数学归纳法证明不等式的步骤数学归纳法两种形式适用范围

合集下载

人教版高中数学选择性必修第二册4.4 数学归纳法(教学课件)

人教版高中数学选择性必修第二册4.4 数学归纳法(教学课件)
分析:该问题中涉及两个字母 x 和 n,x 是正实数,n 是大于 1 的正整数. 一种思路是不求和,而直接通过 n 取特殊值比较 Sn 与 n 的大小关系,并作出猜想; 另一种思路是先由等比数列的求和公式求出 Sn ,再通过 n 取特殊值比较 Sn 与 n 的 大小关系后作出猜想. 两种做法都必须用数学归纳法证明得到的猜想.
A.命题对所有正整数都成立 B.命题对小于 n0 的正整数不成立,对大于或等于 n0 的正整数都成立 C.命题对小于 n0 的正整数成立与否不能确定,对大于或等于 n0 的正整数都成立 D.以上说法都不正确
答案:C
解析:由已知可得 n n0 n0 N* 时命题成立,则有 n n0 1 时命题成立,
证明:(1)当 n 1时,左边 a1 ,右边 a1 0 d a1 ,①式成立. (2)假设当 n k(k N ) 时,①式成立,即 ak a1 (k 1)d , 根据等差数列的定义,有 ak1 ak d , 于是 ak1 ak d [a1 (k 1)d] d a1 [(k 1) 1]d a1 [(k 1) 1]d , 即当 n k 1 时,①式也成立. 由(1)(2)可知,①式对任何 n N 都成立.
2 A. k(k 2)
1 B. k(k 1)
1 C. (k 1)( k 2)
2 D. (k 1)(k 2)
答案:D
解析:当 n k 时,假设成立的等式为1 1 1
1
2k ,
12 123
1 2 3 k k 1
当 n k 1 时,要证明的等式为1 1 1
1
12 123
123 k
x
0
,可得 S3
3
.
由此猜想,当 x 0 , n N* ,且 n 1时,都有 Sn n .

不等式证明的常用方法

不等式证明的常用方法

不等式证明的常用方法不等式是高中数学的重要内容,它几乎涉及整个高中数学的各个部分,因此,通过不等式这条纽带,可把中学数学的各部分内容有机地联系起来.而不等式的证明是高中数学的一个难点,加之题型广泛、方法灵活、涉及面广,常受各类考试命题者的青睐,亦成为历届高考中的热点问题.本节通过一些实例,归纳一下不等式证明的常用方法和技巧. 一、比较法证明不等式的比较法分为作差比较与作商比较两类,基本思想是把难于比较的式子变成其差再与0比较,或其商再与 l 比较.当欲证的不等式两端是乘积形式或幂指数形式时,常采用作商比较法.【例1】若,0,0>>b a 证明:2121212212)()(b a ab b a +≥+证法一 (作差比较) 左边-右边)()()(33b a abb a +-+=abb a ab b ab a b a )())((+-+-+=abb ab a b a )2)((+-+=0))((2≥-+=abb a b a∴原不等式成立证法二 (作商比较)右边左边ba ab b a ++=33)()()())((b a ab b ab a b a ++-+=abb ab a )(+-=12=-≥ababab∴原不等式成立.点评 用比较法证明不等式,一般要经历作差(或作商)、变形、判断三个步骤.变形的主要手段是通分、因式分解或配方;此外,在变形过程中,也可利用基本不等式放缩,如证法二.用作差比较法变形的结果都应是因式之积或完全平方式,这样有利于判断符号. 【例2】已知函数)(1)(2R x x x f ∈+=,证明:|||)()(|b a b f a f -≤- 证法一(作商比较)若||||b a =时,|||)()(|0b a b f a f -≤-=,当且仅当b a =时取等号. 若||||b a ≠时,∵0|)()(|>-b f a f ,0||>-b a∴=-+-+=--|||11||||)()(|22b a b a b a b f a f =-+-+b a b a 2211<+++--)11)((2222b a b a b a ≤++22b a ba 1即|||)()(|b a b f a f -≤-综上两种情况,得|||)()(|b a b f a f -≤-当且仅当b a =时取等号.证法二(作差比较))2(])1)(1(22[|||11|2222222222b ab a b a b a b a b a +--++-++=--+-+0])()1()1[(2])1)(1()1[(22222≤-++-+=++-+=b a ab ab b a ab 当且仅当b a =时取等号.点评 作商比较通常在两正数之间进行.本题若直接作差,则表达式复杂很难变形.由于不等式两边均非负,所以先平方去掉绝对值符号后再作差.不论是作差比较还是作商比较,“变形整理”都是关键. 二、基本不等式法 常用的基本不等式① 若R b a ∈,,则ab b a 222≥+(当且仅当b a =时取等号);② 若+∈R b a ,,则ab ba 22≥+(当且仅当b a =时取等号); ③ 若b a ,同号,则2≥+baa b (当且仅当b a =时取等号);④ 若R b a ∈,,则≥+222b a 2)2(b a +(当且仅当b a =时取等号); ⑤ 若+∈R c b a ,,,则abc c b a 3333≥++(当且仅当c b a ==时取等号);⑥ 若+∈R c b a ,,,则33abc cb a ≥++(当且仅当c b a ==时取等号);⑦ 均值不等式nn n a a a na a a ⋅⋅≥+++ 2121(其中++∈∈N n R a a a n ,,,,21 )及它的变式n nn n n a a na a a a ⋅⋅≥+++ 2121,na a a a a a nn n n n +++≤⋅⋅ 2121,nn n na a a a a a )(2121+++≤⋅⋅【 例 3 】 ( 2004 年湖南省高考题)设0,0>>b a ,则以下不等式中不恒成立的是( )A.4)11)((≥++b a b a B 2332ab b a ≥+ C.b a b a 22222+≥++ D.b a b a -≥-||解:∵4122)11)((=⋅≥++abab b a b a ∴A 恒成立∵b a b a b a 221122222+≥+++=++ ∴C 恒成立 当b a ≤时,b a b a -≥-||,显然D 成立;当b a >时,b a b a -≥-||⇔a b b a ≥+-||⇔⇔≥+-+-a b b b a b a )(2)(0)(2≥-b b a 也恒成立∴D 恒成立。

