数学建模-微积分模型

合集下载

数学建模的常用方法上

数学建模的常用方法上

VS
积分方程建模是利用积分性质和积分方程研究实际问题的方法。
详细描述
积分方程建模是通过建立积分方程来描述实际问题中量的累积关系。积分方程能够反映自变量和因变量之间的整体关系,适用于研究具有累积效应的量之间的关系。例如,物理学中的波动、统计学中的概率分布等都可以通过积分方程建模来描述。
总结词
积分方程建模
02
CHAPTER
线性代数建模法
矩阵是数学建模中的重要工具,用于表示和操作线性关系。
矩阵建模主要用于解决线性关系的问题,如线性方程组、线性变换等。通过矩阵的运算,可以方便地描述和求解线性问题,简化计算过程。
矩阵建模
详细描述
总结词
总结词
向量是一维数组,用于表示具有方向和大小的量。
详细描述
向量建模常用于描述物理现象和工程问题,如力、速度、加速度等。通过向量的运算,可以方便地描述和求解与方向和大小有关的量。
详细描述
非线性规划建模是线性规划建模的扩展,用于解决目标函数或约束条件为非线性的优化问题。
非线性规划建模涉及的函数形式更为复杂,可能包含平方、立方、对数等非线性项。求解非线性规划问题的方法包括梯度法、牛顿法、拟牛顿法等,这些方法通过迭代的方式逐步逼近最优解。
总结词
详细描述
非线性规划建模
总结词
动态规划建模是一种数学方法,用于解决具有重叠子问题和最优子结构特性的优化问题。
数学建模的常用方法
目录
微积分建模法 线性代数建模法 概率论与数理统计建模法 离散数学建模法 优化建模法
01
CHAPTER
微积分建模法
总结词
导数建模是利用导数性质和函数变化率研究实际问题的方法。
详细描述
导数建模是通过分析函数在某一点的切线斜率或函数在某区间的变化率来描述实际问题中量的变化和相互关系。例如,经济学中的边际分析、物理学中的速度和加速度等都可以通过导数建模来描述。

