高三理科数学周测题
最新河北省届高三理科数学一轮复习考试试题精选(1)分类汇编10:数列

河北省 2014 届高三理科数学一轮复习考试一试题优选(1)分类汇编 10:数列一、选择题1.(河北省唐山一中2014届高三第二次调研考试数学(理)试题)数列 { a n } 的前n 项和为S n n2n1, b n(1) n a n (n N * ) ,则数列 {b n } 的前50项的和为()A. 49B.50C. 99D. 100【答案】 A2.(河北省衡水中学2014届高三上学期二调考试数学(理)试题)设 S n是等差数列{ a n}的前n项和, S53(a2a8 ) ,则a5的值为()a31B.13D5A.3C66. 5.【答案】 D3.(河北省唐山市 2014届高三摸底考试数学(理)试题)设等差数列 {a n} 的前 n 项和为 S n, 且 S5=13,S 15=63,20()则 S =A. 100B.90C. 120D. 110【答案】 B4 .(河北省衡水中学 2014 届高三上学期三调考试数学(理)试题)设S n是公差不为0 的等差数列{ a n}的前 n 项和 , 且S1, S2, S4成等比数列 , 则a2的值为()a1A. 1 B . 2C. 3D. 4【答案】 C5.(河北省邯郸市 2014届高三上学期摸底考试数学(理)试题)在等比数列 a n中, a5a113, a3a134,则a12()2A. 3 B .31D.3或1 C.3 或3 3【答案】 C6.(河北省邯郸市武安三中2014届高三第一次摸底考试数学理试题)数列 a n是首项为1,且公比q 0的等比数列 ,S n是a n的前 n1的前 5 项和为项和, 若9S3S6, 则数列()a nA.15B . 5C.31D.15 181616【答案】 C7.(河北省保定市八校结合体2014届高三上学期第一次月考数学(理科)试题)在等差数列中,a 1+a = 16,则 a等于()53A. 8 B .4 C .-4D. -8【答案】 A8.(河北省张家口市蔚县一中2014届高三一轮测试数学试题)已知 { a } 为等差数列,其前 n 项和为 S ,n n 若 a36, S312 ,则公差d等于()A.15C.2D.3 B .3【答案】 C9 .(河北省衡水中学 2014届高三上学期二调考试数学(理)试题)已知等比数列a n的公比 q 2 ,且2a4 , a6 ,48 成等差数列,则 a n的前 8项和为()A. 127B.255C. 511D. 1023【答案】 B10.(河北省张家口市蔚县一中2014届高三一轮测试数学试题)等比数列 { a n } 中,已知对随意自然数n , a1a2a3a n2n1,则a12a22a32a n2等于()A.(2n1) 2 B .1(2n1)C.4n1D.1(4n1) 33【答案】 D11.(河北省邯郸市武安三中2014 届高三第一次摸底考试数学理试题)设等差数列a n的前 n 项和为 S n,若 a2a815 a5,则 S9等于()A. 45B.60C.36D.18【答案】 B12.(河北省张家口市蔚县一中2014届高三一轮测试数学试题)若数列{an}知足:存在正整数T,关于任意正整数 n 都有an Tan 成立,则称数列{an}为周期数列,周期为T.已知数列 {a n} 满足a n1,a n,1a n 1 =10a n 1.0) ,,a1m (m a n则以下结论中错误的是()..A.若m4, 则a535B a3 2 ,3C.若m2 ,则数列{ an}是周期为3的数列D.m Q且m2 ,数列{ an}是周期数列【答案】 D13 .(河北省衡水中学2014届高三上学期二调考试数学(理)试题)已知数列为等比数列, 且 .a5 4,a964,则=()A.8 B .16C. 16D.8【答案】 C14.(河北省张家口市蔚县一中2014 届高三一轮测试数学试题)在首项为 57, 公差为5的等差数列a n 中, 最靠近零的是第 ( )项 .()A. 14B.13C. 12D. 11【答案】 C15.(河北省保定市 2014届高三 10月摸底考试数学(理)试题)设a n为等差数列, 且a3 a7 a10 2, a11 a47,则数列a n的前13项的和为S13()A. 63B.109C. 117D. 210【答案】 C提示 : ∵a3 +a7-a 10+ a 11— a4=9, ∴a7=9, ∴S13=13 a 7=117二、填空题16.(河北省唐山市2014 届高三摸底考试数学(理)试题)已知数列 {a n} 知足 a1=0,a 2=1, a n23an 12a n,则{a n} 的前 n 项和 S n=_______________.【答案】 2n n117.(河北省衡水中学 2014届高三上学期二调考试数学(理)试题)在等比数列 a n中,若a7 a8a9a1015 ,a8a99, 则1111___________.88a7a8a9a10【答案】5 318.(河北省唐山一中 2014届高三第二次调研考试数学(理)试题)数列 a n 中 , a15,a n2a n 1 2n1(n N, n2),若存在实数,使得数列a n为等差数列 , 则2n =_________.【答案】119.