5真核生物的遗传分析

合集下载

第五章真核生物基因组结构

第五章真核生物基因组结构
00:28 20
外显子:具有编码意义

转录单位
内含子:无编码意义( 5′GT、

基 因
非编码区
3′AG;GT -AG法则) TATA框 前导区 启动子 CAAT框 尾部区 增强子 GC框:调节转录活动。 调控 区 mRNA裂解信号 终止子 回文结构
00:28
21
Interrupted gene
00:28
43
核小体的结构组成

每个核小体含有约200bp的DNA,核心
组蛋白H2A、H2B、H3和H4各2份拷贝, 1份拷贝的H1组蛋白位于核小体外侧。

微球菌核酸酶(micrococcal nuclease) 处理染色体可得到单个核小体。
00:28 44
八聚体 染色质小体 (~166bp) 核小体 (~200bp) DNA 连接区 (常为 32~34bp) 图 10-10 核小体的组成 DNA H1
28
内含子(Intron)
选择性剪接:同一基因的转录产物
由于不同的剪接方式形成不同mRNA。
00:28
29
PS DNA
外显子 S
PL外显子 L来自外显子 2外显子 3
50b
2800bp
161bp
4500bp
205bp 327bp
初始转录本: 在唾腺中转录 成熟 mRNA: 1663nt 初始转录本: 在肝中转录 成熟 mRNA: 1773nt 图 18-57 小鼠淀粉酶(amy) 基因利用不同启动子产生两个不同的 mRNA
00:28
染色体( 1400nm,2个染色单体, 每个染 色体单体含10个螺旋圈)
51
染色质和染色体的概念

染色质(chromatin):是指细胞周期间期细胞核内由 因其易被碱性染料染色而得名。

(整理)第7章真核生物的遗传分析

(整理)第7章真核生物的遗传分析

第七章真核生物的遗传分析重点:真核生物的基因组;真菌的遗传分析;真核生物重组的分子机制。

难点:顺序四分子分析。

第一节真核生物基因组一、C值悖论二、N值悖论三、真核生物基因组DNA的复杂度一、C值悖论基因组(genome):一个物种单倍体的染色体数目及其所携带的全部基因称为该物种的基因组。

genome -- The complete set of sequences inthe genetic material of an organism. Itincludes the sequence of each chromosomeplus any DNA in organelles.C值(C-value):是指生物体的单倍体基因组所含DNA总量。

每种生物各有其相对恒定的C值,不同物种的C值之间有很大差别。

最小的C值是支原体,小于106bp;最大的C值是某些显花植物和两栖动物,可达1011bp。

C值同生物的进化有什么关系? 生物的C值,即基因组的DNA总量是不是随着生物的进化而相应地增加?一方面,随着生物结构和功能复杂程度的增加,需要的基因数量和产物种类越多,因此C值也相应地增加。

另一方面,在结构与功能相似的同一类生物中,以及亲缘关系很近的物种之间,则看不到这种规律。

因此,物种的C值及其进化复杂性之间没有严格的对应关系,这种现象称为C值悖理(C —value paradox)。

C-value paradox:the lack of direct relationshipbetween the C value and phylogenetic complex.人们对C值悖理已经提出许多解释:包括基因组的部分或完全加倍、转座、返座已加工假基因、DNA 复制滑动、不等交换和DNA扩增等。

Petrov等又提出一个解释是:各种生物基因组的大小是由于基因组中长期积累起来的过量的非编码DNA被清除的速率不同所造成的结果,即DNA丢失的速率愈慢,那么基因组DNA含量愈高。