数学建模重要知识点总结

数学建模重要知识点总结

数学建模重要知识点总结一、微积分微积分是数学建模中最重要的数学工具之一,它包括微分和积分两大部分。

微分是求函数的导数,用于描述函数的变化率和曲线的切线。

而积分则是求函数的不定积分或定积分,用于描述函数的面积、体积等性质。

在数学建模中,微积分可以用于建立问题的数学模型,求解微分方程和积分方程,对函数进行优化等。

例如,在物理建模中,我们经常会用到微积分来描述物体的运动、速度和加速度等。

在经济学建模中,微积分可以用来描述供求关系、利润最大化等问题。

二、线性代数线性代数是研究向量空间、线性映射和矩阵等数学对象的学科。

在数学建模中,线性代数可以用于描述多维空间中的几何关系、解线性方程组、求解最小二乘问题等。

例如,在计算机图形学中,线性代数可以用来描述和变换三维物体的位置和姿态。

在统计学建模中,线性代数可以用来对数据进行降维、拟合线性模型等。

三、概率论与数理统计概率论与数理统计是研究随机现象的规律性和统计规律的学科。

在数学建模中,概率论与数理统计可以用于描述随机现象的概率分布、推断总体参数、假设检验等。

例如,在风险管理建模中,我们经常会用到概率论与数理统计来描述风险的分布和进行风险评估。

在机器学习建模中,概率论与数理统计可以用来对数据进行建模和推断。

四、数学优化数学优化是研究如何在给定约束条件下,找到使目标函数取得极值的方法和理论。

在数学建模中,数学优化可以用来对问题进行建模和求解。

例如,在生产调度问题中,我们可以用数学优化来寻找最优的生产计划;在投资组合优化中,我们可以用数学优化来构建最优的资产配置。

五、微分方程微分方程是研究未知函数及其导数之间关系的方程。

在数学建模中,微分方程可以用来描述系统的动力学行为、生物种群的增长规律、热传导过程等。

我们可以通过对微分方程进行数值求解、解析求解或者定性分析,来获得系统的行为特征。

六、离散数学离散数学是研究离散结构及其性质的数学学科,包括集合论、图论、逻辑和代数等内容。

数学建模-微积分模型

数学建模-微积分模型
模型假设
需要对烧毁森林的损失费、救火费及火势蔓延程度的形式做出假设。
(1)损失费与森林烧毁面
积 成正比,比例系数为 , 即烧毁单位面积森林的损失费,取决于森林的疏密程度和珍贵程度。
对于 ,火势蔓延程度 与时间t成正比,比例系数 称为火势蔓延速度。(注:对这个假设我们作一些说明,火势以着火点为中心,以均匀速度向四周呈圆形蔓延,所以蔓延的半径与时间成正比,因为烧毁森林的面积与过火区域的半径平方成正比,从而火势蔓延速度与时间成正比)。
从起跳到落地的时间为 ,人在雨中奔跑的总距离为 ,不妨假设 为 的整倍数。由物理学的抛体运动定律可得 。
模型建立
计算人在每个方向上的淋雨量:
对于垂直方向上,每一个小段的淋雨量为 。利用相对坐标系得到
时的垂直方向的速度为 ,这期间扫过的雨水体积
据此计算得到在垂直方向总的淋雨量为
(4.13)
从(4.13)式中可以看出, 关于水平方向的速度是单调减少的,但与垂直方向速度 无关。
(2)效用函数为
根据(4.10)式可以求得最优比例为
结果表明均衡状态下购买两种商品所用的资金的比例与价格无关,只与消费者对这两种商品的偏爱程度有关。
(3)效用函数为
根据(4.10)式可以求得最优比例为

结果表明均衡状态下购买两种商品所用的资金的比例,与商品价格比成反比,与消费者对这两种商品偏爱程度之比的平方成正比。
实际应用这个模型时, 都是已知常数, 由森林类型、消防人员素质等因素确定。
4.4消费者的选择
本节利用无差别曲线的概念讨论消费者的选择问题。如果一个消费者用一定数量的资金去购买两种商品,他应该怎样分配资金才会最满意呢?
记购买甲乙两种商品的数量分别为 ,当消费者占有它们时的满意程度,或者说给消费者带来的效用是 的函数,记作 ,经济学中称之为效用函数。 的图形就是无差别曲线族,如图4.4所示。类似于第二章中无差别曲线的作法,可以作出效用函数族,它们是一族单调下降、下凸、不相交的曲线。在每一条曲线上,对于不同的点,效用函数值不变,即满意程度不变。而随着曲线向右上方移动, 的值增加。曲线下凸的具体形状则反映了消费者对甲乙两种商品的偏爱情况。这里假设消费者的效用函数 ,即无差别曲线族已经完全确定了。

微积分方法建模1飞机的降落曲线--数学建模案例分析

微积分方法建模1飞机的降落曲线--数学建模案例分析

第二章 微积分方法建模现实对象涉及的变量多是连续的,所以建立连续模型是很自然的,而连续模型一般可以用微积分为工具求解,得到的解析解便于进行理论分析,于是有些离散对象,如人口的演变过程,也可以构造连续模型。

当我们描述实际对象的某些特性随时间(或空间)而演变的过程,分析它的变化规律,预测它的未来性态时,通常要建立对象的动态模型。

建模时首先要根据建模目的和对问题的具体分析作出简化假设,然后按照对象内在的或可以类比的其它对象的规律列出微分方程,求出方程的解并将结果翻译回实际对象,就可以进行描述、分析或预测了。