(河北省保定市2014届高三 10 月摸底考试数学(理)试题)已知数列 a n是各项均为正数的等比数优选文档列, 若a 22, 2a 3 a 4 16 , 则 a n ______________.【答案】 2n 1 ; 三、解答题20.( 河北省邯郸市 2014 届高三上学期摸底考试数学(理)试题) 在等差数列a n 中 , a 2 6,S 4 20 .(1) 求数列a n的通项公式 ;(2) 设 b n2 (nN * ),T n b 1 b 2Lb n (n N * ) , 求 T n .n(12 a n )【答案】设a 1 d6a n 的公差为 d , 由题意得6d204a 1a 8解得{ d 12得: a n 8 2( n 1) 10 2n.(2) ∵ b n2 1n(12 a n )n(n 1)∵ b n1 1nn1T nb 1 b 2 b 3b n (1 1) (1 1)(11 ) n n2 2 3nn 1121.(河北省衡水中学2014届高三上学期三调考试数学(理)试题)已知函数 f (x)x 3 mx 在 (0,1)上是增函数 ,( Ⅰ) 实数 m 的取值会合为 A, 当 m 取会合 A 中的最小值时 , 定义数列 { a n } 知足a 1 3, 且 a n 0, a n 13 f a nn} 的通项公式 ;9 , 求数列 {a ( Ⅱ) 若 b nna n , 数列 { b n } 的前 n 项和为 S n , 求证 : S n 3.由题意得 f ′(x)= ﹣ 3x 2+m,4【答案】解 :(1)∵ f (x)= ﹣ x 3 +mx 在 (0,1) 上是增函数 , ∴f ′(x)= ﹣ 3x 2+m ≥0在(0,1) 上恒建立 , 即m ≥ 3x 2, 得 m ≥3,故所求的会合 A 为[3,+ ∞); 因此 m=3,∴f ′(x)= ﹣ 3x 2+3,∵ ,an>0, ∴ ∴数列 {an} 是以 3 为首项和公比的等比数列(2) 由 (1) 得,bn=na n =n?3n,=3an, 即, 故 an=3n;=3,234n②3Sn=1?3 +2?3 +3?3 ++n?3 +1①﹣②得 , ﹣2Sn=3+32+33 ++3n ﹣n?3 n +1= ﹣n?3n+1化简得 ,Sn=>22.(河北省保定市 2014届高三 10月 摸 底 考 试 数 学 ( 理 ) 试 题 ) 已 知 数 列 a n , 满 足1 a n n 为偶数 , 5an 12 a 4, 若 b na2n 11(b n0) .a n为奇数21n(1) 求 a 1 ;(2) 求证 :b n 是等比数列 ;(3) 若数列 a n 的前 n 项和为 S n , 求 S 2n .51 为偶数【答案】 (1) 解: ∵, a n2 a n , na 412a n, 为奇数1 n∴ a 35 13, ∴ a 23, ∴ a 122 2b na2 n 1(2) 证明 :a2n 3bn 111 a2n2 1121a2 n1,21 2故数列 { b n } 是首项为 1, 公比为 1 的等比数列2( 1 )n 1(3) 解: ∵ b na2 n 11 , ∴ a 2n 11 (a 1 1)(1 )n 12 即 a 2n1121 (11)1∴a 1a 3 La2 n 1 2n n=2-1-1n12n2又∵ a 2 a 1 1,a 4a 3 1,La2 na2 n 11 10分∴S2n2(a 1 a 3a 2n 1 )n 413n( 张军红命制 )2n 223.(河北省保定市 2014 届高三 10月 摸 底 考 试 数 学 ( 理 ) 试 题 ) 已 知 数 列 a n中, a 24, a n 1an2( n N * ) , 其前 n 项和为 S n ,(1) 求数列 a n的通项公式 ;(2)1, 求数列b n的前 n 项和为 T n.令 b nS n【答案】解 : (1)由于 a n 1a n 2(n N * ) ,因此数列a n的公差d=2又a2 4因此 a n2n(2)易得 S n= n2n111因此 b n1) n n1n(n因此T n11=nn 1n124 .(河北省容城中学2014届高三上学期第一次月考数学(理)试题)已知数列 {a n} 的前 n 项和S n1n2kn (此中 k N*),且S的最大值为8.2n(1)确立常数 k, 求 a n.9 2a n的前 n 项和 T n.(2) 求数列2n【答案】 (1) 当n k N * 时,S n1n2kn取最大值,即 8 S k1k2k21k2,22225.(河北省张家口市蔚县一中2014 届高三一轮测试数学试题)已知二次函数 f ( x)px2qx( p 0) ,其导函数为 f (x) 6x 2 ,数列{ a n}的前n项和为S n,点 (n, S n )( n N * ) 均在函数y f (x) 的图像上.(1)求数列 { a n } 的通项公式;(2) 若c n 1(a n 2), 2b1 22 b2 23 b3 L2n b n c n,求数列{ b n}的通项公式. 3【答案】26.(河北省保定市八校结合体2014 届高三上学期第一次月考数学(理科)试题)设 a n是公差不为零的等差数列 , S n为其前n项和 , 知足a22a32a42a52,S7 7.