3选修3-4 第十一章 机械振动-单摆-教案

3选修3-4 第十一章 机械振动-单摆-教案
3选修3-4 第十一章 机械振动-单摆-教案

教学过程

一、复习预习

在第一节中我们以弹簧振子为模型研究了简谐运动,知道了什么是简谐振动、简谐振动的特点及描述简谐振动的物理量和图像。日常生活中常见到摆钟、摆锤等的振动,这种振动有什么特点呢?本节课我们来学习简谐运动的另一典型实例——单摆。

二、知识讲解

课程引入:

1862年,18岁的伽利略离开神学院进入比萨大学学习医学,他的心中充满着奇妙的幻想和对自然科学的无穷疑问,一次他在比萨大学忘掉了向上帝祈祷,双眼注视着天花板上悬垂下来摇摆不定的挂灯,右手按着左手的脉搏,口中默默地数着数字,在一般人熟视无睹的现象中,他却第一个明白了挂灯每摆动一次的时间是相等的,于是制作了单摆的模型,潜心研究了单摆的运动规律,给人类奉献了最初的能准确计时的仪器。

本节课我们来学习简谐运动的另一典型实例——单摆。

考点/易错点1、单摆的周期公式、单摆的周期与哪些因素有关

1.单摆的定义:如果悬挂小球的细线的伸缩和质量可以忽略,线长又比球的直径大得多,这样的装置叫单摆。

秋千和钟摆等摆动的物体最终都会停下来,是因为有空气阻力存在,我们能不能由秋千和钟摆摆动的共性,忽略空气阻力,抽象出一个简单的物理模型呢?

①第一种摆的悬绳是橡皮筋,伸缩不可忽略,不是单摆; ②第二种摆的悬绳质量不可忽略,不是单摆;

③第三种摆的悬绳长度不是远大于球的直径,不是单摆; ④第四种摆的上端没有固定,也不是单摆;

绳绕在杆上

⑤第五种摆是单摆。

单摆是实际摆的理想化模型:线的伸缩和质量可以忽略──使摆线有一定的长度而无质量,质量全部集中在摆球上。线长比球的直径大得多,可把摆球当作一个质点,此时悬线的长度就是摆长,实际单摆的摆长是从悬点到小球的球心。单摆的运动忽略了空气阻力,实际的单摆在观察的时间内可以不考虑各种阻力。

考点/易错点2、单摆做简谐运动

(1)单摆的回复力

摆球受到的重力G 和悬线拉力F ',在单摆振动时,一方面要使单摆振动,另一方面还要提供摆球沿圆弧的运动的向心力。在研究摆球沿圆弧的运动情况时,可以不考虑与摆球运动方向垂直的力,而只考虑沿摆球运动方向的力,如图所示。

因为F'垂直于v ,所以,我们可将重力G 分解到速度v 的 方向及垂直于v 的方向。且

G 1=G sin θ=mg sin θ,G 2=G cos θ=mg cos θ。

重力G 沿圆弧切线方向的分力G 1=mg sin θ是沿摆球运动方向的力,正是这个力提供了使摆球振动的回复力,也可以说成是摆球沿运动方向的合力提供了摆球摆动的回复力。

F=G 1=mg sin θ

(2)单摆做简谐运动的推证

在偏角很小时,sin θ≈L x

′ 2

又回复力F=m g sin θ 所以单摆的回复力为

x L mg

F -

=

(其中x 表示摆球偏离平衡位置的位移,L 表示单摆的摆长,负号表示回复力F 与位移x 的方向相反)

对确定的单摆,m 、g 、L 都有确定的数值,L mg

可以用一个常数表示,上式可以写成

kx F -=

可见:在偏角很小的情况下,单摆所受的回复力与偏离平衡位置的位移成正比而方向相反,单摆做简谐运动。

考点/易错点3、单摆振动的周期

伽利略发现了单摆运动的等时性,荷兰物理学家惠更斯(1629~1695)研究了单摆的摆动,定量得到: 单摆的周期

g l

T π

2=,即单摆振动时具有如下规律:

① 单摆的振动周期与振幅的大小无关——单摆的等时性。 ② 单摆的振动周期与摆球的质量无关。

③ 单摆的振动周期与摆长的平方根成正比。其中L 为摆长,表示从悬点到摆球质心的距离,要区分摆长和摆线长。

④ 单摆的振动周期与重力加速度的平方根成反比。单摆周期公式中的g 是单摆所在地的重力加速度. ⑤ 单摆的周期

g l T π

2=为单摆的固有周期,相应地l g

f π

21

=

为单摆的固有频率.

⑥ 单摆的周期公式可以由简谐运动的周期公式

k m T π

2=,以l mg

k =

代入而得到.

⑦ 单摆的周期公式在最大偏角<5°时成立(达5°时,与实际测量值的相对误差为0.01%).

考点/易错点4、单摆的应用

(1)利用单摆可测定当地的重力加速度g :

① 原理:由单摆周期公式

g l T π2=得:2

24T l g π=. ② 测量:用米尺(最小分度为lmm )测出摆长L (悬点到摆球中心的距离);

用秒表测出单摆完成30~50次全振动所用的时间t 得到T ,摆长一般为1m 左右,测周期的计时以摆球经过平衡位置时开始.

(2)摆钟问题:

① 单摆的一个重要应用就是利用单摆振动的等时性制成摆钟。

② 在计算摆钟类的问题时,利用以下方法比较简单:在一定时间内,摆钟走过的格子数n 与频率f 成正比(n 可以是分钟数,也可以是秒数、小时数……),再由频率公式可以得到:

l l g f n 121∝=

∝π

③ 摆钟是靠调整摆长而改变周期, 使摆钟的走时与标准时间同步 ④ 周期为2s 的单摆叫做秒摆

三、例题精析

【例题1】

【题干】关于单摆,下列说法正确的是( )

A.摆球运动的回复力是摆线张力和重力的合力

B.摆球在运动中经过轨迹上的同一点,加速度是不变的

C.摆球在运动过程中加速度的方向始终指向平衡位置

D.摆球经过平衡位置时,加速度为零

【答案】B

【解析】单摆摆动过程中的回复力是重力沿切线的分力,故A选项错误;摆球在同一位置时有相同的回复力,即有相同的加速度,故B选项正确;摆球摆动中,除了有回复力以外,还有向心力,指向圆心,即有回复加速度和向心加速度,摆球的加速度是时刻变化的,在平衡位置时,摆球受到向心力指向圆心,加速度不为零,故C、D选项错误.

【例题2】

如下图所示,用绝缘细线悬吊着的带正电小球在匀强磁场中做简谐运动,则( )

A.当小球每次通过平衡位置时,动能相同

B.当小球每次通过平衡位置时,速度相同

C.当小球每次通过平衡位置时,丝线拉力相同[来源:Z+xx+https://www.360docs.net/doc/c68346864.html,]

D.撤去磁场后,小球摆动周期变大

【答案】A

【解析】小球摆动过程中,洛伦兹力垂直速度,所以回复力不变,所以周期不变,因洛伦兹力不做功,每次通过平衡位置时动能相同,但速度不同,故A正确,B错误;由于通过平衡位置时的速度方向不同,所受洛伦兹力方向不同,丝线的拉力大小不同,故C选项不正确.