§1 飞机的降落曲线根据经验,一架水平飞行的飞机,其降落曲线是一条三次抛物线(如图)。

在整个降落过程中,飞机的水平速度保持为常数u ,出于安全考虑,飞机垂直加速度的最大绝对值不得超过10/g (这里g 是重力加速度)。

已知飞机飞行高度h (飞临机场上空时),要在跑道上O 点着陆,应找出开始下降点0x 所能允许的最小值。

一、 确定飞机降落曲线的方程设飞机的降落曲线为d cx bx ax y +++=23由题设有 h x y y ==)(,0)0(0。

由于曲线是光滑的,所以y(x)还要满足0)(,0)0(0='='x y y 。

将上述的四个条件代入y 的 表达式⎪⎪⎩⎪⎪⎨⎧=++='=+++==='==023)()(0)0(0)0(020*******c bx ax x y hd cx bx ax x y c y d y 得 ,0,0,3,22030===-=d c x h b x ha飞机的降落曲线为 )32(23020x x x x h y --= 二、 找出最佳着陆点飞机的垂直速度是y 关于时间t 的导数,故dt dx x x x x h dt dy )66(2020--= 其中dtdx 是飞机的水平速度,,u dt dx = 因此 )(60220x x x x hu dt dy --= 垂直加速度为)12(6)12(6020202022--=--=x x x hu dt dx x x x hu dt y d 记 ,)(22dt y d x a =则126)(0202-=x x x hu x a ,[]0,0x x ∈ 因此,垂直加速度的最大绝对值为 2026)(max x hu x a = []0,0x x ∈设计要求 106202g x hu ≤,所以gh u x 600⋅≥ (允许的最小值) 例如:小时/540km u =,m h 1000=,则0x 应满足:)(117378.9100060360010005400m x =⨯⨯≥ 即飞机所需的降落距离不得小于11737米。

数学建模思想融入微积分

数学建模思想融入微积分
数学建模思想融入微积分
目录
数学建模概述 微积分基础知识 数学建模在微积分中的应用 案例分析 数学建模思想在微积分教学中的实践与思考
01
数学建模概述
数学建模的定义
数学建模:运用数学语言、符号、公式和理论对现实问题进行抽象和简化,以解决实际问题的方法和过程。
数学建模是一种跨学科的综合性技术,涉及数学、计算机科学、工程学等多个领域。
详细描述
无穷小和极限在建模中有着广泛的应用。例如,在物理学中,瞬时速度可以看作是平均速度的极限,而瞬时加速度则可以看作是平均加速度的无穷小变化量。在经济学中,无穷小和极限的概念也常用于描述经济变量的变化趋势和规律。
总结词
无穷小与极限在建模中的应用案例
05
数学建模思想在微积分教学中的实践与思考
强调概念背景
对实际问题进行深入分析,明确问题的背景、条件和目标。
问题分析
根据问题分析的结果,选择适当的数学方法和工具,建立数学模型。
建立模型
运用数学方法和计算机技术,求解建立的数学模型。
求解模型
对求解结果进行评估,并根据实际情况对模型进行优化和改进。
模型评估与优化
数学建模的基本步骤
02
微积分基础知识
03
导数与微分的应用
定积分与不定积分
定积分是积分的一种特殊形式,用于计算具体几何量或物理量;不定积分则用于求函数的原函数或反导数。
积分的应用
积分在解决实际问题中有着广泛的应用,如计算旋转体的体积、曲线的长度等。
积分
级数概念
级数是无穷多个数的和,可以用来表示连续变化的过程或现象。
无穷小的概念
无穷小是数学中的一个重要概念,用于描述函数在某点附近的变化趋势。

