【必考题】初一数学下期末试题带答案
七年级数学下册期末综合练习题-带答案(人教版)

七年级数学下册期末综合练习题-带答案(人教版)(全卷三个大题,共24个小题;满分100分,考试用时120分钟)姓名 班级 学号 成绩一、选择题(本大题共12小题.每小题只有一个正确选项,每小题3分,共36分)1.在实数0,-π,和-4中,最小的数是( )A .0B .-πC .D .-42.下列计算中,正确的是( )A 2=±B 1=-C 7=-D .5=3.已知点P (x ,y )在第二象限,且2x =,3y =则点P 的坐标为( )A .(-2,3)B .(2,-3)C .(-3,2)D .(2,3)4.将△ABC 沿AB 方向平移到△EFD 的位置,若∠1=31°,∠2=57°,则∠D 的度数为( )A .91°.B .90°.C .92°.D .105°. 5.若m 为任意实数,点(2m +1,m -2)一定不在( )A .第一象限B .第二象限C .第三象限D .第四象限6.如图,下列能判定AB ∥EF 的条件有( )①∠B+∠BFE=180°②∠1=∠2③∠3=∠4④∠B=∠5.A .1个B .2个C .3个D .4个7.每年4月23日是“世界读书日”,为了了解某校八年级500名学生对“世界读书日”的知晓情况,从中随机抽取了50名学生进行调查.在这次调查中,个体是( )A .500名学生B .所抽取的50名学生对“世界读书日”的知晓情况C .50名学生D .每一名学生对“世界读书日”的知晓情况8.为了调查疫情对青少年人生观、价值观产生的影响,某学校团委对七年级学生进行了问卷调查,其中一项是:疫情期间出现的哪一个高频词汇最触动你的内心?针对该项调查结果制作出如下两幅不完整的统计图.由图中信息可知,下列结论错误的是( )A .本次调查的样本容量是600B .选“奉献”的有90人C .扇形统计图中“感恩”所对应的扇形圆心角度数为108°D .选“感恩”的人数比选“敬畏”的人数多100人9.某校运动员分组训练,若每组6人,则余3人;若每组7人,则缺5人;设运动员人数为x 人,组数为y 组,则列方程组为( )A .{6y =x −37y =x +5B .{6y =x −37y +5=xC .{6y =x +37y +5=xD .{6y =x +37y =x +510.某射箭运动员在一次比赛中前6次射击共击中52环,如果他要打破89环(10次射击,每次射击最高中10环)的记录,则他第7次射击不能少于( )A .6环B .7环C .8环D .9环11.已知二元一次方程组{5m +4n =200①4m −5n =8②,如果用加减法消去n ,则下列方法可行的是( ) A .①×4+②×5B .①×5+②×4C .①×5﹣②×4D .①×4﹣②×512.若关于x 的不等式组51222x x x x a+⎧<-⎪⎨⎪+<+⎩只有4个整数解,则a 的取值范围是( )A .13a ≥B .1314a <<C .1314a ≤<D .1314a <≤二、填空题(本大题共4小题,每小题2分,共8分)13.比较大小用“>”、“<”或“=”填空)14.如图,直线AB CD ,55B ∠=︒和35D∠=︒,则E ∠的度数是 度15.某校学生会组织七年级和八年级共30名同学参加环保志愿者活动,七年级学生平均每人收集15个废弃塑料瓶,八年级学生平均每人收集20个废弃塑料瓶,为了保证所收集的塑料瓶总数不少于500个,则七年级学生参加活动的人数至多是名16.经调查,某班学生上学所用的交通工具中,自行车占60%,公交车占30%,其它占10%,用扇形图描述以上统计数据时,“公交车”对应扇形的圆心角是度.三、解答题(本答题共8小题,共56分)17|118.已知ABC在平面直角坐标系中的位置如图所示.将ABC向右平移6个单位长度,再向下平移6个单位长度得到111.(A B C图中每个小方格边长均为1个单位长度).(1)在图中画出平移后的111A B C;(2)直接写出111A B C各顶点的坐标.19.若方程组342312x yax by+=⎧⎨-=⎩与25210x yax by-=⎧⎨+=⎩有相同的解,求a与b的值.20.解不等式组4(1)713843x xxx+≤+⎧⎪-⎨-<⎪⎩,并求它的所有整数解的和.21.某校九年级在一次体育模拟测试中,随机抽查了部分学生的体育成绩,根据成绩分成如下六组:.4045A x ≤< .4550B x ≤< .5055C x ≤< .5560D x ≤< .6065E x ≤< .6570F x ≤≤ 并根据数据制作出如下不完整的统计图.请根据统计图解决下列问题(1)补全频数分布直方图,并求出 m 的值;(2)若测试成绩不低于60分为优秀,则本次测试的优秀率是多少?(3)在(2)的条件下,若该校九年级有1800名学生,且都参加了该次模拟测试,则成绩优秀的学生约有多少人?22.如图,已知ACB BDE ∠=∠ 180CAD E ∠+∠=︒.(1)AD 与EF 平行吗?试说明理由.(2)若DA 平分∠BDE ,60ACB BAC ∠=∠=︒ 求证:EF AF ⊥.23.小明家原有15头大牛和5头小牛,每天约用饲料325kg ;三月后,由于经济效益好,小明父亲决定扩大养牛规模,又购进了10头大牛和5头小牛,这时每天约用饲料550kg .问每头大牛和每头小牛1天各需要多少饲料?若小明父亲估计每头大牛1天约需要饲料15~18kg ,每头小牛1天约需要饲料7~8kg ,你觉得小明父亲的估计准确吗?24.某单位为做好防疫物资调配发放工作,租用A 、B 两种型号的车给全市各个防疫点配送消毒液。
初一数学下册期末试卷及答案参考

初一数学下册期末试卷及答案参考初一数学下册期末试卷及答案参考期末考试是指每个学期快结束时,学校往往以试卷的形式对各门学科进行该学期知识掌握的检测,对上一学期知识的查漏补缺,一般由区或市统考,也可能是几个学校进行联考。
下面是店铺带来的初一数学下册期末试卷及答案参考,希望对你有帮助。
一、选择题(本大题共10题共30分)1. 的值等于()A . 3B . -3C . ±3D .2. 若点A(-2,n)在轴上,则点B(n-1,n+1)在()A . 第一象限B . 第二象限C . 第三象限D .第四象限3. 下列说法正确的是()A . 相等的两个角是对顶角B . 和等于180度的两个角互为邻补角C . 若两直线相交,则它们互相垂直D . 两条直线相交所形成的四个角都相等,则这两条直线互相垂直4. 下列实数中是无理数的是()A .B .C .D . 3.145. 下列调查中,调查方式选择合理的是()A . 为了了解某一品牌家具的甲醛含量,选择全面调查B . 为了了解某公园全年的游客流量,选择抽样调查C . 为了了解神舟飞船的设备零件的质量情况,选择抽样调查D . 为了了解一批袋装食品是否含有防腐剂,选择全面调查6. 如图,直线EO⊥CD,垂足为点O,AB平分∠EOD,则∠BOD的度数为()A . 120°B . 130°C . 135°D . 140°7. 如图所示的四个图形中,∠1和∠2不是同位角的是()A . ①B . ②C . ③D . ④8. 如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A . ∠3=∠4B . ∠1=∠2C . ∠D=∠DCED . ∠D+∠ACD=180°9. 若的值为:()A . 2B . -3C . -1D . 310. 如果不等式组的解集是,那么m的取值范围是()A .B .C .D .二、填空题(本大题共10题共30分)11. 的平方根是,的相反数是;12. 一次考试考生有2万人,从中抽取500名考生的成绩进行分析,这个问题的样本是。
人教版七年级数学下册期末试卷(共4套)(含答案)

人教版七年级数学下册期末试卷(含答案)第Ⅰ套一、选择题1. 下面调查中,适合抽样调查的是()A.对全班同学的身高情况的调查B.登机前对旅客的安全检查C.对我县食品合格情况的调查D.学校组织学生进行体格检查2. 若分式xx−4有意义,则x应满足的条件是()A.x≠4B.x≠0C.x>4D.x=43. 下列数组中,是二元一次方程x+y=7的解的是()A.{x=−2y=5 B.{x=3y=4 C.{x=−1y=7 D.{x=−2y=−54. 已知空气的单位体积质量为1.24×10−3克/厘米3,1.24×10−3用小数表示为()A.0.000124B.0.0124C.−0.00124D.0.001245. 下列运算正确的是()A.a5−a2=a3B.a10÷a2=a5C.(a+3)2=a2+9D.(a2)3=a66. 已知:如图,直线a,b被直线c所截,且a // b,若∠1=70∘,则∠2的度数是()A.130∘B.110∘C.80∘D.70∘7. 已知x2=y3,那么下列式子中一定成立的是()A.x+y=5B.2x=3yC.xy =32D.xy=238. 我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图甲可以用来解释(a+b)2−(a−b)2=4ab.那么通过图乙面积的计算,验证了一个恒等式,此等式是()A.a2−b2=(a+b)(a−b)B.(a−b)(a+2b)=a2+ab−b2C.(a−b)2=a2−2ab+b2D.(a+b)2=a2+2ab+b29. 校运动会期间,甲、乙、丙、丁四位班长一起到学校小卖部购买相同单价的棒冰和相同单价的矿泉水,四位班长购买的数量及总价如表所示,若其中一人的总价算错了,则此人是谁()A.甲B.乙C.丙D.丁10. 如图1,现有8枚棋子呈一直线摆放,依次编号为①∼①.小明进行隔子跳,想把它跳成4叠,每2枚棋子一叠,隔子跳规则为:只能靠跳跃,每一步跳跃只能是把一枚棋子跳过两枚棋子与另一枚棋子相叠,如图2中的(1)或(2)(可随意选择跳跃方向)一枚棋子最多只能跳一次.若小明只通过4步便跳跃成功,那么他的第一步跳跃可以为()A.①叠到①上面B.①叠到①上面C.①叠到①上面D.①叠到①上面二、填空题11.因式分解:x2−4x=________.12.某校为了解学生喜爱的体育活动项目,随机抽查了100名学生,让每人选一项自己喜欢的项目,并制成如图所示的扇形统计图.如果该校有1000名学生,则喜爱跳绳的学生约有________人.13.若{x=1y=1是方程组{ax+by=0bx+2y=−1的解,则a−b=________.14.如图,l // m,矩形ABCD的顶点B在直线m上,则∠α=________度.15.如图,∠C=90∘,将直角三角形ABC沿着射线BC方向平移6cm,得三角形A′B′C′,已知BC =3cm,AC=4cm,则阴影部分的面积为18cm2.16.已知a+b=8,ab=15,则a2+b2=________.17.若关于x的分式方程x+1x−4=2−a4−x有增根,则常数a的值是________.18.学生问老师:“您今年多大了”老师风趣地说:“我像你这么大时,你刚1岁;你到我这么大时,我已37岁了”.那么老师现在的年龄是________岁.19.下列算式①(22×32)3;①(2×62)×(3×63);①63+63;①(22)3×(33)2中,结果等于66的有________.20.若实数a,b满足方程组{ab+a−b=85a−5b+ab=20,则a2b−ab2=________.三、解答题21.(1)计算:|−3|−(√3−2)0+(12)−2.(2)化简:(x+6)2+(3+x)(3−x).22.(1)解方程组{2x+y=7 x+2y=2(2)解分式方程:2x−1=x1−x−123.分解因式(1)2x2−8(2)3x2y−6xy2+3y3.24.如图,在四边形ABCD中,AC⊥CD于点C,BD平分∠ADC交AC于点E,∠1=∠2.(1)请完成下面的说理过程.① BD平分∠ADC(已知)①________(角平分线的定义).① ∠1=∠2(已知),①① AD // ________. BC(________).(2)若∠BCE=20∘,求∠1的度数.25.先化简,再求值:(x+2y)2−2(x−y)(x+y)+2y(x−3y),其中x=−2,y=12.26.为了解某地区中学生一周课外阅读时长的情况,随机抽取部分中学生进行调查,根据调查结果,将阅读时长分为四类:2小时以内,2∼4小时(含2小时),4∼6小时(含4小时),6小时及以上,并绘制了如图所示尚不完整的统计图.(1)本次调查共随机抽取了________名中学生,其中课外阅读时长“2∼4小时”的有________人;(2)扇形统计图中,课外阅读时长“4∼6小时”对应的圆心角度数为________;(3)若该地区共有20000名中学生,估计该地区中学生一周课外阅读时长不少于4小时的人数.27.如图,将一张大长方形纸板按图中虚线裁剪成9块,其中有2块是边长为a厘米的大正方形,2块是边长都为b厘米的小正方形,5块是长为a厘米,宽为b厘米的相同的小长方形,且a>b.(1)观察图形,可以发现代数式2a2+5ab+2b2可以因式分解为________.(2)若图中阴影部分的面积为242平方厘米,大长方形纸板的周长为78厘米,求图中空白部分的面积.28.新冠肺炎疫情爆发后,国内口罩需求激增,某地甲、乙两个工厂同时接到200万个一次性医用外科口罩的订单,已知甲厂每天比乙厂多生产2万个口罩,且甲厂生产50万个口罩所用的时间与乙厂生产40万个口罩所用的时间相同.(1)求甲、两厂每天各生产多少万个一次性医用外科口罩.(2)已知甲、乙两个工厂每天生产这种口罩的原料成本分别是4万元和3万元,若两个工厂一起生产这400万个口罩,生产一段时间后,乙停产休整,剩下订单由甲单独完成若本次生产过程中,原料总成本不超过156万元,那么两厂至少一起生产了多少天?参考答案:一、1-5 CABDD 6-10 BDCBC 二、11.x(x−4)12.30013.614.2515.1816.3417.518.2519.①①①20.15三、21.原式=3−1+4=6;原式=x2 +12x+36+9−x2=12x+45.22.{2x+y=7x+2y=2,①×2−①得:3x=12,解得:x=4,把x=4代入①得:y=−1,则方程组的解为{x=4y=−1;去分母得:2=−x−x+1,解得:x=−12,经检验x=−12是分式方程的解.23.2x2−8=2(x2−4)=2(x+2)(x−2);3x2y−6xy2+3y3=3y(x2−2xy+y2)=3y(x−y)2.24.∠2=∠3,∠1=∠3,内错角相等,两直线平行① AC⊥CD,① ∠ACD=90∘,① ∠BCE=20∘,① ∠BCD=20∘+90∘=110∘,① AD // BC,① ∠ADC+∠BCD=180∘,① ∠ADC=180∘−110∘=70∘,① ∠1=∠2=∠3=12∠ADC=35.25.原式=x2+4xy+4y2−2(x2−y2)+2xy−6y2=x2+4xy+4y2−2x2+2y2+2xy−6y2=−x2+6xy,当x=−2,y=12时,原式=−(−2)2+6×(−2)×12=−4−6=−10.26.(1)200,40(2)144∘(3)20000×(1−30200−20%)=13000(人).答:该地区中学生一周课外阅读时长不少于4小时的有13000人.27.(a+2b)(2a+b)由已知得:{2(a2+b2)=2426a+6b=78,化简得{a2+b2=121 a+b=13① (a+b)2−2ab=121,① ab=24,5ab=120.① 空白部分的面积为120平分厘米.28.设乙厂每天生产x万个口罩,则甲厂每天生产(x+2)万个,由题意可得:50x+2=40x,解得:x=8,经检验得:x=8是原方程的根,故x+2=10(万个),答:乙厂每天生产8万个口罩,甲厂每天生产10万个;设两厂一起生产了a天,甲一共生产b天,由题意可得:,{8a+10b=4003a+4b≤156由①得:b=40−0.8a,代入①得:a≥20,答:两厂至少一起生产了20天.七年级数学下册期末试卷(含答案)第Ⅱ套1. 