【例题3】某学生利用单摆测重力加速度,在以下各实验步骤中,有错误的步骤是( )

A.在未悬挂之前先测定摆长

B.测得摆长为10 cm

C.将摆球拉离平衡位置,摆角约15°后,让其在竖直平面内振动

D.当摆球第一次通过平衡位置时,启动秒表开始计时,当摆球n次通过平衡位置时,制动秒表,记下

时间t,周期为t

n

【答案】ABCD

【解析】应该在悬挂摆球后再测量摆长,因为摆线受到拉力后的长度与悬挂摆球前不受拉力时摆线长度不同,做单摆实验时,摆长不宜过短,因为摆长过小时在摆动中很容易使摆角超过10°,从而就不能认为单摆做简谐运动.完全一次全振动的时间为周期,每个周期内摆球两次经过平衡位置,所以D选项的做法也是错误的.

四、课堂运用

【基础】

1. 在同一地点,单摆甲的周期是单摆乙的周期的4倍,下列说法正确的是( ) A.甲的频率是乙的4倍

B.甲的摆长是乙的16倍

C.甲的振幅是乙的4倍

D.甲的振动能量是乙的4倍

【答案】B

【解析】由单摆的周期公式T=2πL

g

可知L=

T2g

4π2

,故B选项正确;甲的频率是乙的频率的

1

4

,故A

选项错误;虽然甲、乙两单摆的摆长有L甲=4L乙,但两个单摆的摆角不确定,两摆球质量不确定,故C、D选项错误.

2. 一单摆摆长为40 cm,摆球在t=0时刻正在从平衡位置向右运动,若g=10 m/s2,则在1 s时摆球的运动情况是( )

A.正向左做减速运动,加速度正在增大[来源:学*科*网Z*X*X*K]

B.正向左做加速运动,加速度正在减小

C.正向右做减速运动,加速度正在增大

D.正向右做加速运动,加速度正在减小

【答案】D

【解析】由T=2πL

g

,得周期T=1.256 s,

3T

4

<1 s

大位移处向平衡位置运动过程中,选项D正确.

【巩固】

3. 有一天体半径为地球半径的2倍,平均密度与地球相同,将在地球表面走时准确的摆钟移到该星球表面,秒针走一圈的实际时间为( ) A.12 min B.22 min C. 2 min D .2 min 【答案】 B

【解析】由万有引力公式得GMm R2=mg ,天体表面的重力加速度g =GM R2,M =43

πR3ρ,所以该天体表

面重力加速度g′是地球表面重力加速度的2倍,即g′=2g ,由单摆的周期公式T =2πL g

,得出T′

2

2

T,秒针走一圈时,完成全振动的次数相同,由于周期不同,所以实际经历的时间不同,该摆钟

在地球上秒针转一圈时间为1 min,在该天体表面秒针转一圈时间为

2

2

min,故B选项正确.

4. 一单摆做小角度摆动,其振动图象如下图所示,以下说法正确的是( )

A.t1时刻摆球速度最大,悬线对它的拉力最小

B.t2时刻摆球速度为零,悬线对它的拉力最小

C.t3时刻摆球速度为零,悬线对它的拉力最大

D.t4时刻摆球速度最大,悬线对它的拉力最大

【答案】D

【解析】由振动图象可知t1和t3时刻摆球偏离平衡位置位移最大,此时摆球速度为0,悬线对摆球拉力最小;t2和t4时刻摆球位移为0,正在通过平衡位置速度最大,悬线对摆球拉力最大,故选项D正确.

5. 如下图所示,升降机中有一单摆,当升降机静止时,单摆的周期为T1,当升降机以加速度a 向上匀加速运动时,单摆的周期为T2,则( )

A .T2=T1

B .T2=T1

g

g +a

C .T2=T1g +a

g

D .T2=T1g

g -a 【答案】B

【解析】处于加速上升的升降机中的单摆的周期,T2=2π

L g +a

,升降机静止时的周期T1=2π

L g

T2=T1

g

g +a

,故B 选项正确.

机械振动和机械波知识点总结与典型例题

高三物理第一轮复习《机械振动和机械波》 一、机械振动: (一)夯实基础: 1、简谐运动、振幅、周期和频率: (1)简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动。 特征是:F=-kx,a=-kx/m (2)简谐运动的规律: ①在平衡位置:速度最大、动能最大、动量最大;位移最小、回复力最小、加速度最小。 ②在离开平衡位置最远时:速度最小、动能最小、动量最小;位移最大、回复力最大、加速度最大。 ③振动中的位移x 都是以平衡位置为起点的,方向从平衡位置指向末位置,大小为这两位置间的直线距离。加速度与回复力、位移的变化一致,在两个“端点”最大,在平衡位置为零,方向总是指向平衡位置。 ④当质点向远离平衡位置的方向运动时,质点的速度减小、动量减小、动能减小,但位移增大、回复力增大、加速度增大、势能增大,质点做加速度增大减速运动;当质点向平衡位置靠近时,质点的速度增大、动量增大、动能增大,但位移减小、回复力减小、加速度减小、势能减小,质点做加速度减小的加速运动。 ④弹簧振子周期:T= 2 (与振子质量有关,与振幅无关) (3)振幅A :振动物体离开平衡位置的最大距离称为振幅。它是描述振动强弱的物理量, 是标量。 (4)周期T 和频率f :振动物体完成一次全振动所需的时间称为周期T,它是标量,单位是秒;单位时间内完成的全振动的次数称为频率,单位是赫兹(Hz )。周期和频率都是描述振动快慢的物理量,它们的关系是:T=1/f. 2、单摆: (1)单摆的概念:在细线的一端拴一个小球,另一端固定在悬点上,线的伸缩和质量可忽略,线长远大于球的直径,这样的装置叫单摆。 (2)单摆的特点: ○ 1单摆是实际摆的理想化,是一个理想模型; ○ 2单摆的等时性,在振幅很小的情况下,单摆的振动周期与振幅、摆球的质量等无关; ○3单摆的回复力由重力沿圆弧方向的分力提供,当最大摆角α<100 时,单摆的振动是简谐运动,其振动周期T= g L π 2。 (3)单摆的应用:○1计时器;○2测定重力加速度g=2 24T L π. 3、受迫振动和共振: (1)受迫振动:物体在周期性驱动力作用下的振动叫受迫振动,其振动频率和固有频率无关,等于驱动力的频率;受迫振动是等幅振动,振动物体因克服摩擦或其它阻力做功而消耗振动能量刚好由周期性的驱动力做功给予补充,维持其做等幅振动。 (2)共振:○1共振现象:在受迫振动中,驱动力的频率和物体的固有频率相等时,振幅最大,这种现象称为共振。 ○ 2产生共振的条件:驱动力频率等于物体固有频率。○3共振的应用:转速计、共振筛。 4、简谐运动图象: (1)特点:用演示实验证明简谐运动的图象是一条正弦(或余弦)曲线。 (2)简谐运动图象的应用: ①可求出任一时刻振动质点的位移。 ②可求振幅A :位移的正负最大值。 ③可求周期T :两相邻的位移和速度完全相同的状态的时间间隔。 ④可确定任一时刻加速度的方向。 ⑤可求任一时刻速度的方向。 ⑥可判断某段时间内位移、回复力、加速度、速度、动能、势能的变化情况。 πm K