第四讲 数学归纳法证明不等式 知识归纳 课件(人教A选修4-5)

第四讲 数学归纳法证明不等式 知识归纳 课件(人教A选修4-5)
考情分析
通过分析近三年的高考试题可以看出,不但考查用数
学归纳法去证明现成的结论,还考查用数学归纳法证明新 发现的结论的正确性.数学归纳法的应用主要出现在数列
解答题中,一般是先根据递推公式写出数列的前几项,通
过观察项与项数的关系,猜想出数列的通项公式,再用数 学归纳法进行证明,初步形成“观察—归纳—猜想—证明”
2.(2012· 湖北高考)(1)已知函数 f(x)=rx-xr+(1-r)(x>0), 其中 r 为有理数,且 0<r<1.求 f(x)的最小值; (2)试用(1)的结果证明如下命题: 设 a1≥0,a2≥0,b1,b2 为正有理数.若 b1+b2=1,则 a1b1·2b2≤a1b1+a2b2; a (3)请将(2)中的命题推广到一般形式, 并用数学归纳法证 明你所推广的命题. 注:当 α 为正有理数时,有求导公式(xα)′=αxα-1.
b1 b2 2 bk
bk 1
a
… a k a k 1 ≤a1b1+a2b2+…+akbk+ak+1bk+1,
故当 n=k+1 时,③成立. 由(1)(2)可知,对一切正整数 n,所推广的命题成立. 说明:(3)中如果推广形式中指出③式对 n≥2 成立,则后续证明 中不需讨论 n=1 的情况.
不完全归纳的作用在于发现规律,探求结论,但结论
a1b1+a2b2+…+akbk bk ak· = , 1-bk+1 1-bk+1
从而 a 1
b1
a
b2 2
…… a k
bk
a1b1+a2b2+…+akbk 1-b bk 1 a k 1 ≤( ) k+1a k 1 . 1-bk+1
bk 1
又因(1-bk+1)+bk+1=1,由②得 a1b1+a2b2+…+akbk 1-b a1b1+a2b2+…+akbk bk 1 ( ) k+1a k 1 ≤ · 1-bk+1 1-bk+1 (1-bk+1)+ak+1bk+1=a1b1+a2b2+…+akbk+ak+1·k+1, b 从而 a 1

数学归纳法

数学归纳法

5.由 k 到 k+1 这一步,要善于分析题目的结构特点,进行适 当的变形,常用分析、添项、拆项、作差等方法.
6.用不完全归纳法给出结论,用数学归纳法给出证明是高考题 中经常出现的题型,希望同学们用心体会.
7.本节内容是选修与选考内容,在复习时要注意把握好难度 能证明一些简单的数学命题就可以了.
用数学归纳法证明与正整数n有关的等式 用数学归纳法证明:2×1 4+4×1 6+6×1 8+…+2n21n+2 =4nn+1. 【思路分析】 本题主要考查用数学归纳法证明等式的步骤, 注意当 n=k+1 时,两边加上的项和结论各是什么.
【证明】 (1)当 n=1 时,左边=2×1 4=18,右边=18等式成立. (2)假设 n=k 时,2×1 4+4×1 6+6×1 8+…+2k21k+2=4k+k 1成立. 当 n=k+1 时, 2×1 4+4×1 6+6×1 8+…+2k21k+2+2k+212k+4 =4k+k 1+4k+11k+2=4kk+k+12k++12 =4k+k+11k+2 2=4kk++12=4[k+k+11+1] ∴n=k+1 时,等式成立. 由(1)(2)可得对一切正整数 n∈N*,等式成立.
【名师点睛】 数学归纳法证题的两个步骤缺一不可.证 n=k+1 成立时,必须用 n=k 成立的结论,否则,就不是数学 归纳法证明.
1.用数学归纳法证明: 1·n+2(n-1)+3(n-2)+…+(n-1)·2+n·1=16n(n+1)(n+2). 证明:(1)当 n=1 时,左边=1, 右边=16(1+1)(1+2)=1,等式成立. (2)假设 n=k 时,1·k+2(k-1)+3(k-2)+…+(k-1)·2+k·1= 16k(k+1)(k+2)成立.
(2)假设 n=2k(k∈N*)时,命题成立, 即 x2k-y2k 能被 x+y 整除. 当 n=2k+2 时,x2k+2-y2k+2=x2·x2k-y2·y2k =x2(x2k-y2k)+y2k(x2-y2) =x2(x2k-y2k)+y2k(x+y)(x-y). ∵x2(x2k-y2k)、y2k(x+y)(x-y)都能被 x+y 整除, ∴x2k+2-y2k+2 能被 x+y 整除,即 n=2k+2 时命题成立. 由(1)(2)知原命题对一切正偶数均成立. 【名师点睛】 因证明的命题对所有正偶数成立,所以归纳假 设中采用了 n=2k(k∈N*)与它相邻的是 n=2k+2.要注意体会 n =2k+2 时的变形方法.

