苏教版高二数学选修4-4极坐标与三维空间
高二数学选修4-4教案04圆锥曲线的统一极坐标方程

圆锥曲线的统一极坐标方程教学目标掌握三种圆锥曲线的统一极坐标方程,了解统一方程中常数的几何意义.会根据已知条件求三种圆锥曲线的极坐标方程,能根据圆锥曲线的统一极坐标方程进行有关计算.通过建立三种二次曲线的统一极坐标方程,对学生进行辩证统一的思想教育.教学重点:圆锥曲线统一的极坐标方程,会根据条件求出圆锥曲线的统一极坐标方程.教学难点:运用圆锥曲线统一的极坐标方程解决有关计算问题.教学疑点:双曲线左支所对应的θ范围,双曲线的渐近线的极坐标方程.活动设计:1.活动:思考、问答、讨论.2.教具:尺规、挂图.教学过程:一、问题引入大家已经学过,椭圆、双曲线、抛物线有两种几何定义,其中,第二定义把三种圆锥曲线统一起来了,请回忆后说出三种圆锥曲线的第二定义.学生1答:列定点F(焦点)的距离与列定直线l(准线)的距离比是一个常数e(离心e∈(0,1)时椭圆,e∈(1,f∞)时双曲线,e=1时抛物线.二、数学构建建立统一方程在极坐标系中,同样可以根据圆锥曲线的几何定义,求出曲线的极坐标方程.过F作FK⊥l于K,以F为极点,KF延长线为极轴,建立极坐标系.设M(ρ,θ)是曲线上任一点,连MF,作MA⊥l于A,MB⊥l于B(如图3-24).|FK|=常数,设为p.∵|MA|=|BK|=|KF|+|FB|,∴|MA|=p+ρcosθ.这就是圆锥曲线统一的极坐标方程.三、知识理解对圆锥曲线的统一极坐标方程,请思考讨论并深入了解下述几个要点:(1)必须以双曲线右焦点和椭圆的左焦点为极点,Ox轴方向向右,尚若Ox方向向左,其方程如何?(讨论后)学生2答:无需重新求方程,只须两个极坐标系Ox与Ox′之间的坐标关系作坐标转换(图3-25).(2)根据统一的极坐标方程,由几何条件求出e、p后即可写出曲线的极坐标方程,这要明确e、p的几何意义分别是离心率和焦准距(ep为有关几何量e,p,a,b,c?(讨论后)学生3答:此式为统一极坐标方程的标准式得到一个二元一次方程组,使问题的计算得以简化.e∈(0,1)时,表椭圆.e=1时,表抛物线.e∈(1,+∞)时,表双曲线.但注意到,e>1时,1-ecosθ≤0关于θ有解,而ep>0,这样ρ<0,甚至无意义.前面学过,通常情况下,ρ≥0,这就似乎出现矛盾,如何解决这一矛盾?(讨论后)学生4答:(如图3-26)上面推导统一方程过程中,当m在左支时,|MA|=|BK|=此时方程与右支的情况不同.这时,若设θ=θ′+π,ρ′=-ρ,上述推导与分析实际上是:若射线OP与双曲线有两个交点;当视θ=∠xOP时,则ρ>0(∵cosθ<0),此时所表点是右支上的点;当视θ=∠xOP-π时,则ρ<0,此时所表点是左支上的点.综上知,e>1时,统一极坐标方程所表双曲线情况是:若ρ>0,即1-ecosθ>0,则表右支;若ρ<0,即1-ecosθ<0,则表左支;取θ∈[0,2π),则θ范围所对曲线如下:线左支;条渐近线.如图3-27所示,只有掌握这一对应关系,才能在有关计算中不会造成混乱和错误.四、应用举例线交椭圆于M、N两点,设∠F2F1M=θ(0≤θ<π),求θ的值,使|MN|等于短轴长.解:以F1为极点,F1F2为极轴建立极坐标系椭圆的极坐标方程为设M(ρ1,θ)、N(ρ2,θ+π),则五、课堂小结(1)三种圆锥曲线的统一极坐标方程,常数的几何意义.(2)曲线的极坐标方程求法,根据极坐标方程确定a、b、c的注意点及进行有关计算.(3)双曲线左、右支所对的ρ及θ的范围.六、布置作业1.第二教材.2.选择题:线方程是(C) A .ρcosθ=1 B .ρcosθ=2(2)椭圆、双曲线、抛物线三条曲线的焦点是极点(椭圆左焦点和双曲线右焦点),它们的图形如图3-28所示,则图中编号为①、②、③的曲线应分别是(D).A .椭圆、双曲线、抛物线B .抛物线、椭圆、双曲线C .椭圆、抛物线、双曲线D .双曲线、抛物线、椭圆双曲线θρcos 5115-=的两渐近线的夹角是 。
选修4-4 1.2 极坐标系

X
这样就建立了一个极坐标系。
二、极坐标系内一点的极坐标的规定
对于平面上任意一点 M,用 表示线段OM的 长度,用 表示从OX到 OM 的角度, 叫做点M 的极径, 叫做点M的极 角,有序数对(,)就 O 叫做M的极坐标。
M
X
特别强调:表示线段OM的长度,即点M到 极点O的距离;表示从OX到OM的角度,即 以OX(极轴)为始边,OM 为终边的角。
这个点如何用极坐标表示?
