空间向量及其运算

空间向量及其运算
空间向量及其运算

空间向量及其运算

一、选择题(每小题6分,共36分)

1.若对任意一点O ,有OP →=xOA →+yOB →,则x +y =1是P ,A ,B 三点共线的( )

A .充分不必要条件

B .必要不充分条件

C .充要条件

D .既不充分也不必要条件

【解析】 当x +y =1时,x =1-y .

∴OP →=xOA →+yOB →=(1-y )OA →+yOB →=OA →+yAB →.

∴AP →=yAB →,

∴A ,P ,B 三点共线.

当A ,P ,B 三点共线时,AP →=λAB →=λ(OB →-OA →).

∴OP →-OA →=λOB →-λOA →,

即OP →=λOB →+(1-λ)OA →.

令x =λ,y =1-λ,则x +y =1.

【答案】 C

2.已知向量a ,b ,c 两两夹角都是60°,其模都是1,则|a -b +2c |等于( )

B .5

C .6

【解析】 ∵(a -b +2c )2

=a 2+b 2+4c 2-2a ·b -4b ·c +4a ·c

=1+1+4-2×1×1×cos60°-4×1×1×cos60°+4×1×1×cos60°

=6-1-2+2=5,

∴|a -b +2c |= 5.

【答案】 A

3.在以下命题中,不正确的命题个数为( )

①已知A 、B 、C 、D 是空间任意四点,则AB →+BC →+CD →+DA →=0.②|a |-|b |=|a +b |是a ,

b 共线的充分条件.③若a 与b 共线,则a 与b 所在直线平行.④对空间任意一点O 和不共

线的三点A 、B 、C ,若OP →=x OA →+yOB →+zOC →(其中x 、y 、z ∈R ),则P 、A 、B 、C 四点共面.

A .1个

B .2个

C .3个

D .4个

【解析】 AB →+BC →+CD →+DA →=AC →+CD →+DA →=AD →+DA →=0,①正确;|a |-|b |=|a |+|b |

成立的充分条件是|a |与|b |共线且方向相反,且|a |>|b |,因此②错,由向量平行知③不正确,由空间向量中点共面知④不正确,故选C.

【答案】 C

4.已知空间四边形ABCD 的每条边和对角线的长都等于a ,点E 、F 分别是BC 、AD 的中点,则AE →·AF →的值为( )

A .a 2 a 2

a 2 a 2

【解析】 AE →·AF →=12(AB →+AC →)·12

AD → =14

(AB →·AD →+AC →·AD →) =14(a 2cos 60°+a 2cos 60°)=14

a 2. 【答案】 C

5.已知四边形ABCD 满足:AB →·BC →>0,BC →·CD →>0,CD →·DA →>0,DA →·AB →>0,则该四边形为

( )

A .平行四边形

B .梯形

C .平面四边形

D .空间四边形

【解析】 由已知条件得四边形的四个外角均为锐角,但在平面四边形中任一四边形的外角和是360°,这与已知条件矛盾,所以该四边形是一个空间四边形.故选D.

【答案】 D

6.将正△ABC 沿其所在平面的法向量平移到△A 1B 1C 1,连接对应顶点,若AB =2BB 1,则AB 1与C 1B 所成的角的大小为( )

A .60°

B .90°

C .105°

D .75°

【解析】 设AB 1→与C 1B →的夹角为θ,则

AB 1→=AA 1→+A 1B 1→,C 1B →=C 1B 1→+B 1B →.

不妨取BB 1=1,AB =2,得AB 1=3,C 1B = 3.

则AB 1→·C 1B →=|AB 1→||C 1B →|cos θ=3cos θ.

又AB 1→·C 1B →=(AA 1→+A 1B 1→)·(C 1B 1→+B 1B →)

=AA 1→·C 1B 1→+AA 1→·B 1B →+A 1B 1→·C 1B 1→+A 1B 1→·B 1B →

=0-1+2×2cos 60°+0=0,

∴cos θ=0,得θ=90°,故选B.

【答案】 B

二、填空题(每小题6分,共18分)

7.已知平行六面体ABCD —A 1B 1C 1D 1,以顶点A 为端点的三条棱长都是1,且两两夹角为60°,则对角线AC 1的长是________.

【解析】 ∵AC 1→=AB →+AD →+AA 1→,

∴|AC 1→|2=AC 21→

=(AB →+AD →+AA 1→)2

=AB 2→+AD 2→+AA 21→+2AB →·AD →+2AD →·AA 1→+2AB →·AA 1→

=1+1+1+2cos 60°×3=6,

∴|AC 1→|= 6.

【答案】 6

8.已知a =(2,3,-1),b =(-2,1,3),则以a ,b 为邻边的平行四边形的面积是________.

【解析】 ∵a ·b =-4+3-3=-4,

|a |=|b |=22+32+12=14,

∴cos〈a ,b 〉=-414=-27

, ∴sin〈a ,b 〉=357

, ∴S 平行四边形=|a ||b |sin 〈a ,b 〉=14×357

=6 5. 【答案】 65

9.在各棱长都等于1的正四面体OABC 中,若点P 满足OP →=x ·OA →+y ·OB →+z ·OC →(其中

x +y +z =1),则|OP →|的最小值等于________.