(1)求数列 a n的通项公式及前n项和 S n;(2)试求全部的正整数 m ,使得amam 1为数列 a n中的项. am 2【答案】 [ 分析 ]本小题主要考察等差数列的通项、乞降的相关知识, 考察运算和求解的能力. 满分 14分.( 1) 设公差为 d ,则 a22a52a42a32, 由性质得3d (a4a3 ) d (a4a3 ) ,由于 d0 ,所以a4a30,即2a15d 0,又由S77 得7a17 6d 7 ,解得2a1 5 ,d2,(2)amam 1=(2 m7)(2 m5),设2m3t ,am 22m3(方法一)则 a m a m 1= (t4)(t2)t86,因此为 8的约数a m2t t( 方法二 ) 由于amam 1(am 24)( a m 2 2)a m 268为数列a n中的项, a m 2a m 2a m 2故8为整数 , 又由 (1)知: a m 2为奇数 , 因此a m 22m31,即m 1,2 a m+2经查验 ,切合题意的正整数只有m 227 .(河北省衡水中学2014届高三上学期二调考试数学(理)试题)数列 {a n}的前n项和为n,且Sn*S=n( n+1)( n∈N).(1)求数列 { a n} 的通项公式 ;(2)若数列 {b1b2+b3++ nb nn}的通项公式; n}知足: n=+23,求数列{b a3+1 3+ 1 3+ 1 3+ 1ba b*n n(3)令 c n=4( n∈N), 求数列 { c n} 的前n项和T n.【答案】28 .(河北省张家口市蔚县一中2014届高三一轮测试数学试题)已知为两个正数, 且, 设当,时,.( Ⅰ) 求证 : 数列是递减数列,数列是递加数列;(Ⅱ)求证 :;( Ⅲ) 能否存在常数使得对随意, 有, 若存在 , 求出的取值范围;若不存在,试说明原因 .【答案】( Ⅱ)证明:.(Ⅲ)解: 由, 可得.若存在常数使得对随意,有,则对随意,.即对随意建立 .即对随意建立.设表示不超出的最大整数,则有.即当时 ,.与对随意建立矛盾.因此 , 不存在常数使得对随意, 有29.(河北省唐山一中2014届高三第二次调研考试数学(理)试题)设等比数列a n的前n项和为S n,已知 a n 12S n2( n N ) .( Ⅰ) 求数列a n的通项公式;优选文档( Ⅱ) 在a n与a n 1之间插入n个数 , 使这n 2 个数构成公差为d n的等差数列,设数列1的前 n 项和d nT n,证明:T n 15. 16【答案】解 ( Ⅰ) 由an 12S n*得 a n 2S n2( n*2(n N )1N, n 2 ),两式相减得 : a n 1a n2a n,即 a n 1*, n2), 3a n (n N∵ { a n } 是等比数列,因此 a23a1,又 a2 2a1 2,则 2a1 2 3a1,∴ a1 2 ,∴ a n2g3n 1( Ⅱ) 由 (1) 知a n 12g3n , a n2g3n 1∵ a n 1 a n (n 1)d n,∴d n43n 1n ,11111令 T nd2d3,d1d n则 T n234+n1①430 4 31 4 324g3n11T n 23n n1②3 4 31 4 324g3n 14g3n①-②得2T n 2111n 134g304g314g324g3n 14g3n11 1 13(13n 1 )n 1 5 2n 51n n 24 4 388 313g gT n 152n515 1616g3n 116优选文档。
2023届陕西省渭南市高三下学期教学质量检测(Ⅰ)理科数学试题(解析版)

【答案】A
【解析】
【分析】根据线线平行可得 或其补角是异面直线 与 所成的角,利用三角形三边关系,由余弦定理即可求解.
【详解】如图,在棱 上取一点 ,使得 ,取 的中点 ,连接 , ,
由于 分别是棱 的中点,所以 ,故四边形 为平行四边形,进而 ,
又因为 是 的中点,所以 ,所以 ,则 或其补角是异面直线 与 所成的角.
A. B. C. D.
【答案】B
【解析】
【分析】设人交谈时的声强为 ,从而得到 ,求出火箭发射时的声强为 ,代入解析式求出答案.
【详解】设人交谈时的声强为 ,则火箭发射时的声强为 ,
则 ,解得: ,
则火箭发射时的声强为 ,将其代入 中,得:
,故火箭发射时的声强级约为 .
故选:B
6.如图,在直三棱柱 中, ,且 分别是棱 的中点,则异面直线 与 所成角的余弦值是()
【详解】对②:由 ,可得 ,则 ( 与 为常数),
令 ,则 ,所以 ,则 ,
故 关于直线 对称,②正确;
对①:∵ 为偶函数,则 ,
∴ ,则 为奇函数,
故 ,即 ,则 是以4为周期的周期函数,
由 ,令 ,则 ,可得 ,
故 ,①正确;
由 ,令 ,则 ,即 ,
令 ,则 ,即 ,
故 ,则 ,
对③:由 ,即 ,则 ,
【答案】(1)证明见解析
(2)
【解析】
【分析】(1)先证四边形CDNM为平行四边形,进而可得CM//DN,又中位线定理得GF//DN,则GF//CM,再由线面平行的判定定理即可证结论.
(2)过B作BH⊥AC交AC于H,由多面体ABCDE体积最大得BH最大,可知 , 为 的中点,从而建立空间直角坐标系,求面ABE与面DBE的法向量,应用空间向量夹角的坐标表示即可求二面角A BE D的正弦值.