下列运算结果正确的是()A.a2+a4=a6B.a2⋅a3=a6C.(−a2)3=a6D.a8÷a2=a62. 若a>b,则下列结论正确的是()A.a+2<b+2B.5−a<5−bC.D.−3a>−3b3. 不等式2−x≥0的解集在数轴上表示正确的是()A. B.C. D.4. 已知是二元一次方程2x+my=1的一个解,则m的值为()A.3B.−5C.−3D.55. “对顶角相等”的逆命题是()A.如果两个角是对顶角,那么这两个角相等B.如果两个角相等,那么这两个角是对顶角C.如果两个角不是对顶角,那么这两个角不相等D.如果两个角不相等,那么这两个角不是对顶角6. 下面3个天平左盘中“△”“□”分别表示两种质量不同的物体,则第三个天平右盘中砝码的质量为()A.10B.9C.8D.77. 小明去商店购买两种玩具,共用了元钱,种玩具每件元,种玩具每件元.若每种玩具至少买一件,且种玩具的数量多于种玩具的数量.则小明的购买方案有()A.种B.种C.种D.种8. 如图,D、E、F是△ABC内的三个点,且D在AF上,F在CE上,E在BD上,若CF=EF,AD=FD,BE=DE,△DEF的面积是12,则△ABC的面积是()A.24.5B.26C.29.5D.30二、填空题9.冠状病毒最先是1937年从鸡身上分离出来,病毒颗粒的平均直径为0.00000011m,用科学记数法表示这个数是________.10.如果一个多边形的内角和等于它的外角和的2倍,那么这个多边形是________边形.11.若实数x,y满足,则代数式2x+3y−2的值为________.12.已知:5x m+7 −2y2n−1 =4是二元一次方程,则mn=________.13.命题“两个锐角的和是钝角”是________命题(填“真”或“假”).14.如图,l1 // l2,AB⊥l1,垂足为O,BC交l2于点E,若∠ABC=125∘,则∠1=________∘.15.如图,在△ABC中,∠C=50∘,按图中虚线将∠C剪去后,∠1+∠2等于________.16.如图,AB // CD,AD // BC,∠B=115∘,延长AD到F,延长CD到E,连接EF,则∠E与∠F的和为________∘.18.已知三角形的三边分别为2,a−1,4,那么a的取值范围是________.19.如图,把一副三角板如图摆放,点E在边AC上,将图中的绕点A按每秒3∘速度沿顺时针方向旋转一周,在旋转的过程中,在第________秒时,边BC恰好与边DE平行.三、解答题20.将下列各式因式分解:(1)x3−x;(2)x4−8x2y2+16y4.21.计算下列各题:(1)()−3−20200+|−5|;(2)先化简,再求值:(x+y)2−2x(x+3y)+(x+2y)(x−2y),其中x=−1,y=2.22.解下列方程:(1);(2).23.解下列不等式(组):(1)+1>x−3;(2).24.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十二两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了12两(袋子重量忽略不计),问黄金、白银每枚各重多少两?(请用方程组解答)25.如图,点B、E分别在AC、DF上,AF分别交BD、CE于点M、N,∠1=63∘,∠2=63∘,且∠C=∠D.求证:∠A=∠F.26.若x满足(7−x)(x−4)=2,求(x−7)2+(4−x)2的值:解:设7−x=a,x−4=b,则(7−x)(x−4)=ab=2,a+b=(7−x)+(x−4)=3所以(x−7)2+(4−x)2=(7−x)2+(x−4)2=a2+b2=(a+b)2−2ab=32−2×2=5请仿照上面的方法求解下面的问题(1)若x满足(8−x)(x−3)=3,求(8−x)2+(x−3)2的值;(2)已知正方形ABCD的边长为x,E,F分别是AD,DC上的点,且AE=2,CF=5,长方形EMFD的面积是28,分别以MF、DF为边作正方形,求阴影部分的面积.27.某工厂准备用图甲所示的A型正方形板材和B型长方形板材,制作成图乙所示的竖式和横式两种无盖箱子.(1)若该工厂准备用不超过10000元的资金去购买A,B两种型号板材,并全部制作竖式箱子,已知A型板材每张30元,B型板材每张90元,求最多可以制作竖式箱子多少个?(2)①若该工厂仓库里现有A型板材30张、B型板材100张,用这批板材制作两种类型的箱子,问制作竖式和横式两种箱子各多少个,恰好将库存的板材用完?①若该工厂新购得78张规格为(3×3)m的C型正方形板材,将其全部切割成A型或B型板材(不计损耗),用切割成的板材制作两种类型的箱子,要求横式箱子不少于30个,且材料恰好用完,则能制作两种箱子共________ 个.(不写过程,直接写出答案)28.已知如图,∠COD=90∘,直线AB与OC交于点B,与OD交于点A,射线OE与射线AF交于点G.(1)若OE平分∠BOA,AF平分∠BAD,∠OBA=36∘,则∠OGA=________ ∘.(2)若∠GOA=∠BOA,∠GAD=∠BAD,∠OBA=36∘,则∠OGA=________ ∘.(3)将(2)中的“∠OBA=36∘”改为“∠OBA=α”,其它条件不变,求∠OGA的度数.(用含α的代数式表示)(4)若OE将∠BOA分成1:4两部分,∠GAD=∠BAD,∠ABO=α(18∘<α<90∘),求∠OGA 的度数.(用含α的代数式表示)一、1-4 DBBC 5-8 BACC 二、9.1.1×10−710.六11.712.−613.假14.35.15.230∘16.6517.3<a<718.35或95三、19.(1)x(x+1)(x−1);(2)(x+2y)2(x−2y)220.(1)12;(2)−4xy−3y2,−421.(1){x=1, y=−1;(2){x=5 y=022.(1)x<3;(2)x<−123.解:设每枚黄金重x两,每枚白银重y两,由题意得:{9x=11y(10y+x)−(8x+y)=12解得{x=33 y=27答:每枚黄金重33两,每枚白银重27两.24.∵2=∠ANC=63∘∠1=∠ANC=63∘∴ABD =∠C2C =20∴ABD =∠D.AClIDF ,∠A =∠F25.(1)设:8−x =a,x −3=b ,则(8−x )(x −3)=ab =3,a +b =(8−x )+(x −3)=5(8−x )2+(x −3)2=(a +b )2−2ab =52−2×3=19(2)正方形ABCD 的边长为x,AE =2,CF =5MF =DE =x −2,DF =x −5(x −2)⋅(x −5)=28(x −2)⋅(x −5)=3…阴影部分的面积|=FM 2−DF 2=(x −2)2−(x −5)2证bx ⋅2=a,x −5=b ,则(x −2)(x −5)=ab =28,a −b =(x −2)⋅(x −5)=3a =4,b =7,a +b =1(x −2)2−(x −5)2=a 2−b 2=(a +b )(a −b )=11×3=33即阴影部分的面积是33.26.(1)设最多可制作竖式箱子x 只,则A 型板材x 张,B 型板材4x 张,根据题意得30x +90×4x ≤10000解得x ≤252539答:最多可以做25只竖式箱子.(2)①设制作竖式箱子a 只,横式箱子b 只,根据题意,得:{a +2b =304a +3b =100, 解得:{a =22b =4答:能制作竖式、横式两种无盖箱子分别为22只和4只.①设裁剪出B 型板材m 长,则可裁A 型板材(65×9−3m )张,由题意得:{a +2b =9(78−m )4a +3b =3m 整理得,13a +11b =78×9∴a=78×9−11b13=54−1113a、b都为整数,且b≥30….b是13的整数倍,当b=39时,a=54−11×3=2,符合题意,此时,a+b=60当b=52时,a=54−11×4=10,符合题意,此时,a+b=62兰b=65时,a=54−11×5=−1<0,不符合题意.故答案为:60或62.27.(1)18;(2)12;(3)13α;(4)23α+42′’或23α−12∘七年级数学下册期末试卷(含答案)第Ⅲ套1. 在方程3x−y=2,x+1=0,x=,x2−2x−3=0中一元一次方程的个数为()A.1个B.2个C.3个D.4个2. 在下列图形中,既是中心对称图形,又是轴对称图形的是()A. B. C.D.3. 若a>b,则下列不等式正确的是()A.a−2<b−2B.>C.am<bmD.am2>bm24. 下列各组线段能组成三角形的是()A.1、2、3B.4、5、10C.3、5、1D.5、5、15. 在下列正多边形瓷砖中,若仅用一种正多边形瓷砖铺地面,则不能将地面密铺的是()A.正三角形B.正四边形C.正六边形D.正八边形6. 如果关于x的方程3x+2k−5=0的解为x=−3,则k的值是()A.2B.−2C.7D.−77. 如图,,A和D,B和E是对应点,B、C、D在同一直线上,且CE=5,AC=7,则BD的长为()A.12B.7C.2D.148. 若(m−3)x+4y|2m−5|=25是关于x,y的二元一次方程,则m的值是()A.3或2B.2C.3D.任何数9. 按照如图所示的运算程序,若输入的x的值为4,则输出的结果是()A.21B.89C.261D.36110. 在下列说法中,角的对称轴是它的角平分线所在直线;图形的平移、旋转、轴对称变换不改变图形的形状和大小;三角形的三条高线一定在三角形内;多边形的外角和是360∘.则正确的有()A.4个B.3个C.2个D.1个11. 为响应习总书记“绿水青山,就是金山银山”的号召,重庆某国营企业2020年3月争取到一批植树任务,领到一批树苗,按下列方法依次由各车间领取:第一车间领取200棵和余下的,第二车间领取300棵和余下的,第三车间领取400棵和余下的,……,最后树苗全部被领完,且各车间领取的树苗数相等,则领到树苗的车间数和树苗总棵树分别为()A.7、6300B.8、7200C.9、8100D.6、540012. 已知关于x、y的方程组的解为整数,且关于x的不等式组有且仅有5个整数解,则所有满足条件的整数a的和为()A.−1B.−2C.−8D.−6二、填空题13.列方程:“a的2倍与5的差等于a的3倍”为:________.14.一个多边形的内角和为2700∘,则这个多边形的边数是________边.15.方程x+2y=5的正整数解有________个.16.将图中的三角形纸片沿AB折叠所得的AB右边的图形的面积与原三角形面积之比为2:3,已知图中重叠部分的面积为5,则图中三个阴影部分的三角形的面积之和为________.17.如图,一副直角三角板ABC和DEF,∠F=30∘,将ABC和DEF放置如图2的位置,点B、D、C、F在同一直线上,点A在DE上,ABC固定不动,当EDF绕点D逆时针旋转至180∘的过程中(不含180∘),当旋转角为________时,EF与ABC的边垂直.18.若定义f(x)=3x−2,如f(−2)=3×(−2)−2=−8.下列说法中:①当f(x)=1时,x=1;①对于正数x,f(x)>f(−x)均成立;①f(x−1)+f(1−x)=0;①当且仅当a=2时,f(a−x)= a−f(x).其中正确的是________.(填序号)三、解答题19.解方程或不等式组并把不等式组的解集表示在数轴上.(1)3(x+1)+2(x−1)=6;(2).20.如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知ABC的顶点均为网格线的交点.(1)将ABC先向下平移7个单位长度,再向左平移6个单位长度得到A1B1C1,画出A1B1C1;(2)画出A1B1C1关于直线l成轴对称的A2B2C2.21.已知方程组的解满足x−2y<8.(1)求m的取值范围;(2)当m为正整数时,求代数式2(m2−m+1)−3(m2+2m−5)的值.22. 5月的第二个周日是母亲节,小东为了精心设计一份手工礼物送给妈妈,为尽快完成手工礼物,小东骑自行车到位于家正西方向的商店购买材料.小东离家15分钟时自行车出现故障,小东立即打电话通知在家看报纸的父亲贺明带上工具箱来帮忙维修,同时小东以原来一半的速度推着自行车继续走向商店.父亲贺明接到电话后(接电话时间忽略不计),立即骑车出发追赶小东,15分钟时追上小东,并修好了自行车,父亲贺明以原速返家,小东以原骑行速度骑车前往商店,10分钟时到达商店,此时两人相距5000米.(1)求父亲贺明和小东骑车的速度;(2)求小东家到商店的路程.23.阅读下列材料解答问题:新定义:对非负数x“四舍五入”到个位的值记为<x>,即:当n为非负整数时,如果n−≤x<n+,则<x>=n;反之,当n为非负整数时,如果<x>=n,则n−≤x<n+.例如:<0.1>=<0.49>=0,<1.51>=<2.48>=2,<3>=3,<4.5>=<5.25>=5,…试解决下列问题:(1)①<π+2.4>=(π为圆周率);①如果<x−1>=2,则数x的取值范围为;(2)求出满足<x>=x−1的x的取值范围.24.如图,四边形ABCD中,∠BAD=106∘,∠BCD=64∘,点M,N分别在AB,BC上,得FMN,若MF // AD,FN // DC.求:(1)∠F的度数;(2)∠D的度数.25.某数码专营店销售A,B两种品牌智能手机,这两种手机的进价和售价如表所示:(1)该店销售记录显示,三月份销售A、B两种手机共34部,且销售A种手机的利润恰好是销售B种手机利润的2倍,求该店三月份售出A种手机和B种手机各多少部?(2)根据市场调研,该店四月份计划购进这两种手机共40部,要求购进B种手机数不低,用于购买这两种手机的资金低于140000元,请通过计算设计所有可能的进于A种手机数的35货方案.26.(1)如图1,△ABC中,∠ABC的平分线与外角∠ACD的平分线相交于P点,请探究∠P 与∠A的关系,并说明理由.(2)如图2、3,四边形ABCD中,设∠A=α,∠D=β,∠P为四边形ABCD的内角∠ABC的平分线与外角∠DCE的平分线所在直线相交而形成的锐角.请利用(1)中的结论完成下列问题:①如图2,若α+β>180∘,直接写出∠P的度数.(用α,β的代数式表示)①如图3,若α+β<180∘,直接写出∠P的度数.(用α,β的代数式表示)参考答案:一、1-5 BCBDD 6-10 CABDB 11-12 BC 二、13.2a−5=3a14.1715.216.517.120∘18.①①①三、19.(1)3(x+1)+2(x−1)=6去括号,得3x+3+2x−2=6移项及合并同类项,得5x=5系数化为1,得x=(2){3(x+1)<2x+5x−14,x3① ①由不等式①,得x<2由不等式①,得x≥−3故该不等式组的解集是−3≤x<2,在数轴上表示如下所示:43−21012320.(1)如图,ΔA1B1C1为所作;(2)如图,ΔA2B2C2为所作.21.(1)解方程组{x−y=4n①2x+y=2m+3①解得:{x=2m+1y=1−2mx−2y<82m+1−2(1−2m)<8解得,m<32(2)∵m<32,m为正整数,…m=1…原式=2m2−2m+2m2−6m+15=−m2−8m=−12−8×1=−922.解:设小东骑车速度为x米/分钟,则父亲贺明骑车速度=15x+12x×1515=32x(米/分钟),由题意可得:10x+10×32x=5000,① x=200① 32x=300米/分钟,答:父亲贺明骑车的速度为300米/分钟,小东骑车的速度200米/分钟;解:小东家到商店的路程=15×200+15×100+10×200=6500(米),答:小东家到商店的路程为6500米.23.(1)由题意可得:<n+2.4>=6故答案为:6,a∵4×1>221.5≤x−1<2.52.5≤x<3.5故答案为:2.5≤x<3.5(2)x≥0,54x−1为整数,设54x=k,k为整数,则x=45k① <45k>k−1∵k−122≤45k<k−1+12k≥05 2<k≤152k=3,4,5,6,7则x=125,165,4,24528524.