【解析】 由于OP →=x ·OA →+y ·OB →+z ·OC →,

所以|OP →|2=(x ·OA →+y ·OB →+z ·OC →)2

=x 2+y 2+z 2+xy +yz +xz =1-(xy -yz -xz ),

而1=(x +y +z )2=x 2+y 2+z 2+2(xy +yz +xz )

≥3(xy +yz +xz ),所以xy +yz +xz ≤13

, 于是|OP →|2≥23,故|OP →|≥63

, 即|OP →|的最小值等于63

. 【答案】

63

三、解答题(10,11每题15分,12题16分,共46分)

10.如图所示,在空间四边形OABC 中,OA =8,AB =6,AC =4,

BC =5,∠OAC =45°,∠OAB =60°,求OA 与BC 所成角的余弦值. 【解析】 ∵B C →=A C →-A B →

, O A →·B C →=O A →·(A C →-A B →)

=O A →·A C →-O A →·A B →

=|O A →||A C →|cos 〈O A →,A C →〉-|O A →||A B →|cos 〈O A →,A B →〉

=8×4×cos135°-8×6×cos120°=24-162,

∴cos〈O A →,B C →〉=O A →·B C →|O A →||B C →|

=24-1628×5=3-225, 故OA 与BC 所成角的余弦值为3-225

. 11.在空间四边形PABC 中,PA ⊥平面ABC ,AC ⊥BC .若A 在PB 、PC 上的射影分别是E 、F .求证:EF ⊥PB .

【证明】 由已知可得

PA →·BC →=0,AC →·BC →=0,

AF →·PC →=0,AE →·PB →=0,

又AF →、PA →、AC →共面,

所以存在实数x ,y ,使得AF →=xPA →+yAC →,

EF →·PB →=(AF →-AE →)·PB →

=AF →·PB →=AF →·(PC →+CB →)

=AF →·CB →=(xPA →+yAC →)·CB →

=x (PA →·CB →)+y (AC →·CB →)

=0+0=0.

∴EF ⊥PB .

12.在平行四边形ABCD 中,AB =AC =1,∠ACD =90°,将它沿对角线AC 折起,使AB 与CD 成60°角,求B 、D 之间的距离.

【解析】 如图(1)、(2)

∵∠ACD =90°,∠BAC =90°,

∴AC →·CD →=0,AC →·AB →=0.

∵AB 与CD 所成的角为60°.

∴〈AB →,CD →〉=60°或120°.

又BD →=BA →+AC →+CD →,

∴BD 2→=(BA →+AC →+CD →)2

=BA 2→+AC 2→+CD 2→+2BA →·AC →+2BA →·CD →+2AC →·CD →

=1+1+1+0-2·AB →·CD →+0

=3-2·cos〈AB →,CD →〉.

若〈AB →,CD →〉=60°,则BD 2→=2,|BD →|= 2.

若〈AB →,CD →〉=120°,则BD 2→=4,|BD →|=2.

因此,B 、D 之间的距离为2或2.

空间向量及其运算详细教案

空间向量及其运算 3.1.1 空间向量及其加减运算 教学目标: (1)通过本章的学习,使学生理解空间向量的有关概念。 (2)掌握空间向量的加减运算法则、运算律,并通过空间几何体加深对运算的理解。 能力目标: (1)培养学生的类比思想、转化思想,数形结合思想,培养探究、研讨、综合自学应用能力。 (2)培养学生空间想象能力,能借助图形理解空间向量加减运算及其运算律的意义。(3)培养学生空间向量的应用意识 教学重点: (1)空间向量的有关概念 (2)空间向量的加减运算及其运算律、几何意义。 (3)空间向量的加减运算在空间几何体中的应用 教学难点: (1)空间想象能力的培养,思想方法的理解和应用。 (2)空间向量的加减运算及其几何的应用和理解。 考点:空间向量的加减运算及其几何意义,空间想象能力,向量的应用思想。 易错点:空间向量的加减运算及其几何意义在空间几何体中的应用 教学用具:多媒体 教学方法:研讨、探究、启发引导。 教学指导思想:体现新课改精神,体现新教材的教学理念,体现学生探究、主动学习的思维习惯。 教学过程: (老师):同学们好!首先请教同学们一个问题:物理学中,力、速度和位移是什么量?怎样确定? (学生):矢量,由大小和方向确定 (学生讨论研究)(课件)引入:(我们看这样一个问题)有一块质地均匀的正三角形面的钢板,重500千克,顶点处用与对边成60度角,大小200千克的三个力去拉三角形钢板,问钢板在这些力的作用下将如何运动?这三个力至少多大时,才能提起这块钢板? (老师):我们研究的问题是三个力的问题,力在数学中可以看成是什么? (学生)向量 (老师):这三个向量和以前我们学过的向量有什么不同? (学生)这是三个向量不共面 (老师):不共面的向量问题能直接用平面向量来解决么? (学生):不能,得用空间向量 (老师):是的,解决这类问题需要空间向量的知识这节课我们就来学习空间向量板书:空间向量及其运算 (老师):实际上空间向量我们随处可见,同学们能不能举出一些例子? (学生)举例 (老师):然后再演示(课件)几种常见的空间向量身影。(常见的高压电线及支架所在向量,长方体中的三个不共线的边上的向量,平行六面体中的不共线向量) (老师):接下来我们我们就来研究空间向量的知识、概念和特点,空间向量与平面向量既有联系又有区别,我们将通过类比的方法来研究空间向量,首先我们复习回顾一下平面向量