数学归纳法(学案)

数学归纳法(学案)

数学归纳法知识·巧学一、数学归纳法证明不等式的基本步骤(1)证明当n取第一个值n0(如n0=1或n0=2等等)时,命题正确;(2)证明如下事实:假设当n=k(k∈N且k≥n0)时,命题正确,由此推出当n=k+1时命题也正确.完成了以上两步后,就可断定命题对于从n0开始的所有自然数都正确.用数学归纳法证明,要完成两个步骤,这两个步骤是缺一不可的.但从证题的难易来分析,证明第二步是难点和关键,要充分利用归纳假设,做好命题从n=k到n=k+1的转化,这个转化要求在变化过程中结构不变,先比较n=k与n=k+1这两个不等式间的差异,以决定n=k时不等式做何种变形.一般地,只能变出n=k+1等式的一边,然后再利用比较、分析、综合、放缩及不等式的传递性来完成由n=k成立推出n=k+1不等式成立的证明.辨析比较数学归纳法与其他证明不等式的方法数学归纳法证明不等式有它的局限性,它只能用来证明与自然数有关的不等式.而其他证明不等式的方法运用比较广泛.但具体运用时,各自都有自己的具体要求,比如数学归纳法就有严格的两个步骤,反证法就有严格的格式(必须先假设结论的否命题,再推出矛盾,最后否定假设,肯定原命题),分析法也有自己的格式(综合法的逆过程),综合法是广泛运用已知的定理、性质、推论等来证明.但是与自然数有关的不等式其他方法不如数学归纳法来得简洁,在数学归纳法的第二步中,也经常使用反证法、分析法、综合法、放缩法等作为辅助手段.二、数学归纳法证明不等式的重点和难点1.重点:巩固对数学归纳法意义和有效性的理解,并能正确表达解题过程,以及掌握利用数学归纳法证明不等式的基本思路.2.难点:在证明中,对于n=k+1时的证明是整个数学归纳法证明过程中的难点.要注意分离出该命题中,可以使用归纳假设的部分(没有使用归纳假设的证明不是数学归纳法的证明),即假设f(k)>g(k)成立,证明f(k+1)>g(k+1)成立.对这个条件不等式的证明,除了灵活运用作差比较法、作商比较法、综合法、分析法等常用的不等式证明方法外;放缩法作为证明不等式的特有技巧,在用数学归纳法证明不等式时,更被经常使用.误区警示数学归纳法证明不等式,不能简单套用两个基本步骤,一定要用到归纳假设,对于n=k+1时的证明注意以下几点:(1)在从n=k到n=k+1的过程中,应分析清楚不等式两端(一般是左端)项数的变化,也就是要认清不等式的结构特征;(2)瞄准当n=k+1时的递推目标,有目的地进行放缩、分析;(3)活用起点的位置;(4)有的试题需要先作等价变换.三、数学归纳法证明不等式的运用范围数学归纳法是用来证明与自然数有关命题的一种有效方法,在我们高中数学中,经常会以数列和函数为知识载体,构造一些与自然数有关的命题,数学归纳法是证明它们的有效手段,但不是唯一手段.联想发散在上一节中,我们还学习了归纳猜想证明的方法,在数学归纳法证明不等式的运用中,可不可以也先根据题目的条件归纳出一般规律,大胆猜想出一个不等式的命题,然后运用数学归纳法来证明呢? 典题·热题知识点一: 命题的结构特征例1 求证:6531312111>+++++++n n n n ,n≥2,n ∈N . 思路分析:本题在由n=k 到n=k+1时的推证过程中,k31不是第k 项,应是第2k 项,数列各项分母是连续的自然数,最后一项是以3k 收尾.根据此分母的特点,在3k 后面还有3k+1、3k+2,最后才为3k+3,即3(k+1).不等式左端增加了131+k ,231+k ,331+k 共三项,而不是只增加)1(31+k 一项.例2 已知,S n =1+21+31+…+n1,n ∈N , 用数学归纳法证明:n S 2>1+2n,n≥2,n ∈N .思路分析:本题在由n=k 到n=k+1时的推证过程中,不等式左端增加了2k 项,而不是只增加了121+k 这一项,否则证题思路必然受阻.知识点二: 比较法 例3 求证:1+21+31+…+n 1≥12+n n .思路分析:本题在由n=k 到n=k+1时的推证过程中,关键的是证明1)1()1(2112+++>++k k k k ,为证此,我们采用了不等式证明方法中的比较法.知识点三: 放缩法 例4 证明:n n21312111<++++,n≥2,n ∈N .思路分析:本题在由n=k 到n=k+1时的推证过程中,在证明12112+<++k k k 时,使用了均值定理进行放缩.知识点四: 转化等价命题例5 数列{a n }的通项公式为a n =3n+2,将数列{a n }中的第2,4,8,…,2n 项依次取出,按原来的顺序组成一个新数列{b n },记其前n 项和为S n ,T n =n(9+a n ),当n≥4时,证明S n >T n . 思路分析:要证S n >T n ,只需证3×2n+1+2n-6>3n 2+11n ,即证2n+1>n 2+3n+2.这就证明了原不等式的等价不等式,从而将命题简化.巧解提示也可不用数学归纳法来证明2n+1>n 2+3n+2(n≥4),而是利用二项展开式和放缩法直接证得.当n≥4时, 2n+1=2·2n =2(1+1)n=2(11210n n n n n n C C C C C +++++- ) ≥2(11210n n n n n n C C C C C ++++-)=n 2+3n+4 >n 2+3n+2.知识点五: 单调性例6 已知数列{a n }中,所有项都是正数,且a n+1≤a n -a 2n ,求证:a n <n1. 思路分析:(Ⅰ)当n=1时,由a 2≤a 1-a 12=a 1(1-a 1),且a 1>0,a 2>0,可得a 1<1,命题成立. (Ⅱ)假设当n=k(k≥1)时命题成立,即a k <k1. 则当n=k+1时,a k+1≤a k -a 2k =a k (1-a k ),∵a k <k1, ∴1-a k >1-k 1=kk 1-.由于以上二式不是同向不等式,所以无法完成由k 到(k+1)的证明.所以我们可以利用函数f(x)=-x 2+x 的单调性进行证明:函数f(x)=-x 2+x 的最大值为f(21)=41,且在(-∞,21]上为增函数.