(1)MFIIAD,FNIIDC,∠BAD=106∘∠BCD=64∘∠BMF=106∘∠FNB=6A∘将△BMN沿MN翻折,得△FMN△FMN=∠MN=53∘∠FMM=∠MNB=32∘① ΔF=∠B=180∘−53∘−32∘=95∘(2)加F=25∘∠D=360∘−106∘−64∘−95∘=95∘25.解:设该店三月份售出A种手机x部,B种手机y部,由题意可得:{x+y=34(3800−3300)x=2×(4300−3700)y,解得:{x=24 y=10,答:该店三月份售出A种手机24部,B种手机10部;解:设A种手机a部,B种手机(40−a)部,由题意可得{40−a≥35a3300a+3700(40−a)<140000,解得:20<a≤25,① a为整数,① a=21,22,23,24,25,① 共有5种进货方案,分别是A种手机21部,B种手机19部;A种手机22部,B种手机18部;A种手机23部,B种手机17部;A种手机24部,B种手机16部;A种手机25部,B种手机15部.26.(1)如图1中,结论:2ΔP=AAB∼图①理由:∠PCD=∠P+∠PBC∠ACD=∠A+∠ABCP点是2ABC和外角LACD的角平分线的交点,.24PCD=∠ACD2|PBC=∠ABC2(2p+2PBC)=∠A+∠ABC2∠P+2∠PBC=∠A+∠ABC2∠P+∠ABC=∠A+∠ABC2∠P=∠A(2)①延长BA交CD的延长线于F.图①∠F=180∘−∠FAD−∠FDA=180∘−(180∘−α)−(180∘−β)=α+β−180∘由(1)可知:ΔP=12∠F…4P=12(α+β)−90∘○如图3,延长AB交DC的延长线于F.∠F=180∘−α−β2P=12∠F∵P=12(180∘−α−β)=90∘−12α−12β七年级数学下册期末试卷(含答案)第Ⅳ套一、选择题1. 下列运算正确的是()A.3a+2a=a5B.a2⋅a3=a6C.(a+b)(a−b)=a2−b2D.(a+b)2=a2+b22. 已知∠A=45∘,则∠A的补角等于()A.45∘B.90∘C.135∘D.180∘3. 如图所示,已知AB // CD,∠B=140∘,∠D=150∘,求∠E的度数.()A.40∘B.30∘C.70∘D.290∘4. 某人的头发的直径约为85微米,已知1微米=0.000001米;则该人头发的直径用科学记数法表示正确的是()米.A.8.5×105B.8.5×10−5C.85×10−8D.8.5×10−85. 下列标志中,可以看作是轴对称图形的是()A. B. C. D.6. 已知x a=3,x b=5,则x a−2b=()A.325B.35C.910D.−217. 弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)之间有下面的关系:下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0 cmC.物体质量每增加1 kg,弹簧长度y增加0.5 cmD.所挂物体质量为7 kg时,弹簧长度为13.5 cm8. 下面的说法正确的个数为()①若∠α=∠β,则∠α和∠β是一对对顶角;①若∠α与∠β互为补角,则∠α+∠β=180∘;①一个角的补角比这个角的余角大90∘;①同旁内角相等,两直线平行.A.1B.2C.3D.49. 下列事件属于不确定的是()A.太阳从东方升起B.等边三角形的三个内角都是60∘C.|a|<−1D.买一张彩票中一等奖10. 如图,把一张长方形纸片ABCD沿EF折叠,若∠EFG=50∘,则∠BGE=()A.100∘B.90∘C.80∘D.70∘二、填空题11.计算:(m−1)(m+1)−m2=________.12.已知:关于x的二次三项式x2−8x+k是完全平方式,则常数k等于________.13.在一不透明的口袋中有4个为红球,3个蓝球,他们除颜色不同外其它完全一样,现从中任摸一球,恰为红球的概率为________.14.将一副三角板如图放置,若AE // BC,则∠AFD=________度.三、解答题15.化简下列式子:(1)(−ab2)3(8a2b4)÷(−4a4b5)|+(−1)2020.(2)2−2+(π−2020)0−13÷|−1216.先化简,再求值:[(x−5y)(x+5y)−(x−2y)2+y2]÷2y,其中x=−1,y=1217.如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED =∠GHD.试判断∠AED与∠D之间的数量关系,并说明理由.18.如图,方格纸中每个小方格都是边长为1的正方形,四边形ABCD的顶点与点E都是格点.(1)作出四边形ABCD关于直线AC对称的四边形AB′CD′;(2)求四边形ABCD的面积;(3)若在直线AC上有一点P,使得P到D、E的距离之和最小,请作出点P(请保留作图痕迹),且求出PC=________.19.为了测试某种汽车在高速路上匀速行驶的耗油量,专业测试员将汽车加满油,对汽车行驶中的情况做了记录,并把试验的数据制成如下表所示:(1)根据上表的数据,请用x表示y,y=________.(2)若油箱中的剩余油量为20升,汽车行驶了多少小时?(3)若该汽车贮满汽油准备从高速路出发,要匀速前往需要7小时车程的某目的地,当余油量不足5升时,油箱将会报警,请问汽车能在油箱报警之前到达目的地吗?请说明理由.20.如图1,∠MON=80∘,点A、B在∠MON的两条边上运动,∠OAB与∠OBA的平分线交于点C.(1)点A、B在运动过程中,∠ACB的大小会变吗?如果不会,求出∠ACB的度数;如果会,请说明理由.(2)如图2,AD是∠MAB的平分线,AD的反向延长线交BC的延长线于点E,点A、B在运动过程中,∠E的大小会变吗?如果不会,求出∠E的度数;如果会,请说明理由.(3)在(2)的条件下,若∠MON=n,请直接写出∠ACB=________;∠E=________.21.已知关于x、y的多项式mx3−3nxy2+2x3+mxy2+xy2−2中不含x3项和xy2项.(1)求代数式(2m−3n)2+(2m+3n)2的值;,求关于x的方程m⊕x=n (2)对任意非零有理数a、b定义新运算“⊕”为a⊕b=b−a−ba的解.22.你能求(x−1)(x2019+x2018+x2017+...+x+1)的值吗?遇到这样的问题,我们可以先思考一下,从简单的情形入手,先分别计算下列各式的值.①(x−1)(x+1)=x2−1①(x−1)(x2+x+1)=x3−1①(x−1)(x3+x2+x+1)=x4−1…由此我们可以得到:(x−1)(x2019+x2018+x2017+...+x+1)=x2020-1.请你利用上面的结论,再完成下面两题的计算:(1)(−2)99+(−2)98+(−2)97+...+(−2)+1;(2)若x3+x2+x+1=0,求x2020的值.23.如图,在△ABC中,∠ACB=90∘,∠ABC=30∘,△CDE是等边三角形,点D在边AB上.(1)如图1,当点E在边BC上时,求证DE=EB;(2)如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;(3)如图3,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE // AB,交线段AC的延长线于点G,AG=5CG,BH=3.求CG的长.参考答案:一、1-5 CCCBC 6-10 ABBDA 二、11.−112.1613.4714.75三、15.(−ab2)3(8a2b4)÷(−4a4b5)=−a3b6⋅8a2b4÷(−4a4b5)=−8a5b10÷(−4a4b5)=2ab5;2−2+(π−2020)0−13÷|−12|+(−1)2020=14+1−1÷12+1=14+1−2+1=14.16.[(x−5y)(x+5y)−(x−2y)2+y2]÷2y =[x2−25y2−x2+4xy−4y2+y2]÷2y=[4xy−28y2]÷2y=2x−14y,当x=−1,y=12时,原式=−2−7=−9.17.∠AED+∠D=180∘,理由是:① ∠CED=∠GHD,① CE // FG,① ∠C=∠FGD,① ∠C=∠EFG,① ∠FGD=∠EFG,① AB // CD,① ∠AED+∠D=180∘.18.四边形AB′CD′如图所示;S四边形ABCD =12×6×3=9.作点E关于直线AC的对称点E′,连接DE′交直线AC于P,点P即为所求,此时PC=5.故答案为5.19.由表格数据可知,行驶时间延长1小时,剩余油量减少8L,即耗油量为8L/ℎ,① y=60−8x;根据题意,当y=20时,得:60−8x=20,解得:x=5,故若油箱中的剩余油量为20升,汽车行驶了5小时;不能在油箱报警之前到达目的地,根据题意,当x=7时,y=60−8×7=4<5,故汽车不能在油箱报警之前到达目的地.20.如图1中,① AC平分∠OABMCB平分∠OBA,① ∠CAB=12∠OAB,∠CBA=12∠OBA,① ∠ACB=180∘−(∠CAB+∠CBA)=180∘−12(∠OAB+∠OBA)=180∘−12(180∘−∠O)=90∘+12∠O,① ∠O=80∘,① ∠ACB=90∘+40∘=130∘.如图2中,由题意可以假设∠MAD=∠DAB=y,∠ABE=∠EBO=x.则有{y=x+∠E2y=∠O+2x,可得∠E=12∠O,① ∠O=80∘,① ∠E=40∘.90∘+12⋅n,12⋅n21.原式=(m+2)x3+(−3n+m+1)xy2−2,由题意得m+2=0,−3n+m+1=0,解得m=−2,n=−13,① (2m−3n)2+(2m+3n)2=8m2+18n2=8×4+18×19=32+2=34;由题意,得x−−2−x−2=−13,解得:x=43.故关于x 的方程m ⊕x =n 的解是x =43.22.(−2)99+(−2)98+(−2)97+...+(−2)+1 =(−2−1)⋅(−2)99+(−2)98+⋯+(−2)+1−3=(−2)100−1−3=1−21003;① (x −1)(x 3+x 2+x +1)=x 4−1,x 3+x 2+x +1=0, ① x 4=1,则x =±1,① x 3+x 2+x +1=0,① x <0,① x =−1,① x 2020=123.证明:① △CDE 是等边三角形, ① ∠CED =60∘,① ∠EDB =60∘−∠B =30∘,① ∠EDB =∠B ,① DE =EB ;ED =EB ,理由如下:取AB 的中点O ,连接CO 、EO , ① ∠ACB =90∘,∠ABC =30∘, ① ∠A =60∘,OC =OA ,① △ACO 为等边三角形,① CA =CO ,① △CDE 是等边三角形,① ∠ACD =∠OCE ,在△ACD 和△OCE 中,{CA =CO ∠ACD =∠OCE CD =CE,① △ACD≅△OCE,① ∠COE=∠A=60∘,① ∠BOE=60∘,在△COE和△BOE中,{OC=OB∠COE=∠BOEOE=OE,① △COE≅△BOE,① EC=EB,① ED=EB;取AB的中点O,连接CO、EO、EB,由(2)得△ACD≅△OCE,① ∠COE=∠A=60∘,① ∠BOE=60∘,△COE≅△BOE,① EC=EB,① ED=EB,① EH⊥AB,① DH=BH=3,① GE // AB,① ∠G=180∘−∠A=120∘,在△CEG和△DCO中,{∠G=∠COD∠ECG=∠ODCCE=CD,① △CEG≅△DCO,① CG=OD,设CG=a,则AG=5a,OD=a,① AC=OC=4a,① OC=OB,① 4a=a+3+3,解得,a=2,即CG=2.。
北师大版七年级下册数学期末测试卷及含答案(必考题)

北师大版七年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,在三角形ABC中,∠B=30°,DE是边BC的垂直平分线,交AB,BC 分别于点E,D,连接CE,若DE=4,AE=7,三角形AEC 的周长为24,则AC的长为()A.12B.11C.10D.92、下列运算正确的是()A.(x 3)2=x 5B.(﹣x)5=﹣x 5C.x 3•x 2=x 6D.3x 2+2x 3=5x 53、根据下列已知条件,不能判定的是()A. ,,B. ,,C. ,,D.,,4、已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是()A. B. C.D.5、如图所示,在下列四组条件中,能判定AB∥CD的是()A.∠1=∠2B.∠ABD=∠BDCC.∠3=∠4D.∠BAD+∠ABC=180°6、下列运算正确的是()A. B. C. D.7、下列计算正确的是()A. x2﹣3 x2=﹣2 x4B.(﹣3 x2)2=6 x2C. x2y•2 x3=2 x6yD.6 x3y2÷(3 x)=2 x2y28、下列运算正确的是()A.a 2•a 3=a 6B.(﹣a 2)3=﹣a 6C.(ab)2=ab 2D.a 6÷a 3=a 29、下列计算错误的是()A.x 3m+1=(x 3)m+1B.x 3m+1=x•x 3mC.x 3m+1=x m•x 2m•xD.x 3m+1=(x m)3•x10、如图,一块直角三角尺的一个顶点落在直尺的一边上,若,则的度数为( )A.45°B.C.D.11、计算(-2a)3-2a3的结果是()A.4a 3B.6a 3C.a 3D.-10a 312、同一平面内的四条直线,若满足a⊥b, b⊥c, c⊥d,则下列的式子成立的是()A.a//dB.b⊥dC.a⊥dD.b//c13、下列计算正确的是()A.b 2•b 2=2b 2B.(x﹣3)2=x 2﹣9C.(a 5)2=a 7D.(﹣2a)2=4a 214、如图,在正方形ABCD中,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,若PD+PE的最小值为5,则正方形的面积为( )A.16B.6.25C.9D.2515、下列计算中,正确的是()A. B. C. D.二、填空题(共10题,共计30分)16、当x________时,(x-3)0=1.17、把下面的推理过程补充完整,并在括号内注明理由.如图,点B、D在线段AE上,BC∥EF,AD=BE,BC=EF,试说明:∠C=∠F;AC∥DF.∵AD=BE(已知)∴AD+DB=DB+BE(________)即AB=DE∵BC∥EF(已知)∴∠ABC=∠________,(________)又∵BC=EF(已知)∴△ABC≌△DEF(________)∴∠C=∠F,∠A=∠FDE(________)∴AC∥DF(________)18、已知,则________.19、若三角形三个内角的度数比为2∶3∶4,则相应的外角比是________。
浙教版七年级下册数学期末测试卷及含答案(完整版)(必考题)