河北省衡水金卷2025届高三数学12月第三次联合质量测评试卷理含解析

河北衡水金卷2024—2025年度高三第三次联合质量测评数学(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知复数z满意,则复数z在复平面内对应的点所在象限为A. 第一象限B. 其次象限C. 第三象限D. 第四象限【答案】D【解析】复数满意,∴,则复数在复平面内对应的点在第四象限,故选D.2.已知全集,集合为A. B. C. D.【答案】B【解析】【分析】化简集合A、B,利用补集与交集运算即可得到结果.【详解】因为,所以或.所以.故选B.【点睛】本题考查集合的交并补运算,考查不等式的解法,属于基础题.3.若命题p为:为A.B.C.D.【答案】C【解析】【分析】依据全称命题的否定为特称命题即可得到结果.【详解】依据的构成方法得,为.故选C.【点睛】全称命题的一般形式是:,,其否定为.存在性命题的一般形式是,,其否定为.4.朱世杰是历史上最宏大的数学家之一,他所著的《四元玉鉴》卷中“如像招数”五问中有如下问题:“今有官司差夫一千九百八十四人筑堤,只云初日差六十四人,次日转多八人,每人日支米三升”.其大意为“官府接连派遣1984人前往修筑堤坝,第一天派出64人,从其次天起先每天派出的人数比前一天多8人,修筑堤坝的每人每天分发大米3升”,在该问题中的1984人全部派遣到位须要的天数为A. 14B. 16C. 18D. 20【答案】B【解析】【分析】利用等差数列的通项公式及前n项和公式即可得到结果.【详解】依据题意设每天派出的人数组成数列,分析可得数列是首项.公差为8的等差数列,设1984人全部派遣到位须要n天,则.解得n=16.故选B.【点睛】本题考查等差数列的通项公式、前n项和公式的应用,考查推理实力与计算实力,属于基础题.5.如图所示,分别以正方形ABCD两邻边AB、AD为直径向正方形内做两个半圆,交于点O.若向正方形内投掷一颗质地匀称的小球(小球落到每点的可能性均相同),则该球落在阴影部分的概率为A. B.C. D.【答案】C【解析】【分析】计算正方形与阴影的面积,依据面积概型公式得到答案.【详解】法一:设正方形的边长为 2.则这两个半圆的并集所在区域的面积为,所以该质点落入这两个半圆的并集所在区城内的概率为.故选C.法二:设正方形的边长为2.过O作OF垂直于AB,OE垂直于AD.则这两个半圆的并集所在区域的面积为,所以该质点落入这两个半圆的并集所在区域的概率为,故选C.【点睛】解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事务的面积;几何概型问题还有以下几点简洁造成失分,在备考时要高度关注:(1)不能正确推断事务是古典概型还是几何概型导致错误;(2)基本领件对应的区域测度把握不准导致错误;(3)利用几何概型的概率公式时 , 忽视验证事务是否等可能性导致错误.6.已知定义在R上的函数满意:(1) ;(2) 为奇函数;(3)当时,图象连续且恒成立,则的大小关系正确的为A. B.C. D.【答案】C【解析】【分析】先明确函数的周期性、奇偶性与单调性,把问题转化为在上利用单调性比较大小的问题.【详解】因为,所以函数是周期为2的周期函数.又由为奇函数,所以有,所以函数为奇函数,又由当时,图象连续,且恒成立,得函数在区间(-1,1)内单调递增,而.所以.故选C.【点睛】本题综合考查了函数的图象与性质,涉及到周期性、单调性、对称性,利用单调性比较大小,解题关键如何把自变量转化到同一个单调区间上,属于中档题.7.一正方体被两平面截去部分后剩下几何体的三视图如图所示,则该几何体的表面积为A. B.C. D.【答案】B【解析】【分析】作出几何体的直观图,视察截去几何体的结构特征,代入数据计算.【详解】由题中条件及三视图可知该几何体是由棱长为2的正方体被平面截去了两个三棱锥后剩下的几何体,如图所示,该几何体的表面三角形有,,,,,,由对称性只需计算,的大小,因为,.所以该几何体的表面积为.故选B.【点睛】由三视图画出直观图的步骤和思索方法:1、首先看俯视图,依据俯视图画出几何体的直观图;2、视察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再依据三视图进行调整.8.如图所示,边长为2的正方形ABCD中,E为BC边中点,点P在对角线BD上运动,过点P 作AE的垂线,垂足为F,当最小时,A. B. C. D.【答案】D【解析】【分析】由图易知向量所成角为钝角,结合题意可知当最小时,即为向量在向量方向上的投影最小,确定点P的位置,从而得到结果.【详解】依题,由图易知向量所成角为钝角,所以,所以当最小时,即为向量在向量方向上的投影最小,数形结合易知点P在点D时,最小(如图所示),在三角形ADE中,由等面积可知,所以,从而.所以.故选D.【点睛】本题考查了平面对量数量积的定义及运算,向量的线性运算,考查了数形结合的思想,考查了计算实力,属于中档题.9.已知双曲线的左、右焦点分别为,左、右顶点分别为A、B,过点的直线与双曲线C的右支交于P点,且的外接圆面积为A. B. C. D.【答案】C【解析】【分析】由可知:,从而易得,利用正弦定理可得外接圆的半径,得到的外接圆面积.【详解】因为,所以,由已知得A(-1.0),B(1,0),(2,0),且,所以,在三角形ABP 中,由正弦定理得.,所以三角形APB的外接圆的面积为.故选C.【点睛】本题考查了双曲线的简洁几何性质,平面对量数量积的几何意义,正弦定理,考查了推理论证实力,计算实力,属于中档题.10.利用一半径为4cm的圆形纸片(圆心为O)制作一个正四棱锥.方法如下:(1)以O为圆心制作一个小的圆;(2)在小的圆内制作一内接正方形ABCD;(3)以正方形ABCD的各边向外作等腰三角形,使等腰三角形的顶点落在大圆上(如图);(4)将正方形ABCD作为正四棱锥的底,四个等腰三角形作为正四棱锥的侧面折起,使四个等腰三角形的顶点重合,问:要使所制作的正四棱锥体积最大,则小圆的半径为A. B. C. D.【答案】C【解析】【分析】设小圆的半径为,连OD.OH.OH与AD交于点M,表示正四棱锥的体积,利用导数探讨函数的最值,即可得到结果.【详解】设小圆的半径为,连OD.OH.OH与AD交于点M,则.因为大圆半径R=4,所以,在正四棱锥中,如图所示,.所以记,所以令,易知,时,取最大值,所以小圆半径为时,V最大。