真核生物的基因组结构与功能分析

真核生物的基因组结构与功能分析

真核生物的基因组结构与功能分析真核生物是指在生命进化过程中逐渐形成的一类生物,其基本特征之一是存在真核细胞核。

真核生物的基因组结构较为复杂,包含多个线性染色体和一些质粒。

对基因组结构的分析与理解,对于揭示其生物功能和进化机制是至关重要的。

一、真核生物的基因组结构真核生物的基因组大小较大,同一物种不同个体之间的基因组大小存在较大的差异。

基因组大小与细胞大小和复杂度之间存在着类似关联性。

人类基因组大小约为3亿个碱基对,其中蛋白编码基因仅占大约2%。

真核生物的基因组在基本结构上与细菌大相径庭,主要包括以下几个方面。

1. 染色体染色体是真核生物中最重要、最基本的遗传物质,是基因在生物体内的物质传递介质,是遗传信息的载体。

在精细结构上,真核细胞中存在很多复杂的染色体结构,如核小体、类固醇激素受体、平衡染色体等。

2. 基因组复制真核生物的基因组复制主要包括原核生物和真核生物的不同模式,其中原核生物中存在着DNA单线复制机制,而真核生物则采用DNA复制机器进行自我复制。

与原核生物不同的是,真核生物的DNA复制机器必须满足染色体的线性特性和复杂的三维结构,包括多个酶和蛋白质。

3. 基因只读基因只读是指通过读取基因组中的基因序列,进而达到生物高效功能表达和调节的过程。

真核生物基因组的序列阅读具有高度异质性,不同物种、不同个体之间存在大量的序列差异,这在一定程度上阻碍了对真核生物的功能研究。

二、真核生物的基因组功能分析真核生物的基因组分析主要包括以下几个方面。

1. 蛋白编码基因预测蛋白编码基因是真核生物基因组的重要组成部分,对真核生物的基因组进行蛋白编码基因预测,可以揭示其生物功能和进化机制。

目前,已经建立了多种基于序列、结构、相对位置等的蛋白编码基因预测算法与工具,如Glimmer、InterProScan、Pfam等。

2. 生物信息分析真核生物的基因组分析需要大量的计算资源和分析工具,这就需要借助生物信息学的手段来实现。

真核生物的遗传分析

真核生物的遗传分析

a +
+ n
a +
NPD
若两连锁基因在异臂上,则PD与NPD都由双交 换形成且机会相等,所以PD=NPD。但事实上 PD≠NPD故此情况不可能 ∴ nic和ade在同臂上 已知RF(0-nic)+ RF(nic-ade)=5.05%+ 5.2% RF(0-ade)=9.3% 即RF(0-nic)+ RF(nic-ade) ≠ RF(0-ade) 原因:着丝粒和ade间发生过双交换,但在计算 RF (0-ade)时却没有计算在内,而在计算RF(0-nic)和 RF(nic-ade)时都各计算一次。

(3-6)四种排列方式:第一分裂产物中野生
型与突变型未发生分离,野生型和突变型
M2发生分离,称第二次分裂分离(second
division segregation)。
着丝粒与基因位点间发生非姊妹染色单
体交换,因此这四种子囊均为交换型子
囊。
非交换型、交换型子囊的形成
着丝点距离与着丝点作图

0 0 10 180 2 10 202
4 180 10 0 4 10 208
0 180 0 180 2 10 372


由上表可以看出202+208 ≠372,
低估的重组值= (202+208-372)/4000 ×100%=0.95%

RF(0-nic)+ RF(nic-ade) = RF(0-ade)+0.95%=9.3% +0.95%=10.25%
六种子囊孢子排列方式
六种子囊孢子排列方式
第一次分裂分离与第二次分裂分离

(1-2)两种排列方式:野生型lys+和突变型lys-在 M1彼 此分离,称第一次分裂分离(first division

必修2《遗传与进化》 第3章 3.5 生物体存在表观遗传现象 同步练习 (2)

必修2《遗传与进化》 第3章 3.5 生物体存在表观遗传现象 同步练习 (2)

浙科版(2019)高中生物必修二3.5 生物体存在表观遗传现象同步练习学校:___________姓名:___________班级:___________考号:___________一、单选题1.表观遗传现象普遍存在于生物体生命活动过程中。