高中物理机械振动知识点总结

一. 教案内容: 第十一章机械振动 本章知识复习归纳 二. 重点、难点解读 (一)机械振动 物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。 产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。b、阻力足够小。 (二)简谐振动 1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。简谐振动是最简单,最基本的振动。研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-kx,其中“-”号表示力方向跟位移方向相反。 2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。 3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。 (三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。 1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。 2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。振动的周期T跟频率f之间是倒数关系,即T=1/f。振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。 (四)单摆:摆角小于5°的单摆是典型的简谐振动。 细线的一端固定在悬点,另一端拴一个小球,忽略线的伸缩和质量,球的直径远小于悬线长度的装置叫单摆。单摆做简谐振动的条件是:最大摆角小于5°,单摆的回复力F是重力在圆弧切线 方向的分力。单摆的周期公式是T=。由公式可知单摆做简谐振动的固有周期与振幅,摆球质量无关,只与L和g有关,其中L是摆长,是悬点到摆球球心的距离。g是单摆所在处的重力加速度,在有加速度的系统中(如悬挂在升降机中的单摆)其g应为等效加速度。 (五)振动图象。 简谐振动的图象是振子振动的位移随时间变化的函数图象。所建坐标系中横轴表示时间,纵轴表

高考物理机械振动试题经典

高考物理机械振动试题经典 一、机械振动选择题 1.如图所示,位于竖直平面内的固定光滑圆环轨道与水平面相切于M点,与竖直墙相切于A点,竖直墙上另一点B与M的连线和水平面的夹角为60°,C是圆环轨道的圆心,D 是圆环上与M靠得很近的一点(DM远小于CM).已知在同一时刻,a、b两球分别由A、B两点从静止开始沿光滑倾斜直轨道运动到M点;c球由C点自由下落到M点;d球从D 点静止出发沿圆环运动到M点.则: A.c球最先到达M点 B.b球最先到达M点 C.a球最先到达M点 D.d球比a球先到达M点 2.下列说法中不正确的是( ) A.将单摆从地球赤道移到南(北)极,振动频率将变大 B.将单摆从地面移至距地面高度为地球半径的高度时,则其振动周期将变到原来的2倍C.将单摆移至绕地球运转的人造卫星中,其振动频率将不变 D.在摆角很小的情况下,将单摆的振幅增大或减小,单摆的振动周期保持不变 3.如图为某简谐运动图象,若t=0时,质点正经过O点向b运动,则下列说法正确的是() A.质点在0.7 s时的位移方向向左,且正在远离平衡位置运动 B.质点在1.5 s时的位移最大,方向向左,在1.75 s时,位移为1 cm C.质点在1.2 s到1.4 s过程中,质点的位移在增加,方向向左 D.质点从1.6 s到1.8 s时间内,质点的位移正在增大,方向向右 4.如图所示,弹簧下面挂一质量为m的物体,物体在竖直方向上做振幅为A的简谐运动,当物体振动到最高点时,弹簧正好处于原长,弹簧在弹性限度内,则物体在振动过程中

A.弹簧的弹性势能和物体动能总和不变 B.物体在最低点时的加速度大小应为2g C.物体在最低点时所受弹簧的弹力大小应为mg D.弹簧的最大弹性势能等于2mgA 5.一位游客在千岛湖边欲乘坐游船,当日风浪较大,游船上下浮动.可把游船浮动简化成竖直方向的简谐运动,振幅为20 cm,周期为3.0 s.当船上升到最高点时,甲板刚好与码头地面平齐.地面与甲板的高度差不超过10 cm时,游客能舒服地登船.在一个周期内,游客能舒服登船的时间是( ) A.0.5 s B.0.75 s C.1.0 s D.1.5 s 6.如图所示,弹簧振子在A、B之间做简谐运动.以平衡位置O为原点,建立Ox轴.向右为x轴的正方向.若振子位于B点时开始计时,则其振动图像为() A.B. C.D. 7.如图所示,PQ为—竖直弹簧振子振动路径上的两点,振子经过P点时的加速度大小为6m/s2,方向指向Q点;当振子经过Q点时,加速度的大小为8m/s2,方向指向P点,若PQ之间的距离为14cm,已知振子的质量为lkg,则以下说法正确的是() A.振子经过P点时所受的合力比经过Q点时所受的合力大 B.该弹簧振子的平衡位置在P点正下方7cm处 C.振子经过P点时的速度比经过Q点时的速度大 D.该弹簧振子的振幅一定为8cm

(完整word版)人教版高中化学选修3物质结构与性质教案

物质结构与性质 第一章原子结构与性质 第一节原子结构 第二节原子结构与元素的性质 归纳与整理复习题 第二章分子结构与性质 第一节共价键 第二节分子的立体结构 第三节分子的性质 归纳与整理复习题 第三章晶体结构与性质 第一节晶体的常识 第二节分子晶体与原子晶体 第三节金属晶体 第四节离子晶体 归纳与整理复习题 (人教版)高中化学选修3 《物质结构与性质》全部教学案 第一章原子结构与性质 教材分析: 一、本章教学目标 1.了解原子结构的构造原理,知道原子核外电子的能级分布,能用电子排布式表示常见元素(1~36号)原子核外电子的排布。 2.了解能量最低原理,知道基态与激发态,知道原子核外电子在一定条件下会发生跃迁产生原子光谱。 3.了解原子核外电子的运动状态,知道电子云和原子轨道。 4.认识原子结构与元素周期系的关系,了解元素周期系的应用价值。 5.能说出元素电离能、电负性的涵义,能应用元素的电离能说明元素的某些性质。 6.从科学家探索物质构成奥秘的史实中体会科学探究的过程和方法,在抽象思维、理论分析的过程中逐步形成科学的价值观。 本章知识分析: 本章是在学生已有原子结构知识的基础上,进一步深入地研究原子的结构,从构造原理和能量最低原理介绍了原子的核外电子排布以及原子光谱等,并图文并茂地描述了电子云和原子轨道;在原子结构知识的基础上,介绍了元素周期系、元素周期表及元素周期律。总之,本章按照课程标准要求比较系统而深入地介绍了原子结构与元素的性质,为后续章节内容的学习奠定基础。尽管本章内容比较抽象,是学习难点,但作为本书的第一章,教科书从内容和形式上都比较注意激发和保持学生的学习兴趣,重视培养学生的科学素养,有利于增强学生学习化学的兴趣。 通过本章的学习,学生能够比较系统地掌握原子结构的知识,在原子水平上认识物质构成的规律,并能运用原子结构知识解释一些化学现象。 注意本章不能挖得很深,属于略微展开。