数学建模简介及数学建模常用方法

数学建模简介及数学建模常用方法
根据所作的假设以及事物之间的联系,利用适当的数学工具去刻画各 变量之间的关系,建立相应的数学结构 —— 即建立数学模型。把问题化为 数学问题。要注意尽量采取简单的数学工具,因为简单的数学模型往往更 能反映事物的本质,而且也容易使更多的人掌握和使用。 4 .模型求解。
利用已知的数学方法来求解上一步所得到的数学问题,这时往往还要 做出进一步的简化或假设。在难以得出解析解时,也应当借助计算机求出 数值解。 5 .模型分析。
数学建模是利用数学方法解决实际问题的一种实践。即通过抽象、简
化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起
数学模型,然后运用先进的数学方法及计算机技术进行求解。简而言之
,
建立数学模型的这个过程就称为数学建模。
模型是客观实体有关属性的模
至于它是否真的能飞则无关紧要;
拟。陈列在橱窗中
然而参加航模比赛的飞机模
的飞机模型外形应
型则全然不同, 如果飞行性能
当像真正的飞机,
不佳, 外形再像飞机, 也不能
算是一个好的模型。模型不一定是 对实体的一种仿照,也可以是对实 体的某些基本属性的抽象,例如, 一张地质图并不需要用实物来模 拟,它可以用抽象的符号、文字和 数字来反映出该地区的地质结构。 数学模型也是一种模拟,是用数学 符号、数学式子、程序、图形等对 实际课题本质属性的抽象而又简洁 的刻画,它或能解释某些客观现象, 或能预测未来的发展规律,或能为 控制某一现象的发展提供某种意义 下的最优策略或较好策略。数学模 型一般并非现实问题的直接翻版, 它的建立常常既需要人们对现实问 题深入细微的观察和分析,又需要 人们灵活巧妙地利用各种数学知 识。这种应用知识从实际课题中抽 象、提炼出数学模型的过程就称为 数学建模。 实际问题中有许多因素, 在建立数学模型时你不可能、也没 有必要把它们毫无遗漏地全部加以

高等数学模型—微积分模型(数学建模课件)

度等)
2、假设易拉罐是一个正圆柱体,什么是它的最优设计?其结果是
否可以合理地说明你们所测量地易拉罐地形状和尺寸。
二、数据测量
罐直径、罐高、罐壁厚、顶盖厚、圆台高、
顶盖直径、圆柱体高、罐底厚、罐内体积等。
该如何测量?
二、数据测量
1、直接测量
①用软皮尺环绕易拉罐相关部位一圈
(罐桶直径、罐
测得周长。
高、圆台高、顶
速度、出手角度和出手高度)
作定性和定量研究并得到明
确结论。
森林救火问题
微积分模型
知识点
一、问题的提出
二、模型分析与假设
三、模型建立与求解
四、模型应用
一、问题的提出
一、问题的提出
森林失火了!消防站接到火警后,立即决定派消防队员前去救火。队
员多,火被扑灭的快,森林损失小,但救援费用大;队员少,救援费用小,
118.0 123.5 136.5 142.0 146.0 150.0 157.0 158.0];
y1=[44 45 47 50 50 38 30 30 34 36 34 41 45 46 43 37 33 28 32 65 55 54 52 50 66 66 68];
y2=[44 59 70 72 93 100 110 110 110 117 118 116 118 118 121 124 121 121 121 122 116 83 81 82 86
四、模型建立与求解
一、问题的提出
运动员单手托住铅球,在投掷圆内将铅球掷出并使铅
球落入有效区内,以铅球投掷的远度评定运动员的成绩。
问题:
建模分析如何使铅球投掷的最远?
二、问题分析
• 铅球投掷中,影响投掷距离的因素有哪些?

