电磁场三类边界条件
电磁场的边界条件

将⑧代入⑨,得: sin 2 cos 1 sin 1 cos 2 sin(1 2 ) rs sin 2 cos 1 sin 1 cos 2 sin(1 2 )
2n1 cos 1 ts n1 cos 1 n2 cos 2
对绝大多数物质, 1 2
所以得到方程:
E1 y z E1' y z E2 y z
z 0
⑥
代入边界条件,可得:
k1 cos 1 A1s k1' cos 1' A1' s k2 cos 2 A2 s
k1 k1' 整理得: cos 1 A1s cos 1' A1' s cos 2 A2 s k2 k2' k1 sin 2 将 代入上式,得: k2 sin 1
AB BC CD DA
针对麦克斯韦 方程组积分形 式的第三个与 第四个方程, 建立如左图模 型,积分可得
E2t CD ( E2 n DF E1n FA) 0
E1t E2t 同理可得 H1t =H 2t
电磁场边界条件
(1)电场强度E 在分界面上的平行分量连续。
从右图可以看出, 对于s光:
Ex 0 E y ES Ez 0
根据几何关系,可知:
k x k sin 1 , k y 0, k z k cos 1
对于单色平面光波: E0 e E
i[t ( k x x k y y k z z )]
将上面的结论带 i[1t ( k sin 1 x k cos1 z )] E E0 e 入方程可得: 对于s光,可以分解为:
i ( k2 sin 2 x )
2.7电磁场的边界条件解析

第2章
电磁场的基本规律
1
2.7 电磁场的边界条件
en
媒质1 媒质2
• 什么是电磁场的边界条件?
et
实际电磁场问题都是在一定的物理空
间内发生的,该空间中可能是由多种不同
媒质组成的。边界条件就是不同媒质的分 界面两侧的电磁场物理量满足的关系。
中国矿业大学
电磁场与电磁波
第2章
电磁场的基本规律
将上式对时间 t 积分,得
1 2 7 8 H1 ( z, t ) ey [2 10 cos(15 10 t 5 z ) 107 cos(15 108 t 5 z)] A/m 0 3
中国矿业大学
电磁场与电磁波
第2章
电磁场的基本规律
14
同样,由 E2 2 H 2 ,得 t 4 H 2 ( z, t ) ey 107 cos(15 108 t 5 z ) A/m 30 (3)z = 0 时
tg1 1 同理可证: tg 2 2
E1 sin 1 E2 sin 2 tg1 1 tg 2 2
中国矿业大学
电磁场与电磁波
第2章
电磁场的基本规律
10
2. 理想导体表面上的边界条件 理想导体:电导率为无限大的导电媒质 特征:理想导体内没有电磁场 设媒质2为理想导体,则E2=D2=H2=B2=0 则理想导体表面上的边界条件为:
则得:
D1z -D2 z z 0 =0
D1z
z 0
D2 z
D1z
z 0
0 (3 z )
z 0
3 0 z 0
3 0 3 E1z z 0 z 0 z 0 1 5 0 5 3 最后得到: E1 ( x, y,0) ex 2 y e y 5 x ez 5 D1 ( x, y,0) ex10 0 y e y 25 0 x ez 3 0
(完整版)电磁场的边界条件

电磁场的边界条件姓名:学号:专业:班级:提交日期:桑薇薇0990*******通信工程电工 1401 2016.5.28成绩:电磁场的边界条件1.引言2.边界条件分类3.边界条件的作用4.结束语5.参考文献1. 引言在两种不同媒质的分界面上,场矢量E,D,B,H 各自满足的关系,称为电磁场的边界条件。
在实际的电磁场问题中, 总会遇到两种不同媒质的分界面 (例如: 空气与玻璃的分界面、导体与空气的分界面等) ,边界条件在处理电磁场问题中占据十分重要的地位。
2. 边界条件分类1、电场法向分量的边界条件如图 3.9 所示的两种媒质的分界面, 第一种媒质的介电常数、磁导率和电导率分别为1,1和1,第二种媒质的介电常数、磁导率和电导率分别为2,2和 2 。
在这两种媒质分界面上取一个小的柱形闭合面,图 3.9 电场法向分量的边界条件如图 3.9 所示,其高h 为无限小量,上下底面与分界面平行,并分别在分界面两侧, 且底面积 S 非常小,可以认为在 S 上的电位vv v移矢量 D和面电荷密度S是均匀的。