浙教版七年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,现将一块含有60°角的三角板的顶点放在直尺的一边上,若∠2=50°,那么∠1的度数为()A.50°B.60°C.70°D.80°2、下列计算:①()2=2;②=2;③(–2 )2=12;④(+)(–)=–1.其中正确的有()A.1个B.2个C.3个D.4个3、若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a+b+c就是完全对称式.下列三个代数式:①(a﹣b)2;②(2a﹣b)(2a+b);③a(a+b).其中是完全对称式的是()A.③B.①③C.②③D.①4、下列式子中,不能用平方差公式计算的是()A.(m﹣n)(n﹣m)B.(x 2﹣y 2)(x 2+y 2)C.(﹣a﹣b)(a ﹣b)D.(a 2﹣b 2)(b 2+a 2)5、下列计算正确的是()A. B. C. D.6、下列运算正确的是( )A. B. C. D.7、如果方程组的解是方程3x+my=8的一个解,则m=()A.1B.2C.3D.48、下列生活中的现象,属于平移的是()A.升降电梯从底楼升到顶楼B.闹钟的钟摆的运动C.DVD片在光驱中运行D.秋天的树叶从树上随风飘落9、如图,已知AB∥CD,∠1=∠2,那么下列结论中不成立的是()A.∠3=∠2B.∠1=∠5C.∠3=∠5D.∠1+∠2+∠3=180°10、(﹣3)100×()100等于()A.﹣3B.3C.D.111、某微生物的直径用科学记数法表示为5035×10-9m.购连微生物的直径的原数可以是()A.0.000005035mB.0.00005035mC.503500000mD.0.05035m12、为满足学生业余时间读书,学校图书馆添置图书,用240元购进一种科普书,同时用200元购进一种文学书,已知科普书的单价比文学书的单价高出一半,所以购进的文学书比科普书多4本.若设这种文学书的单价为x元,下列所列方程正确的是( )A. B. C. D.13、下列运算结果为的是()A. B. C. D.14、下列运算,正确的是()A.x 3·x 3 = 2x 3B.x 5÷x = x 5C.x 2 = x 5 - x 3D.(-x 2)3 = -x 615、把分式中的a、b都扩大2倍,则分式的值是( )A.扩大4倍B.扩大2倍C.缩小2倍D.不变二、填空题(共10题,共计30分)16、小明、小红和小光共解出了100道数学题目,每人都解出了其中的60道题目,如果将其中只有1人解出的题目叫做难题,2人解出的题目叫做中档题,3人都解出的题目叫做容易题,那么难题比容易题多________道.17、a,b,c是直线,且a∥b,b∥c,则________ .18、在半径为5的中,弦AB=8,弦CD=6,且AB||CD,则AB与CD间的距离为________.19、已知,(为正整数),则________.20、如图,写出一个能判定AD∥BC的条件:________.21、若的乘积中不含项,则m的值是________.22、王胖子在扬州某小区经营特色长鱼面,生意火爆,开业前5天销售情况如下:第一天46碗,第二天54碗,第三天69碗,第四天62碗,第五天87碗,如果要清楚地反映王胖子的特色长鱼面在前5天的销售情况,不能选择________统计图.23、化简:=________.24、如图,E为△ABC边CA延长线上一点,过点E作ED∥BC.若∠BAC=70°,∠CED=50°,则∠B=________°.25、如图,在△ABC中,CD平分∠ACB,∠1=∠2=36°,则∠3=________°.三、解答题(共5题,共计25分)26、先化简,再求值:(+ )•,其中x= ﹣3.27、已知二元一次方程:①x+y=4;②2x-y=2;③x-2y=1.请从这三个方程中选择你喜欢的两个方程,组成一个方程组,并求出这个方程组的解.28、已知y=ax2+bx+c.当x=﹣1时,y=0;当x=2时,y=﹣3;当x=3时,y=0.求a、b、c的值.29、随着柴静纪录片《穹顶之下》的播出,全社会对空气污染问题越来越重视,空气净化器的销量也大增,商社电器从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?(2)在销售过程中,A型空气净化器因为净化能力强,噪音小而更受消费者的欢迎.为了增大B型空气净化器的销量,商社电器决定对B型空气净化器进行降价销售,经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天商社电器销售B型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为多少元?30、先化简,再求值:,其中m满足一元二次方程.参考答案一、单选题(共15题,共计45分)1、C2、D3、D4、A5、D6、D7、B8、A9、D10、D11、A12、C13、C14、D15、D二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。
初一数学下期末试题带答案

一、选择题1.下列说法正确的是( )A .抛掷一枚质地均匀的硬币两次,必有一次正面朝上B .“汽车累积行驶10000km ,从未出现故障”是不可能事件C .湖州气象局预报说“明天的降水概率为70%”,意味着湖州明天一定下雨D .“0a ≥”是必然事件2.小华把如图所示的44⨯的正方形网格纸板挂在墙上玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域的概率是( )A .316B .516C .716D .9163.在七年(1)与七年(2)班举行拔河比赛前,根据双方的实力,环环预测:“七年(1)获胜的机会是80%”,那么下面四个说法正确的是( )A .七年(2)班肯定会输掉这场比赛B .七年(1)班肯定会赢得这场比赛C .若比赛10次,则七年(1)班会赢得8次D .七年(2)班也有可能会赢得这场比赛4.如图,ABC ,点D ,E 在BC 边上,点F 在AC 边上.将ABC 沿AD 折叠,恰好与AED 重合,将CEF △沿EF 折叠,恰好与AEF ∆重合.下列结论:①60B ︒∠=②AB EC =③AD AF =④DE EF =⑤2B C ∠=∠正确的个数有( )A .2个B .3个C .4个D .5个5.如图,正ABC ∆的边长为2,过点B 的直线l AB ⊥,且ABC ∆与A B C '''∆关于直线l 对称,D 为线段BC '上一动点,则AD CD +的最小值是( )A.3B.4C.5D.66.如图,四边形ABCD中,∠A=90°,∠C=110°,点E,F分别在AB,BC上,将△BEF沿EF翻折,得△GEF,若GF∥CD,GE∥AD,则∠D的度数为()A.60°B.70°C.80°D.90°7.如图,两座建筑物AB,CD相距160km,小月从点B沿BC走向点C,行走ts后她到达点E,此时她仰望两座建筑物的顶点A和D,两条视线的夹角正好为90︒,且m s,则小月行走的时间t =.已知建筑物AB的高为60m,小月行走的速度为1/EA ED的值为()A.100 B.80 C.60 D.508.下列长度的三条线段中,有组成三角形的是()A.3cm,4cm,9cm B.8cm,7cm,15cmC.12cm,13cm,24cm D.2cm,2cm,6cm9.已知三角形的三边长分别是3,8,x,则x的值可以是()A.6 B.5 C.4 D.310.是饮水机的图片.饮水桶中的水由图1的位置下降到图2的位置的过程中,如果水减少的体积是y,水位下降的高度是x,那么能够表示y与x之间函数关系的图象可能是()A.B.C.D.∠=︒,则()11.如图,直线a,b被直线c所截,//a b,若140A .250∠=︒B .350∠=︒C .4160∠=︒D .540∠=︒ 12.下列计算正确的是( ) A .23a a a += B .()236a a = C .326a a a ⋅= D .824a a a ÷=二、填空题13.小明把80个除了颜色以外其余都相同的黄、蓝、红三种球放进一个袋内,经多次摸球后,得到它们的概率分别为14、720和25,试估计黄、蓝、红三种球的个数分别是________.14.在某次花样滑冰比赛中,发生裁判受贿事件,竞赛委员会决定将裁判由原来的9名增加到14人,其中任取7名裁判的评分作为有效分,这样做的目的是 ______. 15.已知,在ABC ∆中,6AB =,CD 是边AB 上的高,将ACD ∆沿CD 折叠,点A 落在直线AB 上的点A ',2A B '=,那么BD 的长是______.16.如图,∠1=∠2,要使△ABC ≌△ADC ,还需添加条件:_____.(填写一个你认为正确的即可)17.如图,33⨯方格图中,将其中一个小方格的中心画上半径相等的圆,使整个图形为轴对称图形,这样的轴对称图形共有_________ 个.18.某市出租车收费与行驶路程关系如图所示.如果小明姥姥乘出租车去小明家花去了22元,那么小明始姥乘车路程为__________千米.19.小明用一副三角板自制对顶角的“小仪器”,第一步固定直角三角板ABC ,并将边AC 延长至点P ,第二步将另一块三角板CDE 的直角顶点与三角板ABC 的直角顶点C 重合,摆放成如图所示,延长DC 至点F ,PCD ∠与ACF ∠就是一组对顶角,若30ACF ∠=,则PCD ∠=__________,若重叠所成的(090)BCE n n ∠=<<,则PCF ∠的度数__________.20.设23P x xy =-,239Q xy y =-,若P Q =,则x y的值为__________. 三、解答题21.如图,转盘被等分成六个扇形,并在上面依次写上数字1、2、3、4、5、6. (1)若自由转动转盘,当它停止转动时,指针指向偶数区域的概率是多少?(2)请你用这个转盘设计一个游戏,当自由转动的转盘停止时,指针指向区域的概率为13.22.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A ,C 的坐标分别为(﹣4,7),(﹣1,5). (1)请在如图所示的网格平面内画出平面直角坐标系;(2)请画出△ABC 关于y 轴对称的△A 1B 1C 1;(3)直接写出点B 1的坐标.23.如图,,AD BF 相交于点,//,O AB DF AB DF =,点E 与点C 在BF 上,且BE CF =.(1)求证:ABC DFE ∆≅∆;(2)求证:点О为BF 的中点.24.圣诞老人上午8:00从家里出发,骑车去一家超市购物,然后从这家超市回到家中,圣诞老人离家的距离s(千米)和所经过的时间t(分钟)之间的关系如图所示,请根据图象回答问题:(1)圣诞老人去超市途中的速度是多少?回家途中的速度是多少?(2)圣诞老人在超市逗留了多长时间?(3)圣诞老人在来去的途中,离家2千米处的时间是几时几分?25.阅读下列推理过程,在括号中填写理由.已知:如图,点D 、E 分别在线段AB 、BC 上,//AC DE ,//DF AE 交BC 于点F ,AE 平分.BAC ∠求证:DF 平分BDE ∠证明:AE ∵平分(BAC ∠已知)12∠∠∴= ( )//AC DE13(∴∠=∠ )故23∠∠= ( )//DF AE25∴∠=∠ ( )并且34∠=∠ ( )45∴∠=∠ ( )DF ∴平分BDE ∠ ( )26.计算:(1)()3210842a a a a +-÷; (2)()()22222ab a b ---⋅.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据题意逐项分析,即可求解.【详解】解:A.“抛掷一枚质地均匀的硬币两次,必有一次正面朝上”,不一定发生,不是必然事件,判断错误,不合题意;B. “汽车累积行驶10000km ,从未出现故障”,有可能发生,是随机事件,判断错误,不合题意;C. 湖州气象局预报说“明天的降水概率为70%”,意味着湖州明天一定下雨,70%意味着降雨的可能性较大,但不一定下雨,判断错误,不合题意;D. “0a ≥”是必然事件,判断正确,符合题意.故选:D【点睛】本题考查了必然事件、不可能事件、可能性大小等知识,理解题意,熟知相关概念,知识,理解可能性的意义是解题关键.2.B解析:B根据三角形和正方形的面积公式及概率公式即可得到结论.【详解】解:∵正方形的面积为4×4=16,阴影区域的面积为12×4×1+12×2×3=5,∴飞镖落在阴影区域的概率是516,故选:B.【点睛】此题主要考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比,关键是求出阴影部分的面积与总面积的比.3.D解析:D【分析】根据概率的意义和题意分析“获胜的机会是80%”的意义,逐项作出判断即可求解.【详解】解:80%的机会获胜是说明机会发生机会的大小,80%的机会并不是说明比赛胜的场数一定是80%.七年(1)获胜的机会是80%,七年级(1)班有可能会赢得比赛,也有可能输掉比赛,只不过获胜的可能性大,而七年(2)班有可能会赢得比赛,也有可能输掉比赛,,只不过获胜的可能性小,故A、B、C选项均不正确,只有D选项符合题意.故选:D.【点睛】本题考查了对概率的理解,正确理解概率的意义是解题关键.4.A解析:A【分析】将△ABD沿着AD翻折,可得AB=AE,∠B=∠AEB,将△CEF沿着EF翻折,可得AE=CE,∠C=∠CAE,可得∠B=2∠C.【详解】解:∵将△ABD沿着AD翻折,使点B和点E重合,∴AB=AE,∠B=∠AEB,∵将△CEF沿着EF翻折,点C恰与点A重合,∴AE=CE,∠C=∠CAE,∴AB=EC,∴②正确;∵∠AEB=∠C+∠CAE=2∠C,∴∠B=2∠C,故⑤正确;其余的都无法推导得出,故选:A.本题考查翻折变换,三角形外角性质等知识,掌握旋转的性质是本题的关键.5.B解析:B【分析】作点A关于直线BC′的对称点1A,连接1A C交直线BC与点D,由图象可知点D在C′B的延长线上,由此可得出当点D与点B重合时,AD+CD的值最小,由此即可得出结论,再根据等边三角形的性质算出AB+CB的长度即可.【详解】作点A关于直线BC′的对称点1A,连接1A C交直线BC与点D,如图所示.由图象可知当点D在C′B的延长线上时,AD+CD最小,而点D为线段BC′上一动点,∴当点D与点B重合时AD+CD值最小,此时AD+CD=AB+CB=2+2=4.故选:B.【点睛】本题考查了轴对称中的最短线路问题以及等边三角形的性质,解题的关键是找出点D的位置.解决该类题型题目时,找出一点的对称点,连接对称点与另一点与对称轴交于一点,由此即可得出结论.6.C解析:C【分析】依据平行线的性质,即可得到∠BEG=∠A=90°,∠BFG=∠C=110°,再根据四边形内角和为360°,即可得到∠D的度数.【详解】解:∵GF∥CD,GE∥AD,∴∠BEG=∠A=90°,∠BFG=∠C=110°,由折叠可得:∠B=∠G,∴四边形BEGF 中,∠B=360920110︒︒︒-- =80°, ∴四边形ABCD 中,∠D=360°-∠A-∠B-∠C=80°,故选:C .【点睛】本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.7.A解析:A【分析】首先证明∠A=∠DEC ,然后可利用AAS 判定△ABE ≌△ECD ,进而可得EC=AB=60m ,再求出BE 的长,然后利用路程除以速度可得时间.【详解】解:∵∠AED=90°,∴∠AEB+∠DEC=90°,∵∠ABE=90°,∴∠A+∠AEB=90°,∴∠A=∠DEC ,在△ABE 和△DCE 中B C A DEC AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ECD (AAS ),∴EC=AB=60m ,∵BC=160m ,∴BE=100m ,∴小华走的时间是100÷1=100(s ),故选:A .【点睛】本题主要考查了全等三角形的应用,关键是正确判定△ABE ≌△ECD .8.C解析:C【分析】根据三角形的三边关系对各选项进行逐一分析即可.【详解】解:A 、∵3+4=7<9,∴不能构成三角形,故本选项不符合题意;B 、∵8+7=15,∴不能构成三角形,故本选项不符合题意;C 、∵12+13=25>24,∴能构成三角形,故本选项符合题意;D、∵2+2=4<6,∴不能构成三角形,故本选项不符合题意.故选:C.【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.9.A解析:A【分析】根据三角形三边关系:①任意两边之和大于第三边;②任意两边之差小于第三边,即可得出第三边的取值范围.【详解】解:∵三角形的三边长分别为3,8,x,∴8-3<x<8+3,即5<x<11,故选:A.