空间向量及其运算

§8.5 空间向量及其运算 1. 空间向量的概念 (1)定义:空间中既有大小又有方向的量叫作空间向量. (2)向量的夹角:过空间任意一点O 作向量a ,b 的相等向量OA →和OB → ,则∠AOB 叫作向量a ,b 的夹角,记作〈a ,b 〉,0≤〈a ,b 〉≤π. 2. 共线向量定理和空间向量基本定理 (1)共线向量定理 对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb . (2)空间向量基本定理 如果向量e 1,e 2,e 3是空间三个不共面的向量,a 是空间任一向量,那么存在唯一一组实数λ1,λ2,λ3使得a =λ1e 1+λ2e 2+λ3e 3,其中e 1,e 2,e 3叫作空间的一个基底. 3. 空间向量的数量积及运算律 (1)定义 空间两个向量a 和b 的数量积是一个数,等于|a ||b |cos 〈a ,b 〉,记作a ·b . (2)空间向量数量积的运算律 ①结合律:(λa )·b =λ(a·b ); ②交换律:a·b =b·a ; ③分配律:a·(b +c )=a·b +a·c . 4. 空间向量的坐标表示及应用 (1)数量积的坐标运算 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a·b =a 1b 1+a 2b 2+a 3b 3. (2)共线与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a ∥b ?a =λb ?a 1=λb 1,a 2=λb 2,a 3=λb 3 (λ∈R ), a ⊥b ?a·b =0?a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量). (3)模、夹角公式 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则|a |=a·a =a 21+a 22+a 23,

空间向量及其运算练习题

空间向量及其运算 基础知识梳理 1.空间向量的有关概念 (1)空间向量:在空间中,具有________和________的量叫做空间向量. (2)相等向量:方向________且模________的向量. (3)共线向量:表示空间向量的有向线段所在的直线互相______________的向量. (4)共面向量:________________________________的向量. 2.共线向量、共面向量定理和空间向量基本定理 (1)共线向量定理 对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是________________________. 推论 如图所示,点P 在l 上的充要条件是: OP →=OA →+t a ①其中a 叫直线l 的方向向量,t ∈R ,在l 上取AB →=a , 则①可化为OP →=________或OP →=(1-t )OA →+tOB →. (2)共面向量定理的向量表达式:p =____________,其中x ,y ∈R ,a , b 为不共线向量,推论的表达式为MP →=xMA →+yMB →或对空间任意一点 O ,有OP →=____________或OP →=xOM →+yOA →+zOB →,其中x +y +z = ______. (3)空间向量基本定理 如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =____________,把{a ,b ,c }叫做空间的一个基底. 3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角 已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向 量a 与b 的夹角,记作____________,其范围是____________,若〈a ,b 〉=π2 ,则称a 与b __________,记作a ⊥b . ②两向量的数量积 已知空间两个非零向量a ,b ,则____________叫做向量a ,b 的数量积,记作__________,即__________________. (2)空间向量数量积的运算律 ①结合律:(λa )·b =____________;②交换律:a·b =__________; ③分配律:a·(b +c )=__________. 4.空间向量的坐标表示及应用 (1)数量积的坐标运算 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a·b =________________. (2)共线与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a ∥b ?______________?____________,____________,______________, a ⊥b ?__________?________________________(a ,b 均为非零向量). (3)模、夹角和距离公式 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则|a |=a·a =__________________,

空间向量的基本运算

第六节 空间向量 1. 空间向量的概念:在空间,我们把具有 和 的量叫做向量。 2. 空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈ 运算律:⑴加法交换律:a b b a +=+ ⑵加法结合律:)()(c b a c b a ++=++ ⑶数乘分配律:b a b a λλλ+=+)( 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线 或 ,那么这些向量也叫做共 线向量或平行向量,a 平行于b ,记作b a //。 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 存在实数λ, 使a = 。 4. 共面向量 (1)定义:一般地,能平移到同一 内的向量叫做共面向量。 说明:空间任意的两向量都是 的。 (2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y ,使 。 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使 。 若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个 的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使OP xOA yOB zOC =++。 6. 空间向量的直角坐标系: (1)空间直角坐标系中的坐标: 在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使zk yi xi OA ++=,有序实数组 (,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作

空间向量知识点与题型归纳总结

空间向量知识点与题型归纳总结 知识点精讲 一、空间向量及其加减运算 1.空间向量 在空间,我们把具有大小和方向的量叫做空间向量,向量的大小叫做向量的长度或模.空间向量也可 用有向线段表示,有向线段的长度表示向量的模,若向量a r 的起点是A ,终点是B ,则向量a r 也可以记作 AB u u u r ,其模记为a r 或AB u u u r . 2.零向量与单位向量 规定长度为0的向量叫做零向量,记作0r .当有向线段的起点A 与终点B 重合时,0AB =u u u r r . 模为1的向量称为单位向量. 3.相等向量与相反向量 方向相同且模相等的向量称为相等向量.在空间,同向且等长的有向线段表示同一向量或相等向量.空间任意两个向量都可以平移到同一个平面,成为同一平面内的两个向量. 与向量a r 长度相等而方向相反的向量,称为a r 的相反向量,记为a -r . 4.空间向量的加法和减法运算 (1)OC OA OB a b =+=+u u u r u u u r u u u r r r ,BA OA OB a b =-=-u u u r u u u r u u u r r r .如图8-152所示. (2)空间向量的加法运算满足交换律及结合律 a b b a +=+r r r r ,()() a b c a b c ++=++r r r r r r 二、空间向量的数乘运算 1.数乘运算 实数λ与空间向量a r 的乘积a λr 称为向量的数乘运算.当0λ>时,a λr 与向量a r 方向相同;当0λ<时,向量a λr 与向量a r 方向相反. a λr 的长度是a r 的长度的λ倍. 2.空间向量的数乘运算满足分配律及结合律 () a b a b λλλ+=+r r r r ,() ()a a λμλμ=r r . 3.共线向量与平行向量 如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量,a r 平行于b r ,记作//a b r r . 4.共线向量定理