在直角坐标系中, 以原点作为极点, x轴的正半轴作为极轴, 并且两种坐标系中取相 同的长度单位
y
M (1, 3)
θ
O
x
点M的直角坐标为 (1, 3) 设点M的极坐标为(ρ,θ)
M ( 2, ∏ / 3)
1 3 2 ( )
2 2
3 tan 3 1
极坐标与直角坐标的互化关系式: 设点M的直角坐标是 (x, y) 极坐标是 (ρ,θ)
C (5,0) E ( 3,3)
D (0,2)
π),(3, ) π 例3 已知两点(2,
求两点间的距离.
用余弦定理求 AB的长即可.
3
π 解:∠AOB =
6
B
A
2
推广: 在极坐标下,任意两点P ( 1 ,1 ), P2 ( 2 , 2 ) 1
o
x
之间的距离可总结如下:
2 PP2 12 2 2 1 2 cos(1 2 ) 1
如图:OM的长度为4, 4 请说出点M的极坐标的其 他表达式。 O X 思:这些极坐标之间有何异同? 极径相同,不同的是极角 思考:这些极角有何关系? 这些极角的始边相同,终边也相同。也 就是说它们是终边相同的角。
高中数学选修4-4 坐标系及参数方程

坐标系及参数方程
考点一
极坐标方程与直角坐标方程的互化
1.极坐标与直角坐标的互化条件 (1)极点与原点重合; (2)极轴与 x 轴正方向重合; (3)取相同的单位长度. 2.若把直角坐标化为极坐标,求极角 θ 时,应注意判断点 P 所在的象限(即 角 θ 的终边的位置),以便正确地求出角 θ.利用两种坐标的互化,可以把不熟悉 的问题转化为熟悉的问题.
1.平面直角坐标系中的伸缩变换 设点 P(x,y)是平面直角坐标系中的任意一点,在变换 x′=λxλ>0 φ: 的作用下,点 P(x,y)对应到点 P′(x′,y′),称 φ 为 y′=μyμ>0 平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 2.坐标系 (1)极坐标系的概念
在平面上取一个定点 O 叫作极点;自点 O 引一条射线 Ox 叫作极轴;再选 定一个长度单位、角度单位 (通常取弧度)及其正方向(通常取逆时针方向为正方 向),这样就建立了一个极坐标系. 设 M 是平面上任一点, 极点 O 与点 M 的距离|OM|叫作点 M 的极径, 记为 ρ; 以极轴 Ox 为始边,射线 OM 为终边的∠xOM 叫作点 M 的极角,记为 θ.有序数
6
坐标系及参数方程
在极坐标系中,判断曲线的形状,研究曲线的性质,最常用的方法是化极坐 标方程为直角坐标方程, 使不熟悉的问题转化为熟悉的问题. 对一些简单的直线、 圆的有关问题,也可直接用极坐标知识解决. 对点训练 ⊙O1 和⊙O2 的极坐标方程分别为 ρ=4cos θ,ρ=-4sin θ. (1)把⊙O1 和⊙O2 的极坐标方程化为直角坐标方程; (2)求经过⊙O1,⊙O2 交点的直线的直角坐标方程. [解] 以极点为原点,极轴为 x 轴正半轴建立平面直角坐标系,两坐标系中
选修4-4 1.2 极坐标系

X
这样就建立了一个极坐标系。
二、极坐标系内一点的极坐标的规定
对于平面上任意一点 M,用 表示线段OM的 长度,用 表示从OX到 OM 的角度, 叫做点M 的极径, 叫做点M的极 角,有序数对(,)就 O 叫做M的极坐标。
M
X
特别强调:表示线段OM的长度,即点M到 极点O的距离;表示从OX到OM的角度,即 以OX(极轴)为始边,OM 为终边的角。
思考:极坐标系中,点A的极坐标是(3, ) 6
11 (3, ) (1)点A关于极轴对称的点是_______________ 6 7 (3, ) (2)点A关于极点对称的点的极坐标是__________ 6 5 (3, ) (3)点A关于直线 = 的对称点的极坐标是_______ 6 2
( 3, 1)
化成极坐标.