下列有关叙述错误的是()A.同一蜂群中的蜂王和工蜂在形态结构、生理和行为等方面的不同与表观遗传有关B.表观遗传现象是因为在减数分裂产生配子的过程中碱基序列发生改变C.柳穿鱼Lcyc基因的部分碱基发生了甲基化修饰,抑制了基因的表达D.构成染色体的组蛋白发生甲基化、乙酰化等修饰也会影响基因的表达2.牵牛花的颜色主要是由花青素决定的,如图为花青素的合成与颜色变化途径示意图:从图中不能得出的是()A.花的颜色由多对基因共同控制B.基因可以通过控制酶的合成来控制代谢C.生物性状由基因决定,也受环境影响D.若基因①不表达,则基因②和基因③不表达3.在蜂群中,少数幼虫一直取食蜂王浆而发育成蜂王,而大多数幼虫以花粉和花蜜为食将发育成工蜂。

DNMT3蛋白是DNMT3基因表达的一种DNA甲基化转移酶,能使DNA某些区域添加甲基基团(如下图所示)。

敲除DNMT3基因后,蜜蜂幼虫将发育成蜂王,这与取食蜂王浆有相同的效果。

下列有关叙述错误的是()A.胞嘧啶和5'甲基胞嘧啶在DNA分子中都可以与鸟嘌呤配对B.蜂群中蜜蜂幼虫发育成蜂王可能与体内重要基因是否甲基化有关C.甲基化的DNA片段中遗传信息发生改变,从而使生物的性状发生改变D.DNA甲基化后可能干扰了RNA聚合酶等对DNA部分区域的识别和结合4.结合图示分析,下列叙述错误的是()A.生物的遗传信息储存在DNA或RNA的核苷酸序列中B.核苷酸序列不同的基因可表达出相同的蛋白质C.遗传信息传递到蛋白质是表现型实现的基础D.编码蛋白质的基因含遗传信息相同的两条单链5.下列关于遗传信息表达过程的叙述,正确的是A.一个DNA分子转录一次,可形成一个或多个合成多肽链的模板B.转录过程中,RNA聚合酶没有解开DNA双螺旋结构的功能C.多个核糖体可结合在一个mRNA分子上共同合成一条多肽链D.编码氨基酸的密码子由mRNA上3个相邻的脱氧核苷酸组成6.某种实验小鼠的毛色受一对等位基因A vy和a的控制,A vy为显性基因,表现为黄色,a为隐性基因,表现为黑色。

原核生物基因组和真核生物基因组比较区别 (1)

原核生物基因组和真核生物基因组比较区别 (1)