知识点六: 活用起点的位置 例7 已知函数f(x)=ax-23x 2的最大值不大于61,又当x ∈[41,21]时,f(x)≥81. (1)求a 的值; (2)设0<a 1<21,a n+1=f(a n ),n ∈N *,证明:a n <11+n . 思路分析:在用数学归纳法证明不等式的过程中,充分利用了数列递推关系式a n+1=f(a n )=23-a 2n +a n 的函数单调性,需注意命题的递推关系式中起点位置的推移.问题·探究问题1 我们已经学习过贝努利不等式(1+x )n >1+nx 的证明,如果我们加强条件,如:已知x >-1,且x≠0,n ∈N ,n≥2.如何来证明不等式(1+x )n >1+nx.证明的方法有哪些呢?问题2 我们在证明不等式的时候,常用放缩法的技巧来达成目的,可在具体的题目中究竟如何放缩还要视具体的题目而定,我们不妨来看看这样一个命题的证明,求证:2n +2>n 2,n ∈N. 探究结论:参考答案典题·热题例1 证明:(Ⅰ)当n=2时,右边=31+41+51+61>65,不等式成立. (Ⅱ)假设当n=k(k≥2,k ∈N )时命题成立,即65312111>+++++k k k .则当n=k+1时,)1(31231131312)1(11)1(1+++++++++++++k k k k k k=)11331231131(312111+-+++++++++++k k k k k k k >)11331231131(65+-++++++k k k k >65)113313(65)11331331331(65=+-+⨯+=+-++++++k k k k k k . 所以当n=k+1时,不等式也成立. 由(Ⅰ)(Ⅱ)可知,原不等式对一切n≥2,n ∈N *均成立.误区警示错误的思维定式认为从n=k 到n=k+1时,只增加一项,求和式中最后一项即为第几项的通项,所以一定要认清不等式的结构特征. 例2 证明:(Ⅰ)当n=2时,22S =1+21+31+41=1+>12131+22, ∴命题成立.(Ⅱ)假设当n=k(k≥2,k ∈N )时命题成立,即k S 2=1+21+31+…+2121k k +>. 则当n=k+1时,12+k S =1+21+31+…+12122112121+++++++k k k k >1+111121212121212211212++++++++>++++++k k k k k k k k2112121212211++=++=⨯++=+k k k k k 所以当n=k+1时,不等式也成立. 由(Ⅰ)(Ⅱ)可知,原不等式对一切n≥2,n ∈N 均成立. 方法归纳本题在由n=k 到n=k+1时的推证过程中,一定要注意分析清楚命题的结构特征,即由n=k 到n=k+1时不等式左端项数的增减情况. 例3 证明:(Ⅰ)当n=1时,左式=1,右式=1112+⨯,左式=右式; 当n=2时,左式=1+21=23,右式=1222+⨯=34; 23>34,左式>右式. ∴当n=1或n=2时,不等式成立.(Ⅱ)假设当n=k(k≥1)时,不等式成立,即 1+21+31+…+121+≥k k k . 则当n=k+1时, 左式=1+21+31+…+1121112111++=+++≥++k k k k k k k . ∵)2)(1(1)1()1(2112++=+++-++k k k k k k k >0, ∴1)1()1(2112+++>++k k k k =右式. 由不等式的传递性,可得左式>右式, ∴当n=k+1时,不等式也成立. 由(Ⅰ)(Ⅱ)可得,对一切n ∈N ,不等式都成立. 误区警示在用数学归纳法证明不等式的过程中,我们经常因思维定式认为只能做代数变形,比较法是一种综合证明法,不能在数学归纳法中使用,这是一种错误的认识.证明不等式的基本方法在数学归纳法的第二步中都可以使用,究竟选择哪种方法要因具体题目而定. 例4 证明:(Ⅰ)当n=2时,左边=223212211=+<+,右边=22. ∴左边<右边,∴n=2时,原不等式成立.(Ⅱ)假设当n=k 时,不等式成立,即k k21312111<++++. 当n=k+1时,112111312111++<++++++k k k k1211)]1([1112112+=++++<+++∙=+=<k k k k k k k k k ∴n=k+1时,原不等式成立.由(Ⅰ)(Ⅱ)知对n≥2的任何自然数,原不等式成立.例5 证明:∵a n =3n+2, ∴n a 2=3×2n +2,∴S n =a 2+a 4+a 8+…+a n a 2=3(2+4+8+…+2n )+2n=3×2n+1+2n-6.而T n =n(9+a n )=3n 2+11n. 要证S n >T n ,只需证3×2n+1+2n-6>3n 2+11n , 即证2n+1>n 2+3n+2. 用数学归纳法来证明:(Ⅰ)当n=4时,S 4=98,T 4=92,S 4>T 4成立.(Ⅱ)假设当n=k(k≥4)时,结论成立,就是2k+1>k 2+3k+2,那么 2k+2-[(k+1)2+3(k+1)+2]>2(k 2+3k+2)-(k 2+5k+6) =k 2+k-2=(k+2)(k-1). ∵k≥4,∴(k+2)(k-1)>0.∴2k+2>(k+1)2+3(k+1)+2.这就是说,当n=k+1时,S n >T n 也成立. 由(Ⅰ)(Ⅱ)知,对n≥4,S n >T n 都成立. 方法归纳本题用数学归纳法证明2n+1>n 2+3n+2,第二步采用的是作差比较法:作差——利用归纳假设——变形(因式分解)——定号.这比通常的“作差——变形——定号”多了利用归纳假设这一步,这是因为归纳假设是用数学归纳法证明命题时所必需的. 巧解提示也可不用数学归纳法来证明2n+1>n 2+3n+2(n≥4),而是利用二项展开式和放缩法直接证得.当n≥4时,2n+1=2·2n =2(1+1)n=2(11210n n n n n n C C C C C +++++- ) ≥2(11210n n n n n n C C C C C ++++-)=n 2+3n+4 >n 2+3n+2. 例6 证明:(Ⅰ)当n=1时,由a 2≤a 1-a 12=a 1(1-a 1),且a 1>0,a 2>0,可得a 1<1,命题成立.