( ) 解: ( 3 ) 1 2
2 2
1 3 tan 3 3 7 因为点在第三象限, 所以 6 7 因此, 点M的极坐标为( 2, ) 6
练习: 已知点的直角坐标, 求它们 的极坐标.
A ( 3, 3 )
B (1, 3 )
这个点如何用极坐标表示?
在直角坐标系中, 以原点作为极点, x轴的正半轴作为极轴, 并且两种坐标系中取相 同的长度单位
y
M (1, 3)
θ
O
x
点M的直角坐标为 (1, 3) 设点M的极坐标为(ρ,θ)
M ( 2, ∏ / 3) Nhomakorabea 1 3 2 ( )
2 2
3 tan 3 1
极坐标与直角坐标的互化关系式: 设点M的直角坐标是 (x, y) 极坐标是 (ρ,θ)
M
选修4-4 1.2 极坐标系

y x y , tan ( x 0) x
2 2 2
x=ρcosθ, y=ρsinθ
互化公式的三个前提条件:
1. 极点与直角坐标系的原点重合; 2. 极轴与直角坐标系的x轴的正半
轴重合; 3. 两种坐标系的单位长度相同.
例1. 将点M的极坐标
2 (5, ) 3
5 5 3 ) 所以, 点M的直角坐标为( , 2 2
从这向北 2000米。
请问:去菜 市场怎么走?
请分析上面这句话,他告诉了问路人 什么? 从 这 向 北 走 2 0 0 0 米 !
出发点
方向
距离
在生活中人们经常用方向和距离来 表示一点的位置。这种用方向和距离表 示平面上一点的位置的思想,就是极坐 标的基本思想。
一、极坐标系的建立:
在平面内取一个定点O,叫做极点。 引一条射线OX,叫做极轴。 再选定一个长度单位 和角度单位及它的正 方向(通常取逆时针 O 方向)。
[1]给定(,),就可以在极坐 标平面内确定唯一的一点M。 [2]给定平面上一点M,但却 有无数个极坐标与之对应。
原因在于:极角有无数个。
如果限定ρ>0,0≤θ<2π 那么除极点外,平面内的点和极坐标就可以一一 对应了.
M O (ρ,θ)… X
极坐标和直角坐标的互化
平面内的一个点的直角坐标是(1, 3 )
M
题组二:在极坐标系里描出下列各点
A(3, 0) 4 D(5, ) 3 5 G (6, ) 3 B(6, 2 ) 5 E (3, ) 6 C (3, ) 2 F (4, )
2
5 6
4
E F O
C A B X
4 3
[整理版]高中数学选修4—4(坐标系与参数方程)知识点总结
![[整理版]高中数学选修4—4(坐标系与参数方程)知识点总结](https://img.taocdn.com/s3/m/73936effb9f67c1cfad6195f312b3169a451eac1.png)
坐标系与参数方程 知识点1.平面直角坐标系中的坐标伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换(0):(0)x xy yλλϕμμ'=>⎧⎨'=>⎩ 的作用下,点P(x,y)对应到点(,)P x y ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系的概念(1)极坐标系如图所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系.(2)极坐标设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ.有序数对(,)ρθ叫做点M 的极坐标,记作(,)M ρθ.一般地,不作特殊说明时,我们认为0,ρ≥θ可取任意实数.特别地,当点M 在极点时,它的极坐标为(0, θ)(θ∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标(,)ρθ表示;同时,极坐标(,)ρθ表示的点也是唯一确定的.3.极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:(2)互化公式:设M 是坐标平面内任意一点,它的直角坐标是(,)x y ,极坐标是(,)ρθ(0ρ≥),于是极坐标与直角坐标的互化公式如表:在一般情况下,由tan θ确定角时,可根据点M 所在的象限最小正角.4.常见曲线的极坐标方程注:由于平面上点的极坐标的表示形式不唯一,即(,),(,2),(,),(,),ρθρπθρπθρπθ+-+--+都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程,ρθ=点(,)44M ππ可以表示为5(,2)(,2),444444ππππππππ+-或或(-)等多种形式,其中,只有(,)44ππ的极坐标满足方程ρθ=.二、参数方程1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标,x y 都是某个变数t 的函数()()x f t y g t =⎧⎨=⎩①,并且对于t 的每一个允许值,由方程组①所确定的点(,)M x y 都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数,x y 的变数t 叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数,x y 中的一个与参数t 的关系,例如()x f t =,把它代入普通方程,求出另一个变数与参数的关系()y g t =,那么()()x f t y g t =⎧⎨=⎩就是曲线的参数方程,在参数方程与普通方程的互化中,必须使,x y 的取值范围保持一致.注:普通方程化为参数方程,参数方程的形式不一定唯一。
选修4-4 1.2 极坐标系
题组一:说出下图中各点的极坐标
2
5 6
C E D O B A X
4
4 3
F
G
5 3
特别规定: 当M在极点时,它的 极坐标=0,可以取任意值。
想一想?