3.1.1空间向量及其运算

3. 1.1空间向量及其运算(一) 教学目标: ㈠知识目标:⒈空间向量;⒉相等的向量;⒊空间向量的加减与数乘运算及运算律; ㈡能力目标:⒈理解空间向量的概念,掌握其表示方法; ⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律; ⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题. ㈢德育目标:学会用发展的眼光看问题,认识到事物都是在不断的发展、进化的,会用联系的观点看待事物. 教学重点:空间向量的加减与数乘运算及运算律. 教学难点:应用向量解决立体几何问题. 教学方法:讨论式. 教学过程: Ⅰ.复习引入 [师]在必修四第二章《平面向量》中,我们学习了有关平面向量的一些知识,什么叫做向量?向量是怎样表示的呢? [生]既有大小又有方向的量叫向量.向量的表示方法有: ①用有向线段表示; ②用字母a、b等表示; ③用有向线段的起点与终点字母:AB. [师]数学上所说的向量是自由向量,也就是说在保持向量的方向、大小的前提下可以将向量进行平移,由此我们可以得出向量相等的概念,请同学们回忆一下.[生]长度相等且方向相同的向量叫相等向量. [师]学习了向量的有关概念以后,我们学习了向量的加减以及数乘向量运算: ⒈向量的加法: ⒉向量的减法: ⒊实数与向量的积: 实数λ与向量a的积 是一个向量,记作λa,其长度 和方向规定如下: (1)|λa|=|λ||a| (2)当λ>0时,λa 与a同向; 当λ<0时,λa与a反向; 当λ=0时,λa=0. [师]关于向量的以上几种运算,请同学们回忆一下,有哪些运算律呢? [生]向量加法和数乘向量满足以下运算律 加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 数乘分配律:λ(a+b)=λa+λb [师]今天我们将在必修四第二章平面向量的基础上,类比地引入空间向量的概念、表示方法、相同或向等关系、空间向量的加法、减法、数乘以及这三种运算的运算率,并进行一些简单的应用.请同学们阅读课本

空间向量及其运算练习题

空间向量及其运算练习题 一、选择题 1、在空间直角坐标系中,已知点P (x ,y ,z ),下列叙述中正确的个数是 ①点P 关于x 轴对称点的坐标是P 1(x ,-y ,z ) ②点P 关于yOz 平面对称点的坐标是P 2(x ,-y ,-z ) ③点P 关于y 轴对称点的坐标是P 3(x ,-y ,z ) ④点P 关于原点对称的点的坐标是P 4(-x ,-y ,-z ) A.0 B.1 C.2 D.3 2、点(2,3,4)关于xoz 平面的对称点为( ) A 、(2,3,-4) B 、(-2,3,4) C 、(2,-3,4) D 、(-2,-3,4) 3、在空间直角坐标系中,设z 为任意实数,相应的点(3,1,)P z 的集合确定的图形为 ( )A .点 B .直线 C .圆 D .平面 4、在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若B A 1=a ,11D A =b , A A 1=c .则下列向量中与M B 1相等的向量是( ) A .c b a ++- 21 21 B . c b a ++21 21 C .c b a +-2 1 21 D .c b a +--2 1 21 5、在下列条件中,使M 与A 、B 、C 一定共面的是 ( ) A .OC O B OA OM --=2 B .O C OB OA OM 2 1 3151++= C .=++MC MB MA 0 D .=+++OC OB OA OM 0 5、已知平行六面体''' ' ABCD A B C D -中,AB=4,AD=3,' 5AA =,0 90BAD ∠=, ''060BAA DAA ∠=∠=,则'AC 等于 ( ) A .85 B .85 C .52 D .50 图

空间向量及其运算和空间位置关系 练习题

空间向量及其运算和空间位置关系 1.在下列命题中: ①若向量a ,b 共线,则向量a ,b 所在的直线平行; ②若向量a ,b 所在的直线为异面直线,则向量a ,b 一定不共面; ③若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面; ④已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p 总存在实数x ,y , z 使得p =x a +y b +z c. 其中正确命题的个数是( ) A .0 B .1 C .2 D .3 解析:选A a 与b 共线,a ,b 所在直线也可能重合,故①不正确;根据自由向量的意义知,空间任意两向量a ,b 都共面,故②错误;三个向量a ,b ,c 中任意两个一定共面,但它们三个却不一定共面,故③不正确;只有当a ,b ,c 不共面时,空间任意一向量p 才能表示为p =x a +y b +z c ,故④不正确,综上可知四个命题中正确的个数为0,故选A. 2.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1 的交点.若AB ―→=a ,AD ―→=b ,AA 1―→=c ,则下列向量中与BM ―→ 相等的向量是( ) A .-12a +12b +c B.12a +1 2b +c C .-12a -12b +c D.12a -1 2 b +c 解析:选A BM ―→=BB 1―→+B 1M ―→=AA 1―→+12(AD ―→-AB ―→ )=c +12(b -a)=-12a +12b +c. 3.已知空间任意一点O 和不共线的三点A ,B ,C ,若OP ―→=x OA ―→+y OB ―→+z OC ―→ (x , y ,z ∈R),则“x =2,y =-3,z =2”是“P ,A ,B ,C 四点共面”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要条件 解析:选B 当x =2,y =-3,z =2时,OP ―→=2OA ―→-3OB ―→+2OC ―→.则AP ―→-AO ―→=2OA ―→-3(AB ―→-AO ―→)+2(AC ―→-AO ―→),即AP ―→=-3AB ―→+2AC ―→ ,根据共面向量定理

数学选修空间向量及其运算教案

第三章空间向量与立体几何 §3.1空间向量及其运算 3.1.1 空间向量及其加减运算 师:这节课我们学习空间向量及其加减运算,请看学习目标。 学习目标:⒈理解空间向量的概念,掌握其表示方法; ⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律; ⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题. 师:在必修四第二章《平面向量》中,我们学习了平面向量的一些知识,现在我们一起来复习。(不要翻书) (在黑板或背投上呈现或边说边写) 1、在平面中,我们把具有__________________的量叫做平面向量; 2、平面向量的表示方法:

①几何表示法:_________________________ ②字母表示法:_________________________ (注意:向量手写体一定要带箭头) 3、平面向量的模表示_________________,记作____________ 4、一些特殊的平面向量: ①零向量:__________________________,记作___(零向量的方向具有任意性) ②单位向量:______________________________ (强调:都只限制了大小,不确定方向) ③相等向量:____________________________ ④相反向量:____________________________ 5、平面向量的加法: 6、平面向量的减法: 7、平面向量的数乘:实数λ与向量a的积是一个向量,记作λa,其长度和 方向规定如下: (1)|λa|=|λ||a| (2)当λ>0时,λa与a同向; 当λ<0时,λa与a反向; 当λ=0时,λa=0. 8、向量加法和数乘向量满足以下运算律 加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 数乘分配律:λ(a+b)=λa+λb 数乘结合律:λ(aμ)=a) (λμ [师]:刚才我们复习了平面向量,那空间向量会是怎样,与平面向量有怎样的区别和联系呢?请同学们阅读书P84-P86.(5分钟) [师]:对比平面向量,我们得到空间向量的相关概念。(在刚复习的黑板或幻灯片上,只需将平面改成空间) [师]:空间向量与平面向量有什么联系? [生]:向量在空间中是可以平移的.空间任意两个向量都可以用同一平面内的两条有向线段表示.因此我们说空间任意两个向量是共面的.所以凡涉及 空间两个向量的问题,平面向量中有关结论仍适用于它们。

空间向量及其运算测试题

高二选修(2—1)第三章3.1空间向量及其运算测试 一、选择题 1 抛物线2 81x y - =的准线方程是 ( ) A . 321=x B . 2=y C . 32 1 =y D . 2-=y 2.已知两点1(1,0)F -、2(1,0)F ,且12F F 是1PF 与2PF 的等差中项,则动点P 的轨迹方程是 ( ) A . 22 1169x y += B . 22 11612x y += C .22 143x y += D .22 134 x y += 1.已知向量a =(3,-2,1),b =(-2,4,0),则4a +2b 等于 ( ) A .(16,0,4) B .(8,-16,4) C .(8,16,4) D .(8,0,4) 2.在三棱柱ABC -A 1B 1C 1中,若CA →=a ,CB →=b ,CC 1→=c ,则A 1B → = ( ) A .a +b -c B .a -b +c C .-a +b +c D .-a +b -c 4.在下列条件中,使M 与A 、B 、C 一定共面的是 ( ) A.OM →=2OA →-OB →-OC → B.OM →=15OA →+13OB →+12OC → C.MA →+MB →+MC → =0 D.OM →+OA →+OB →+OC → =0 6.在正方体ABCD -A 1B 1C 1D 1中,给出以下向量表达式:①(A 1D 1→-A 1A →)-AB →;②(BC → + BB 1→)-D 1C 1→; ③(AD →-AB →)-2DD 1→;④(B 1D 1→+A 1A →)+DD 1→. 其中能够化简为向量BD 1→ 的是 ( ) A .①② B .②③ C .③④ D .①④ 7.已知向量a =(1,-1,1),b =(-1,2,1),且k a -b 与a -3b 互相垂直,则k 的值是 A .1 B .15 C .35 D .-20 9 8.若a =(2,-3,1),b =(2,0,3),c =(0,2,2),a ·(b +c )的值为 ( ) A .4 B .15 C .7 D .3 9.已知四边形ABCD 满足:AB →·BC →>0,BC →·CD →>0,CD →·DA →>0,DA →·AB → >0,则该四边形 为 ( ) A .平行四边形 B .梯形 C .长方形 D .空间四边形

空间向量及其运算测试题答案

新课标高二数学同步测试(2-1第三章3.1) 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代 号填在题后的括号内(每小题5分,共50分). 1.在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若B A 1=a , 11D A =b ,A A 1=c .则下列向量中与M B 1相等的向量是( ) A .c b a ++-2121 B .c b a ++2 121 C .c b a +-2121 D .c b a +--2 1 21 2.在下列条件中,使M 与A 、B 、C 一定共面的是 ( ) A .OC O B OA OM --=2 B .O C OB OA OM 2 1 3151++= C .=++MC MB MA 0 D .=+++OC OB OA OM 0 3.已知平行六面体''''ABCD A B C D -中,AB=4,AD=3,'5AA =,090BAD ∠=, ''060BAA DAA ∠=∠=,则'AC 等于( ) A .85 B .85 C .52 D .50 4.与向量(1,3,2)a =-r 平行的一个向量的坐标是( ) A .(31 ,1,1) B .(-1,-3,2) C .(-21,2 3 ,-1) D .(2,-3,-22) 5.已知A (-1,-2,6),B (1,2,-6)O 为坐标原点,则向量,OA OB u u u r u u u r 与的夹角是( ) A .0 B . 2 π C .π D . 32 π 6.已知空间四边形ABCD 中,c OC ,b OB , a OA ===,点M 在OA 上,且OM=2MA ,N 为BC 中点,则MN =( ) A .c b a 213221+- B . c b a 21 2132++- C .c b a 212121-+ D .c b a 2 13232-+ 7.设A 、B 、C 、D 是空间不共面的四点,且满足000=?=?=?AD AB ,AD AC , AC AB ,则BCD 是( ) A .钝角三角形 B .锐角三角形 C .直角三角形 D .不确定 图

高中数学人教A版选修(2—1)第三章3.1空间向量及其运算测试题(含解析答案)