广东省东莞市常平中学2012届高三9月月考理科数学试卷

常平中学高三理科9月月考试卷一.选择题(共8小题,每小题5分,在给出的四个选项中,只有一个是符合要求的) 1.设A 、B 是非空集合,定义A ×B ={B A x x ⋃∈且B A x ⋂∉},己知}20{≤≤=x x A , }0{≥=x x B ,则A ×B 等于 ( )A .(2,+∞)B .[0,1]∪[2,+∞) C .[0,1)∪(2,+∞) D .[0.1]∪(2,+∞) 2.复数2)13(ii z +-=在复平面上对应的点位于( ) A.第四象限 B.第三象限 C.第二象限 D.第一象限 3.圆O 1:0222=-x y x +和圆O 2: 0422=-y y x +的位置关系是( )A.外切 B.相离 C.相交 D.内切4.右面的程序框图输出S 的值为( )A. 62B. 126C. 254D. 510 5.设323log ,log 3,log 2a b c π===,则A. a b c >>B. a c b >>C. b a c >>D. b c a >>6.一物体A 以速度232v t =+(t 的单位:s ,v 的单位:m/s ),在一直线上运动,在此直线上在物体A 出发的同时,物体B 在物体A 的正前方8m 处以8v t =(t 的单位:s ,v 的单位:m/s )的速度与A 同向运动,设n s 后两物体相遇,则n 的值为( )A .3104+ B .210+ C .5 D .4 7. 若关于x 的不等式|x +2|+|x -1|<a 的解集为 φ,则a 的取值范围是 ( )A.(3,+∞)B.[)+∞,3C.(]3,∞- D )3,(-∞8.函数2(0)y x x =>的图象在点2(,)n n a a 处的切线与x 轴交点的横坐标为*1()n a n N +∈,若116a =,则数列{}n a 的通项公式为 ( )A .*()n a n n N =∈ B .5*2()n n a n N -=∈C .2*2()n n a n N -=∈D .)(2*3N n a n n ∈=+二.填空题(共6小题,每小题5分,其中9-13小题为必做题,14-15为选做题)9. 右图是一个几何体的三视图,根据图中数据,可得该几何体的体积是俯视图 正(主)视图 侧(左)视图 2 3 2 2开始1,0n S ==6?n ≤否2n S S =+1n n =+是输出S结束P FDEO10. 下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据.x 3 456y 2.53 4 4.5请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程是: ;已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.根据上面求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低 吨标准煤?(参考数值:3 2.543546 4.566.5⨯+⨯+⨯+⨯=,25.205.4,86654322222==+++)(用最小二乘法求线性回归方程系数公式1221ni ii ni i x y nx ybx nx==-=-∑∑ , ay bx =- ) 11.在平面直角坐标系xoy 中,不等式组⎪⎩⎪⎨⎧≤--≥+≤0201y x y x y 确定的平面区域为D ,在D 中任取一点),(b a P ,则P点满足1≤-b a 的概率为 。
陕西省宝鸡教育联盟2022-2023学年高三上学期教学质量检测(四)理科数学试题(解析版)

(1)证明: ;
(2)若 ,求 的面积.
【答案】(1)证明见解析
(2)
【解析】
【分析】(1)根据正弦定理角化边可证;
(2)先求得 ,再根据 计算面积.
【小问1详解】
证明:∵外接圆半径为 ,且 ,
∴ ,
由正弦定理得
,
;
∵ ,
∴当 时, ,
∴ ,
∴ ,
故等比数列 的公比q=3,
令n=1,得 ,
∴ ,
∴ ;
【小问2详解】
由题可知 ,
∴ ,
∵ ,
∴ .
19.已知函数 .
(1)求不等式 的解集;
(2)不等式 的最小值为 ,若 , 为正数,且 ,证明: .
【答案】(1) ;(2)证明见解析.
【解析】
【分析】(1)利用零点分段法去绝对值,由此求得不等式 的解集.
【答案】
【解析】
【分析】设出 , , ,结合题干条件得到 , ,从而求出四棱台的体积和外接球的体积,得到比值.
【详解】设 , , ,
因为以 为球心, 为半径的球与平面 相切,所以 ,
因为 是该四棱台的外接球球心,所以 ,即 ,
所以四棱台的体积 ,
且外接球 体积 ,则 .
故答案为: .
三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程及演算步骤.
由上知 ,有 (当且仅当 时取等号),
又有 ,(当且仅当 时取等号),
故有 .