数学建模方法知识点总结

数学建模方法知识点总结一、问题分析和建模1.问题分析数学建模的第一步是对实际问题进行分析和理解。

这包括确定问题的背景和范围,理解问题的关键要素,分析问题的复杂程度和不确定性,并确定问题的数学建模的可行性和必要性。

在问题分析阶段,需要充分调研、分析和理解现实世界中的问题,并准确把握问题的本质和特点,为建模和求解奠定基础。

2.建模的基本步骤建模的基本步骤包括确定问题的数学模型的类型,选择合适的数学模型,建立数学模型,进行模型的分析和求解,验证模型的有效性和适用性。

在建模的过程中,需要充分考虑问题的实际背景和要求,选择合适的数学工具和方法,保证模型的准确性和实用性。

3.模型假设在建立数学模型时,需要明确模型的假设,包括输入变量和输出变量,模型的非线性程度,问题的约束条件等。

模型假设的准确性和合理性对于模型的可靠性和有效性至关重要。

二、数学建模的数学方法1.微积分微积分是数学建模中最基本和最常用的工具之一,包括导数、积分、微分方程等。

在建立数学模型和求解问题时,常常涉及到对函数的求导和积分,微分方程的建立和求解等。

2.线性代数线性代数是数学建模中重要的数学工具,包括矩阵和向量的理论和方法,线性方程组的求解,特征值和特征向量的计算等。

在建模和求解问题时,常常需要用到线性代数的知识和方法。

3.概率论与统计学概率论和统计学是数学建模中涉及到的另一个重要领域,包括概率分布,随机变量,样本统计量,假设检验等。

在建立数学模型和分析问题时,需要考虑问题的不确定性和随机性,因此概率论和统计学的知识和方法非常重要。

4.优化方法优化方法是数学建模中用于求解最优化问题的重要工具,包括线性规划、非线性规划、整数规划等。

在建模和求解问题时,常常需要考虑优化问题,选择合适的优化方法进行求解。

5.离散数学与图论离散数学和图论是数学建模中用于处理离散结构和关系的重要工具,包括图的表示和遍历,图的匹配和覆盖,图的着色和路径等。

在建模和求解问题时,常常需要用到离散数学和图论的知识和方法。

微积分的数学模型解析

微积分的数学模型解析微积分,是数学的一个分支,它是构建现代科学的基础之一。

微积分是研究自然界各种现象的基础,几乎所有科学的研究都需要用到微积分的方法。

微积分的核心是求解导数和积分,通过导数和积分的作用,可以建立不同的数学模型,此时微积分就将不同的问题转化为数学问题,使问题的求解变得简单明了。

微积分的数学模型解析,虽然是微积分的一个难点,但是却是非常重要的。

在现实生活中,经常会遇到各种需要建立数学模型的问题,如经济、发展、生物、环境等,这些问题都需要微积分的数学模型进行分析和解决。

下面,就来详细探讨微积分的数学模型解析。

一、导数的数学模型解析导数是微积分中的一个重要概念,具有解决许多问题的力量。

导数包含了物理学、工程学、生物学、经济学等众多学科中的各种数学模型。

导数可以体现一个量随着另一个量的改变所带来的变化率。

导数的推导过程中涉及到极限,而极限则是微积分的核心概念之一。

在数学模型解析过程中,常常需要建立函数的导数模型。

假设函数f(x)表示某一变量随着另一变量的变化而发生变化的规律,那么f(x)的导数f'(x)就是一个新的变量随着原变量x的改变而发生变化的规律。

这里需要注意的是,导数f'(x)并不是函数的直接表示,而是函数变化的速度,也就是函数斜率的大小。

导数的数学模型解析,有助于解决许多现实生活中的问题。

例如,对于销售某种商品的商家,可以通过建立该商品的销售量与时间的导数模型,来分析该商品在不同时间下销售情况的变化趋势,并为制定销售策略提供支持。

二、积分的数学模型解析积分是微积分中的另一个核心概念,也有着非常重要的应用价值。

积分可以将一个函数曲线下的面积求出,因此,在物理学、化学、统计学、经济学等学科领域中,经常会用到积分的方法。

在数学模型解析过程中,建立函数的积分模型需要注意一些要点。

首先,需要选择合适的积分方法,例如,定积分、不定积分、面积积分等。

其次,需要确定积分区间,即对函数需要积分的范围进行明确。

微积分在实际问题中的数学建模方法

微积分在实际问题中的数学建模方法微积分是数学中重要的分支,它研究函数的变化率和积分的性质。

微积分为解决实际问题提供了强有力的数学工具和建模方法。

在实际问题中,微积分的数学建模方法可以帮助我们理解和分析问题,并通过数学计算得到解决方案。

微积分在实际问题中的数学建模方法包括函数建模、极限分析、导数分析、积分分析等。