祈福教育 高二选修(2—1)第三章3.1空间向量及其运算测试题 一、选择题 1.已知向量a =(3,-2,1),b =(-2,4,0),则4a +2b 等于 ( ) A .(16,0,4) B .(8,-16,4) C .(8,16,4) D .(8,0,4) 2.在三棱柱ABC -A 1B 1C 1中,若CA →=a ,CB →=b ,CC 1→=c ,则A 1B → = ( ) A .a +b -c B .a -b +c C .-a +b +c D .-a +b -c 3.在棱长都是1的三棱锥A -BCD 中,下列各数量积的值为1 2的是 ( ) A. BC AB ? B. BD AB ? C.DA AB ? D.AC AB ? 4.在下列条件中,使M 与A 、B 、C 一定共面的是 ( ) A.OM →=2OA →-OB →-OC → B.OM →=15OA →+13OB →+12OC → C.MA →+MB →+MC → =0 D.OM →+OA →+OB →+OC → =0 5.若向量{c b a ,,}是空间的一个基底,向量b a n b a m -=+=,,那么可以与m 、n 构成空间另一个基底的向量是 ( ) A .a B .b C .c D .2a 6.在正方体ABCD -A 1B 1C 1D 1中,给出以下向量表达式:①(A 1D 1→-A 1A →)-AB →;②(BC → + BB 1→)-D 1C 1→; ③(AD →-AB →)-2DD 1→;④(B 1D 1→+A 1A →)+DD 1→. 其中能够化简为向量BD 1→ 的是 ( ) A .①② B .②③ C .③④ D .①④ 7.已知向量a =(1,-1,1),b =(-1,2,1),且k a -b 与a -3b 互相垂直,则k 的值是 A .1 B .15 C .35 D .-20 9 8.若a =(2,-3,1),b =(2,0,3),c =(0,2,2),a ·(b +c )的值为 ( ) A .4 B .15 C .7 D .3 9.已知四边形ABCD 满足:AB →·BC →>0,BC →·CD →>0,CD →·DA →>0,DA →·AB → >0,则该四边形 为 ( )

空间向量的运算及应用

空间向量的运算及应用 [考纲传真]1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示.3.掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.4.理解直线的方向向量及平面的法向量.5.能用向量语言表述线线、线面、面面的平行和垂直关系.6.能用向量方法证明立体几何中有关线面位置关系的一些简单定理. 【知识通关】 1.空间向量的有关概念 (1)共线向量定理:对空间任意两个向量a,b(b≠0),a∥b的充要条件是存在实数λ,使得a=λb. (2)共面向量定理:如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在唯一的有序实数对(x,y),使p=xa+yb. (3)空间向量基本定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在有序实数组{x,y,z},使得p=xa+yb+zc,其中,{a,b,c}叫做空间的一个基底. 3.两个向量的数量积 (1)非零向量a,b的数量积a·b=|a||b|cos〈a,b〉. (2)空间向量数量积的运算律: ①结合律:(λa)·b=λ(a·b); ②交换律:a·b=b·a; ③分配律:a·(b+c)=a·b+a·c. 4.空间向量的坐标表示及其应用

设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3). 5.空间位置关系的向量表示 1.对空间任一点O ,若OP →=xOA →+yOB → (x +y =1),则P ,A ,B 三点共线. 2.对空间任一点O ,若OP →=xOA →+yOB →+zOC → (x +y +z =1),则P ,A ,B ,C 四点共面. 3.平面的法向量的确定:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为??? n· a =0,n· b =0. 【基础自测】 1.判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)空间中任意两非零向量a ,b 共面.( ) (2)若A ,B ,C ,D 是空间任意四点,则有AB →+BC →+CD →+DA → =0.( ) (3)设{a ,b ,c }是空间的一个基底,则a ,b ,c 中至多有一个零向量.( ) (4)两向量夹角的范围与两异面直线所成角的范围相同.( ) [答案] (1)√ (2)√ (3)× (4)×

空间向量及其运算和空间位置关系(含解析)

归纳与技巧:空间向量及其运算和空间位置关系 基础知识归纳 一、空间向量及其有关概念 二、数量积及坐标运算 1.两个向量的数量积 (1)a·b=|a||b|cos〈a,b〉; (2)a⊥b?a·b=0(a,b为非零向量); (3)|a|2=a2,|a|=x2+y2+z2. 2.向量的坐标运算

三、平面的法向量 (1)所谓平面的法向量,就是指所在的直线与平面垂直的向量,显然一个平面的法向量有无数多个,它们是共线向量. (2)在空间中,给定一个点A 和一个向量a ,那么以向量a 为法向量且经过点A 的平面是唯一的. 基础题必做 1.(课本习题改编)已知a =(-2,-3,1),b =(2,0,4),c =(-4,-6,2)则下列结论正确的是( ) A .a ∥c ,b ∥c B .a ∥b ,a ⊥c C .a ∥c ,a ⊥b D .以上都不对 解析:选C ∵c =(-4,-6,2)=2a ,∴a ∥c .又a ·b =0,故a ⊥b . 2. 若{a ,b ,c }为空间的一组基底,则下列各项中,能构成基底的一组向量是( ) A .{a ,a +b ,a -b } B .{b ,a +b ,a -b } C .{c ,a +b ,a -b } D .{a +b ,a -b ,a +2b } 解析:选C 若c 、a +b 、a -b 共面, 则c =λ(a +b )+m (a -b )=(λ+m )a +(λ-m )b ,则a 、b 、c 为共面向量,与{a ,b ,c }为空间向量的一组基底矛盾,故c ,a +b ,a -b 可构成空间向量的一组基底. 3.(教材习题改编)下列命题: ①若A 、B 、C 、D 是空间任意四点,则有AB u u u r +BC u u u r +CD u u u r +DA u u u r =0; ②若MB u u u r =x MA u u u r +y MB u u u r ,则M 、P 、A 、B 共面; ③若p =x a +y b ,则p 与a ,b 共面. 其中正确的个数为( ) A .0 B .1 C .2 D .3 解析:选D 可判断①②③正确. 4.在四面体O -ABC 中,OA u u u r =a ,OB u u u r =b ,OC u u u r =c ,D 为BC 的中点,E 为AD 的 中点,则OE u u u r =________(用a ,b ,c 表示). 解析:如图,OE u u u r =12OA u u u r +12 OD u u u r