①平面上一点的极坐标是否唯一? ②若不唯一,那有多少种表示方法? ③坐标不唯一是由谁引起的?
④不同的极坐标是否可以写出统一表达式?
三、点的极坐标的表达式的研究
M
题组二:在极坐标系里描出下列各点
A(3, 0) 4 D(5, ) 3 5 G (6, ) 3 B(6, 2 ) 5 E (3, ) 6 C (3, ) 2 F (4, )
2
5 6
4
E F O
C A B X
4 3
D
G
5 3
四、极坐标系下点与它的极坐标的 对应情况 P
y x y , tan ( x 0) x
2 2 2
x=ρcosθ, y=ρsinθ
互化公式的三个前提条件:
1. 极点与直角坐标系的原点重合; 2. 极轴与直角坐标系的x轴的正半
轴重合; 3. 两种坐标系的单位长度相同.
例1. 将点M的极坐标
2 (5, ) 3
5 5 3 ) 所以, 点M的直角坐标为( , 2 2
对称性
( , )关于极轴的对称点为 ,2 ) (
关于极点的对称点为 , ) (
关于过极点且垂直与极 轴的直线的对称点 为( , )
小结
[1]建立一个极坐标系需要哪些要素
极点;极轴;长度单位;角度单位和 它的正方向。 [2]极坐标系内一点的极坐标有多少种 表达式? 无数,极角有无数个。 [3]一点的极坐标有否统一的表达式?
高中数学选修4-4《直线的极坐标方程》
(4)原方程变形为ρ+ρsinθ=2, 所以 x 2 y 2 2 y, 所以 x2+y2=4 -4y+y2, 即 x2= -4(y -1), 它表示 顶点为(0 , 1), 开口向下的抛物线.
这类题多采用化生为熟的方法,即 常将极坐标方程化为普通方程,再 进行判断.
【变式练习1】曲线 0( 0), ( 0) 3 和 4所围成的面积.
4 5 3 2 9 3 5 2
在极坐标系中,求圆的极坐标方 程,常结合直角三角形的边角关 系.本题也可以先求圆的直角坐标 方程,然后化为极坐标方程.
【变式练习2】在极坐标系中,已知圆C的
圆心坐标为C (2, ),半径R 5,求圆C 3 的极坐标方程.
【解析】方法1:将圆心C (2, )化成直角坐标为 3 (1,3),半径R 5,故圆C的方程为( x 1) 2
2
坐标方程.
12 【解析】因为 2 2 , 3cos 4sin
2
所以3ρ2cos2θ+4ρ2sin2θ=12, 所以 3x2+4y2=12,
x2 y2 所以椭圆的直角坐标方程为 1 , 4 3
则其两准线的方程为 x=±4, 故两准线的极坐标方程为ρcosθ=±4.
掌握好极坐标和直角坐标的互化 公式是解本题的关键.
它表示倾斜角为150°,且过点(4,0)的直线. (2)原方程变形为ρ2(cos2θ-sin2θ)=3,所以x2 -y2=3, 它表示中心在原点,焦点在 x 轴上的等轴双曲 线.