n 1 n 2分别为上下底面的外法线单位矢量, , 在柱形闭合面上应用电场的高斯定律? v vv v S v vSSD gdS n 1 gD 1 n 2 gD 2 SS故v v v vn 1gD 1 n 2 gD 2S(3.48a)vv vvv若规定 n 为从媒质Ⅱ指向媒质Ⅰ为正方向,则 n 1 n ,n2n,式 (3.48a) 可写为v vvng(D 1D 2 )S(3.48b)或D1nD2nS(3.48c)式 (3.48 ) 称为电场法向分量的边界条件。
vvv 因为 DE ,所以式 (3.48) 可以用 E 的法向分量表示v v v v1n 1gE 12 n 2 gE 2S(3.49a)或1E 1n2 E 2nS(3.49b)若两种媒质均为理想介质时, 除非特意放置, 一般在分界面上不存在自由面电荷,即S,所以电场法向分量的边界条件变为D1nD2n(3.50a)或1E1n 2E2 n(3.50b)若媒质Ⅰ为理想介质,媒质Ⅱ为理想导体时, 导体内部电场为零,即E2,D2,在导体表面存在自由面电荷密度,则式(3.48) 变为v vn 1 gD 1 D 1nS(3.51a)或1E1ns(3.51b)2 、电场切向分量的边界条件在两种媒质分界面上取一小的矩形闭合回路 abcd ,如图 3.10 所示,该回路短边 h 为无限小量,其两个长边为l ,且平行于分界面,并分别在分界面两侧。
电磁场的边界条件

磁感应强度B的边界条件
ÑS BgdS B1nS B2nS 0 1
n
B1
ΔS h
n•(B1-B2)=0
2
B2
2.7 电磁场的边界条件
第二章 电磁场的基本规律
电位移矢量D的边界条件
n•(D1-D2)=ρS
小结
在不同媒质的分界面两侧,电场强度的切向分 量和磁感应强度的法向分量总是连续的;若分 界面上不存在面电流和面电荷,则磁场强度的 切向分量和电位移矢量的法向分量是连续的
2.7 电磁场的边界条件
第二章 电磁场的基本规律
一、边界条件的一般形式 磁场强度H的边界条件 1 2
ÑC H gdl H1gl H2 gl JS gNl
l (N n)l
n H1 h
H2 Δl
n×(H1-H2)=JS
2.7 电磁场的边界条件
第二章 电磁场的基本规律
电场强度E的边界条件
n×(E1-E2)=0
2.7 电磁场的边界条件
第二章 电磁场的基本规律
二、理想导体表面上的边界条件
理想导体 E、D、B、H=0
n×H1=JS n×E1=0 n•B1=0 n•D1=ρS
n×(H1-H2)=JS n×(E1-E2)=0 n•(B1-B2)=0 n•(D1-D2)=ρS
电磁场的媒质边界条件

n H 2 H1 J l , 0
n
B2
B1
0
• 边界条件工程应用
利用边界条件能控制电磁场的分布和
电磁波的传播,从而实现电磁波的导行, 尤且是导体表面边界条件的应用。
3.导体表面的边界条件
n E 0,
2,2,2
n B 0
Jl n H S n D n :out
1根据导电特性对介质分类
• 介质的导电特性
J E D j E
t
1
tg
1 1
• 介质分类
理想介质和导电介质(导体)
2 电磁场的边界条件
•
边界条件
n
E2
E1
0
n
D2 D1
S,0
,n :1 2
1,1,1
E1 0, B1 const
二、电像法
以理想导体为边界的区域中,空间电磁场 可以看成是源电荷、电流激发场与导体表面 感应电荷,电流激发场(散射场)的叠加。 在一定条件下,散射场可以等效为位于导体 区域内等效像电荷、电流激发的场,等效像 电荷、电流的分布决定于导体的边界条件。 这种通过寻找像电荷电流求解空间区域电磁 场分布的方法称为镜像法。
1镜像法一个简单的用例来自(a)(b)上述两种情况左半区域的电场分布是完全相同的,
那么(a)中右侧负电荷和(b)中导体表面的感应电荷是 等效电荷源。(a)和(b)通过等效原理联系起来。
电磁场的媒质边界条件
• 边界条件问题的由来; • 什么是边界条件; • 边界条件如何求得; • 具体边界条件形式; • 边界条件工程应用。 一、电磁场的边界条件 二、电像法
电磁场的边界条件

1)理想介质是指电导率为无穷大的导体,2)电场强度和磁感应强度均为零。
3)表面上,一般存在自由电荷和自由电流。
设区域2为理想导体,区域1为介质,有 ,,均为零,得nD 2tE 2n B 2t H 2注意:理想介质和理想导体只是理论上存在。