江西省上饶市横峰中学高考物理机械振动试题经典

江西省上饶市横峰中学高考物理机械振动试题经典 一、机械振动选择题 1.如图所示,弹簧下端挂一质量为m的物体,物体在竖直方向上做振幅为A的简谐运动,当物体振动到最高点时,弹簧正好为原长,则物体在振动过程中( ) A.物体在最低点时的弹力大小应为2mg B.弹簧的弹性势能和物体动能总和不变 C.弹簧的最大弹性势能等于2mgA D.物体的最大动能应等于mgA 2.在科学研究中,科学家常将未知现象同已知现象进行比较,找出其共同点,进一步推测未知现象的特性和规律.法国物理学家库仑在研究异种电荷的吸引力问题时,曾将扭秤的振动周期与电荷间距离的关系类比单摆的振动周期与摆球到地心距离的关系.已知单摆摆长为l,引力常量为G,地球质量为M,摆球到地心的距离为r,则单摆振动周期T与距离r的关系式为() A.T=2πr GM l B.T=2πr l GM C.T=2πGM r l D.T=2πl r GM 3.如图所示是扬声器纸盆中心做简谐运动的振动图象,下列判断正确的是 A.t=2×10-3s时刻纸盆中心的速度最大 B.t=3×10-3s时刻纸盆中心的加速度最大 C.在0?l×10-3s之间纸盆中心的速度方向与加速度方向相同 D.纸盆中心做简谐运动的方程为x=1.5×10-4cos50πt(m) 4.如图所示的弹簧振子在A、B之间做简谐运动,O为平衡位置,则下列说法不正确的是()

A.振子的位移增大的过程中,弹力做负功 B.振子的速度增大的过程中,弹力做正功 C.振子的加速度增大的过程中,弹力做正功 D.振子从O点出发到再次回到O点的过程中,弹力做的总功为零 5.如右图甲所示,水平的光滑杆上有一弹簧振子,振子以O点为平衡位置,在a、b两点之间做简谐运动,其振动图象如图乙所示.由振动图象可以得知( ) A.振子的振动周期等于t1 B.在t=0时刻,振子的位置在a点 C.在t=t1时刻,振子的速度为零 D.从t1到t2,振子正从O点向b点运动 6.如图所示,弹簧振子在A、B之间做简谐运动.以平衡位置O为原点,建立Ox轴.向右为x轴的正方向.若振子位于B点时开始计时,则其振动图像为() A.B. C.D. 7.如图所示,物块M与m叠放在一起,以O为平衡位置,在ab之间做简谐振动,两者始终保持相对静止,取向右为正方向,其振动的位移x随时间t的变化图像如图,则下列说法正确的是()

化学选修3教案

化学选修3教案 【篇一:高中化学选修3全册教案】 新课标(人教版)高中化学选修3 全部教学案 第一章原子结构与性质 教材分析: 一、本章教学目标 1.了解原子结构的构造原理,知道原子核外电子的能级分布,能用 电子排布式表示常 见元素(1~36号)原子核外电子的排布。 2.了解能量最低原理,知道基态与激发态,知道原子核外电子在一 定条件下会发生跃 迁产生原子光谱。 3.了解原子核外电子的运动状态,知道电子云和原子轨道。 4.认识原子结构与元素周期系的关系,了解元素周期系的应用价值。 5.能说出元素电离能、电负性的涵义,能应用元素的电离能说明元 素的某些性质。 6.从科学家探索物质构成奥秘的史实中体会科学探究的过程和方法,在抽象思维、理 论分析的过程中逐步形成科学的价值观。 本章知识分析: 本章是在学生已有原子结构知识的基础上,进一步深入地研究原子 的结构,从构造原理 和能量最低原理介绍了原子的核外电子排布以及原子光谱等,并图 文并茂地描述了电子云和 原子轨道;在原子结构知识的基础上,介绍了元素周期系、元素周 期表及元素周期律。总之, 本章按照课程标准要求比较系统而深入地介绍了原子结构与元素的 性质,为后续章节内容的 学习奠定基础。尽管本章内容比较抽象,是学习难点,但作为本书 的第一章,教科书从内容 和形式上都比较注意激发和保持学生的学习兴趣,重视培养学生的 科学素养,有利于增强学 生学习化学的兴趣。

通过本章的学习,学生能够比较系统地掌握原子结构的知识,在原 子水平上认识物质 构成的规律,并能运用原子结构知识解释一些化学现象。 注意本章不能挖得很深,属于略微展开。 相关知识回顾(必修2) 1. 原子序数:含义: (1)原子序数与构成原子的粒子间的关系: 原子序数====。(3) 原子组成的表示方法 aa. 原子符号: zxa z b. 原子结构示意图: c.电子式: d.符号表示的意义: a b c d e (4)特殊结构微粒汇总: 无电子微粒无中子微粒 2e-微粒 8e-微粒 10e-微粒 18e-微粒 2. 元素周期表:(1)编排原则:把电子层数相同的元素,按原子序数递增的顺序从左到右排成横行叫周期;再把不同横行中最外层电 子数相同的元素,按电子层数递增的顺序有上到下排成纵行,叫族。(2)结构:各周期元素的种数0族元素的原子序数第一周期 2 2 第二周期 810 第三周期 8 18 第四周期 18 36 第五周期 18 54 第六周期32 86第七周期 26118 a 表示;副族用 b 表示。 8、9、10纵行 罗马数字:i iiiii ivv vi vii viii (3)元素周期表与原子结构的关系: ①周期序数=电子层数②主族序数=原子最外层电子数=元素最 高正化合价数 (4)元素族的别称:①第Ⅰa族:碱金属第Ⅰia族:碱土金属②第 Ⅶa 族:卤族元素 ③第0族:稀有气体元素 3、有关概念: (1)质量数:

高一物理 机械运动、位移 典型例题

高一物理机械运动、位移典型例题 [例1]甲、乙、丙三架观光电梯,甲中乘客看一高楼在向下运动;乙中乘客看甲在向下运动;丙中乘客看甲、乙都在向上运动.这三架电梯相对地面的运动情况是[] A.甲向上、乙向下、丙不动 B.甲向上、乙向上、丙不动 C.甲向上、乙向上、丙向下 D.甲向上、乙向上、丙也向上,但比甲、乙都慢 [分析]电梯中的乘客观看其他物体的运动情况时,是以自己所乘的电梯为参照物.甲中乘客看高楼向下运动,说明甲相对于地面一定在向上运动.同理,乙相对甲在向上运动,说明乙对地面也是向上运动,且运动得比甲更快.丙电梯无论是静止,还是在向下运动,或以比甲、乙都慢的速度在向上运动,丙中乘客看甲、乙两电梯都会感到是在向上运动. [答] B、C、D. [例2]下列关于质点的说法中,正确的是[] A.体积很小的物体都可看成质点 B.质量很小的物体都可看成质点 C.不论物体的质量多大,只要物体的尺寸跟物体间距相比甚小时,就可以看成质点 D.只有低速运动的物体才可看成质点,高速运动的物体不可看作质点 [分析] 一个实际物体能否看成质点,跟它体积的绝对大小、质量的多少以及运动速度的高低无关,决定于物体的尺寸与物体间距相比的相对大小.例如,地球可称得上是个庞然大物,其直径约为1.28×107 m,质量达到6×1024kg,在太空中绕太阳运动的速度每秒几百米.由于其直径与地球离太阳的距离(约1.5×1011m)相比甚小,因此在研究地球的公转运动时,完全可以忽略地球的形状、大小及地球自身的运动,把它看成一个质点. [答] C.