而a 2≤a 1-a 12=f(a 1)≤41<21,故n=2时命题也成立. (Ⅱ)假设n=k(k≥2)时,命题成立,即a k <k1,因为函数f(x)=-x 2+x 在(-∞,21]上为增函数,所以由a k <k 1≤21及a k+1≤a k -a 2k 得a k+1≤f(a k )<f(k 1)=21k -+k 1=21k k -<11112+=--k k k ,即a k+1<11+k , 所以当n=k+1时,命题也成立.根据(Ⅰ)(Ⅱ)可知,对任何n ∈N *,a n <n1. 例7 (1)解:由于f(x)=ax 23-x 2的最大值不大于61,所以f(3a )=62a ≤61,即a 2≤1.又x ∈[41,21]时f(x)≥81, 所以⎪⎪⎩⎪⎪⎨⎧≥-≥-⎪⎪⎩⎪⎪⎨⎧≥≥.813234,81832,81)41(,81)21(a a f f 即解得a≥1. ∴a=1.(2)证明:(Ⅰ)当n=1时,0<a 1<21,不等式0<a n <11+n 成立; 因f(x)>0,x ∈(0,32),所以0<a 2=f(a 1)≤61<31,故n=2时不等式也成立.(Ⅱ)假设n=k(k≥2)时,不等式0<a k <11+k 成立, 因为f(x)=x-32x 2的对称轴为x=31,知f(x)在[0,31]为增函数,所以由0<a k <11+k ≤31得0<f(a k )<f(11+k ),于是有 0<a k+1<11+k -32·21)2()1(24212121)1(122+<+++-+=+-+++k k k k k k k k .所以当n=k+1时,不等式也成立.根据(Ⅰ)(Ⅱ)可知,对任何n ∈N *,不等式a n <11+n 成立. 方法归纳将起点的位置推移至2的目的,就是要将a k 和11+k 置于函数f(x)的单调区间[0,31]内,从而由0<a k <11+k ≤31得0<f(a k )<f(11+k ). 问题·探究问题1探究过程:老师:首先验证n=2时的情况.(1)当n=2时,左边=(1+x )2=1+2x+x 2,右边=1+2x ,因x 2>0,则原不等式成立. (2)假设n=k 时(k≥2),不等式成立,即(1+x )k >1+kx. 现在要证的目标是(1+x )k +1>1+(k+1)x ,请同学们考虑.同学甲:因为应用数学归纳法,在证明n=k+1命题成立时,一定要运用归纳假设,所以当n=k+1时.应构造出归纳假设适应的条件.所以有(1+x )k +1=(1+x )k (1+x ).因为x >-1(已知),所以1+x >0,于是(1+x )k (1+x )>(1+kx )(1+x ). 同学乙:现将命题转化成如何证明不等式(1+kx )(1+x )≥1+(k+1)x. 显然,上式中“=”不成立.故只需证:(1+kx )(1+x )>1+(k+1)x. 老师:证明不等式的基本方法有哪些?同学丙:证明不等式的基本方法有比较法、综合法、分析法.老师:在第二步证明中,合理运用归纳假设的同时,其本质是不等式证明,因此证明不等式的所有方法、技巧手段都适用. 同学丁:证明不等式(1+kx )(1+x )>1+(k+1)x ,可采用作差比较法. (1+kx )(1+x )-[1+(k+1)x ]=1+x+kx+kx 2-1-kx-x=kx 2>0(因x≠0,则x 2>0). 所以,(1+kx )(1+x )>1+(k+1)x.同学甲:也可采用综合法的放缩技巧. (1+kx )(1+x )=1+kx+x+kx 2=1+(k+1)x+kx 2.因为kx 2>0,所以1+(k+1)x+kx 2>1+(k+1)x ,即(1+kx )(1+x )>1+(1+k )x 成立. 老师:这些方法,哪种更简便,更适合数学归纳法的书写格式?学生丙用放缩技巧证明显然更简便,利于书写.探究结论:在证明中,对于n=k+1时的证明是整个数学归纳法证明过程中的重点和难点.要注意分离出该命题中可以使用归纳假设的部分(没有使用归纳假设的证明不是数学归纳法的证明),并借助于其他数学方法(如分析法、比较法、综合法、反证法等).问题2 我们在证明不等式的时候,常用放缩法的技巧来达成目的,可在具体的题目中究竟如何放缩还要视具体的题目而定,我们不妨来看看这样一个命题的证明,求证:2上标n+2>n 2,n ∈N .问题2探究过程:老师:(1)当n=1时,左边=21+2=4;右边=1,左边>右边.所以原不等式成立.(2)假设n=k 时(k≥1且k ∈N )时,不等式成立,即2k +2>k 2.现在,请同学们考虑n=k+1时,如何论证2k+1+2>(k+1)2成立.同学甲:利用归纳假设2k+1+2=2·2k+2=2(2k+2)-2>2·k2-2.老师:将不等式2k2-2>(k+1)2,右边展开后得k2+2k+1.由于转化目的十分明确,所以只需将不等式的左边向k2+2k+1方向进行转化,即2k2-2=k2+2k+1+k2-2k-3.由此不难看出,只需证明k2-2k-3≥0,不等式2k2-2>k2+2k+1即成立.同学乙:因为k2-2k-3=(k-3)(k+1),而k∈N,故k+1>0,但k-3≥0成立的条件是k≥3,所以当k∈N时,k-3≥0未必成立.老师:不成立的条件是什么?同学乙:当k=1,2时,不等式k-3≥0不成立.老师:由于使不等式不成立的k值是有限的,只需利用归纳法,将其逐一验证原命题成立,因此在证明第一步中,应补充验证n=2时原命题成立.那么,n=3时是否也需要论证?同学丙:n=3需要验证,这是因为数学归纳法中的第一步验证是第二步归纳假设的基础,而第二步中对于k是大于或等于3才成立,故在验证时,应验证n=3时,命题成立.老师:通过上例可知,在证明n=k+1时命题成立过程中,针对目标k2+2k+1,采用缩小的手段,但是由于k的取值范围(k≥1)太大,不便于缩小,因此,用增加奠基步骤(把验证n=1扩大到验证n=1,2,3)的方法,使假设中k的取值范围适当缩小到k≥3,促使放缩成功,达到目标.探究结论:设S(n)表示原式左边,f(n)表示原式右边,则由上面的证法可知,从n=k 到n=k+1命题的转化途径是:要注意:这里S′(k)不一定是一项,应根据题目情况确定.。

