果长是37米,宽应该是多少米根据长方形的周长公式,得:37+χ×2=110这里的χ表示长方形的宽★方程指的是“含有未知数的等式”;图1 图2 6x 6y相向 同向☆列方程就是要根据题目的意思,设好相关的未知数之后,写出一个含有未知数的等式出来;则列方程解应用题的关键是——找出...,找出了相等的关系,方程也就可以列出来了.找等..相.等关系量关系常见方式有:一、抓住数学术语找等量关系一般和差关系或倍数关系,常用“一共有”、“比……多”、“比……少”、“是……的几倍”、“是……的几分之一”等术语表示.在解题时可抓住这些术语去找等量关系,按叙述顺序来列方程; 习题:1.某数的三分之一比这个数小1,求这个数;二、根据常见的数量关系找等量关系最常见的数量关系:1.速度×时间=路程路程÷速度=时间路程÷时间=速度2.单价×数量=总价总价÷单价=数量总价÷数量=单价★关于打折的问题:打几折=原价×百分之几十3.工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率4.增长后的量=原量1+增长率降低后的量=原量1-降低率习题:1.已知皮划艇500米最好成绩是分钟,求平均速度三、根据常用的计算公式找等量关系最常用的计算公式有:1.正方形周长=边长×4 正方形面积=边长×边长=边长22.长方形周长=长+宽×2 长方形面积=长×宽3.三角形面积=底×高÷2 梯形面积=上底+下底×高÷24. 圆形周长=π×直径=2π×半径圆形面积=π×半径2习题:1.长方形的周长为60米,已知长是宽的倍,求它的面积;四、理解文字找等量关系;习题:1.一班有48人,在某一次捐款活动中,男生平均每人捐款5元,女生平均每人捐款8元,全班一共捐款285元;问男生有多少人五、画图分析找等量关系根据题意画出图形分析图或者是表格分析图,从中找出相关等量列方程;习题:1.某农场有400公顷小麦,前三天每天收割70公顷小麦,剩下的要在2天内收割完,平均每天要收割小麦多少公顷。

[五年级数学]找等量关系式的四种方法

[五年级数学]找等量关系式的四种方法找等量关系式的四种方法,、根据题目中的关键句找等量关系。

应用题中反映等量关系的句子,如“合唱队的人数比舞蹈队的,倍多,,人”、“桃树和杏树一共有,,,棵”这样的句子叫做应用题的关键句。

在列方程解应用题时,同学们可以根据关键句来找等量关系。

例如:买,支钢笔比买,支圆珠笔要多花0.9元。

每支圆珠笔的价钱是0.6元,每支钢笔多少钱,我们可以根据题目中的关键句“3支钢笔比5支圆珠笔要多花0.9元”找出等量关系:,支钢笔的价钱,,支圆珠笔的价钱,0.9元设:每支钢笔,元。

,,,0.6×,,0.9,、用常见数量关系式作等量关系。

我们已学过了如“工效×工时,工作总量”、“速度×时间,路程”、“单价×数量,总价”、“单产量×数量,总产量”等常见数量关系式,可以把这些常见数量关系式作为等量关系式来列方程。

例如:甲乙两辆汽车同时从相距,,,千米的两个车站相向开出,经过,小时两车相遇,甲车每小时行,,千米,乙车每小时行多少千米,我们可以根据“速度(和)×时间,路程”找出等量关系:“(甲速,乙速)×相遇时间,路程”设:乙车每小时行,千米(,,,,)×,,,,,,、把公式作为等量关系。

在解答一些几何形体的应用题时,我们可以把有关的公式作为等量关系。

例如:一个梯形的面积是,,平方分米,它的上底是,分米,下底是,分米。

求梯形的高。

我们就把梯形的面积公式作为等量关系即:“(上底,下底)×高?,,梯形的面积”列出方程。

设:梯形的高是,分米(,,,)×,?,,,,,、画出线段图找等量关系对于数量关系比较复杂,等量关系不够明显的应用题我们可以先画出线段图,再根据线段图找出等量关系。

例如:东乡农场计划耕6420公顷耕地,已经耕了,天,平均每天耕780公顷,剩下的要,天耕完,平均每天要耕多少公顷,根据题意画出线段图:从图中我们可以看出等量关系是:“已耕的公顷数,剩下的公顷数,6420”列出方程:设:平均每天要耕,公顷780×,,,,,6420想一想:根据上面的线段图还可以找出哪些等量关系。

怎样找等量关系


原计划生产旳总数=实际生产旳总数
20×50
Байду номын сангаас
25x
6、利用线段图找等量关系
工程队修一条长2100米旳水渠, 已修了5天,平均每天修240米。 还余下多少千米没修?
巩固练习
1、学校建校舍计划投资45万元,实际投资 40万元。实际投资节省了多少钱?
2、学校开展植树活动,五年级植树50棵, 比四年级植树棵树旳2倍少4棵。
学校开展植树活动,五年级植树50棵, 比四年级植树棵数旳2倍少4棵,四年级 植树多少棵?
四年级植树棵数旳2倍-4=五年级植树旳棵数
3、根据常见旳数量关系找等量关系
工作效率×工作时间=工作总量; 单价×数量=总价; 速度×时间=旅程
某款式旳服装,零售价为36元1套,既 有216元,问一共能够买多少套衣服?
3、小明到商店买了3个小型足球付出80 元,找回2元,每个足球多少元?
4、王华买《趣味数学》和《故事大王》 各5本,一共用了70元。每本《趣味数 学》5元,每本《故事大王》多少元?
5、小明4分钟打了80个字,照这么计 算,他要打200个字需要几分钟?
6、一辆汽车3小时行135千米,照这 么计算,8小时行多少千米?
你还有什么疑问吗? 你学会怎么列方程了吗?
单价×数量=总价
4、根据常用旳计算公式找等量关系
(常见形积问题)
长方形旳周长=(长+宽)×2 长方形面积=长×宽
正方形周长=边长×4 正方形面积=边长×边长
一种长方形旳面积是19平方米,它旳 长是4米,那么宽是多少米?
长方形旳面积=长×宽
5、根据“不变量”找等量关系
(常见旅程问题) 例:加工一批零件,原计划每天生产20 个,50天完毕。实际每天生产25个,问 多少天完毕任务?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档