【点睛】基本不等式的运用,常见的有 ,也即 ,要注意等号成立的条件.
20.如图,在四棱锥 中,底面 为直角梯形, 底面AB ,且 分别为 中点.
高考理科数学小题专题练习 (5)

横坐标缩短到原来的
1 2
倍,纵坐标不变,得到函数y=sin
2x+π2
的图象,再把所得函数的图象向左平移
π 12
个单位长度,可得函
数y=sin2x+1π2+π2=sin2x+23π的图象,即曲线C2.故选D.
第13页
6.(2019·广东省韶关市高考模拟)已知函数 f(x)=sinωx+π6
得tanθ=34或43.故选D.
第21页
10.(2019·安徽淮南一模)设α∈ 0,π2 ,β∈ 0,π4 ,且tanα=
1+cossi2nβ2β,则下列结论中正确的是(
)
A.α-β=π4
B.α+β=π4
C.2α-β=π4
D.2α+β=π4
第22页
答案 A
解析
tanα=
1+sin2β cos2β
=
(sinβ+cosβ)2 cos2β-sin2β
=
cosβ+sinβ cosβ-sinβ
=
1+tanβ 1-tanβ
=tan
β+π4
.因为α∈
0,π2
,β+
π 4
∈
π4,π2
,所以α=β+
π4,即α-β=π4.故选A.
第23页
11.(2019·山西晋城一模)已知函数f(x)=2sin ωx+π3 的图象的
一个对称中心为π3,0,其中ω为常数,且ω∈(1,3).若对任意的
实数x,总有f(x1)≤f(x)≤f(x2),则|x1-x2|的最小值是( )
π
A.1
B.2
C.2
D.π
第24页
答案 B
解析 因为函数f(x)=2sin ωx+π3 的图象的一个对称中心为
【2019最新】人教版高考理科数学一轮复习练习:阶段检测试题(四) Word版含解析
(C)42π(D)36π该几何体下半部分是高为的圆柱的一半,所以其体积为B.,βπ(D)16π22,所以x=π,所以旋转体一个几何体的三视图如图所示(B)(D)+2,该几何体由两个三棱锥组成A.)(C)③④(D)②④经正方体的表面,按最短路线爬行到达顶点由三视图知其直观图为两个圆台的组合体水面高度随时间变化的变化率先逐渐减小后逐渐增大)(A)1 (B)2-D)2-ABC,1=,BD==,AB=BC=AD=DC=,=,=1,(B) cm3(D) cm3中的虚线长为图,A.则该几何体的外接球的表面积为(D)由三视图知该几何体为四棱锥,分别是对应边的中点,的正方形,h=,R2=,B.为底面的中心(D)建立空间直角坐标系.设A(0,-1,0),B(0,1,0),S(0,0,),M(0, 0,),P(x,y,0),=(0,1,),=(x,y,-).ABCDA1B1C1D1的内切球(B)根据正方体的几何特征知每小题5分解析:由三视图可知,该几何体有两个面是直角三角形,如图,底面是正三角形,最大的面是边长分别为2,=2,=2的面,其面积为×2×=.答案:14.正△ABC与正△BCD所在平面垂直,则二面角ABDC的正弦值为.解析:取BC中点O,连接AO,DO,建立如图所示坐标系,设BC=1,则A(0,0,),B(0,-,0),D(,0,0).所以=(0,0,),=(0,,),=(,,0).设平面ABD的法向量为n=(x0,y0,z0),则·n=0,且·n=0,x0=1,的一个法向量n=(1,-,1).sin<n,>=.:已知函数轴围成的封闭图形绕x轴旋转一周.已知一个三棱锥的所有棱长均为,,AE==.R2=(-R)2+,即内切球的半径是.三、解答题ADEF;所成角的正弦值.EM=AD,则EO⊥平面ABCD,故以轴的正方向建立空间平面直角坐标系E(0,0,),A(3,0,0),C(-1,4,0),F(2,0,),所以=(3,0,-),=(-4,4,0),=(3,-4,).为平面EAC的法向量,则x=1,可得n=(1,1,),cos<,n>===,所成角的正弦值为EF;OEF所成角的正弦值.的边长为2,点E是xyz,O(0,0,1),G(,,0),=(0,1,-1),=(1,0,-1),=(,,-2).n=(1,1,1),==,与平面OEF.求直线PB与平面.于点M,连接FM.是平行四边形.E(0,0,0),B(3,0,0),P(0,0,m),C(3,2,0),F(,1,),的一个法向量为n=(x,y,z),由得z=1,得n=(0,-m,1).的一个法向量为cos<n,a>===.m=2.所成角.PBE==,.正三棱柱ABCA1B1C1底边长为2,E,F分别为BB1,AB的中点.(1)已知M为线段B1A1上的点,且B1A1=4B1M,求证:EM∥平面A1FC;(2)若二面角EA1CF所成角的余弦值为,求AA1的值.(1)证明:取B1A1中点为N,连接BN,则BN∥A1F,又B1A1=4B1M,N为B1A1的中点,则M为B1N的中点.所以EM为△BNB1中位线,则EM∥BN,所以EM∥A1F.因为EM⊄平面A1FC,A1F⊂平面A1FC,故EM∥平面A1FC.(2)解:如图,以F为坐标原点建立空间直角坐标系,设AA1=a.则F(0,0,0),A1(-1,0,a),E(1,0,),C(0,,0),=(-1,,-),=(0,,0),=(2,0,-),=(1,,-a).设平面A1CF法向量为m=(x,y,z),则取z=1,得m=(a,0,1).设平面A1EC法向量为n=(x1,y1,z1),取x1=a,得n=(a,a,4).设二面角EA1CF的平面角为,,=cos<m,n>==.a2=,AA1=.本小题满分所成角的正弦值为,求AD的长.ABCD,而AD⊂平面ABCD,平面PBD,所以AD两两互相垂直轴建立如图所示的空间直角坐标系BDC=可得A(λ,,0),P(0,0,4),,0,-4),=(-,,0),=(0,0,4).由题意可得y=3,则x=4,z=0,得平面PCD的一个法向量22.(本小题满分四边形ABCD为矩形在棱DF上..所以AF⊥B(1,0,0),E(,0,1),P(0,1,),C(1,2,0),=(-,0,1),=(-1,-1,),==,.ADF,所以平面ADF的一个法向量n1==(1,0,0).,=(0,,),=(1,2,0).|==..。