[例3]下列各种情况,可以把研究对象(黑体者)看作质点的是[] A. 研究小木块的翻倒过程 B. 讨论地球的公转 C. 解释微粒的布朗运动 D. 计算整列列车通过某一路标的时间 [误解一] 小木块体积小,远看可视为一点;作布朗运动的微粒体积极小,当然是质点,故选(A)、(C)。 [误解二] 列车作平动,车上各点运动规律相同,可视为质点,故选(D)。 [正确解答] 讨论地球的公转时,地球的直径(约1.3×104km)和公转的轨道半径(约1.5×108km)相比要小得多,因而地球上各点相对于太阳的运动差别极小,即地球的大小和形状可以忽略不计,可把地球视为质点,故选(B)。 [错因分析与解题指导] 物理研究中常建立起一些理想化的模型,它是物理学对实际问题的简化,也叫科学抽象。它撇开与当前观察无关的因素和对当前考察影响很小的次要因素,抓住与考察有关的主要因素进行研究、分析、解决问题,质点就是一个理想化的模型。[误解一] 以为质点是指一个很小的点。但在小木块的翻倒过程中,木块各点绕一固定点转动,各点运动情况不同,不可看作质点。至于作布朗运动的粒子,尽管体积极小,仍受到来自各个方向上的液体分子(具有更小体积)的撞击,正是这种撞击作用的不平衡性使之作无规则运动,也不可把布朗运动粒子视为质点。[误解二]以为火车在铁道上的运动为平动,可视为质点。而本题实际考察的是经过某路标的时间,就不能不考察它的长度,在这情况中不能视其为质点。 [例4]关于质点的位移和路程的下列说法中正确的是[] A. 位移是矢量,位移的方向即质点运动的方向 B. 路程是标量,即位移的大小 C. 质点沿直线向某一方向运动,通过的路程等于位移的大小 D. 物体通过的路程不等,位移可能相同 [误解]选(A),(B)。

2021届高三物理一轮复习力学机械振动与机械波波的图像专题练习

2021届高三物理一轮复习力学机械振动与机械波波的图像专题练习 一、填空题 1.一列简谐横波在x 轴上传播,波源振动周期T =0.1s ,在某一时刻的波形如图所示,且此时a 点向下运动,则该波的波长_______m ,波速______m /s ,该波向x 轴的_______(正、负)方向传播。 2.一列简谐横波在0t =时刻的波形图如图中实线所示,3s t =时的波形图如图中虚线所示。已知该波传播的速度5m/s v =,则该波的传播方向为__________;质点a 的振动周期为__________s ;质点a 的振动方程为___________。 3.一列简谐横波沿x 轴正方向传播,在t =0时刻的波形图如图所示。已知这列波在P 点出现两次波峰的最短时间为0.4s ,这列波的波速是________m/s ;再经________s 质点R 第二次到达波峰。 4.如图所示,甲为一列简谐横波在t=0时刻的波形图,P 是平衡位置为x=1m 处的质点,Q 是平衡位置为x=4m 处的质点,图乙为质点Q 的振动图象,则该列机械波的波速为 m/s ,在t=0.Is 时刻,质点P 对平衡位置的位移为____cm. 5.如图所示,波源在x=0处的简谐横波刚好传播到x=5 m 处的M 点,此时波源恰好在正方向最大位移处, 已知该简谐横波的波速v=4 m/s ,则该波的波长为____m;此时x=3.5 m 处的质点正在向____(选填“x 轴正”、 “x 轴负”、“y 轴正”或“y 轴负”)方向运动;从波源开始振动到波传播到M 点的时间为____s .

6.如图,位于坐标原点的某波源S 振动方程y =10sin 200πt (cm ),产生的简谐横波沿x 轴正方向传播,波速v =80 m/s .在x 轴上有M 、N 、P 三点,已知SM =SN =1 m ,NP =0.2 m .当波刚传到质点P 时,P 点的振动方向沿y 轴____(填“正”或“负”)方向,N 质点的位移为____cm .此后质点M 、N 的振动方向始终__(填“相同”或“相反”). 7.弹性绳沿x 轴放置,左端位于坐标原点,用手握住绳的左端,当t =0时使其开始沿y 轴做振幅为8 cm 的简谐振动,在t =0.25 s 时,绳上形成如图所示的波形,则该波的波速为______cm/s ,t =______s 时,位于x 2=45 cm 处的质点N 恰好第一次沿y 轴正向通过平衡位置. 8.t=0时刻从坐标原点O 处发出一列简谐波,沿x 轴正方向传播,4s 末刚好传到A 点,波形如图所示.则A 点的起振方向为______,该波的波速v=_____m/s. 9.如图为一列沿x 轴正方向传播的简谐横波的部分波形图。若:该波波速80m/s ,在0t =时刻刚好传播到13m x =处,则0.425s t =时,9m x =处的质点的位移为________cm ,该波刚好传到x =________m 处。 10.一列简谐横波在某介质中沿x 轴传播,在x 轴上a 、b 两点的振动图像分别为如图甲乙所示,波的传播速度为5m/s ,a 、b 间的距离小于一个波长,若波从a 传播到b ,则a 、b 间的距离为______________m ,若波从b 传播到a ,所用的时间为____________s ,若增大波源处质点的振动频率,则波从b 传播到a 所用的时间会________________(填“变大”、“变小”或“不变”). 11.如图所示,位于坐标原点的波源从t=0时刻开始沿y 轴正方向振动,产生的两列简谐横波在同一介质中分别沿x 轴正方向和负方向传播。t=3s 时x A =-2m 的质点A 第一次经平衡位置向y 轴负方向运动;x B =6m 处

机械振动机械波高考题汇编标准答案

机械振动机械波高考题汇编答案 一、选择题 1.2010·全国卷Ⅱ·15一简谐横波以4m/s的波速沿x轴正方向传播。已知t=0时的波形如图所示,则 A.波的周期为1s B.x=0处的质点在t=0时向y轴负向运动 C.x=0处的质点在t= 1 4 s时速度为0 D.x=0处的质点在t= 1 4 s时速度值最大 2.2010·福建·15一列简谐横波在t=0时刻的波形如图中的实线所示,t=0.02s时刻的波形如图中虚线所示。若该波的周期T大于0.02s,则该波的传播速度可能是 A.2m/s B.3m/s C.4m/s D.5m/s 答案:B 3. 2010·上海物理·2利用发波水槽得到的水面波形如a,b所示,则 (A)图a、b均显示了波的干涉现象 (B)图a、b均显示了波的衍射现象 (C)图a显示了波的干涉现象,图b显示了波的衍射现象 (D)图a显示了波的衍射现象,图b显示了波的干涉现象 【解析】D