【点睛】本题考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.10.C解析:C【分析】水位随着水减少而下降,且饮水机是圆柱形,是同等变化的下降.【详解】根据图片位置分析:水减少的体积随着水位下降的高度而增加,且饮水机是圆柱形,所以均匀增加故答案选:C【点睛】本题考查用图象法表示变量之间的关系,掌握变量之间的变化关系解题关键.11.D解析:D【分析】根据平行线的性质、对顶角相等、邻补角的定义解答即可.【详解】∵a∥b,∴∠2=∠1=40°,∵∠3与∠1是对顶角,∠5与∠2是对顶角,∴∠3=∠5=40°,∵∠4+∠1=180°,∴∠4=180°-∠1=140°,故选:D.【点睛】此题考查相交线与平行线,掌握平行线的性质、对顶角相等、邻补角的定义是解题的关键. 12.B解析:B【分析】根据整式的加减、幂的乘方、同底数幂的乘除法逐项判断即可得.【详解】A 、a 与2a 不是同类项,不可合并,此项错误;B 、()23326a a a ⨯==,此项正确;C 、33522a a a a +⋅==,此项错误;D 、82826a a a a -÷==,此项错误;故选:B .【点睛】本题考查了整式的加减、幂的乘方、同底数幂的乘除法,熟练掌握整式的运算法则是解题关键.二、填空题13.【解析】【分析】根据得到各小球的概率以及小球的总个数分别求出晓求得个数即可【详解】∵小明把个除了颜色以外其余都相同的黄蓝红三种球放进一个袋内经多次摸球后得到它们的概率分别为∴黄蓝红三种球的个数分别是 解析:20、28、32【解析】【分析】根据得到各小球的概率以及小球的总个数,分别求出晓求得个数即可.【详解】∵小明把80个除了颜色以外其余都相同的黄、蓝、红三种球放进一个袋内,经多次摸球后,得到它们的概率分别为17240205、、,∴黄、蓝、红三种球的个数分别是:80×12=40(个),80×720=28(个),80×25=32(个).故答案为20、28、32. 【点睛】此题主要考查了利用频率估计概率,根据概率的意义求出小球的个数是解题关键. 14.减少有效分中有受贿裁判评分的可能性【解析】若有1人受贿则原先有受贿裁判评分的概率是现在有受贿裁判评分的概率为所以这样做的目的是减少有效分中有受贿裁判评分的可能性故答案为减少有效分中有受贿裁判评分的可 解析:减少有效分中有受贿裁判评分的可能性【解析】若有1人受贿,则原先有受贿裁判评分的概率是79,现在有受贿裁判评分的概率为714,所以这样做的目的是减少有效分中有受贿裁判评分的可能性,故答案为减少有效分中有受贿裁判评分的可能性.15.2或4【分析】根据题意画出图形分点落在线段AB 的延长线上和落在线段AB 上两种情况解答【详解】如图若点落在线段AB 的延长线上∵∴∴∴BD=如图若点落在线段AB 上∵∴∴∴BD=所以BD 的长为2或4故答案 解析:2或4【分析】根据题意画出图形,分点A '落在线段AB 的延长线上和落在线段AB 上两种情况解答.【详解】如图,若点A '落在线段AB 的延长线上,∵6AB =,2A B '=∴8A A '=∴4A D AD '==∴BD=2A D A B ''-=如图,若点A '落在线段AB 上,∵6AB =,2A B '=∴4A A '=∴2A D AD '==∴BD=4A B A D ''+=所以BD 的长为2或4.故答案为:2或4【点睛】本题考查的是翻折变换及线段的加减,注意分类讨论是解答本题的关键.16.AB =AD (答案不唯一)【分析】根据题目中条件和图形可以得到∠1=∠2AC=AC然后即可得到使得△ABC≌△ADC需要添加的条件本题得以解决【详解】由已知可得∠1=∠2AC=AC∴若添加条件AB=A解析:AB=AD(答案不唯一)【分析】根据题目中条件和图形,可以得到∠1=∠2,AC=AC,然后即可得到使得△ABC≌△ADC 需要添加的条件,本题得以解决.【详解】由已知可得,∠1=∠2,AC=AC,∴若添加条件AB=AD,则△ABC≌△ADC(SAS);若添加条件∠ACB=∠ACD,则△ABC≌△ADC(ASA);若添加条件∠ABC=∠ADC,则△ABC≌△ADC(AAS);故答案为:AB=AD(答案不唯一).【点睛】本题考查全等三角形的判定,解答本题的关键是明确题意,利用数形结合的思想解答.17.【分析】利用轴对称图形的定义作出轴对称图形后即可确定轴对称图形的个数【详解】解:将其中一个小方格的中心画上半径相等的圆使整个图形为轴对称图形这样的轴对称图形为:故答案为:3【点睛】考查了轴对称图形的解析:3【分析】利用轴对称图形的定义作出轴对称图形后即可确定轴对称图形的个数.【详解】解:将其中一个小方格的中心画上半径相等的圆,使整个图形为轴对称图形,这样的轴对称图形为:故答案为:3.【点睛】考查了轴对称图形的知识,解题的关键是了解轴对称图形的定义,难度不大.18.13【解析】设AB的解析式为y=kx+b由题意得解得:∴直线AB的解析式为y=16x+12(x≥3)当y=22时22=16x+12解得:x=13故答案为:13【点睛】本题考查了运用待定系数法求一次函解析:13【解析】设AB 的解析式为y=kx+b ,由题意,得63148k b k b =+⎧⎨=+⎩,解得: 1.61.2k b =⎧⎨=⎩, ∴直线AB 的解析式为y=1.6x+1.2(x≥3),当y=22时,22=1.6x+1.2,解得:x=13,故答案为:13.【点睛】本题考查了运用待定系数法求一次函数的解析式的运用,根据解析式由函数值求自变量的值的运用.解答时求出函数的解析式是关键.19.30°180°-n°【分析】(1)根据对顶角相等可得答案;(2)根据角的和差可得答案【详解】解:(1)若∠ACF=30°则∠PCD=30°理由是对顶角相等(2)由角的和差得∠ACD+∠BCE=∠AC解析:30° 180°-n°【分析】(1)根据对顶角相等,可得答案;(2)根据角的和差,可得答案.【详解】解:(1)若∠ACF=30°,则∠PCD=30°,理由是对顶角相等.(2)由角的和差,得∠ACD+∠BCE=∠ACB+∠BCD+∠BCE=∠ACB+∠DCE=180°, ∴∠ACD=180°-∠BCE=180°-n°.故答案为:30°,180°-n°.【点睛】本题考查了对顶角的性质、角的和差,由图形得到各角之间的数量关系是解答本题的关键.20.3【分析】根据P=Q 得出x=3y 求解即可【详解】解:∵∴即=0∴x=3y ∴=3故答案为:3【点睛】本题考查了完全平方公式关键是能根据已知条件变形 解析:3【分析】根据P=Q ,得出x=3y 求解即可.【详解】解:∵P Q =,23P x xy =-,239Q xy y =-,∴22339x xy xy y -=-,即2226(3)9x xy y x y =--+=0,∴x=3y ∴x y=3. 故答案为:3【点睛】本题考查了完全平方公式,关键是能根据已知条件变形.三、解答题21.(1)12;(2)方法一:自由转动转盘,当转盘停止时,指针指向数字5或6所在的区域时则游戏者获胜,方法二:自由转动转盘,当它停止时,指针指向数字大于4的区域时,游戏者获胜,见解析【分析】(1)根据题意先得出偶数的个数,再根据概率公式即可得出答案;(2)根据概率公式设计如:自由转动的转盘停止时,指针指向数字5或6所在的区域或大于4的区域,答案不唯一.【详解】(1)根据题意可得:转盘被等分成六个扇形,并在上面依次写上数字1、2、3、4、5、6,有3个扇形上是偶数.故自由转动转盘,当它停止转动时,指针指向偶数区的概率是31 62 ;(2)方法一:如图,自由转动转盘,当转盘停止时,指针指向数字5或6所在的区域时则游戏者获胜;方法二:自由转动转盘,当它停止时,指针指向数字大于4的区域时,游戏者获胜.【点睛】本题考查了概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.22.(1)见解析;(2)见解析;(3)(2,3)【分析】(1)根据A,C两点坐标确定平面直角坐标系即可.(2)分别作出A,B,C 的对应点A1,B1,C1的位置即可.(3)根据B1的位置写出坐标即可.【详解】(1)平面直角坐标系如图所示:(2)如图,△A1B1C1即为所求.(3)根据作图得,B1(2,3).【点睛】本题考查作图-轴对称变换,平面直角坐标系等知识,解题的关键是灵活运用所学知识解决问题.23.(1)见解析;(2)见解析【分析】(1)由已知可证∠B=∠F,BC=EF,然后根据SAS可以得到结论;(2)同(1)有∠B=∠F,再结合已知条件和对顶角相等可以证得ΔABO≅ΔDFO,从而得到OB=OF,所以点O为BF中点.【详解】证明:(1)∵AB//DF,∴∠B=∠F,∵BE=CF,∴BE+CE=CF+CE,即BC=EF,∴在ΔABC和ΔDFE 中,AB DFB F BC EF=⎧⎪∠=∠⎨⎪=⎩,∴ΔABC≅ΔDFE (SAS);(2)与(1)同理有∠B=∠F,∴在ΔABO和ΔDFO 中,AOB DOFB FAB DF∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ΔABO≅ΔDFO(AAS),∴OB=OF,∴点O为BF中点.【点睛】本题考查三角形全等的应用,熟练掌握三角形全等的判定与性质并灵活应用是解题关键.24.(1)25千米/分,15千米/分;(2)30分钟;(3)8:05和8:50.【解析】【分析】(1)根据观察横坐标,可得去超市的时间,从超市返回的时间,根据观察纵坐标,可得去超市的路程,根据路程与时间的关系,可得答案;(2)根据观察横坐标,可得答案;(3)根据路程除以速度,可得时间.【详解】解:(1)由横坐标可知,去超市用了10分钟,从超市返回用了20分钟,由纵坐标可知,家到超市的距离是4千米,故去超市的速度是4÷10=25(千米/分),从超市返回的速度是4÷20=15(千米/分). (2)由横坐标可知,在超市逗留的时间是40-10=30(分钟). (3)去超市的过程中,2÷25=5(分钟),返回的过程中,2÷15=10(分钟),40+10=50(分钟). 故圣诞老人在8:05和8:50时离家2千米. 故答案为:(1)2 5千米/分,15千米/分;(2)30分钟;(3)8:05和8:50. 【点睛】本题考查了函数图象,观察函数图象获取信息是解题关键.25.角平分线的定义 ; 两直线平行,内错角相等 ; 等量代换 ; 两直线平行,同位角相等 ; 两直线平行,内错角相等 ; 等量代换 ; 角平分线的定义.【分析】根据角平分线的定义得到12∠=∠,根据平行线的性质得到13∠=∠,等量代换得到23∠∠=,根据平行线的性质得到25∠=∠,等量代换即可得到结论.【详解】证明:AE ∵平分(BAC ∠已知)12(∴∠=∠角平分线的定义)//(AC DE 已知)13(∴∠=∠两直线平行,内错角相等)故23(∠=∠等量代换)//(DF AE 已知)25∴∠=∠,(两直线平行,同位角相等)34(∠=∠两直线平行,内错角相等)45(∴∠=∠等量代换)DF ∴平分(BDE ∠角平分线的定义).故答案为:角平分线的定义,两直线平行,内错角相等,等量代换,两直线平行,同位角相等,等量代换,角平分线的定义.【点睛】本题考查了平行线的性质,角平分线的定义,熟练掌握平行线的性质是解答本题的关键.26.(1)2542a a +-;(2)224a b . 【分析】 (1)多项式除以单项式,用多项式中的每一项分别除以单项式进行计算;(2)幂的混合运算,注意先算乘方,然后再按照单项式乘单项式的法则进行计算.【详解】解:(1)()3210842a a a a +-÷ 321028242a a a a a a =÷+÷-÷2542a a =+-(2)()()22222ab a b ---⋅24424a b a b --=⋅224a b --=224a b=. 【点睛】 本题考查整式的混合运算和幂的混合运算,掌握运算顺序和计算法则正确计算是解题关键.。
(必考题)初中数学七年级下期末经典练习题
一、选择题1.已知二元一次方程组m2n42m n3-=⎧⎨-=⎩,则m+n的值是()A.1B.0C.-2D.-12.已知关于x的不等式组{x>1x<m的解中有3个整数解,则m的取值范围是()A.3<m≤4B.4≤m<5C.4<m≤5D.4≤m≤53.116的平方根是( )A.±12B.±14C.14D.124.下列方程中,是二元一次方程的是( )A.x﹣y2=1B.2x﹣y=1C.11yx+=D.xy﹣1=05.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°B.22.5°C.30°D.45°6.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为( )A.﹣3B.﹣5C.1或﹣3D.1或﹣57.已知{x=1y=2是关于x,y的二元一次方程x-ay=3的一个解,则a的值为()A.1B.-1C.2D.-28.方程组23x y ax y+=⎧⎨-=⎩的解为5xy b=⎧⎨=⎩,则a、b分别为()A.a=8,b=﹣2B.a=8,b=2C.a=12,b=2D.a=18,b=89.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有()A .1个B .2个C .3个D .4个10.在平面直角坐标系内,线段CD 是由线段AB 平移得到的,点A (-2,3)的对应点为C (2,5),则点B (-4,-1)的对应点D 的坐标为()A .()8,3--B .()4,2C .()0,1D .()1,8 11.在直角坐标系中,若点P(2x -6,x -5)在第四象限,则x 的取值范围是( ) A .3<x <5B .-5<x <3C .-3<x <5D .-5<x <-3 12.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-2 13.在平面直角坐标系中,点A 的坐标()0,1,点B 的坐标()3,3,将线段AB 平移,使得A 到达点()4,2C ,点B 到达点D ,则点D 的坐标是( )A .()7,3B .()6,4C .()7,4D .()8,414.不等式组2201x x +>⎧⎨-≥-⎩的解在数轴上表示为( ) A .B .C .D .15.过一点画已知直线的垂线,可画垂线的条数是( )A .0B .1C .2D .无数二、填空题16.如图,边长为10cm 的正方形ABCD 先向上平移4cm ,再向右平移2cm ,得到正方形A'B'C'D',则阴影部分面积为___________________.17.已知不等式231x a -<<-的整数解有四个,则a 的范围是___________.18.如图8中图①,两个等边△ABD ,△CBD 的边长均为1,将△ABD 沿AC 方向向 右平移到△A′B′D′的位置得到图②,则阴影部分的周长为_________.19.64立方根是__________.20.若二元一次方程组3354x y x y +=⎧⎨-=⎩的解为x a y b =⎧⎨=⎩,则a ﹣b=______. 21.二项方程32540x +=在实数范围内的解是_______________22.化简(2-1)0+(12)-2-9+327-=________________________. 23.线段CD 是由线段AB 平移得到的,其中点A (﹣1,4)平移到点C (﹣3,2),点B (5,﹣8)平移到点D ,则D 点的坐标是________.24.已知a >b ,则﹣4a +5_____﹣4b +5.(填>、=或<)25.如果点M (a-1,a+1)在x 轴上,则a 的值为___________.三、解答题26.某市青少年健康研究中心随机抽取了本市1000名小学生和若干名中学生,对他们的视力状况进行了调查,并把调查结果绘制成如下统计图.(近视程度分为轻度、中度、高度三种)(1)求这1000名小学生患近视的百分比.(2)求本次抽查的中学生人数.(3)该市有中学生8万人,小学生10万人.分别估计该市的中学生与小学生患“中度近视”的人数.27.