原核生物基因组和真核生物基因组的区别:1、真核生物基因组指一个物种的单倍体染色体组(1n)所含有的一整套基因。

还包括叶绿体、线粒体的基因组。

原核生物一般只有一个环状的DNA分子,其上所含有的基因为一个基因组。

2、原核生物的染色体分子量较小,基因组含有大量单一顺序(unique-sequences),DNA仅有少量的重复顺序和基因。

真核生物基因组存在大量的非编码序列。

包括:.内含子和外显子、.基因家族和假基因、重复DNA序列。

真核生物的基因组的重复顺序不但大量,而且存在复杂谱系。

3、原核生物的细胞中除了主染色体以外,还含有各种质粒和转座因子。

质粒常为双链环状DNA,可独立复制,有的既可以游离于细胞质中,也可以整合到染色体上。

转座因子一般都是整合在基因组中。

真核生物除了核染色体以外,还存在细胞器DNA,如线粒体和叶绿体的DNA,为双链环状,可自主复制。

有的真核细胞中也存在质粒,如酵母和植物。

4、原核生物的DNA位于细胞的中央,称为类核(nucleoid)。

真核生物有细胞核,DNA序列压缩为染色体存在于细胞核中。

5、真核基因组都是由DNA序列组成,原核基因组还有可能由RNA组成,如RNA病毒。

原核生物和真核生物区别(从细胞结构、基因组结构和遗传过程分析)主要差别由真核细胞构成的生物。

包括原生生物界、真菌界、植物界和动物界。

真核细胞与原核细胞的主要区别是:【从细胞结构】1.真核细胞具有由染色体、核仁、核液、双层核膜等构成的细胞核;原核细胞无核膜、核仁,故无真正的细胞核,仅有由核酸集中组成的拟核2.真核细胞有内质网、高尔基体、溶酶体、液泡等细胞器,原核细胞没有。

真核细胞有发达的微管系统,其鞭毛(纤毛)、中心粒、纺锤体等都与微管有关,原核生物则否。

3.真核细胞有由肌动、肌球蛋白等构成的微纤维系统,后者与胞质环流、吞噬作用等密切相关;而原核生物却没有这种系统,因而也没有胞质环流和吞噬作用。

真核细胞的核糖体为80S型,原核生物的为70S型,两者在化学组成和形态结构上都有明显的区别。

遗传学 第六章 真核生物遗传分析

遗传学 第六章 真核生物遗传分析

1、单一序列(unique sequence)
➢ 真核生物的大多数基因在单倍体基因 组中都是单拷贝的。
➢ 单一序列所占的比例在不同生物基因 组中变化较大:
原核生物中一般只含有非重复序列;
较低等的真核生物中大部分DNA也 是单拷贝的;
动物中将近50%DNA是中度或高度 重复的;
植物和两栖类生物中单拷贝DNA序 列降低,而中度和高度重复序列增加, 如玉米的重复序列在80%以上。
(2)卫星DNA (satellite DNA)
➢ 其碱基组成不同于其他部份,可用 等密度梯度离心法将其与主体 DNA 分开,因而称为卫星DNA 或 随体DNA。
➢ 各类卫星DNA都由不同的重复序 列家族构成。
➢ 重复单位串联排列。 ➢ 卫星 DNA约占人基因组 5~6%。
卫星DNA 根据长度可将其分为3类:
➢ 基因组(genome):一个物种单倍体的染色体数 目及其所携带的全部遗传信息。
基因组DNA测序结果表明基因组中不仅包含着整 套基因的编码序列,同时还包含着大量非编码序列, 这些序列同样包含着遗传指令(genetic instruction)。 因此,基因组(应该)是整套染色体所包含的 DNA分子以及DNA分子所携带的全部遗传指令。
➢ 可用遗传学方法区分每个染色单 体。
顺序四分子分析( ordered tetrad analysis)
顺序四分子遗传分析的特殊意义在于: (1) 能从四分子不同类型出现的相对频率分析基因间的连
锁关系; (2) 能计算标记基因与着丝点之间的重组值,进行着丝粒
作图; (3) 子囊中子囊孢子严格的对称性质,表明减数分裂是一
Co = DNA concentration t1/2 = time for half reaction