在实际应用中,某些媒质的电导率极小或极大,则可视作理想介质或理想导体进行处理。
电磁场的边界条件可总结归纳如下:1)在两种媒质分界面上,如果存在面电流,使 H 切向分量不连续,其不连续量由式 确定若分界面上不存在面电流,则 H 的切向分量是连续的。
2)在两种媒质的分界面上,E 的切向分量是连续的。
3)在两种媒质的分界面上,B 的法向分量是连续的。
4)在两种媒质的分界面上,如果存在面电荷,使 D 的法向分量不连续,其不连续量由 确定。
若分界面上不存在面电荷,则D 的法向分量是连续的。
n B ⋅= 1Sn H J ⨯= t SH J =0n B =⇒1Sn D σ⋅=0t E =⇒⇒10n E ⨯=⇒n SD σ= 12()Sn H H J ⨯-=12()n D D σ⋅-=:积分形式:积分形式微分形式:微分形式:电磁场的基本方程和边界条件12()0n B B ⋅-=B ∇⋅= 积分形式:微分形式:积分形式:12()0n B B ⋅-=D ρ∇⋅= 0SB d S ⋅=⎰A SD d S q⋅=⎰A 微分形式:基本方程10n B ⋅= 12()n D D σ⋅-=12()0n D D ⋅-=10n D ⋅= 边界条件积分形式。
电磁场问题边界条件及求解
即 en (D1 D2 ) S
同理 ,由 B dS 0 S
或 D1n D2n S en (B1 B2 ) 0 或 B1n B2n
电磁场与电磁波
第 2 章 电磁场的基本规律
3
(2)电磁场量的切向边界条件
在介质分界面两侧,选取如图所示的小环路,令Δh →0,则由
C
H
dl
S
(
z ) sin(t
kx x)]
电磁场与电磁波
第 2 章 电磁场的基本规律
9
将上式对时间 t 积分,得
z
H (x, z,t)
H (x,z,t)
dt
ex
t πE0
0d
cos( π d
z) s
d
x
ez
kx E0
0
sin( π d
z) cos(t
kx x)
(A/m)
(2) z = 0 处导体表面的电流密度为
en
分界面上的电荷面密度
媒质1
媒质2
分界面上的电流面密度
电磁场与电磁波
第 2 章 电磁场的基本规律
5
1.2 两种常见的情况 1. 两种理想介质分界
面上的边界条件
在两种理想介质分 界面上,通常没有电 荷和电流分布,即JS =0、ρS=0,故
en
媒质 1 媒质 2
D、B的法向分量连续
en
媒质 1 媒质 2
界面上在的生分电突界解磁变面是场。两不矢为侧确量求介定满解质的足界的,的面本边关两征界系侧参条,电数件是磁发起在场生定不突解变的, 同媒质麦分克界问斯作面题韦用上必方,电须程才磁知组是场道的唯的电微一基磁分的本场形有属量式实性在则际。分失意界去义面意的义解,。
电磁场的边界条件
2区
o
试问关于1区中的 和 E能1 求得D出1 吗?
x
和
解。由根e据nE边1界(条E1件D,1 E只2能),求有得0边界面z=0 处的
1区 y
z
电介质与自由空间的 分界面
ez {ex E1x eyE1y ez E1z [ex 2 y ey 5x ez (3 z)]}z0
媒质1
en
(H 1
H
2
)
JS
en (E1 E2 ) 0
en en
( (
B1 D1
B2 ) 0
D2 )
S
分界面上的电荷面密度
媒质2
分界面上的电流面密度
2
边界条件的推证 (1) 电磁场量的法向边界条件
在两种媒质的交界面上任取一点P,作一 个包围点P的扁平圆柱曲面S,如图表示。
d
cos(
d
z) cos(t
kx x) ezkx
sin(
d
z)sin( t
kx x)]
12
将上式对时间 t 积分,得
H (x,z,t)
H (x,z,t) dt
t
z
ex
E0 0d
cos(
d
z) sin( t ykx xe)n
d
D
S
en
B
0
en en
E H
0
JS
理想导体表面上的电荷密度等于 的法向分D量 理想导体表面上 B的法向分量为0 理想导体表面上 E的切向分量为0 理想导体表面上的电流密度等于 H的切向分量
电磁场电磁场的媒质边界条件
ars
nr S S
环路围面法向
3 电场强度的关系
rr r nnErrr 2EElrrr 22aErrnrs1
rr
l 0,l
nr r
r E1
r as
nr
r as
0
rE1 0
n E2 n E1 0 E2t E1t
两种媒质界面处电场强度的切向分量相等 (无条件连续)