高中数学题 2023年陕西省宝鸡市高考数学模拟试卷(理科)(一)
2023年陕西省宝鸡市高考数学模拟试卷(理科)(一)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.A .{-2,-1,0,1,2}B .{0,1,2}C .{-2,-1,1,2}D .{1,2}1.(5分)已知集合A ={x |y =lgx },B ={-2,-1,0,1,2},那么A ∩B 等于( )A .1B .2C .2D .42.(5分)已知复数z =1−i 1+i,则|z |=( )√A .y =±12x B .y =±2x C .y =±22x D .y =±2x3.(5分)双曲线2x 2-y 2=1的渐近线方程是( )√√A .甲检测点的平均检测人数多于乙检测点的平均检测人数B .甲检测点的数据极差大于乙检测点的数据极差C .甲检测点数据的中位数大于乙检测点数据的中位数D .甲检测点数据的方差大于乙检测点数据的方差4.(5分)最早发现于2019年7月的某种流行疾病给世界各国人民的生命财产带来了巨大的损失.近期某市由于人员流动出现了这种疾病,市政府积极应对,通过3天的全民核酸检测,有效控制了疫情的发展,决定后面7天只针对41类重点人群进行核酸检测,下面是某部门统计的甲、乙两个检测点7天的检测人数统计图,则下列结论不正确的是( )A .25B .32C .3D .55.(5分)已知正四棱柱ABCD -A 1B 1C 1D 1的底面边长为2,侧棱长为4,则异面直线AC 与DC 1所成角的正切值为( )√√√A .π6B .π3C .2π3D .5π66.(5分)已知向量m ,n 满足(2m −3n )⊥n ,且|m |=3|n |,则m ,n 夹角为( )→→→→→→√→→→A .−43B .43C .−247D .2477.(5分)已知α∈(0,π),sinα−cosα=15,则tan 2α=( )二、填空题,本题共4小题,每小题5分,共20分.A .[12,34]B .[34,32]C .[1,2]D .[32,2]8.(5分)椭圆C :x 24+y 23=1的左、右顶点分别为A 1,A 2,点P 在C 上,且直线PA 2斜率取值范围是[−1,−12],那么直线PA 1斜率取值范围是( )A .①②B .①③C .①④D .①②③9.(5分)已知等差数列{a n }满足a 4+a 7=0,a 5+a 8=-4,则下列命题:①{a n }是递减数列;②使S n >0成立的n 的最大值是9;③当n =5时,S n 取得最大值;④a 6=0,其中正确的是( )A .(0,2]B .(0,4]C .[2,+∞)D .[4,+∞)10.(5分)已知直线y =mx +n (m ≥0,n >0)与圆(x -1)2+(y -1)2=1相切,则m +n 的取值范围是( )A .3B .4C .5D .611.(5分)11+2+13+4+15+6+⋯+199+100的整数部分是( )√√√√√√√√A .2B .4C .6D .812.(5分)已知函数f (x )=ax 3+bx 2+cx +d (a ≠0)满足f (x )+f (2−x )=2,g (x )=x x −1,若函数y =f (x )与y =g (x )的图像恰有四个交点,则这四个交点的横坐标之和为( )13.(5分)若(x 2-1x )6的展开式中的常数项是 .√14.(5分)命题“∃x ∈R ,ax 2-2ax +1≤0”为假命题,则实数a 的取值范围是 .15.(5分)七巧板是古代劳动人民智慧的结晶.如图是某同学用木板制作的七巧板,它包括5个等腰直角三角形、一个正方形和一个平行四边形.若用四种颜色给各板块涂色,要求正方形板块单独一色,其余板块两块一种颜色,而且有公共边的板块不同色,则不同的涂色方案有 种.16.(5分)在棱长为1的正方体ABCD -B 1C 1D 1中,M 是侧面BB 1C 1C 内一点(含边界)则下列命题中正确的是(把所有正确命题的序号填写在横线上) .①使AM =2的点M 有且只有2个;②满足AM ⊥B 1C 的点M 的轨迹是一条线段;√三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分,作答时请先涂题号.[选修4-4:坐标系与参数方程][选修4-5:不等式选讲](本小题满分0分)③满足AM ∥平面A 1C 1D 的点M 有无穷多个;④不存在点M 使四面体MAA 1D 是鳖臑(四个面都是直角三角形的四面体).17.(12分)已知向量m =(3sinx ,cosx ),n =(cosx ,−cosx ),定义函数f (x )=m ⋅n −12.