某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷调查,发出问卷140份,每位学生的家长1份,每份问卷仅表明一种态度.将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如下两幅不完整的统计图.学生家长对孩子使用手机的态度情况统计图根据以上信息回答下列问题:(1)回收的问卷数为 份,“严加干涉”部分对应扇形的圆心角度数为 ;(2)把条形统计图补充完整;(3)若将“稍加询问”和“从来不管”视为“管理不严”,已知全校共1500名学生,请估计该校对孩子使用手机“管理不严”的家长大约有多少人?28.(1)(感知)如图①,//AB CD ,点E 在直线AB 与CD 之间,连接AE 、CE ,试说明AEC A DCE ∠=∠+∠.下面给出了这道题的解题过程,请完成下面的解题过程(填恰当的理由).证明:如图①过点E 作//EF AB .1A ∴∠=∠( ),//AB CD (已知),EF //AB (辅助线作法),//EF CD ∴( ),2DCE ∴∠=∠( ),12AEC ∠=∠+∠,AEC A DCE ∴∠=∠+∠ ( ).(2)(探究)当点E 在如图②的位置时,其他条件不变,试说明360A AEC C ∠+∠+∠=︒.(3)(应用)如图③,延长线段AE 交直线CD 于点M ,已知130A ∠=︒,120DCE ∠=︒,则MEC ∠的度数为 .(请直接写出答案)29.ABC 与111A B C △,在平面直角坐标系中的位置如图所示,(1)分别写出下列各点的坐标:A ;B ;C ;(2)111A B C △由ABC 经过怎样的平移得到?(3)若点P x y (,)是ABC 内部一点,则111A B C △内部的对应点1P 的坐标为____________;(4)求ABC 面积.30.如图,平面直角坐标系中,ABCD 为长方形,其中点A 、C 坐标分别为(﹣8,4)、(2,﹣8),且AD ∥x 轴,交y 轴于M 点,AB 交x 轴于N .(1)求B 、D 两点坐标和长方形ABCD 的面积;(2)一动点P 从A 出发(不与A 点重合),以12个单位/秒的速度沿AB 向B 点运动,在P 点运动过程中,连接MP 、OP ,请直接写出∠AMP 、∠MPO 、∠PON 之间的数量关系; (3)是否存在某一时刻t ,使三角形AMP 的面积等于长方形面积的13?若存在,求t 的值并求此时点P 的坐标;若不存在请说明理由.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.C3.A4.B5.A6.A7.B8.C9.C10.C11.A12.A13.C14.D15.B二、填空题16.【解析】【分析】如图交于其延长线交于利用平移的性质得到再利用四边形为矩形得到然后计算出和即可得到阴影部分面积【详解】解:如图交于其延长线交于边长为的正方形先向上平移再向右平移得到正方形易得四边形为矩17.【解析】【分析】根据不等式2<x<3a-1的整数解有四个得出关于a的不等式组求解即可得出a的取值范围【详解】∵不等式2<x<3a-1的整数解有四个∴整数解为3456∴6<3a-1≤7∴故答案为:【点18.2【解析】【分析】根据两个等边△ABD△CBD的边长均为1将△ABD沿AC方向向右平移到△ABD的位置得出线段之间的相等关系进而得出OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2即可19.2;【解析】【分析】先计算=8再计算8的立方根即可【详解】∵=8∴的立方根是2故答案为:2【点睛】本题考查了立方根及算术平方根的知识属于基础题掌握基本的定义是关键20.【解析】【分析】把xy的值代入方程组再将两式相加即可求出a﹣b的值【详解】将代入方程组得:①+②得:4a﹣4b=7则a﹣b=故答案为【点睛】本题考查二元一次方程组的解解题的关键是观察两方程的系数从而21.x=-3【解析】【分析】由2x3+54=0得x3=-27解出x值即可【详解】由2x3+54=0得x3=-27∴x=-3故答案为:x=-3【点睛】本题考查了立方根正确理解立方根的意义是解题的关键22.-1【解析】分析:直接利用负指数幂的性质以及零指数幂的性质算术平方根的性质分别化简得出答案详解:原式=1+4-3-3=-1故答案为:-1点睛:此题主要考查了实数运算正确化简各数是解题关键23.(3﹣10)【解析】【分析】由于线段CD是由线段AB平移得到的而点A(-14)的对应点为C(-32)比较它们的坐标发现横坐标减小2纵坐标减小2利用此规律即可求出点B (5-8)的对应点D的坐标【详解】24.<【解析】【分析】根据不等式的基本性质即可解决问题【详解】解:∵a>b∴﹣4a <﹣4b∴﹣4a+5<﹣4b+5故答案为<【点睛】本题考查不等式的基本性质应用不等式的性质应注意的问题:在不等式的两边都25.-1【解析】【分析】根据x轴上的点纵坐标等于0列出方程求解得到a的值【详解】∵点M(a-1a+1)在x轴上∴a+1=0解得a=-1故答案为:-1【点睛】本题考查了点的坐标熟记x轴上的点的纵坐标等于0三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】分析:根据二元一次方程组的特点,用第二个方程减去第一个方程即可求解.详解:24 23m nm n-=⎧⎨-=⎩①②②-①得m+n=-1.故选:D.点睛:此题主要考查了二元一次方程组的特殊解法,关键是利用加减法对方程变形,得到m+n这个整体式子的值.2.C解析:C【解析】【分析】表示出不等式组的解集,由解集中有3个整数解,确定出m的范围即可.【详解】不等式组解集为1<x<m,由不等式组有3个整数解,且为2,3,4,得到4<m≤5,故选C.【点睛】此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.3.A解析:A【解析】【分析】根据平方根的性质:一个正数的平方根有两个,它们互为相反数计算即可.【详解】∵116=14,14的平方根是12±,∴116的平方根是12±,故选A.【点睛】本题考查平方根的性质,一个正数的平方根有两个,它们互为相反数,0的平方根还是0,熟练掌握相关知识是解题关键.4.B解析:B【解析】【分析】根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.据此逐一判断即可得.【详解】解:A.x-y2=1不是二元一次方程;B.2x-y=1是二元一次方程;C.1x+y=1不是二元一次方程;D.xy-1=0不是二元一次方程;故选B.【点睛】本题考查二元一次方程的定义,解题的关键是掌握含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.5.A解析:A【解析】试题分析:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A.考点:平行线的性质.6.A解析:A【解析】分析:根据点A(a+2,4)和B(3,2a+2)到x轴的距离相等,得到4=|2a+2|,即可解答.详解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,∴4=|2a+2|,a+2≠3,解得:a=−3,故选A.点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数.7.B解析:B【解析】【分析】把{x=1y=2代入x-ay=3,解一元一次方程求出a值即可.【详解】∵{x=1y=2是关于x,y的二元一次方程x-ay=3的一个解,∴1-2a=3解得:a=-1故选B.【点睛】本题考查二元一次方程的解,使方程左右两边相等的未知数的值,叫做方程的解;一组数是方程的解,那么它一定满足这个方程.8.C解析:C【解析】试题解析:将x=5,y=b代入方程组得:10{53b ab+=-=,解得:a=12,b=2,故选C.考点:二元一次方程组的解.9.C解析:C【解析】【分析】根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.解:①两点之间,线段最短,正确.②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的距离叫做这两点间的距离.③经过直线外一点,有且只有一条直线与这条直线平行,正确.④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.故选C.【点睛】本题考查线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.C解析:C【解析】【分析】根据点A(-2,3)的对应点为C(2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,以此规律可得D的对应点的坐标.【详解】点A(-2,3)的对应点为C(2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,于是B(-4,-1)的对应点D的横坐标为-4+4=0,点D的纵坐标为-1+2=1,故D(0,1).故选C.【点睛】此题考查了坐标与图形的变化----平移,根据A(-2,3)变为C(2,5)的规律,将点的变化转化为坐标的变化是解题的关键.11.A解析:A【解析】【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数.【详解】解:∵点P(2x-6,x-5)在第四象限,∴260 {50xx->-<,解得:3<x<5.故选:A.【点睛】主要考查了平面直角坐标系中第四象限的点的坐标的符号特点.12.A【解析】【分析】根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可.【详解】根据x 的不等式x -b >0恰有两个负整数解,可得x 的负整数解为-1和-20x b ->x b ∴>综合上述可得32b -≤<-故选A.【点睛】本题主要考查不等式的非整数解,关键在于非整数解的确定.13.C解析:C【解析】【分析】根据A 和C 的坐标可得点A 向右平移4个单位,向上平移1个单位,点B 的平移方法与A 的平移方法相同,再根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点D 的坐标.【详解】解:∵点A (0,1)的对应点C 的坐标为(4,2),即(0+4,1+1),∴点B (3,3)的对应点D 的坐标为(3+4,3+1),即D (7,4);故选:C.【点睛】此题主要考查了坐标与图形的变化——平移,关键正确得到点的平移方法.14.D解析:D【解析】【分析】解不等式组求得不等式组的解集,再把其表示在数轴上即可解答.【详解】2201x x ①②+>⎧⎨-≥-⎩, 解不等式①得,x >-1;解不等式②得,x ≤1;∴不等式组的解集是﹣1<x ≤1.不等式组的解集在数轴上表示为:故选D.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解决问题的关键.15.B解析:B【解析】【分析】根据垂直的性质:过直线外或直线上一点画已知直线的垂线,可以画一条,据此解答.【详解】在平面内,过一点有且只有一条直线与已知直线垂直,故选:B【点睛】此题考查了直线的垂直的性质,注意基础知识的识记和理解.二、填空题16.【解析】【分析】如图交于其延长线交于利用平移的性质得到再利用四边形为矩形得到然后计算出和即可得到阴影部分面积【详解】解:如图交于其延长线交于边长为的正方形先向上平移再向右平移得到正方形易得四边形为矩解析:248cm【解析】【分析】如图,A B ''交AD 于F ,其延长线交BC 于E ,利用平移的性质得到//A B AB '',//BC B C '',4B E '=,2AF =,再利用四边形ABEF 为矩形得到10EF AB ==,然后计算出FB '和DF 即可得到阴影部分面积.【详解】解:如图,A B ''交AD 于F ,其延长线交BC 于E ,边长为10cm 的正方形ABCD 先向上平移4cm 再向右平移2cm ,得到正方形A B C D '''',//A B AB ∴'',//BC B C '',4B E '=,2AF =,易得四边形ABEF为矩形,10EF AB∴==,6FB∴'=,8DF=,∴阴影部分面积26848()cm=⨯=.故答案为:248cm.【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.17.【解析】【分析】根据不等式2<x<3a-1的整数解有四个得出关于a的不等式组求解即可得出a的取值范围【详解】∵不等式2<x<3a-1的整数解有四个∴整数解为3456∴6<3a-1≤7∴故答案为:【点解析:78 33a≤<.【解析】【分析】根据不等式2<x<3a-1的整数解有四个,得出关于a的不等式组,求解即可得出a的取值范围.【详解】∵不等式2<x<3a-1的整数解有四个,∴整数解为3,4,5,6,∴6<3a-1≤7,∴78 33a≤<.故答案为:78 33a≤<.【点睛】本题考查了一元一次不等式组的整数解.关键是根据整数解的个数,确定含a的代数式的取值范围.18.2【解析】【分析】根据两个等边△ABD△CBD的边长均为1将△ABD沿AC 方向向右平移到△ABD的位置得出线段之间的相等关系进而得出OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2即可解析:2【解析】【分析】根据两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A’B’D’的位置,得出线段之间的相等关系,进而得出OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2,即可得出答案.【详解】解:∵两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置,∴A′M=A′N=MN,MO=DM=DO,OD′=D′E=OE,EG=EC=GC,B′G=RG=RB′,∴OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2;故答案为2.19.2;【解析】【分析】先计算=8再计算8的立方根即可【详解】∵=8∴的立方根是2故答案为:2【点睛】本题考查了立方根及算术平方根的知识属于基础题掌握基本的定义是关键解析:2;【解析】【分析】64,再计算8的立方根即可.【详解】6438=2,64 2.故答案为:2.【点睛】本题考查了立方根及算术平方根的知识,属于基础题,掌握基本的定义是关键.20.【解析】【分析】把xy的值代入方程组再将两式相加即可求出a﹣b的值【详解】将代入方程组得:①+②得:4a﹣4b=7则a﹣b=故答案为【点睛】本题考查二元一次方程组的解解题的关键是观察两方程的系数从而解析:7 4【解析】【分析】把x、y的值代入方程组,再将两式相加即可求出a﹣b的值.【详解】将x ay b=⎧⎨=⎩代入方程组3354x yx y+=⎧⎨-=⎩,得:3354a ba b+=⎧⎨-=⎩①②,①+②,得:4a﹣4b=7,则a﹣b=74,故答案为74.【点睛】本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a﹣b的值.21.x=-3【解析】【分析】由2x3+54=0得x3=-27解出x值即可【详解】由2x3+54=0得x3=-27∴x=-3故答案为:x=-3【点睛】本题考查了立方根正确理解立方根的意义是解题的关键解析:x=-3【解析】【分析】由2x3+54=0,得x3=-27,解出x值即可.【详解】由2x3+54=0,得x3=-27,∴x=-3,故答案为:x=-3.