本题考查波的干涉和衍射。难度:易。 4. 2010·上海物理·3声波能绕过某一建筑物传播而光波却不能绕过该建筑物,这是因为 (A )声波是纵波,光波是横波 (B )声波振幅大,光波振幅小 (C )声波波长较长,光波波长很短 (D )声波波速较小,光波波速很大 【解析】C 本题考查波的衍射条件:障碍物与波长相差不多。难度:易。 5.2010·北京·17一列横波沿x 轴正向传播,a 、b 、c 、d 为介质中沿波传播方向上四个质点的平衡位置。某时刻的波形如图1所示,此后,若经过3 4 周期开始计时,则图2描述的是 A.a 处质点的振动图象 B.b 处质点的振动图象 C.c 处质点的振动图象 D.d 处质点的振动图象 【答案】B 【解析】由波的图像经过 4 3 周期a 到达波谷,b 到达平衡位置向下运动,c 到达波峰,d 到达平衡位置向上运动,这是四质点在0时刻的状态,只有b 的符合振动图像,答案B 。 11.2010·重庆·14一列简谐波在两时刻的波形如题14图中实践和虚线所示,由图可确定这列波的 A .周期 B .波速 C .波长 D .频率 【答案】C 【解析】只能确定波长,正确答案C 。题中未给出实线波形和虚线波形的时刻,不知道时间

人教版高中化学选修三《创新设计》电子教案学案3-1

第三章晶体结构与性质 第一节晶体的常识 (时间:30分钟) 考查点一晶体与非晶体 1.下列叙述中正确的是()。 A.具有规则几何外形的固体一定是晶体 B.晶体与非晶体的根本区别在于是否具有规则的几何外形 C.具有各向异性的固体一定是晶体 D.晶体、非晶体均具有固定的熔点 解析晶体与非晶体的根本区别在于其内部微粒在空间是否按一定规律做周期性重复排列,B项错误;晶体所具有的规则几何外形、各向异性是其内 微粒规律性排列的外部反映。有些人工加工而成的固体也具有规则的几何外形,但具有各向异性的固体一定是晶体,A项错误,C项正确;晶体具有固 定的熔点而非晶体不具有固定的熔点,D项错误。 答案 C 2.下列说法正确的是()。 A.玻璃是由Na2SiO3、CaSiO3和SiO2熔合成的晶体

B.水玻璃在空气中不可能变浑浊 C.水泥在空气和水中硬化 D.制光导纤维的重要原料是玻璃 解析玻璃是由Na2SiO3、CaSiO3和SiO2熔合成的混合物,是玻璃体不是晶体,故A项错;水玻璃是Na2SiO3的水溶液,在空气中发生反应:Na2SiO3 +CO2+H2O===Na2CO3+H2SiO3↓,故B项错;水泥的硬化是水泥的重要性质,是复杂的物理变化和化学变化过程,故C项正确;制光导纤维的重要原料是石英而不是玻璃,故D项错。 答案 C 3.关于晶体的自范性,下列叙述正确的是()。 A.破损的晶体能够在固态时自动变成规则的多面体 B.缺角的氯化钠晶体在饱和NaCl溶液中慢慢变为完美的立方体块 C.圆形容器中结出的冰是圆形的体现了晶体的自范性 D.由玻璃制成规则的玻璃球体现了晶体的自范性 解析晶体的自范性指的是在适宜条件下,晶体能够自发地呈现封闭的规则的多面体外形的性质,这一适宜条件一般指的是自动结晶析出的条件,A 项所述过程不可能实现;C选项中的圆形并不是晶体冰本身自发形成的,而是受容器的限制形成的;D项中玻璃是非晶体。 答案 B 4.如图是a、b两种不同物质的熔化曲线,下列说法中正确的是()。 ①a是晶体②a是非晶体③b是晶体④b是非晶体 A.①④ B.②④ C.①③ D.②③ 解析晶体有固定的熔点,由图a来分析,中间有一段温度不变但一直在吸

高考复习——《机械振动》典型例题复习

九、机械振动 一、知识网络 二、画龙点睛 概念 1、机械振动 (1)平衡位置:物体振动时的中心位置,振动物体未开始振动时相对于参考系静止的位置,或沿振动方向所受合力等于零时所处的位置叫平衡位置。 (2)机械振动:物体在平衡位置附近所做的往复运动,叫做机械振动,通常简称为振动。 (3)振动特点:振动是一种往复运动,具有周期性和重复性 2、简谐运动 (1)弹簧振子:一个轻质弹簧联接一个质点,弹簧的另一端固定,就构成了一个弹簧振子。 (2)振动形成的原因 ①回复力:振动物体受到的总能使振动物体回到平衡位置,且始终指向平衡位置的力,叫回复力。 振动物体的平衡位置也可说成是振动物体振动时受到的回复力为零的位置。

②形成原因:振子离开平衡位置后,回复力的作用使振了回到平衡位置,振子的惯性使振子离开平衡位置;系统的阻力足够小。 (4)简谐运动的力学特征 ①简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫做简谐运动。 ②动力学特征:回复力F与位移x之间的关系为 F=-kx 式中F为回复力,x为偏离平衡位置的位移,k是常数。简谐运动的动力学特征是判断物体是否为简谐运动的依据。 ③简谐运动的运动学特征 a=-k m x 加速度的大小与振动物体相对平衡位置的位移成正比,方向始终与位移方向相反,总指向平衡位置。 简谐运动加速度的大小和方向都在变化,是一种变加速运动。简谐运动的运动学特征也可用来判断物体是否为简谐运动。 例题:试证明在竖直方向的弹簧振子做的也是简谐振运动。 证明:设O为振子的平衡位置,向下方向为正方向,此时弹簧形变量为x0,根据胡克定律得 x0=mg/k 当振子向下偏离平衡位置x时,回复力为 F=mg-k(x+x0) 则F=-kx 所以此振动为简谐运动。 3、振幅、周期和频率 ⑴振幅 ①物理意义:振幅是描述振动强弱的物理量。 ②定义:振动物体离开平衡位置的最大距离,叫做振动的振幅。 ③单位:在国际单位制中,振幅的单位是米(m)。

高三物理复习知识点机械振动

2019高三物理复习知识点机械振动查字典物理网为大家整理了2019高三物理复习知识点:机械振动,希望对大家有所帮助,欢迎点击进入。 一、简谐运动 基础目标 1、回复力、平衡位置、机械振动 2、知道什么是简谐运动及物体做简谐运动的条件。 3、理解简谐运动在一次全振动过程中位移、回复力、加速度、速度的变化情况。 4、理解简谐运动的对称性及运动过程中能量的变化。 拔高目标 1、简谐运动的证明(竖直方向弹簧振子,水面上木块)。 2、简谐运动与力学的综合题型。 3、简谐运动周期公式。 【重难点】 重点:简谐运动的特征及相关物理量的变化规律。 难点:偏离平衡位置位移的概念及一次全振动中各量的变化。 一.新课引入 知识目标:引入新的运动--机械振动 前面已学过的运动: 按运动轨迹分:直线运动按速度特点分:匀变速 曲线运动非匀变速