第五章真核生物的遗传分析

第五章真核生物的遗传分析

高度重复顺序的功能
1. 调节反向序列常存在于DNA复制起点区的附 近。另外,许多反向重复序列是一些蛋白质 (包括酶)与DNA的结合位点
2. 参与基因表达的调控DNA的重复顺序可以转 录到核内不均一RNA(hnRNA)分子中,并 形成发夹结构,这对稳定RNA分子,免遭分解 有重要作用
3. 参与转位作用
(3-6)四种排列方式:第一分裂产物中野 生型与突变型未发生分离,野生型和突 变型 M2发生分离,称第二次分裂分离 (second division segregation)。
着丝粒与基因位点间发生非姊妹染色 单体交换,因此这四种子囊均为交换 型子囊。
非交换型、交换型子囊的形成
着丝点距离与着丝点作图
第一节 真核生物基因组
一、基因组与 C值
基因组:一个物种单倍体的染色体数目 及其所携带的全部基因称为该物种的基 因组。
C值:一个物种单倍体基因组的DNA含 量是相对含量是恒定的,通常称为该物 种DNA的C值。不同物种C值差异很大。
从原核生物到真核生物。其基因组大小 和DNA含量是随生物进化复杂程度的增 加稳步上升的。随生物结构和功能复杂 程度的增加,需要的基因产物越多,所 以C值就越大。 最小的C值:支原体(106bp),
5. 同一种属中不同个体的高度重复顺序 的重复次数不一样,这可以作为每一个
体的特征,即DNA指纹
6. α卫星 DNA 成簇的分布在染色体着丝
粒附近,可能与减数分裂时染色体配对 有关,即同源染色体之间的联会可能依
赖于具有染色体专一性的特定卫星DNA 顺序
第二节 真菌类的遗传分析
红色面包霉的特点
C.存在大量不编码蛋白质的DNA序列,果蝇的基 因数约为5000个,占基因组DNA序列的10% 左右,人的基因数推测为50000个,约占基因 组DNA序列的1%。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C/C0=1/2 时,也就是单链 50% 复
性时,则方程: C 1 1 1 因此, C0t 1 C0 2 1 kC0t k 2 如果基因组中每一种基因只有一个(单拷贝),那么基因组愈 大则基因组的复杂性愈大,复性速率愈小。C0t1/2与非重复序列 的基因组大小呈正比。
教学大纲
教学日历 考试大纲 习题解例 实验大纲 菜 单 隐 藏
基因组A的C0t 1
2
基因组B 的C0t 1
2 = 基因组A的核苷酸对数 基因组B的核苷酸对数
C0t1/2与基因组的大小成正比。其中poly(U)+poly(A),其kC0t1/2=1 对核苷酸,因而复性最快;MS2是RNA噬菌体。 不同生物基因组的C0t1/2不同,除了决定于基因组的大小之外,还 取决于每个基因的核苷酸序列的重复次数。重复次数愈少则复性 愈慢,C0t1/2的位置愈后。
真核生物的遗传分析
教学大纲
教学日历 考试大纲 习题解例 实验大纲 菜 单 隐 藏
5.1
真核生物的基因组
5.1.1 C值悖理(C值佯谬)
物种的C值(单倍体所含DNA量)及其进化复杂性之间没有严格的对应关系。
教学大纲
教学日历 考试大纲 习题解例 实验大纲 菜 单 隐 藏
单位:pg
教学大纲
教学日历 考试大纲 习题解例 实验大纲 菜 单 隐 藏
5.1.3.2 中度重复序列 重复单位平均长度约300bp,重复次数为10~102,如人的珠蛋白(血红蛋白) 基因,包含8个珠蛋白功能基因和3个珠蛋白假基因(中度重复序列),还有 一个近年发现的基因。 另一类重复序列的重复次数为
103~105 ,该序列常以回文序列
方式出现在基因组的许多位置上。 回文序列中间有的存在单拷贝序
列间隔,有的没有单拷贝序列间
隔。前者复性表现为茎—环结构, 后者则形成发荚图像。
教学大纲
教学日历 考试大纲 习题解例 实验大纲 菜 单 隐 藏