下面将对每个方法进行详细介绍,并给出实际问题的例子以说明其应用。

函数建模是微积分中最基础的建模方法之一,它可以将实际问题转化为数学函数的形式。

通过观察问题的特征和规律,我们可以根据实际情况选择适当的函数模型,并确定模型的参数。

例如,在人口增长问题中,我们可以使用指数函数来建模人口的增长趋势,通过调整指数函数的系数来拟合实际数据,进而预测未来的人口变化。

极限分析是微积分中重要的思维工具之一,在实际问题中广泛应用。

通过对问题中的量进行极限分析,我们可以推导出问题的特性和规律。

例如,在力学中,我们可以利用极限分析来推导物体的速度和加速度之间的关系,进而解决运动问题。

在经济学中,极限分析可以帮助我们理解市场供需关系的演变过程,从而预测价格的变化趋势。

导数分析是微积分中常用的分析方法之一,它可以帮助我们理解函数的变化趋势和函数的局部特性。

通过求导数,我们可以得到函数的斜率和变化率,进而分析问题中的变化规律。

例如,在物理学中,通过对位移函数求导数,我们可以得到速度函数;再对速度函数求导数,我们可以得到加速度函数。

这种导数分析可以帮助我们理解物体运动的过程和规律。

积分分析是微积分中重要的计算方法之一,它可以帮助我们计算函数的面积、体积和曲线的长度等。

通过对问题中的量进行积分,我们可以得到问题的定量解决方法。

例如,在物理学中,通过对力的函数进行积分,我们可以计算出力对物体所做的功;再通过对功的函数进行积分,我们可以计算出物体的势能变化。

这种积分分析可以帮助我们计算物体的能量转换和储存情况。

综上所述,微积分在实际问题中的数学建模方法可以帮助我们理解问题、分析问题并得到解决方案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实际应用这个模型时, 都是已知常数, 由森林类型、消防人员素质等因素确定。
4.4消费者的选择
本节利用无差别曲线的概念讨论消费者的选择问题。如果一个消费者用一定数量的资金去购买两种商品,他应该怎样分配资金才会最满意呢?
记购买甲乙两种商品的数量分别为 ,当消费者占有它们时的满意程度,或者说给消费者带来的效用是 的函数,记作 ,经济学中称之为效用函数。 的图形就是无差别曲线族,如图4.4所示。类似于第二章中无差别曲线的作法,可以作出效用函数族,它们是一族单调下降、下凸、不相交的曲线。在每一条曲线上,对于不同的点,效用函数值不变,即满意程度不变。而随着曲线向右上方移动, 的值增加。曲线下凸的具体形状则反映了消费者对甲乙两种商品的偏爱情况。这里假设消费者的效用函数 ,即无差别曲线族已经完全确定了。
经济学中 称为边际效用,即商品购买量增加1单位时效用函数的增量。(4.10)式表明,消费者均衡状态在两种商品的边际效用之比正好等于价格之比时达到。从以上的讨论可以看出,建立消费者均衡模型的关键是确定效用函数 。构造效用函数时应注意到它必须满足如下的条件:
条件A:
所确定的一元函数 是单调递减的,且曲线是呈下凸的。
(3)每隔T天订货Q件,允许缺货,每天每件小家电缺货费为c3。 缺货时存贮量q看作负值, 的图形如图4.2,货物在 时送完。
一个供货周期 内的总费用包括:订货费 ,存贮费 ,缺货费 ,借助图4.2可以得到
一个周期总费用为
每天的平均费用
(4.4)
利用微分法,令
可以求出最优的 值为
(4.5)

通过与不允许缺货的模型相比较得到
在这个模型的基础上可以讨论当某种商品的价格改变,或者消费者购买商品的总资金改变时均衡状态的改变情况。
4.5雨中行走模型
下雨天忘记带伞总是件不愉快的事,因为你往往不得不硬着头皮跑回家,弄得一身湿。怎样才能在跑动中少淋雨,自然是一件非常重要的事,本节试图从定性的角度,分析奔跑速度与淋雨量的关系。
淋雨量与人的形体有关,而人体是不规则的立体形状,因此为了计算淋雨量,有必要对人体形状做些假设。为了简化计算,我们先给出几个相关的假设。
(4.12)
通常雨水并非垂直下落的,我们将雨水的速度向量分解为垂直速度和水平速度,不妨增加假设:
(2)雨水的垂直速度为 ,水平速度为 。
雨中的人在不停的奔跑,每跨出一步(从一脚起跳到落地),其重心轨迹可近似为一个抛物线轨迹,因此人在雨中奔跑的重心可视为一系列全等的抛物线,据此,我们给出假设:
(2)每个抛物线的长度为 ,起跳时垂直速度与水平速度分别记为 ,
(2)效用函数为
根据(4.10)式可以求得最优比例为
结果表明均衡状态下购买两种商品所用的资金的比例与价格无关,只与消费者对这两种商品的偏爱程度有关。
(3)效用函数为
根据(4.10)式可以求得最优比例为