第四讲 数学归纳法证明不等式 知识归纳 课件(人教A选修4-5)

第四讲 数学归纳法证明不等式 知识归纳 课件(人教A选修4-5)
2 解: (1)先证充分性, c<0, 若 由于 xn+1=-xn+xn+c≤xn
+c<xn,故{xn}是递减数列; 再证必要性,若{xn}是递减数列,则由 x2<x1,可得 c <0.
(2)(i)假设{xn}是递增数列.由 x1=0,得 x2=c,x3=- c2+2c. 由 x1<x2<x3,得 0<c<1. 由 xn<xn+1=-x2 +xn+c 知, n 对任意 n≥1 都有 xn< c, 注意到 c-xn+1=x2 -xn-c+ c=(1- c-xn)( c-xn),② n 由①式和②式可得 1- c-xn>0,即 xn<1- c. 由②式和 xn≥0 还可得,对任意 n≥1 都有 c-xn+1≤(1- c)( c-xn). ③ ①
解:(1)f′(x)=r-rxr 1=r(1-xr 1),令 f′(x)=0,解得 x =1. 当 0<x<1 时,f′(x)<0,所以 f(x)在(0,1)内是减函数; 当 x>1 时,f′(x)>0,所以 f(x)在(1,+∞)内是增函数. 故函数 f(x)在 x=1 处取得最小值 f(1)=0. (2)由(1)知,当 x∈(0,+∞)时,有 f(x)≥f(1)=0,即 xr≤rx +(1-r),
1
b1
b1
b2
综上,对 a1≥0,a2≥0,b1,b2 为正有理数且 b1+b2=1,总 有 a 1 a ≤a1b1+a2b2.
b2 2
b1
Hale Waihona Puke ②(3)(2)中命题的推广形式为 设 a1,a2,…,an 为非负实数,b1,b2,…,bn 为正有理数. 若 b1+b2+…+bn=1, a 1 a … a n ≤a1b1+a2b2+…+anbn. 则
b1 b2 2 bk
bk 1