5.1.3.3 高度重复序列 重复单位长度约6~200bp,重复次数为106以上,如卫星DNA。 多分布在异染色质区,特别是在着丝粒和端粒附近。 常有AT 高含量的简单串联重复序列。常缺乏启动子,没有转录能 力。 对C值影响较大。 卫星DNA 各种DNA在氯化铯梯度离心中,平衡时的浮力密度决定于它的GC含 量。 GC 含量高,浮力密度越大。真核生物一般含有 30%~50% 的 GC , 在DNA的不同区域,GC含量约相差10%。 对一个物种来说,当基因组切断成数百个碱基对的片段进行超离 心时,其浮力密度曲线是覆盖一定浮力密度范围的一条宽带。但 是有些 DNA 片段异常高或低的 GC 含量,常在主要 DNA 带的前后有一 个次要的 DNA 带相伴随,这些小的区带就像卫星一样围绕着 DNA 主 带,故称卫星DNA。
C值悖理的解释 基因组的部分或完全加倍、转座、反转录已加工假基因、DNA 复制滑动、
不等交换和DNA扩增等。
非编码区DNA被清除的速度不同造成的结果。
5.1.2 N值悖理(N值佯谬)
生物的基因数目与生物在进化树上的位置不存在正相关的事实。
一个基因可以有不同蛋白质产物。 生物的复杂性不能仅仅用基因的数目来衡量,而应该用整个基因组的理论 上的转录物组来定义。
教学大纲
教学日历 考试大纲 习题解例 实验大纲 菜 单 隐 藏
5.2
真菌类的四分子分析与作图
5.2.1 顺序四分子的遗传分析
粗糙脉孢菌(N eurospora crassa)是子囊菌(N=7) 生活史 ① 无性世代: ② 有性世代: 粗糙链孢霉的的菌丝体有不同的交配型,相当于高等生物的受精作用,但 不用♀、♂表示,一般用A、a或+、-表示。 四分子分析 单一减数分裂的 4 个产物留存一起,称作四分子。对四分子进行
教学大纲
教学日历 考试大纲 习题解例 实验大纲 菜 单 隐 藏
5.1.3 真核生物基因组DNA序列的复杂度
DNA 变性反应:加热或用碱处理双链 DNA ,使氢键
断裂,结果DNA变成为单链。 DNA 复性反应:变性 DNA 在一定条件下又可以恢复
天然DNA的结构。
复性的速率取决于互补的DNA序列之间的随机碰撞。 所以,DNA复性是一个双分子二级反应。
教学大纲
教学日历 考试大纲 习题解例 实验大纲 菜 单 隐 藏
教学大纲
教学日历 考试大纲 习题解例 实验大纲 菜 单 隐 藏
5.1.3.1
单拷贝序列亦称非重复序列
在一个基因组中只有一个拷贝或2~3个拷贝。真核生物的大多数基因在单倍
体中都是单拷贝的。
教学大纲
教学日历 考试大纲 习题解例 实验大纲 菜 单 隐 藏
菌丝体 产生 大量分生孢子形成 新的菌丝
遗传学分析,称作四分子分析(tetrad analysis)。
链孢霉的减数分裂的四个产物不仅留存一起,而且以直线排列在 子囊中,又称顺序四分子(ordered tetrad)。
教学大纲
教学日历 考试大纲 习题解例 实验大纲 菜 单 隐 藏
C:为t时单链DNA浓度;t:时间(单位s);k:重组速率常 dC 2 kC dt 数(单位L·mol-1·s-1 ) , 取决于阳离子浓度、温度、片段

dC kdt 2 C
大小和DNA序列的复杂性。上式可改写为 当t=0时,C=C0,将上式积分:
教学大纲
教学日历
1 1 C C kt 0
教学大纲
教学日历 考试大纲 习题解例 实验大纲 菜 单 隐 藏
卫星
Ⅰ Ⅱ Ⅲ 隐蔽卫星
核心序列
ACAAACT TGTTTGA ATAAACT TATTTGA ACAAATT TGTTTAA AATATAG TTATATC
总长 3.6×106
占基因组比例
25% 8% 8%
改写为
C 1 C0 1 kC0t
考试大纲 习题解例 实验大纲 菜 单 隐 藏
C 1 C0 1 kC0t
当 t=0 时, C = C0 ,表明所有 DNA 都是单链, C0 为 DNA 的总浓度。复性分数 C/C0是起始浓度和经过时间的乘积C0t的函数,如图。 从方程式可见控制复性反应的参 数 是 C0t , 如 当 t=t1/2 时 , 即
相关文档
最新文档