结果表明均衡状态下购买两种商品所用的资金的比例,与商品价格比成反比,与消费者对这两种商品偏爱程度之比的平方成正比。
如果日需求为100元,一次订货费用为5000元,每件电器每天的贮存费1元,每件小家电每天的缺货费为0.1元,请给出最优结果。
与不允许缺货情况不同的是,对于允许缺货的情况,缺货时因失去销售机会而使利润减少,减少的利润可以看作为因缺货而付出的费用,称为缺货费。于是这个模型的第(1)、(2)条假设与不允许缺货的模型相同,除此之外,增加假设
模型假设
(1)人体的外表面为一长方体(见图4.5)在三维坐标系中,人体外表面相对于雨水的运动有三个方向,由物理学中的运动独立性原理可知,这三个方向上的运动彼此独立,互不干扰,可以分别讨论。不妨设人在三个方向上相对于雨水的速度为 ,并让体表分别在垂直于这三个方向的平面上作投影,投影面积分别记为 。通过等积原理,将这三者拼合成三个相邻表面。
条件A是无差别曲线族 的一般特性,这个条件可以用下面更一般的条件代替。
条件B:

在条件B中,第一、第二两个式子表示,固定某一个商品购买量,效用函数值随着另一个商品的购买量的增加而增加; 表示,当 占有量较小时,增加 引起的效用函数值的增加应大于 占有量较大时增加 引起的效用函数值的增加;最后一个不等式的含义是,当 占有量较大时增加 引起效用函数值的增加应大于 占有量较少时增加 引起效用函数值的增加。仔细分析可以知道,这些条件与实际都是相符的。也可以验证条件B成立时,条件A一定成立。
这是二元函数求条件极值问题,用乘子法不难得到最优解应满足
(4.10)
当效用函数 给定后,由(4.10)式即可确定最优比例 。
上述问题也可用图形法求解。约束条件(4.9)在图4.4中是一条直线,此直线必与无差别曲线族中的某一条相切(见图4.4中的Q点),则 的最优值必在切点 处取得。
图解法的结果与(4.10)式是一致的。因为在切点 处直线与曲线的斜率相同,直线的斜率为 ,曲线的斜率为 ,在 点,利用相切条件就得到(4.10)式。
将所给的数据代入(4.6)式得到 元。
4.3森林救火模型
本节讨论森林救火问题。森林失火了,消防站接到报警后派多少消防队员前去救火呢?队员派多了,森林的损失小,但是救火的开支增加了;队员派少了,森林的损失大,救火的开支相应减小。所以需要综合考虑森林损失和救火队员开支之间的关系,以总费用最小来确定派出队员的多少。
设某人在雨中奔跑了 时间,根据等效原理,人体外表面在三个方向上扫过的体积分别为 ,人体扫过的总体积为
(4.11)
计算淋雨量,需要先弄清楚雨水的运动情况。雨水可以视为以一定速度运动且在空间分布均匀的流体,不妨设其质量分布系数为 。当人淋雨时,就普通人而言,看到的只是雨水纷纷而下。但若换一个角度,建立相对直角坐标系,将雨水视为静止的,那么人就在相对雨水而动了。形象地说,当雨水被视为静止的,它便和空间保持位置不变,而人则在静止的雨水中穿梭。显然,人的这种运动是相对雨水而言的。而且人在穿梭过程中,外表面不断地扫过一定的空间。根据以上分析,我们可以发现,人的淋雨量
先确定 的形式,研究 比 更直接和方便。 是单位时间烧毁森林的面积,取决于火势的强弱程度,称为火势蔓延程度。在消防队员到达之前,即 ,火势越来越大,即 随t的增加而增加;开始救火后,即 ,如果消防队员救火能力充分强,火势会逐渐减小,即 逐渐减小,且当 时, 。
救火开支可分两部分:一部分是灭火设备的消耗、灭火人员的开支等费用,这笔费用与队员人数及灭火所用的时间有关;另一部分是运送队员和设备等的一次性支出,只与队员人数有关。