【点睛】本题考查了立方根,正确理解立方根的意义是解题的关键.22.-1【解析】分析:直接利用负指数幂的性质以及零指数幂的性质算术平方根的性质分别化简得出答案详解:原式=1+4-3-3=-1故答案为:-1点睛:此题主要考查了实数运算正确化简各数是解题关键解析:-1【解析】分析:直接利用负指数幂的性质以及零指数幂的性质、算术平方根的性质分别化简得出答案.详解:原式=1+4-3-3=-1.故答案为:-1.点睛:此题主要考查了实数运算,正确化简各数是解题关键.23.(3﹣10)【解析】【分析】由于线段CD是由线段AB平移得到的而点A (-14)的对应点为C(-32)比较它们的坐标发现横坐标减小2纵坐标减小2利用此规律即可求出点B(5-8)的对应点D的坐标【详解】解析:(3,﹣10)【解析】【分析】由于线段CD是由线段AB平移得到的,而点A(-1,4)的对应点为C(-3,2),比较它们的坐标发现横坐标减小2,纵坐标减小2,利用此规律即可求出点B(5,-8)的对应点【详解】∵线段CD是由线段AB平移得到的,而点A(-1,4)的对应点为C(-3,2),∴由A平移到C点的横坐标减小2,纵坐标减小2,则点B(5,-8)的对应点D的坐标为(3,-10),故答案为:(3,-10).【点睛】本题主要考查坐标系中点、线段的平移规律.在平面直角坐标系中,图形的平移与图形上某点的平移相同.24.<【解析】【分析】根据不等式的基本性质即可解决问题【详解】解:∵a >b∴﹣4a<﹣4b∴﹣4a+5<﹣4b+5故答案为<【点睛】本题考查不等式的基本性质应用不等式的性质应注意的问题:在不等式的两边都解析:<【解析】【分析】根据不等式的基本性质即可解决问题.【详解】解:∵a>b,∴﹣4a<﹣4b,∴﹣4a+5<﹣4b+5,故答案为<.【点睛】本题考查不等式的基本性质,应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.25.-1【解析】【分析】根据x轴上的点纵坐标等于0列出方程求解得到a的值【详解】∵点M(a-1a+1)在x轴上∴a+1=0解得a=-1故答案为:-1【点睛】本题考查了点的坐标熟记x轴上的点的纵坐标等于0解析:-1【解析】【分析】根据x轴上的点纵坐标等于0列出方程求解得到a的值.【详解】∵点M(a-1,a+1)在x轴上,∴a+1=0,解得a=-1,故答案为:-1.本题考查了点的坐标,熟记x轴上的点的纵坐标等于0是解题的关键.三、解答题26.(1)这1000名小学生患近视的百分比为38%. (2)本次抽查的中学生有1000人. (3)该市中学生患“中度近视”的约有2.08万人,患“中度近视”的约有1.04万人.【解析】【分析】(1)这1000名小学生患近视的百分比=小学生近视的人数÷总人数×100﹪(2)调查中学生总人数=中学生近视的人数÷中学生患近视的百分比(3)用样本估计总体,该市中学生患“中度近视”的人数=8万×1000名中学生患中度近视的百分比;该市小学生患“中度近视”的人数=10万×1000名小学生患中度近视的百分比【详解】解:(1)∵(252+104+24)÷1000=38%,∴这1000名小学生患近视的百分比为38%.(2)∵(263+260+37)÷56%=1000(人),∴本次抽查的中学生有1000人.(3)∵8×2601000=2.08(万人),∴该市中学生患“中度近视”的约有2.08万人.∵10×1041000=1.04(万人),∴该市小学生患“中度近视”的约有1.04万人.27.(1)120,30°;(2)答案见解析;(3)1375人.【解析】【分析】(1)根据“从来不管”的人数和百分比求出总份数,根据总份数和严加干涉的分数求出百分比,然后计算圆心角的度数;(2)根据总分数求出稍加询问的人数,然后补全统计图;(3)根据题意求出“从来不管”和“稍加询问”的百分比求出全校的人数.【详解】解:(1)30÷25%=120(人)10÷120×360°=30°故答案为:120,30°(2)如图所示:(3)1500×3080120+=1375(人)则估计该校对孩子使用手机“管理不严”的家长大约有1375人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了利用样本估计总体.28.(1)见解析;(2)证明见解析;(3)70°.【解析】【分析】(1)根据平行线的性质、平行公理的推论和等量代换依次解答即可;(2)如图④,过点E作//EF AB,根据平行线的性质、平行公理的推论解答即可;(3)由(2)题的结论可求出∠AEC的度数,进而可得答案.【详解】解:(1)证明:如图①,过点E作//EF AB,1A∴∠=∠(两直线平行,内错角相等),//AB CD(已知),EF//AB(辅助线作法),//EF CD∴(平行于同一条直线的两直线互相平行),2DCE∴∠=∠(两直线平行,内错角相等),12AEC∠=∠+∠,AEC A DCE∴∠=∠+∠ (等量代换);(2)证明:如图④,过点E作//EF AB,180A AEF∴∠+∠=︒(两直线平行,同旁内角互补),//AB CD(已知),//EF AB (辅助线作法),//EF CD∴(平行于同一条直线的两直线互相平行),180C CEF∴∠+∠=︒(两直线平行,同旁内角互补),180180360A AEC C A AEF CEF C∴∠+∠+∠=∠+∠+∠+∠=︒+=︒;(3)解:由(2)题的结论知:360A AEC C ∠+∠+∠=︒,∴360360*********AEC A C ∠=︒-∠-∠=︒-︒-︒=︒,∴∠MEC =180AEC ︒-∠=70°. 故答案为:70°. 【点睛】本题主要考查了平行线的性质、平行公理的推论等知识,属于常考题型,熟练掌握平行线的性质是解题关键.29.(1)()54,,()35,,()22,;(2)见解析;(3)1P (x -4,y -3);(4)72【解析】【分析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据对应点A 、A′的变化写出平移方法即可;(3)根据平移规律逆向写出点1P 的坐标; (4)利用△ABC 所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.【详解】解:(1)()5,4;()3,5;()2,2;(2)由ABC 先向下平移3个单位长度再向左平移4个单位长度得到.(3)1P (x -4,y -3);(4)1117331323122222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯=△ 【点睛】此题考查平移变换作图,熟练掌握网格结构,根据对应点的坐标确定出平移的方法是解题的关键. 30.(1)B (﹣8,﹣8),D (2,4),120;(2)∠MPO=∠AMP+∠PON ;∠MPO=∠AMP-∠PON ;(3)存在,P 点坐标为(﹣8,﹣6).【解析】【分析】(1)利用点A 、C 的坐标和长方形的性质易得B (﹣8,﹣8),D (2,4),然后根据长方形的面积公式即可计算长方形ABCD 的面积;(2)分点P 在线段AN 上和点P 在线段NB 上两种情况进行讨论即可得;(3)由于AM=8,AP=12t ,根据三角形面积公式可得S △AMP =t ,再利用三角形AMP 的面积等于长方形面积的13,即可计算出t=20,从而可得AP=10,再根据点的坐标的表示方法即可写出点P 的坐标.【详解】(1)∵点A 、C 坐标分别为(﹣8,4)、(2,﹣8),∴B (﹣8,﹣8),D (2,4),长方形ABCD 的面积=(2+8)×(4+8)=120;(2)当点P 在线段AN 上时,作PQ ∥AM ,如图,∵AM ∥ON ,∴AM ∥PQ ∥ON ,∴∠QPM=∠AMP ,∠QPO=∠PON ,∴∠QPM+∠QPO=∠AMP+∠PON ,即∠MPO=∠AMP+∠PON ;当点P 在线段NB 上时,作PQ ∥AM ,如图,∵AM ∥ON ,∴AM ∥PQ ∥ON ,∴∠QPM=∠AMP ,∠QPO=∠PON ,∴∠QPM-∠QPO=∠AMP-∠PON ,即∠MPO=∠AMP-∠PON ;(3)存在,∵AM=8,AP=12t ,∴S △AMP =12×8×12t=2t , ∵三角形AMP 的面积等于长方形面积的13, ∴2t=120×13=40,∴t=20,AP=12×20=10, ∵AN=4,∴PN=6∴P点坐标为(﹣8,﹣6).【点睛】本题考查了坐标与图形性质,结合图形、运用分类讨论思想进行解答是关键.。
(完整word版)人教版七年级数学下册期末测试题及答案(共五套)
火车站李庄七下期期末一、选择题:1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )A.16=±4B.±16=4C.327-=-3D.2(4)-=-4 3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->b x ax4.解为12x y =⎧⎨=⎩的方程组是( )A.135x y x y -=⎧⎨+=⎩B.135x y x y -=-⎧⎨+=-⎩C.331x y x y -=⎧⎨-=⎩D.2335x y x y -=-⎧⎨+=⎩ 5.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是( )A .1000B .1100C .1150D .1200PBA 小刚小军小华(1) (2) (3)6.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 c m 2C .15 cm 2D .17 cm 27.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3) 二、填空题.11.49的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x-9≤3(x+1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________. C 1A 1ABB 1CD15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上) 18.若│x 2-25│则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【必考题】初一数学下期末试题带答案一、选择题1.不等式组213312xx+⎧⎨+≥-⎩<的解集在数轴上表示正确的是()A .B .C .D .2.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y尺,则符合题意的方程组是()A.5{152x yx y=+=-B.5{1+52x yx y=+=C.5{2-5x yx y=+=D.-5{2+5x yx y==3.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是()A.40°B.50°C.60°D.70°4.已知方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x-2y=0的解,则k的值是()A.k=-5 B.k=5 C.k=-10 D.k=10 5.下列方程中,是二元一次方程的是( )A.x﹣y2=1B.2x﹣y=1C.11yx+=D.xy﹣1=06.已知方程组276359632713x yx y+=⎧⎨+=-⎩的解满足1x y m-=-,则m的值为()A.-1B.-2C.1D.27.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为( )A.﹣3B.﹣5C.1或﹣3D.1或﹣58.不等式组1212xx+>⎧⎨-≤⎩的解集是()A.1x<B.x≥3C.1≤x﹤3D.1﹤x≤3 9.下列说法正确的是()A .两点之间,直线最短;B .过一点有一条直线平行于已知直线;C .和已知直线垂直的直线有且只有一条;D .在平面内过一点有且只有一条直线垂直于已知直线.10.如图,将△ABC 沿BC 边上的中线AD 平移到△A'B'C'的位置,已知△ABC 的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D 等于( )A .2B .3C .23D .3211.不等式组2201x x +>⎧⎨-≥-⎩的解在数轴上表示为( )A .B .C .D .12.过一点画已知直线的垂线,可画垂线的条数是( ) A .0B .1C .2D .无数二、填空题13.若264a =,则3a =______.14.如图,在平面直角坐标系中,已如点A (1,1),B (-1,1),C (-1,-2),D (1,-2),把一根长为2019个单位长度没有弹性的细线(线的相细忽略不计)的一端固定在A 处,并按A B C D A →→→→的规律紧绕在四边形ABCD 的边上,则细线的另一端所在位置的点的坐标是__________.15.27的立方根为 . 16.如果点p(3,2)m m +-在x 轴上,那么点P 的坐标为(____,____).17.三个同学对问题“若方程组的111222a x b y c a x b y c +=⎧⎨+=⎩ 解是34x y =⎧⎨=⎩,求方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”.参考他们的讨论,你认为这个题目的解应该是_____.18.如图所示第1个图案是由黑白两种颜色的正六边形地面砖组成,第2个,第3个图案可以看作是第1个图案经过平移而得,那么(1)第4个图案中有白色六边形地面砖________块,第n 个图案中有白色地面砖________ 块.19.现有2019条直线1232019a a a a ,,,,,⋯且有12233445a a a a a a a a ⊥⊥,,,,…,则直线1a 与2019a 的位置关系是___________.20.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.如表记录了4个参赛者的得分情况.在此次竞赛中,有一位参赛者答对13道题,答错7道题,则他的得分是_____. 参赛者 答对题数 答错题数 得分 A 19 1 112 B 18 2 104 C 17 3 96 D101040三、解答题21.如图,在ABC ∆中,CD AB ⊥,垂足为D ,点E 在BC 上,EF AB ⊥,垂足为F ,12∠=∠.(1)试说明DG BC 的理由;(2)如果54B ∠=︒,且35ACD ∠=︒,求3∠的度数.22.已知,如图,AD ⊥BC 于D ,EG ⊥BC 于G ,∠E=∠1,求证:AD 平分∠BAC .23.如图,将三角形ABC 向右平移5个单位长度,再向上平移3个单位长度请回答下列问题:(1)平移后的三个顶点坐标分别为:A 1 ,B 1 ,C 1 ; (2)画出平移后三角形A 1B 1C 1; (3)求三角形ABC 的面积.24.已知:如图,∠1=∠2,∠3=∠E .求证:AD ∥BE .25.已知:方程组713x y ax y a +=--⎧⎨-=+⎩的解x 为非正数,y 为负数.(1)求a 的取值范围; (2)化简|a -3|+|a +2|;(3)在a 的取值范围中,当a 为何整数时,不等式2ax +x >2a +1的解为x <1.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】先求出不等式组的解集,再在数轴上表示出来即可. 【详解】213312x x +⎧⎨+≥-⎩<①② ∵解不等式①得:x <1, 解不等式②得:x≥-1, ∴不等式组的解集为-1≤x <1, 在数轴上表示为:,故选A . 