空间向量及其运算

空间向量及其运算 1.空间向量的有关概念 2.空间向量中的有关定理 (1)共线向量定理 空间两个向量a与b(b≠0)共线的充要条件是存在实数λ,使得a=λb. (2)共面向量定理 共面向量定理的向量表达式:p=x a+y b,其中x,y∈R,a,b为不共线向量. (3)空间向量基本定理 如果三个向量a,b,c不共面,那么对空间任一向量p,存在有序实数组{x,y,z},使得p =x a+y b+z c,{a,b,c}叫作空间的一个基底.

3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角 已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB → =b ,则∠AOB 叫作向量a ,b 的夹角,记作〈a ,b 〉,其范围是0≤〈a ,b 〉≤π,若〈a ,b 〉=π 2,则称a 与b 互相垂直, 记作a ⊥b . ②两向量的数量积 已知空间两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫作向量a ,b 的数量积,记作a ·b ,即a ·b =|a ||b |cos 〈a ,b 〉. (2)空间向量数量积的运算律 ①(λa )·b =λ(a ·b ); ②交换律:a ·b =b ·a ; ③分配律:a ·(b +c )=a ·b +a ·c . 4.空间向量的坐标表示及其应用 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3). 概念方法微思考 1.共线向量与共面向量相同吗? 提示 不相同.平行于同一平面的向量就为共面向量. 2.零向量能作为基向量吗? 提示 不能.由于零向量与任意一个非零向量共线,与任意两个非零向量共面,故零向量不能作为基向量. 3.空间向量的坐标运算与坐标原点的位置选取有关吗? 提示 无关.这是因为一个确定的几何体,其“线线”夹角、“点点”距离都是固定的,坐标系的位置不同,只会影响其计算的繁简,不会影响结果.

3.1空间向量及其运算测试题(答案)

1 A.-a+b+c B.a+b+c C.a-b+c D.-a-b+c A.OM=2OA-OB-OC B.O M=OA+OB+OC 1 C.(-,,-1)D.(2,-3,-22) 2 C.π N A.a-b+c B.-a+b+c C.a+b-c D.a+b-c 精心整理 新课标高二数学同步测试(2-1第三章3.1) 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填 在题后的括号内(每小题5分,共50分). 1.在平行六面体ABCD—A B C D中,M为AC与BD的交点,若A B=a, 1111 A D=b,A A=c.则下列向量中与 B M相等的向量是() 1111 1111 2222 1111 2222 图 2.在下列条件中,使M与A、B、C一定共面的是() 111 532 C.MA+MB+MC=0D.OM+OA+OB+OC=0 3.已知平行六面体ABCD-A'B'C'D'中,AB=4,AD=3,AA'=5,∠BAD=900, ∠BAA'=∠DAA'=600,则AC'等于() A.85B.85C.52D.50 4.与向量a=(1,-3,2)平行的一个向量的坐标是() A.(,1,1)B.(-1,-3,2) 3 13 22 5.已知A(-1,-2,6),B(1,2,-6)O为坐标原点,则向量OA,与OB的夹角是() A.0B.πD.3π2 6.已知空间四边形ABCD中,OA=a,OB=b,OC=c,点M在OA上,且OM=2MA,为BC中点,则MN=() 121 232 111 222 211 322 221 332 7.设A、B、C、D是空间不共面的四点,且满足AB?AC=0,AC?AD=0,AB?AD=0,则?BCD是 () A.钝角三角形B.锐角三角形C.直角三角形D.不确定 8.空间四边形OABC中,OB=OC,?AOB=?AOC=600,则cos O A,BC=()

空间向量及其运算测试卷试题.doc

新课标高二数学同步测试( 2- 1 第三章) 一、选择题 :在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代 号填在题后的括号内(每小题 5 分,共 50 分). 1.在平行六面体 ABCD A 1 B 1C 1 D 1 中, M 为 AC 与 BD 的交点,若 A 1B = a , — A 1 D 1 =b , A 1 A =c . 则下列向量中与 B 1M 相等的向量是( ) A . 1 a 1 b c B . 1 a 1 b c 2 2 2 2 图 C . 1 a 1 b c D . 1 a 1 b c 2 2 2 2 2.在下列条件中,使 M 与 A 、B 、C 一定共面的是 ( ) A . OM 2OA OB OC B . OM 1 OA 1 OB 1 OC 5 3 2 C . MA MB MC 0 D . OM OA OB OC 3.已知平行六面体 ABCD A ' B 'C ' D ' 中, AB=4,AD=3, AA ' 5 , BAD 900 , BAA ' DAA ' 600 ,则 AC ' 等于( ) A .85 B . 85 C . 5 2 D .50 r (1, 3,2) 平行的一个向量的坐标是( 4.与向量 a ) A .( 1 ,1,1) B .(- 1,- 3, 2) 来源 : 学| 科| 网 Z|X|X|K] 3 C .(- 1 , 3 ,- 1) D .( 2 ,- 3,- 2 2 ) 2 2 uuur uuur ) 5.已知 A (- 1,- 2,6),B (1,2,-6)O 为坐标原点,则向量 OA,与 OB 的夹角是( A .0 B . C . D . 3 2 2 6.已知空间四边形 ABCD 中, OA a ,OB b ,OC c ,点 M 在 OA 上,且 OM=2MA ,N 为 BC 中 点, 则 MN =( ) A . 1 a 2 b 1 c . 2 1 1 a b c 2 3 2 B 3 2 2 C . 1 a 1 b 1 c . 2 2 1 a b c 2 2 2 D 3 3 2 7.设 A 、B 、C 、D 是空间不共面的四点,且满足 AB ? AC 0,AC ? AD 0,AB ? AD 0 ,则 BCD 是( ) A .钝角三角形 B .锐角三角形 C .直角三角形 D .不确定