(4.6)
显然 ,即允许缺货时订货周期可以长一些,每次可以少订一些货。(4.6)式表明,缺货费 越大, 值越小, 与 越接近,这与实际是相符的,因为 越大,意味着因缺货造成的损失越大,所以应该尽量避免缺货,当 时, ,于是 。这个结果是合理的,因为缺货费充分大,造成的缺货损失也充分大,所以不允许缺货。
从问题中可以看出,总费用包括两方面,烧毁森林的损失,派出救火队员的开支。烧毁森林的损失费通常正比于烧毁森林的面积,而烧毁森林的面积与失火的时间、灭火的时间有关,灭火时间又取决于消防队员数量,队员越多灭火越快。通常救火开支不仅与队员人数有关,而且与队员救火时间的长短也有关。记失火时刻为 ,开始救火时刻为 ,火被熄灭的时刻为 。设t时刻烧毁森林的面积为 ,则造成损失的森林烧毁的面积为 。下面我们设法确定各项费用。
设甲乙两种商品的单价分别为 元,消费者有资金s元。当消费者用这些钱买这两种商品时所作的选择,即分别用多少钱买甲和乙,应该使效用函数 达到最大,即达到最大的满意度。经济学上称这种最优状态为消费者均衡。
当消费者购买两种商品量为 时,他用的钱分别为 和 ,于是问题归结为在条件
(4.9)
下求比例 ,使效用函数达到最大。
从起跳到落地的时间为 ,人在雨中奔跑的总距离为 ,不妨假设 为 的整倍数。由物理学的抛体运动定律可得 。
模型建立
计算人在每个方向上的淋雨量:
对于垂直方向上,每一个小段的淋雨量为 。利用相对坐标系得到
时的垂直方向的速度为 ,这期间扫过的雨水体积
据此计算得到在垂直方向总的淋雨量为
(4.13)
从(4.13)式中可以看出, 关于水平方向的速度是单调减少的,但与垂直方向速度 无关。
记 时, 。烧毁森林面积
正好是图中三角形的面积,显然有
而且
因此
根据条件(1)、(4)得到,森林烧毁的损失费为 ,救火费为 据此计算得到救火总费用为
(4.7)
问题归结为求x使C(x)达到最小。令
得到最优的派出队员人数为
(4.8)
模型解释
(4.8)式包含两项,后一项是能够将火灾扑灭的最低应派出的队员人数,前一项与相关的参数有关,它的含义是从优化的角度来看:当救火队员的灭火速度 和救火费用系数 增大时,派出的队员数应该减少;当火势蔓延速度 、开始救火时的火势 以及损失费用系数 增加时,派出的队员人数也应该增加。这些结果与实际都是相符的。
下面来分析几个常用效用函数的均衡状态。
(1)效用函数为
根据(4.10)式可以求得最优比例为
结果表明均衡状态下购买两种商品所用的资金的比例,与商品价格比的平方根成正比。同时与效用函数中的参数 也有关,参数 分别表示消费者对两种商品的偏爱程度,于是可以通过调整这两个参数来改变消费者对两种商品的爱好倾向,或者说可以改变效用函数族的具体形状。
第四章微积分模型
今天人们不论从事什么活动都讲究高效益,即希望所采取的策略使某个或某些指标达到最优。商店订货要使订货、存贮等费用最小,体育比赛运动员要创造最好的成绩,工程设计要追求最佳方案。普遍存在的优化问题经常成为人们研究的对象,建立这类问题的模型,我们称为优化模型。
建立优化模型首先要确定所关心的优化指标的数量描述,然后构造包括这个指标及各种限制条件的模型,通过模型求解给出达到优化指标的所谓策略。本章仅考虑定常情况(即所给的策略不随时间改变)。
(3)派出Байду номын сангаас防队员x名,开始救火以后,火势蔓延速度降为 ,其中 称为每个队员的平均救火速度,显然必须 ,否则无法灭火。
相关文档
最新文档