【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.2.A解析:A 【解析】 【分析】设索长为x 尺,竿子长为y 尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x 、y 的二元一次方程组. 【详解】设索长为x 尺,竿子长为y 尺,根据题意得:5152x y x y =+⎧⎪⎨=-⎪⎩.故选A . 【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.3.D【解析】【分析】根据折叠的知识和直线平行判定即可解答.【详解】解:如图可知折叠后的图案∠ABC=∠EBC,又因为矩形对边平行,根据直线平行内错角相等可得∠2=∠DBC,又因为∠2+∠ABC=180°,所以∠EBC+∠2=180°,即∠DBC+∠2=2∠2=180°-∠1=140°.可求出∠2=70°.【点睛】掌握折叠图形的过程中有些角度是对称相等的是解答本题的关键. 4.A解析:A【解析】【分析】根据方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x-2y=0的解,可得方程组5320x yx y-=⎧⎨-=⎩,解方程组求得x、y的值,再代入4x-3y+k=0即可求得k的值.【详解】∵方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x-2y=0的解,∴5320x yx y-=⎧⎨-=⎩,解得,1015xy=-⎧⎨=-⎩;把1015xy=-⎧⎨=-⎩代入4x-3y+k=0得,-40+45+k=0,∴k=-5.【点睛】本题考查了解一元二次方程,根据题意得出方程组5320x yx y-=⎧⎨-=⎩,解方程组求得x、y的值是解决问题的关键.5.B解析:B【解析】【分析】根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.据此逐一判断即可得.【详解】解:A.x-y2=1不是二元一次方程;B.2x-y=1是二元一次方程;C.1x+y=1不是二元一次方程;D.xy-1=0不是二元一次方程;故选B.【点睛】本题考查二元一次方程的定义,解题的关键是掌握含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.6.A解析:A【解析】【分析】观察方程结构和目标式,两个方程直接相减得到x-y=-2,,整体代入x-y=m-1,求出m的值即可.【详解】解:276359 632713x yx y+=⎧⎨+=-⎩①②②-①得36x-36y=-72则x-y=-2所以m-1=-2所以m=-1.故选:A.【点睛】考查了解二元一次方程组,解关于x,y二元一次方程组有关的问题,观察方程结构和目标式,巧妙变形,运用整体的思想求解,能简化计算,应熟练掌握.解析:A【解析】分析:根据点A(a+2,4)和B(3,2a+2)到x轴的距离相等,得到4=|2a+2|,即可解答.详解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,∴4=|2a+2|,a+2≠3,解得:a=−3,故选A.点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数.8.D解析:D【解析】【分析】【详解】解:1212xx+>⎧⎨-≤⎩①②,由①得x>1,由②得x≤3,所以解集为:1<x≤3;故选D.9.D解析:D【解析】解:A.应为两点之间线段最短,故本选项错误;B.应为过直线外一点有且只有一条一条直线平行于已知直线,故本选项错误;C.应为在同一平面内,和已知直线垂直的直线有且只有一条,故本选项错误;D.在平面内过一点有且只有一条直线垂直于已知直线正确,故本选项正确.故选D.10.A解析:A【解析】分析:由S△ABC=9、S△A′EF=4且AD为BC边的中线知S△A′DE=12S△A′EF=2,S△ABD=12S△ABC=92,根据△DA′E∽△DAB知2A DEABDSA DAD S''=(),据此求解可得.详解:如图,∵S △ABC =9、S △A′EF =4,且AD 为BC 边的中线, ∴S △A′DE =12S △A′EF =2,S △ABD =12S △ABC =92, ∵将△ABC 沿BC 边上的中线AD 平移得到△A'B'C', ∴A′E ∥AB , ∴△DA′E ∽△DAB ,则2A DE ABDSA D AD S''=(),即22912A D A D '='+(), 解得A′D=2或A′D=-25(舍), 故选A .点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.11.D解析:D 【解析】 【分析】解不等式组求得不等式组的解集,再把其表示在数轴上即可解答. 【详解】2201x x ①②+>⎧⎨-≥-⎩, 解不等式①得,x >-1; 解不等式②得,x ≤1; ∴不等式组的解集是﹣1<x ≤1. 不等式组的解集在数轴上表示为:故选D. 【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解决问题的关键.12.B解析:B【解析】【分析】根据垂直的性质:过直线外或直线上一点画已知直线的垂线,可以画一条,据此解答.【详解】在平面内,过一点有且只有一条直线与已知直线垂直,故选:B【点睛】此题考查了直线的垂直的性质,注意基础知识的识记和理解.二、填空题13.±2【解析】【分析】根据平方根立方根的定义解答【详解】解:∵∴a=±8∴=±2故答案为±2【点睛】本题考查平方根立方根的定义解题关键是一个正数的平方根有两个他们互为相反数解析:±2【解析】【分析】根据平方根、立方根的定义解答.【详解】a ,∴a=±8.2解:∵264故答案为±2【点睛】本题考查平方根、立方根的定义,解题关键是一个正数的平方根有两个,他们互为相反数.. 14.(10)【解析】【分析】根据点的坐标求出四边形ABCD的周长然后求出另一端是绕第几圈后的第几个单位长度从而确定答案【详解】∵A(11)B(-11)C(-1-2)D(1-2)∴AB=1-(-1)=2B解析:(1,0)【解析】【分析】根据点的坐标求出四边形ABCD的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.【详解】∵A(1,1),B(-1,1),C(-1,-2),D(1,-2),∴AB=1-(-1)=2,BC=1-(-2)=3,CD=1-(-1)=2,DA=1-(-2)=3,∴绕四边形ABCD一周的细线长度为2+3+2+3=10,2019÷10=201…9,∴细线另一端在绕四边形第202圈的第9个单位长度的位置,即在DA 上从点D 向上2个单位长度所在的点的坐标即为所求,也就是点(1,0),故答案为:(1,0).【点睛】本题考查了规律型——点的坐标,根据点的坐标求出四边形ABCD 一周的长度,从而确定2019个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键. 15.3【解析】找到立方等于27的数即可解:∵33=27∴27的立方根是3故答案为3考查了求一个数的立方根用到的知识点为:开方与乘方互为逆运算 解析:3【解析】找到立方等于27的数即可.解:∵33=27,∴27的立方根是3,故答案为3.考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算16.0【解析】【分析】根据x 轴上的点的纵坐标为0可得m-2=0即可求得m=2由此求得点P 的坐标【详解】∵点在x 轴上∴m-2=0即m=2∴P (50)故答案为:50【点睛】本题考查了x 轴上的点的坐标的特点熟解析:0【解析】【分析】根据x 轴上的点的纵坐标为0可得m-2=0,即可求得m=2,由此求得点P 的坐标.【详解】∵点p(3,2)m m +-在x 轴上, ∴m-2=0,即m=2, ∴P (5,0).故答案为:5,0.【点睛】本题考查了x 轴上的点的坐标的特点,熟知x 轴上的点的纵坐标为0是解决问题的关键. 17.【解析】【分析】把第二个方程组的两个方程的两边都除以5通过换元替代的方法来解决【详解】两边同时除以5得和方程组的形式一样所以解得故答案为【点睛】本题是一道材料分析题考查了同学们的逻辑推理能力需要通过解析:510x y =⎧⎨=⎩【解析】【分析】把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决.111222325325a x b y c a x b y c +=⎧⎨+=⎩两边同时除以5得, 11122232()()5532()()55a x b y c a x b y c ⎧+⎪⎪⎨⎪+⎪⎩==, 和方程组111222a x b y c a x b y c +⎧⎨+⎩==的形式一样,所以335245x y ⎧⎪⎪⎨⎪⎪⎩==,解得510x y ⎧⎨⎩==. 故答案为510x y ⎧⎨⎩==. 【点睛】本题是一道材料分析题,考查了同学们的逻辑推理能力,需要通过类比来解决,有一定的难度.18.18;4n +2【解析】【分析】根据所给的图案发现:第一个图案中有6块白色地砖后边依次多4块由此规律解决问题【详解】解:第1个图案中有白色六边形地面砖有6块;第2个图案中有白色六边形地面砖有6+4=1解析:18; 4n +2【解析】【分析】根据所给的图案,发现:第一个图案中,有6块白色地砖,后边依次多4块,由此规律解决问题.【详解】解:第1个图案中有白色六边形地面砖有6块;第2个图案中有白色六边形地面砖有6+4=10(块);第3个图案中有白色六边形地面砖有6+2×4=14(块); 第4个图案中有白色六边形地面砖有6+3×4=18(块); 第n 个图案中有白色地面砖6+4(n-1)=4n+2(块).故答案为18,4n+2.【点睛】此题考查图形的变化规律,结合图案发现白色地砖的规律是解题的关键.19.垂直【解析】【分析】根据两直线平行同位角相等得出相等的角再根据垂直的定义解答进而得出规律:a1与其它直线的位置关系为每4个一循环垂直垂直平行平行根据此规律即可判断【详解】先判断直线a1与a3的位置关 解析:垂直.【解析】根据两直线平行,同位角相等得出相等的角,再根据垂直的定义解答,进而得出规律:a 1与其它直线的位置关系为每4个一循环,垂直、垂直、平行、平行,根据此规律即可判断.【详解】先判断直线a 1与a 3的位置关系是:a 1⊥a 3.理由如下:如图1,∵a 1⊥a 2,∴∠1=90°,∵a 2∥a 3,∴∠2=∠1=90°,∴a 1⊥a 3;再判断直线a 1与a 4的位置关系是:a 1∥a 4,如图2;∵直线a 1与a 3的位置关系是:a 1⊥a 3,直线a 1与a 4的位置关系是:a 1∥a 4,∵2019÷4=504…3,∴直线a 1与a 2015的位置关系是:垂直.故答案为:垂直.【点睛】本题考查了平行公理的推导,作出图形更有利于规律的发现以及规律的推导,解题的关键是:结合图形先判断几组直线的关系,然后找出规律.20.【解析】【分析】设答对1道题得x 分答错1道题得y 分根据图表列出关于x 和y 的二元一次方程组解之即可【详解】解:设答对1道题得x 分答错1道题得y 分根据题意得:解得:答对13道题打错7道题得分为:13×6 解析:【解析】【分析】设答对1道题得x 分,答错1道题得y 分,根据图表,列出关于x 和y 的二元一次方程组,解之即可.【详解】解:设答对1道题得x 分,答错1道题得y 分,根据题意得:19112182104x y x y +=⎧⎨+=⎩ ,解得:62x y =⎧⎨=-⎩, 答对13道题,打错7道题,得分为:13×6+(﹣2)×7=78﹣14=64(分),故答案为:64.【点睛】本题考查了二元一次方程组的应用,正确找出等量关系,列出二元一次方程组是解题的关键.三、解答题21.(1)见解析;(2)371∠=︒【解析】【分析】(1)由CD ⊥AB ,EF ⊥AB 即可得出CD ∥EF ,从而得出∠2=∠BCD ,再根据∠1=∠2即可得出∠1=∠BCD ,依据“内错角相等,两直线平行”即可证出DG ∥BC ;(2)在Rt △BEF 中,利用三角形内角和为180°即可算出∠2度数,从而得出∠BCD 的度数,再根据BC ∥DE 即可得出∠3=∠ACB ,通过角的计算即可得出结论.【详解】(1)证明:∵CD AB ⊥,EF AB ⊥,∴CD EF ,∴2BCD ∠=∠,∵12∠=∠,∴1BCD ∠=∠,∴DG BC ;(2)解:在Rt △BEF 中,∠B=54°,∴∠2=180°-90°-54°=36°,∴∠BCD=∠2=36°.又∵BC ∥DG ,3353671ACB ACD BCD ︒︒︒∴∠=∠=∠+∠=+=【点睛】本题考查了平行线的判定与性质,解题的关键是:(1)找出∠1=∠BCD ;(2)找出∠3=∠ACB=∠ACD+∠BCD .本题属于基础题,难度不大,解决该题型题目时,根据相等(或互补)的角证出两直线平行是关键.22.见解析【解析】【分析】根据垂直的定义可得∠ADC=∠EGC=90°,即可证得AD ∥EG ,根据平行线的性质可得∠1=∠2,∠E=∠3,再结合∠E=∠1可得∠2=∠3,从而可以证得结论.证明:∵AD⊥BC于D,EG⊥BC于G,(已知)∴∠ADC=∠EGC=90°,∴AD∥EG,(同位角相等,两直线平行).∴∠1=∠2,(两直线平行,内错角相等).∠E=∠3(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3,(等量代换).∴AD平分∠BAC.(角平分线的定义)23.(1)A1(4,7),B1(1,2),C1(6,4);(2)见解析;(3)19 2【解析】【分析】(1)根据平移的规律变化结合平面直角坐标系写出各点的坐标即可;(2)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;(3)利用△ABC所在的矩形的面积减去四周三个直角三角形的面积,列式计算即可得解.【详解】(1) 观察图形可知点A(-2,2),点B(-5,-3),点C(0,-1),所以将三角形ABC向右平移5个单位长度,再向上平移3个单位长度后所得对应点的坐标为:A1(3,5),B1(0,0),C1(5,2);(2)△A1B1C1如图所示;(3)△ABC的面积=5×5-12×5×2-12×2×3-12×3×5=25-5-3-7.5=25-15.5=9.5.【点睛】本题考查了利用平移变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.24.证明见解析.【分析】由∠1=∠2,得BD∥CE,所以∠4=∠E,又∠3=∠E,所以∠3=∠4,可得AD∥BE.【详解】证明:∵∠1=∠2,又∵∠3=∠E,∴BD∥CE,∴∠3=∠4,∴∠4=∠E,∴AD∥BE.【点睛】本题考核知识点:平行线的判定.解题关键点:理解平行线的判定.25.(1)-2<a≤3.(2)5;(3)a=-1.【解析】【分析】(1)求出不等式组的解集即可得出关于a的不等式组,求出不等式组的解集即可;(2)根据a的范围去掉绝对值符号,即可得出答案;(3)求出a<-12,根据a的范围即可得出答案.【详解】解:(1)713x y ax y a+=-⎧⎨-=+⎩①②∵①+②得:2x=-6+2a,x=-3+a,①-②得:2y=-8-4a,y=-4-2a,∵方程组713x y ax y a+=-⎧⎨-=+⎩的解x为非正数,y为负数,∴-3+a≤0且-4-2a<0,解得:-2<a≤3;(2)∵-2<a≤3,∴|a-3|+|a+2|=3-a+a+2=5;(3)2ax+x>2a+1,(2a+1)x>2a+1,∵不等式的解为x<1∴2a+1<0,∴a<-12,∵-2<a≤3,∴a的值是-1,∴当a为-1时,不等式2ax+x>2a+1的解为x<1.【点睛】本题考查了解方程组和解不等式组的应用,主要考查学生的理解能力和计算能力,题目比较好.。