自然界中还有一种更常见的运动:机械振动 二.机械振动 在自然界中,经常观察到一些物体来回往复的运动,如吊灯的来回摆动,树枝在微风中的摆动,下面我们就来研究一下这些运动具有什么特点。 这些运动都有一个明显的中心位置,物体或物体的一部分都在这个中心位置两侧往复运动。这样的运动称为机械振动。当物体不再往复运动时,都停在这个位置,我们把这一位置称为平衡位置。(标出平衡位置) 平衡位置是指运动过程中一个明显的分界点,一般是振动停止时静止的位置,并不是所有往复运动的中点都是平衡位置。存在平衡位置是机械运动的必要条件,有很多运动,尽管也是往复运动,但并不存在明显的平衡位置,所以并非机械振动。 如:拍皮球、人来回走动 注意:在运动过程中,平衡位置受力并非一定平衡!如:小 球的摆动 总结:机械振动的充要条件:1、有平衡位置 2、在平衡位 置两侧往复运动。 自然界中还有哪些机械振动? 钟摆、心脏、活塞、昆虫翅膀的振动、浮标上下浮动、钢尺的振动

历年机械振动机械波的高考题答案

(97)简谐横波某时刻的波形图线如图所示。由此图可知 (BD) (A)若质点a向下运动,则波是从左向右传播的 (B)若质点b向上运动,则波是从左向右传播的 (C)若波从右向左传播,则质点c向下运动 (D)若波从右向左传播,则质点d向上运动 (98全国)一简谐横波在x轴上传播,在某时刻的波形如图所示,已知此时质点F的运动方向向下,则(AB) (A)此波朝x轴负方向传播 (B)质点D此时向下运动 (C)质点B将比质点C先回到平衡位置 (D)质点E的振幅为零 (00全国)一列横波在t=0时刻的波形如图中实线所示,在t=1s时刻的波形如图中虚线所示,由此可以判定此波的(AC) (A)波长一定是4cm (B)周期一定是4s (C)振幅一定是2cm (D)传播速度一定是1cm/s (01晋津)图1所示为一列简谐横波在t=20秒时的波形图, 图2是这列波中P点的振动图线,那么该波的传播速度和传播方向是(B) A.v=25cm/s,向左传播B.v=50cm/s,向左传播 C.v=25cm/s,向右传播D.v=50cm/s,向右传播(01全国)如图所示,在平面xy内有一沿水平轴x正向传播的简谐横波,波速为3.0m/s,频率为2.5HZ ,振幅为。已知t=0时刻P 质点的位移为,速度沿y 轴正向。Q点在P点右方处,对于Q点的质元来说(BC) A.在t=0时,位移为y= B.在t=0时,速度沿y轴负方向。 C.在t=0.1s时,位移为y=D.在t=0.1s 时,速度沿y轴正方向。 (02广东)一列在竖直方向振动的简谐横波,波长为λ,沿正x方向传播,某一时刻,在振动位移向上且大小等于振幅一半的各点中,任取相邻的两点P1、P2,已知P1的x坐标小于P2的x坐标.(AC) A .若<λ/2,则P1向下运动,P2向上运动 B .若<λ/2,则P1向上运动,P2向下运动 C .若>λ/2,则P1向上运动,P2向下运动 D .若>λ/2,则P1向下运动,P2向上运动 (02上海)如图所示,S1、S2是振动情况完全相同的两个机械波波源,振幅为A,a、b、c三点分别位于S1、S2连线的中垂线上,且ab=bc。某时刻a是两列波的波峰相遇点,c是两列波的波谷相遇点,则(CD) A.a处质点的位移始终为2A B.c处质点的位移始终为-2A C.b处质点的振幅为2A D.d处质点的振幅为2A (03全国)简谐机械波在给定的媒质中传播时,下列说法中正确的是(D) A.振幅越大,则波传播的速度越快 B.振幅越大,则波传播的速度越慢 C.在一个周期内,振动质元走过的路程等于一个波长 D.振动的频率越高,则波传播一个波长的距离所用的时间越短

2021人教版高中化学选修三《分子的性质》word教案

2021人教版高中化学选修三《分子的性质》word教 案 第三节分子的性质 第一课时 教学目标 1、了解极性共价键和非极性共价键; 2、结合常见物质分子立体结构,判定极性分子和非极性分子; 3、培养学生分析问题、解决问题的能力和严谨认确实科学态度。 重点、难点 多原子分子中,极性分子和非极性分子的判定。 教学过程 创设问题情境: (1)如何明白得共价键、极性键和非极性键的概念; (2)如何明白得电负性概念; (3)写出H2、Cl2、N2、HCl、CO2、H2O的电子式。 提出问题: 由相同或不同原子形成的共价键、共用电子对在两原子显现的机会是否相同? 讨论与归纳: 通过学生的观看、摸索、讨论。一样说来,同种原子形成的共价键中的电子对不发生偏移,是非极性键。而由不同原子形成的共价键,电子对会发生偏移,是极性键。 提出问题: (1)共价键有极性和非极性;分子是否也有极性和非极性? (2)由非极性键形成的分子中,正电荷的中心和负电荷的中心如何样分布?是否重合? (3)由极性键形成的分子中,如何样找正电荷的中心和负电荷的中心? 讨论交流: 利用教科书提供的例子,以小组合作学习的形式借助图示以及数学或物理中学习过的向量合

成方法,讨论、研究判定分子极性的方法。 总结归纳: (1)由极性键形成的双原子、多原子分子,其正电中心和负电中心重合,因此差不多上非极性分子。如:H2、N2、C60、P4。 (2)含极性键的分子有没有极性,必须依据分子中极性键的极性向量和是否等于零而定。 当分子中各个键的极性的向量和等于零时,是非极性分子。如:CO2、BF3、CCl4。当分子中各个键的极性向量和不等于零时,是极性分子。如:HCl、NH3、H2O。 (3)引导学生完成下列表格 一样规律: a.以极性键结合成的双原子分子是极性分子。如:HCl、HF、HBr b.以非极性键结合成的双原子分子或多原子分子是非极性分子。如:O2、H2、P4、C60。 c.以极性键结合的多原子分子,有的是极性分子也有的是非极性分子。 d.在多原子分子中,中心原子上价电子都用于形成共价键,而周围的原子是相同的原子,一样是非极性分子。 反思与评判: 组织完成“摸索与交流”。