数学归纳法

数学归纳法数学归纳法一般地,证明一个与正整数n 有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n 取第一个值n 0 (n 0∈N *)时命题成立;(2)(归纳递推)假设n =k (k ≥n 0,k ∈N *)时命题成立,证明当n =k +1时命题也成立.只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立.上述证明方法叫做数学归纳法. [难点正本 疑点清源]1.数学归纳法是一种重要的数学思想方法,主要用于解决与正整数有关的数学问题.证明时步骤(1)和(2)缺一不可,步骤(1)是步骤(2)的基础,步骤(2)是递推的依据.2.在用数学归纳法证明时,第(1)步验算n =n 0的n 0不一定为1,而是根据题目要求,选择合适的起始值.第(2)步,证明n =k +1时命题也成立的过程,一定要用到归纳假设,否则就不是数学归纳法.1. 凸k 边形内角和为f (k ),则凸k +1边形的内角和为f (k +1)=f (k )+________.2. 用数学归纳法证明:“1+12+13+…+12n -1<n (n >1)”,由n =k (k >1)不等式成立,推证n =k +1时,左边应增加的项的项数是________. 3. 用数学归纳法证明1+a +a 2+…+a n +1=1-a n +21-a (a ≠1,n ∈N +),在验证n =1成立时,左边需计算的项是( )A .1B .1+aC .1+a +a 2D .1+a +a 2+a 34. 已知n 为正偶数,用数学归纳法证明1-12+13-14+…-1n =2⎝⎛⎭⎫1n +2+1n +4+…+12n 时,若已假设n =k (k ≥2且k 为偶数)时命题为真,则还需要用归纳假设再证( )A .n =k +1时等式成立B .n =k +2时等式成立C .n =2k +2时等式成立D .n =2(k +2)时等式成立5. 已知f (n )=1n +1n +1+1n +2+…+1n2,则( )A .f (n )中共有n 项,当n =2时,f (2)=12+13B .f (n )中共有n +1项,当n =2时,f (2)=12+13+14C .f (n )中共有n 2-n 项,当n =2时,f (2)=12+13D .f (n )中共有n 2-n +1项,当n =2时,f (2)=12+13+14题型一 用数学归纳法证明等式例1 已知n ∈N *,证明:1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n .探究提高 (1)用数学归纳法证明等式问题是常见题型,其关键点在于弄清等式两边的构成规律,等式两边各有多少项,初始值n 0是几;(2)由n =k 到n =k +1时,除等式两边变化的项外还要充分利用n =k 时的式子,即充分利用假设,正确写出归纳证明的步骤,从而使问题得以证明.用数学归纳法证明:对任意的n ∈N *,11×3+13×5+…+1(2n -1)(2n +1)=n2n +1.题型二 用数学归纳法证明不等式例2 用数学归纳法证明:1+n 2≤1+12+13+…+12n ≤12+n (n ∈N *).探究提高 (1)用数学归纳法证明与n 有关的不等式一般有两种具体形式:一是直接给出不等式,按要求进行证明;二是给出两个式子,按要求比较它们的大小,对第二类形式往往要先对n 取前几个值的情况分别验证比较,以免出现判断失误,最后猜出从某个n 值开始都成立的结论,常用数学归纳法证明.(2)用数学归纳法证明不等式的关键是由n =k 时成立得n =k +1时成立,主要方法有①放缩法;②利用基本不等式法;③作差比较法等.用数学归纳法证明:对一切大于1的自然数,不等式⎝⎛⎭⎫1+13⎝⎛⎭⎫1+15·…·⎝⎛⎭⎫1+12n -1>2n +12均成立.题型三 用数学归纳法证明整除性问题 例3 用数学归纳法证明42n +1+3n+2能被13整除,其中n 为正整数.探究提高 用数学归纳法证明整除问题,P (k )⇒P (k +1)的整式变形是个难点,找出它们之间的差异,然后将P (k +1)进行分拆、配凑成P (k )的形式,也可运用结论:“P (k )能被p 整除且P (k +1)-P (k )能被p 整除⇒P (k +1)能被p 整除.”已知n 为正整数,a ∈Z ,用数学归纳法证明:a n +1+(a +1)2n-1能被a 2+a +1整除.归纳、猜想、证明典例:(12分)在各项为正的数列{a n }中,数列的前n 项和S n 满足S n =12⎝⎛⎭⎫a n +1a n . (1)求a 1,a 2,a 3;(2)由(1)猜想数列{a n }的通项公式,并且用数学归纳法证明你的猜想.审题视角 (1)数列{a n }的各项均为正数,且S n =12⎝⎛⎭⎫a n +1a n ,所以可根据解方程求出a 1,a 2,a 3;(2)观察a 1,a 2,a 3猜想出{a n }的通项公式a n ,然后再证明. 规范解答温馨提醒 (1)本题运用了从特殊到一般的探索、归纳、猜想及证明的思维方式去探索和发现问题,并证明所得结论的正确性,这是非常重要的一种思维能力.(2)本题易错原因是,第(1)问求a 1,a 2,a 3的值时,易计算错误或归纳不出a n 的一般表达式.第(2)问想不到再次利用解方程的方法求解,找不到解决问题的突破口.方法与技巧1. 在数学归纳法中,归纳奠基和归纳递推缺一不可.在较复杂的式子中,注意由n =k 到n =k +1时,式子中项数的变化,应仔细分析,观察通项.同时还应注意,不用假设的证法不是数学归纳法.2. 对于证明等式问题,在证n =k +1等式也成立时,应及时把结论和推导过程对比,以减少计算时的复杂程度;对于整除性问题,关键是凑假设;证明不等式时,一般要运用放缩法.3. 归纳—猜想—证明属于探索性问题的一种,一般经过计算、观察、归纳,然后猜想出结论,再用数学归纳法证明.由于“猜想”是“证明”的前提和“对象”,务必保证猜想的正确性,同时必须注意数学归纳法步骤的书写. 失误与防范1. 数学归纳法仅适用于与正整数有关的数学命题.2. 严格按照数学归纳法的三个步骤书写,特别是对初始值的验证不可省略,有时要取两个(或两个以上)初始值进行验证;初始值的验证是归纳假设的基础. 3. 注意n =k +1时命题的正确性.4. 在进行n =k +1命题证明时,一定要用n =k 时的命题,没有用到该命题而推理证明的方法不是数学归纳法.A 组 专项基础训练(时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. 用数学归纳法证明“1+2+22+…+2n +2=2n +3-1”,在验证n =1时,左边计算所得的式子为( )A .1B .1+2C .1+2+22D .1+2+22+232. 用数学归纳法证明“2n >n 2+1对于n ≥n 0的正整数n 都成立”时,第一步证明中的起始值n 0应取( ) A .2B .3C .5D .63. 用数学归纳法证明1+2+3+…+n 2=n 4+n 22,则当n =k +1时左端应在n =k 的基础上加上( )A .k 2+1B .(k +1)2 C.(k +1)4+(k +1)22D .(k 2+1)+(k 2+2)+…+(k +1)24. 用数学归纳法证明:“(n +1)·(n +2)·…·(n +n )=2n ·1·3·…·(2n -1)”,从“k 到k +1”左端需增乘的代数式为( )A .2k +1B .2(2k +1) C.2k +1k +1D.2k +3k +1二、填空题(每小题5分,共15分)5. 用数学归纳法证明“2n +1≥n 2+n +2(n ∈N +)”时,第一步验证为________. 6. 若f (n )=12+22+32+…+(2n )2,则f (k +1)与f (k )的递推关系式是__________.7. 用数学归纳法证明“当n 为正奇数时,x n +y n 能被x +y 整除”,当第二步假设n =2k -1(k ∈N +)命题为真时,进而需证n =________时,命题亦真. 三、解答题(共22分)8. (10分)若n 为大于1的自然数,求证:1n +1+1n +2+…+12n >1324.。