空间向量及其运算复习

的夹角为( C )OG上一点,且OG

11、在棱长为1的正方体ABCD —A 1B 1C 1D 1中,M 、N 分别为A 1B 1和BB 1的中点,那么直线AM 与CN 所成的角为的余弦值( D ) A A D B C B C D 1 1 1 1 M N A. 23 B. 1010 C. 53 D. 5 2 12、已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三向量共面,则实数λ等于( D ) A.627 B.637 C.607 D.657 二、填空题 1.点A(1,2,1),B(-1,3,4)、D(1,1,1),若PB AP 2=,则|PD |的值是_____________. 2、已知空间三点A 、B 、C 坐标分别为(0,0,2),(2,2,0),(-2,-4,-2),点P 在xOy 平面上且P A ⊥AB ,P A ⊥AC ,则P 点坐标为 . 3、a =(1,λ,2),b =(2,-1,2),且a 与b 的夹角的余弦为8 9,则λ=_____________. 三、解答题 1.已知()()2,4,,2,,26a x b y a b ===⊥,若a 且,求x y +的值. 2.如图所示,直三棱柱ABC —A 1B 1C 1中,CA =CB =1,∠BCA =90°,棱AA 1=2,M 、N 分别是A 1B 1、A 1A 的中点. (1)求BN 的长; (2)求cos<11,CB BA >的值 (3)求证:A 1B ⊥C 1M .

一、选择题 1、C 解析:设此向量为(x ,y ),∴?? ???==+x y y x 5121 22, ∴??? ???? - =-=??? ???? ==13513121351312y x y x 或 2、C 解析: |AB |=222)21()11()11(++-+-=3. 3、C 解析:a =(1,2,-2)=-2 1·b ∴a ∥b . 4、C 解析: ∵m ∥n ,故(8,3,a )=k (2b ,6,5),∴8=2bk ,3=6k ,a =5k , ∴k =2 1 故a =2 5,b =8,∴a +b =2 5+8=2 21 5、C 6、B 解析:∵a ⊥b ∴1·m +5·2-2(m +2)=0. ∴m =6. 7、A 解析:若 2 12121z z y y x x ==,则a 与b 同向或反向,反之不成立. 8、C 9、C 10、A 11、D 12、D 解析:∵a 、b 、c 三向量共面,所以存在实数m 、n ,使得c =ma +nb . 即???? ? 7=2m -n 5=-m +4n λ=3m -2n ∴λ=657 . 二、填空题 1、0 2、解析:设点P(x,y,z),则由PB AP 2=,得 (x-1,y-2,z-1)=2(-1-x,3-y,4-z), 即?????-=---=---=-,281,262,221z z y y x x 解得??? ? ? ? ???==-=. 3,38,31z y x 则|PD |=222)13()138()131(-+-+--=3 77. 3、(-8,6,0) 由向量的数量的积求得. 4、解析: 因为a ·b =1×2+λ×(-1)+2×2=6-λ, 又因为a ·b =|a ||b |·cos 〈a ,b 〉=5+λ2·9·8 9 =835+λ2,所以835+λ2=6-λ,解得λ=-2或255 . 三、解答题

空间向量及其运算(习题)

空间向量及其运算(习题) ? 例题示范 例1:如图,在正方体ABCD -A 1B 1C 1D 1中,E 为上底面A 1B 1C 1D 1的中心,若 1AE AA x AB y AD ??→ ??→ ??→ ??→ =++,则x ,y 的值分别为( ) A .11x y ==, B .1 12 x y ==, C .1122x y ==, D .1 12 x y ==, 思路分析: 1111111111() 2 1() 21122 AE AA A E AA A B A D AA AB AD AA AB AD ??→ ?? →??→??→??→??→ ??→??→??→=+=++=++=++ ∵1AE AA x AB y AD ??→??→??→??→ =++, ∴11 22x y ,==,故选C . 例2:如图,在平行六面体ABCD -A 1B 1C 1D 1中,AB =2,AA 1=2,AD =1,且AB ,AD ,AA 1两两之间的夹角都是60°,则11AC BD ??→ ??→ ?= ___________. 思路分析: 平行六面体中AB ,AD ,AA 1的长度和夹角都清楚,选取AB ??→ ,AD ??→ ,1AA ??→ 作为一 组基底,表达1AC ??→和1BD ??→ ,利用数量积的运算法则进行计算. 设AB ??→=a ,AD ??→=b ,1AA ??→ =c , 则111AC AB BC CC AB AD AA ??→ ??→ ??→ ??→ ??→ ??→ ??→ =++=++=++a b c , 11BD AB AD DD ??→ ??→ ??→ ??→ =-++=-++a b c , 11AC BD ??→??→ ?=(a +b +c )?(-a +b +c )=-a 2+b 2+c 2+2b ?c =-4+1+4+2×1×2× 1 2 =3. 例3:如图,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是A 1B 1,C 1D 1的一个四等分 点,求BE 与DF 所成角的余弦值. B 1 1 A 1 D B A E A 1 B 1 C D C A

相关文档
最新文档