高考物理力学知识点之机械振动与机械波经典测试题

高考物理力学知识点之机械振动与机械波经典测试题 一、选择题 1.一弹簧振子做简谐运动,其位移x与时间t的关系曲线如图所示,由图可知:() A.质点的振动频率是4Hz B.t=2s时,质点的加速度最大 C.质点的振幅为5cm D.t=3s时,质点所受合力为正向最大 2.如图所示,从入口S处送入某一频率的声音。通过左右两条管道路径SAT和SBT,声音传到了出口T处,并可以从T处监听声音。右侧的B管可以拉出或推入以改变B管的长度,开始时左右两侧管道关于S、T对称,从S处送入某一频率的声音后,将B管逐渐拉出,当拉出的长度为l时,第一次听到最弱的声音。设声速为v,则该声音的频率() A.B.C.D. 3.做简谐运动的物体,下列说法正确的是 A.当它每次经过同一位置时,位移可能不同 B.当它每次经过同一位置时,速度可能不同 C.在一次全振动中通过的路程不一定为振幅的四倍 D.在四分之一周期内通过的路程一定为一倍的振幅 4.如图所示,弹簧振子以O点为平衡位置,在M、N两点之间做简谐运动.下列判断正确的是() A.振子从O向N运动的过程中位移不断减小 B.振子从O向N运动的过程中回复力不断减小 C.振子经过O时动能最大

D.振子经过O时加速度最大 5.下列说法正确的是() A.物体做受迫振动时,驱动力频率越高,受迫振动的物体振幅越大 B.医生利用超声波探测病人血管中血液的流速应用了多普勒效应 C.两列波发生干涉,振动加强区质点的位移总比振动减弱区质点的位移大 D.遥控器发出的红外线波长比医院“CT”中的X射线波长短 6.如图所示,一列简谐横波向右传播,P、Q两质点平衡位置相距0.15 m。当P运动到上方最大位移处时,Q刚好运动到下方最大位移处,则这列波的波长可能是() A.0.60 m B.0.20 m C.0.15 m D.0.10 m 7.如图所示为一列沿x轴负方向传播的简谐横波在t1=0时的波形图。经过t2=0.1s,Q点振动状态传到P点,则() A.这列波的波速为40cm/s B.t2时刻Q点加速度沿y轴的正方向 C.t2时刻P点正在平衡位置且向y轴的负方向运动 D.t2时刻Q点正在波谷位置,速度沿y轴的正方向 8.若单摆的摆长不变,摆球的质量由20g增加为40g,摆球离开平衡位置的最大角度由4°减为2°,则单摆振动的( ) A.频率不变,振幅不变 B.频率不变,振幅改变 C.频率改变,振幅不变 D.频率改变,振幅改变 t=时刻的波形图,虚线为9.如图所示为一列沿x轴负方向传播的简谐横波,实线为0 T>,则:() 0.6s t=时的波形图,波的周期0.6s A.波的周期为2.4s

人教版化学选修三原子的结构教案

教案 课题:第一节原子结构(2)授课班级 课时 教学目的 知识 与 技能 1、了解原子结构的构造原理,能用构造原理认识原子的核外电子排布 2、能用电子排布式表示常见元素(1~36号)原子核外电子的排布 3、知道原子核外电子的排布遵循能量最低原理 4、知道原子的基态和激发态的涵义 5、初步知道原子核外电子的跃迁及吸收或发射光谱,了解其简单应用 过程 与 方法 复习和沿伸、动画构造原理认识核外电子排布,亲自动手书写,体会原理情感 态度 价值观 充分认识原子构造原理,培养学生的科学素养,有利于增强学生学习化学 的兴趣。 重点电子排布式、能量最低原理、基态、激发态、光谱难点电子排布式 知识结构与板书设计三、构造原理 1.构造原理:绝大多数基态原子核外电子的排布的能级顺序都遵循下列顺序:1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s…… 2、能级交错现象(从第3电子层开始):是指电子层数较大的某些轨道的能量反低于电子层数较小的某些轨道能量的现象。 电子先填最外层的ns,后填次外层的(n-1)d,甚至填入倒数第三层的(n-2)f的规律叫做“能级交错” 3.能量最低原理:原子核外电子遵循构造原理排布时,原子的能量处于最低状态。即在基态原子里,电子优先排布在能量最低的能级里,然后排布在能量逐渐升高的能级里。 4、对于同一电子亚层(能级)(等价轨道),当电子排布为全充满、半充满或全空时,原子是比较稳定的。 5、基态原子核外电子排布可简化为:[稀有气体元素符号]+外围电子(价电子、最外层电子) 四、基态与激发态、光谱 1、基态—处于最低能量的原子。

化学选修3第二章 分子结构与性质--教案

第二章分子结构与性质 教材分析 本章比较系统的介绍了分子的结构和性质,内容比较丰富。首先,在第一章有关电子云和原子轨道的基础上,介绍了共价键的主要类型σ键和π键,以及键参数——键能、键长、键角;接着,在共价键概念的基础上,介绍了分子的立体结构,并根据价层电子对互斥模型和杂化轨道理论对简单共价分子结构的多样性和复杂性进行了解释。最后介绍了极性分子和非极性分子、分子间作用力、氢键等概念,以及它们对物质性质的影响,并从分子结构的角度说明了“相似相溶”规则、无机含氧酸分子的酸性等。 化学2已介绍了共价键的概念,并用电子式的方式描述了原子间形成共价键的过程。本章第一节“共价键”是在化学2已有知识的基础上,运用的第一章学过的电子云和原子轨道的概念进一步认识和理解共价键,通过电子云图象的方式很形象、生动的引出了共价键的主要类型σ键和π键,以及它们的差别,并用一个“科学探究”让学生自主的进一步认识σ键和π键。 在第二节“分子的立体结构”中,首先按分子中所含的原子数直间给出了三原子、四原子和五原子分子的立体结构,并配有立体结构模型图。为什么这些分子具有如此的立体结构呢?教科书在本节安排了“价层电子对互斥模型”和“杂化轨道理论”来判断简单分子和离子的立体结构。在介绍这两个理论时要求比较低,文字叙述比较简洁并配有图示。还设计了“思考与交流”、“科学探究”等内容让学生自主去理解和运用这两个理论。 在第三节分子的性质中,介绍了六个问题,即分子的极性、分子间作用力及其对物质性质的影响、氢键及其对物质性质的影响、溶解性、手性和无机含氧酸分子的酸性。除分子的手性外,对其它五个问题进行的阐述都运用了前面的已有知识,如根据共价键的概念介绍了键的极性和分子的极性;根据化学键、分子的极性等概念介绍了范德华力的特点及其对物质性质的影响;根据电负性的概念介绍了氢键的特点及其对物质性质的影响;根据极性分子与非非极性分子的概念介绍了“相似相溶”规则;根据分子中电子的偏移解释了无机含氧酸分子的酸性强弱等;对于手性教科书通过图示简单介绍了手性分子的概念以及手性分子在生命科学和生产手性药物方面的应用 第二章分子结构与性质 第一节共价键 第一课时 教学目标: 1.复习化学键的概念,能用电子式表示常见物质的离子键或共价键的形成过程。 2.知道共价键的主要类型δ键和π键。

相关文档
最新文档