不等式证明方法

不等式证明方法不等式在数学中占有重要的地位,它是描述数之间大小关系的一种数学工具。

不等式证明方法是数学中的重要内容之一,本文将介绍不等式证明的几种常见方法,希望能够帮助读者更好地理解和掌握不等式的证明技巧。

一、数学归纳法。

数学归纳法是一种重要的数学证明方法,它通常用于证明某个命题对于一切自然数成立。

在不等式证明中,我们可以利用数学归纳法证明不等式的成立。

具体来说,我们首先证明不等式对于n=1时成立,然后假设不等式对于n=k时成立,再证明不等式对于n=k+1时也成立。

通过数学归纳法,我们可以比较简单地证明一些不等式的成立。

二、换元法。

换元法是不等式证明中常用的一种方法。

当我们遇到复杂的不等式时,可以通过适当的换元将不等式化简为更简单的形式,从而更容易进行证明。

换元法的关键在于选择合适的变量替换原不等式中的变量,使得不等式的结构更加清晰,证明过程更加简单明了。

三、分析法。

分析法是一种直接从不等式的定义出发,通过分析不等式的性质和特点来进行证明的方法。

在不等式证明中,我们可以通过分析不等式两边的大小关系,利用数学运算性质和数学规律,推导出不等式成立的条件,从而完成不等式的证明。

四、综合利用不等式性质。

不等式有许多性质,如传递性、对称性、反对称性等,我们可以通过综合利用这些性质来进行不等式的证明。

具体来说,我们可以利用不等式的传递性将复杂的不等式化简为简单的形式,再利用对称性和反对称性来推导不等式的成立条件,从而完成不等式的证明。

五、几何法。

在不等式证明中,几何法也是一种常用的证明方法。

通过几何图形的分析,我们可以直观地理解不等式的性质和特点,从而更容易进行证明。

在利用几何法进行不等式证明时,我们可以通过构造合适的几何图形,利用几何关系和几何性质来推导不等式的成立条件,完成不等式的证明。

六、数学推理法。

数学推理法是不等式证明中常用的一种方法,通过逻辑推理和数学推理来证明不等式的成立。

在利用数学推理法进行不等式证明时,我们可以通过分析不等式的性质和特点,运用数学推理规律和数学推理方法,推导出不等式成立的条件,完成不等式的证明。

第四讲 数学归纳法证明不等式 知识归纳 课件(人教A选修4-5)

b1
b2



若 a1,a2 中至少有一个为 0,则 a 1 a 2 ≤a1b1+a2b2 成立;
若 a1,a2 均不为 0,又 b1+b2=1,可得 b2=1-b1,于是 a1 a1 a1 在①中令 x= ,r=b1,可得( )b1≤b1· +(1-b1), a2 a2 a2 即 a 1 · 1b ≤a1b1+a2(1-b1),亦即 a 1 a 2 ≤a1b1+a2b2. a2
1 下面用数学归纳法证明当 0<c≤ 时,xn< c对任意 n≥1 成 4 立. 1 (1)当 n=1 时,x1=0< c≤ ,结论成立. 2 (2)假设当 n=k(k∈N*)时结论成立,即:xk< c.因为函数 f(x) 1 =-x2+x+c 在区间(-∞, ]内单调递增,所以 xk+1=f(xk) 2 <f( c)= c,这就是说当 n=k+1 时,结论也成立. 故 xn< c对任意 n≥1 成立. 因此,xn+1=xn-x2 +c>xn,即{xn}是递增数列. n 1 由(i)(ii)知,使得数列{xn}单调递增的 c 的范围是(0, ]. 4
1
b1
b1
b2
综上,对 a1≥0,a2≥0,b1,b2 为正有理数且 b1+b2=1,总 有 a 1 a ≤a1b1+a2b2.
b2 2
b1

(3)(2)中命题的推广形式为 设 a1,a2,…,an 为非负实数,b1,b2,…,bn 为正有理数. 若 b1+b2+…+bn=1, a 1 a … a n ≤a1b1+a2b2+…+anbn. 则
由(1)、(2)知,对任意n∈N+原命题成立.
[例 4]
1 设 0<a<1,定义 a1=1+a,an+1=a +a,求证: n

用数学归纳法证明不等式 课件


2k+2 ·2k+1

2
2k+2 2k+1

4k2+8k+4 2 2k+1 Nhomakorabea>
4k2+8k+3 2 2k+1

2k2+· 32·k+2k1+1=
2k+1+1
2
.
∴n=k+1 时,不等式也成立.
由①,②知,对一切大于 1 的自然数 n,不等式都成立.
方法二:①当 n=2 时,左边=1+13=43,右边= 25,左边 >右边,∴不等式成立.
② 假 设 当 n = k(k≥2 , k ∈ N*) 时 , 命 题 成 立 , 即 1+13
1+15 … 1+2k-1 1 >
2k+1 2




n=k+1
时 , 1+13
1+15…1+2k-1 11+2k+1 1> 2k2+11+2k+1 1= k2+k+1 1,要
证不等式成立,只需证明 k2+k+1 1> 2k+2 1+1,只要证明 4k2
用数学归纳法证明与数列有关的不等式问题,要注意用 到递推关系式 xn=38+12x2n-1,通过正确的放缩来达到目的.
1.使用数学归纳法证明不等式,难点在于由n=k时命题 成立推出n=k+1时命题成立,为完成这步证明,不仅要正确 使用归纳假设,还要灵活利用问题中的其他条件和相关知 识.其中,比较法、分析法、综合法、放缩法等常被灵活地应 用.
用数学归纳法证明不等式
1.贝努利不等式:如果x是实数且x>-1,x≠0,n为大于 1的自然数,则____(_1_+__x_)n_>__1_+__n_x.
2.设α为有理数,x>-1,如果0<α<1,则(1+x)α____1 + αx ≤; 如 果 α < 0 或 α > 1 , 则 (1 + x)α______1 + αx , 当≥且 仅 当 ____________时,等x=号0成立.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、数学归纳法证明不等式的步骤
(1)证明当n取初始值n0(例如n0=0,n0=1等)时不等式成立;
(2)假设当n=k(k为自然数,k≥n0)时不等式成立,证明当n=k+1时不等式也成立。

二、数学归纳法:由有限多个个别的特殊事例得出一般结论的推理方法,称为归纳法。

三、对数学归纳法的理解:
(1)数学归纳法是一种用于证明与自然数n有关的命题的正确性的证明方法.它的操作步骤简单、明确。

(2)运用数学归纳法证明与正整数有关的数学命题,两个步骤缺一不可.理解数学归纳法中的递推思想,尤其要注意其中第二步,证明n =k+1命题成立时必须要用到n=k时命题成立这个条件.这种理解不仅使我们能够正确认识数学归纳法的原理与本质,也为证明过程中第二步的设计指明了思维方向.。

相关文档
最新文档