(1)求函数f (x )的最小正周期;(2)在△ABC 中,若f (C )=0,且AB =3,CD 是△ABC 的边AB 上的高,求CD 长的最大值.√18.(12分)如图在四棱锥P -ABCD 中,PA ⊥底面ABCD ,且底面ABCD 是平行四边形.已知PA =AB =2,AD =5,AC =1,E 是PB 中点.(1)求证:平面PBC ⊥平面ACE ;(2)求平面PAD 与平面ACE 所成锐二面角的余弦值.√19.(12分)已知点A (x 0,-2)在抛物线C :y 2=2px (p >0)上,且A 到C 的焦点F 的距离与到x 轴的距离之差为12.(1)求C 的方程;(2)当p <2时,M ,N 是C 上不同于点A 的两个动点,且直线AM ,AN 的斜率之积为-2,AD ⊥MN ,D 为垂足.证明:存在定点E ,使得|DE |为定值.20.(12分)甲、乙两个代表队各有3名选手参加对抗赛.比赛规定:甲队的1,2,3号选手与乙队的1,2,3号选手按编号顺序各比赛一场,某队连赢3场,则获胜,否则由甲队的1号对乙队的2号,甲队的2号对乙队的1号加赛两场,胜场多者最后获胜(每场比赛只有胜或负两种结果),已知甲队的1号对乙队的1,2号选手的胜率分别是0.5,0.6,甲队的2号对乙队的1,2号选手的胜率都是0.5,甲队的3号对乙队的3号选手的胜率也是0.5,假设每场比赛结果相互独立.(1)求甲队仅比赛3场获胜的概率;(2)已知每场比赛胜者可获得200个积分,求甲队队员获得的积分数之和X 的分布列及期望.21.(12分)已知函数f (x )=m (x +1)e x (m >0),g (x )=2lnx +x +1.(1)求曲线y =g (x )在点(1,g (1))处的切线方程;(2)若函数y =f (x )的图像与y =g (x )的图像最多有一个公共点,求实数m 的取值范围.22.(10分)在直角坐标系xOy 中,曲线C 1的参数方程为V Y Y Y W Y Y Y X x =t +2t ,y =t −2t(t 为参数).以O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为θ=π3(ρ∈R ).(1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)求曲线C 1的任意一点到曲线C 2距离的最小值.23.已知a>b>c>0,求证:(1)1a−b +1b−c≥4a−c;(2)a2a b2b c2c>a b+c b c+a c a+b.。
河南省开封市等2地学校2022-2023学年高三下学期普高联考测评(六)理科数学试题
河南省开封市等2地学校2022-2023学年高三下学期普高联考测评(六)理科数学试题
学校:___________姓名:___________班级:___________考号:___________
【分析】先作出可行域,令z x y =+,根据截距的变化可得目标函数的最大值.【详解】不等式组表示的可行域如图所示,为ABC V 及其内部的阴影区域,且
()()()0,1,1,0,2,3A B C ,
令z x y =+,则y x z =-+,当直线y x z =-+经过点C 时,z 取得最大值5.故答案为:515.π
【分析】根据正方体的性质求出外切球的球心及半径,结合球的性质即可求解截面面积的最小值.
【详解】正方体的外接球球心O 为体对角线1AC 的中点,连接OM ,1BC ,
过点M 且与OM 垂直的平面截得外接球的小圆面积是最小的,
因为1//OM BC ,1AB BC ^,所以OM AB ^,且,A B 两点都在外接球的表面上,。
四川省内江市2023届高三第三次模拟考试数学(理科)试题
r
3,且 a
rr a 2b
,则向量
r a
在向量
r b
上的投影为__________.
14.若 (x a)5 2 x3 的展开式的各项系数和为 32,则该展开式中 x4 的系数是______.
15.甲、乙两人下围棋,若甲执黑子先下,则甲胜的概率为 2 ;若乙执黑子先下,则乙
3
胜的概率为 1 .假定每局之间相互独立且无平局,第二局由上一局负者先下,若甲、乙
23.已知函数 f x 2x 4 x2 a ( x R ).
(1)若 a 1,求证: f x 4 ;
(2)若对于任意 x 1, 2 ,都有 f x 4 ,求实数 a 的取值范围.
试卷第 5 页,共 5 页
存在,请说明理由.
21.如图,曲线 C1 是以原点 O 为中心, F1 、 F2 为焦点的椭圆的一部分,曲线 C2 是以O
为顶点、F2 为焦点的抛物线的一部分,A 是曲线 C1 和 C2 的一个交点,且 AF2F1 为钝角,
AF1
7, 2
AF2
5. 2
(1)求曲线 C1 和 C2 所在椭
2.已知全集U R ,M x∣x2 4x 3 0 ,N x∣log2 x 1 ,则 ðU(M N ) ( )
A. (,0]U(3, )
B. (,3)
C. (,1) U(3, )
D. (3 )
3.空气质量指数是评估空气质量状况的一组数字,空气质量指数划分为 [0,50)、[50,100)、[100,150)、[150,200)、[200,300) 和[300,500) 六档,分别对应“优”、“良”、“轻
日影便会投影在圭面上,圭面上日影长度最长的那一天定为冬至,日影长度最短的那一