4 电通密度的关系
以理想导体为边界的区域中,空间电磁场 可以看成是源电荷、电流激发场与导体表面 感应电荷,电流激发场(散射场)的叠加。 在一定条件下,散射场可以等效为位于导体 区域内等效像电荷、电流激发的场,等效像 电荷、电流的分布决定于导体的边界条件。 这种通过寻找像电荷电流求解空间区域电磁 场分布的方法称为镜像法。
l r
Hr2
H1 l
r as
r
nr
Jrl ,
rH1
l
r
ars
as
r Jl
n
r as
n H2 n H1 Jl
H2t H1t J l
在两种媒质界面处,磁场强度的切向分量是 有条件连续的。
4 磁通密度的关系
nr
rr B2 B1
0 Bn2 Bn1 0
在两种媒质的界面处,磁通密度矢量的法向分量 无条件连续。
T? ? 1 f
3 理想导体内部的电磁场
• 理想导体内部不存在电场,只要电场不为 零,在电场的作用下就会有自由电荷分布, 另外导体内的电流密度会成为无穷大,这是 不符合物理的。
• 由麦克斯韦第二方程可得理想导体中的时变 磁场也必为零。
r E
0,
r B
0,
r
Bt
r B
时变电磁场的边界条件
时变电磁场的边界条件
1、在任何边界上电场强度的切向分量是连续的(条件:磁感应强度的变化率有限)
2、在任何边界上,磁感应强度的法向分量是连续的
3、电通密度的法向分量边界条件与媒质特性有关。
两种理想介质形成的边界上,电通密度的法向分量是连续的
4、磁场强度的切线分量边界条件也与媒质特性有关。
在一般边界上,磁场强度的切向分量是连续的(条件:电通密度的时间变化率有限)。
但在理想导电体表面上可以形成表面电流,此时磁场强度的切向分量是不连续的
5、理想导体内部不可能存在电场,否则将会导致无限大的电流;理想导体内部也不可能存在时变磁场,否则这种时变磁场在理想导体内部会产生时变电场。
在理想导体内部也不可能存在时变的传导电流,否则这种时变的传导电流在理想导体内部会产生时变磁场。
所以,在理想导电体内部不可能存在时变电磁场及时变的传导电流,它们只可能分布在理想导电体的表面。
6、在任何边界上,电场强度的切向分量及磁感应强度的法向分量是连续的,因此理想导体表面上不可能存在电场切向分量及磁场法向分量,只可能存在法向电场及切向磁场,也就是说,时变电场必须垂直于理想导电体的表面,而时变磁场必须与其表面相切。
7、无源区中的正弦电磁场被其边界上的电场切向分量或磁场切向分量唯一地确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁场三类边界条件
电磁场三类边界条件
电磁场的边界条件是指在介质边界处,电场和磁场的变化情况。
根据边界条件的不同,可以将其分为三类:第一类边界条件、第二类边界条件和第三类边界条件。
下面将详细介绍这三类边界条件。
一、第一类边界条件
第一类边界条件也称为零法向电场和零切向磁场边界条件。
它是指在介质表面上,法向于表面的电场强度和切向于表面的磁感应强度均为零。
1. 零法向电场
在介质表面上,由于介质内部和外部存在不同的电荷分布情况,因此会产生一个法向于表面方向的电场。
而当这个电场穿过介质表面时,就会发生反射和折射现象。
为了描述这种现象,我们需要引入一个重要的物理量——法向于表面方向上的电通量密度。
根据高斯定理可知,在任意一个闭合曲面内部,通过该曲面的总电通
量等于该曲面所包围空间内部所有自由电荷之代数和。
因此,在介质表面附近,我们可以将其看作一个微小的闭合曲面。
则在该曲面上的电通量密度可以表示为:
$$
\vec{D_1}\cdot\vec{n}=\rho_s
$$
其中,$\vec{D_1}$表示介质1内部的电位移矢量,$\vec{n}$表示介质表面法向矢量,$\rho_s$表示表面自由电荷密度。
当我们将这个式子应用于介质表面时,可以得到:
$$
D_{1n}=\rho_s
$$
其中,$D_{1n}$表示介质1内部法向于表面方向上的电场强度。
由于介质表面上不存在自由电荷,因此$\rho_s=0$。
因此,在第一类边界条件下,法向于介质表面方向上的电场强度为零。
2. 零切向磁场
在介质表面上,由于介质内部和外部存在不同的磁场分布情况,因此会产生一个切向于表面方向的磁感应强度。
而当这个磁场穿过介质表面时,就会发生反射和折射现象。
为了描述这种现象,我们需要引入一个重要的物理量——切向于表面方向上的磁通量密度。