(3)原方程变形为 x2+y2 -3x+6y -5=0, 它
3 表示圆心为 ( , 3) , 半径为 2
65 的圆. 2
选修4-4 1.2 极坐标系
化成直角坐标. 2 5 解: x 5 cos 3 2 2 5 3 y 5 sin 3 2
已知下列点的极坐标,求它们的直 角坐标。
A ( 3, ) 6 3 D ( , ) 2 4
B ( 2, ) 2
C (1, ) 2
3 E ( 2, ) 4
例2. 将点M的直角坐标
y x y , tan ( x 0) x
2 2 2
x=ρcosθ, y=ρsinθ
互化公式的三个前提条件:
1. 极点与直角坐标系的原点重合; 2. 极轴与直角坐标系的x轴的正半
轴重合; 3. 两种坐标系的单位长度相同.
例1. 将点M的极坐标
2 (5, ) 3
5 5 3 ) 所以, 点M的直角坐标为( , 2 2
M
题组二:在极坐标系里描出下列各点
A(3, 0) 4 D(5, ) 3 5 G (6, ) 3 B(6, 2 ) 5 E (3, ) 6 C (3, ) 2 F (4, )
2
5 6
4
E F O
C A B X
4 3
D
G
5 3
四、极坐标系下点与它的极坐标的 对应情况 P
这个点如何用极坐标表示?
在直角坐标系中, 以原点作为极点, x轴的正半轴作为极轴, 并且两种坐标系中取相 同的长度单位
y
M (1, 3)
θ
O
x
点M的直角坐标为 (1, 3) 设点M的极坐标为(ρ,θ)
M ( 2, ∏ / 3)
1 3 2 ( )
2 2
3 tan 3 1
极坐标与直角坐标的互化关系式: 设点M的直角坐标是 (x, y) 极坐标是 (ρ,θ)
选修4-4 1.2 极坐标系
题组一:说出下图中各点的极坐标
2
5 6
C E D O B A X
4
4 3
F
G
5 3
特别规定: 当M在极点时,它的 极坐标=0,可以取任意值。
想一想?
①平面上一点的极坐标是否唯一? ②若不唯一,那有多少种表示方法? ③坐标不唯一是由谁引起的?
④不同的极坐标是否可以写出统一表达式?
三、点的极坐标的表达式的研究
X
这样就建立了一个极坐标系。
二、极坐标系内一点的极坐标的规定
对于平面上任意一点 M,用 表示线段OM的 长度,用 表示从OX到 OM 的角度, 叫做点M 的极径, 叫做点M的极 角,有序数对(,)就 O 叫做M的极坐标。
M
X
特别强调:表示线段OM的长度,即点M到 极点O的距离;表示从OX到OM的角度,即 以OX(极轴)为始边,OM 为终边的角。
[1]给定(,),就可以在极坐 标平面内确定唯一的一点M。 [2]给定平面上一点M,但却 有无数个极坐标与之对应。
原因在于:极角有无数个。
如果限定ρ>0,0≤θ<2π 那么除极点外,平面内的点和极坐标就可以一一 对应了.
M O (ρ,θ)… X
极坐标和直角坐标的互化
平面内的一个点的直角坐标是(1, 3 )
M
题组二:在极坐标系里描出下列各点
A(3, 0) 4 D(5, ) 3 5 G (6, ) 3 B(6, 2 ) 5 E (3, ) 6 C (3, ) 2 F (4, )
2
5 6
4
E F O
C A B X
4 3
D
G
5 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
极坐标与三维空间
极坐标系可被扩展到三维空间中,形成圆柱坐标系和球形坐标系两个不同的坐标系。
圆柱坐标系
与将直角坐标系扩展为三维的方法相似,圆柱坐
标系是在二维极坐标系的基础上增添了第三条
用于测量高于平面的点的高度的坐标所构成的。
这第三条坐标通常表示为h。
所以圆柱坐标表示
为(r, θ, h)。
通过以下公式,圆柱坐标可用直角坐标表达:
图柱坐标上的两点
球坐标系
球坐标系也可以运用坐标(ρ, φ, θ)扩展为三
维,其中ρ是距离球心的距离,φ是距离z轴
的角度(称作余纬度或顶角,角度从0到180°),
θ是距离x轴的角度(与极坐标中一样)。
这个
坐标系被称作球坐标系,与用于地球的经度和
纬度相似,纬度就是余角φ,取决于δ=90°-
φ,经度可通过l=θ-180°算得。
通过以下公式,球坐标可用直角坐标表达:
球坐标表示的一个点P。