根据安培环路定理可知,在任意一个闭合回路上,通过该回路的总磁通量等于该回路所包围空间内部所有电流之代数和。
因此,在介质表面附近,我们可以将其看作一个微小的闭合回路。
则在该回路上的磁通量密度可以表示为:
$$
\vec{B_1}\cdot\vec{t}=0
$$
其中,$\vec{B_1}$表示介质1内部的磁感应强度矢量,$\vec{t}$表示介质表面切向矢量。
当我们将这个式子应用于介质表面时,可以得到:
$$
B_{1t}=0
$$
其中,$B_{1t}$表示介质1内部切向于表面方向上的磁场强度。
由于介质表面上不存在自由电流,因此$B_{1t}=0$。
因此,在第一类边界条件下,切向于介质表面方向上的磁场强度为零。
二、第二类边界条件
第二类边界条件也称为零法向磁场和零切向电场边界条件。
它是指在介质表面上,法向于表面的磁感应强度和切向于表面的电场强度均为零。
1. 零法向磁场
在介质表面上,由于介质内部和外部存在不同的电流分布情况,因此会产生一个法向于表面方向的磁场。
而当这个磁场穿过介质表面时,就会发生反射和折射现象。
为了描述这种现象,我们需要引入一个重要的物理量——法向于表面方向上的磁通量密度。
根据安培环路定理可知,在任意一个闭合回路上,通过该回路的总磁通量等于该回路所包围空间内部所有电流之代数和。
因此,在介质表面附近,我们可以将其看作一个微小的闭合回路。
则在该回路上的磁通量密度可以表示为:
$$
\vec{B_1}\cdot\vec{n}=0
$$
其中,$\vec{B_1}$表示介质1内部的磁感应强度矢量,$\vec{n}$表示介质表面法向矢量。
当我们将这个式子应用于介质表面时,可以得到:
$$
B_{1n}=0
$$
其中,$B_{1n}$表示介质1内部法向于表面方向上的磁场强度。
由于介质表面上不存在自由电流,因此$B_{1n}=0$。
因此,在第二类边界条件下,法向于介质表面方向上的磁场强度为零。
2. 零切向电场
在介质表面上,由于介质内部和外部存在不同的电荷分布情况,因此会产生一个切向于表面方向的电场。
而当这个电场穿过介质表面时,就会发生反射和折射现象。
为了描述这种现象,我们需要引入一个重要的物理量——切向于表面方向上的电通量密度。
根据高斯定理可知,在任意一个闭合曲面内部,通过该曲面的总电通量等于该曲面所包围空间内部所有自由电荷之代数和。
因此,在介质表面附近,我们可以将其看作一个微小的闭合曲面。
则在该曲面上的电通量密度可以表示为:
$$
\vec{D_1}\cdot\vec{t}=\sigma_s
$$
其中,$\vec{D_1}$表示介质1内部的电位移矢量,$\vec{t}$表示介质表面切向矢量,$\sigma_s$表示表面自由电荷密度。
当我们将这个式子应用于介质表面时,可以得到:
$$
D_{1t}=\sigma_s
$$
其中,$D_{1t}$表示介质1内部切向于表面方向上的电场强度。
由于介质表面上存在自由电荷,因此$D_{1t}\neq0$。
因此,在第二类边界条件下,切向于介质表面方向上的电场强度不为零。
三、第三类边界条件
第三类边界条件也称为连续法向电场和磁场边界条件。
它是指在介质表面上,法向于表面的电场强度和磁感应强度在两侧介质中相等。
1. 连续法向电场
在介质表面附近,我们可以将其看作一个微小的闭合曲面。
则在该曲面上的电通量密度可以表示为:
$$
\vec{D_1}\cdot\vec{n}=\vec{D_2}\cdot\vec{n}
$$
其中,$\vec{D_1}$表示介质1内部的电位移矢量,$\vec{D_2}$表示介质2内部的电位移矢量,$\vec{n}$表示介质表面法向矢量。
当我们将这个式子应用于介质表面时,可以得到:
$$
D_{1n}=D_{2n}
$$
其中,$D_{1n}$表示介质1内部法向于表面方向上的电场强度,
$D_{2n}$表示介质2内部法向于表面方向上的电场强度。
因此,在第三类边界条件下,法向于介质表面方向上的电场强度在两侧介质中相等。
2. 连续法向磁场
在介质表面附近,我们可以将其看作一个微小的闭合回路。
则在该回路上的磁通量密度可以表示为:
$$
\vec{B_1}\cdot\vec{n}=\vec{B_2}\cdot\vec{n}
$$
其中,$\vec{B_1}$表示介质1内部的磁感应强度矢量,
$\vec{B_2}$表示介质2内部的磁感应强度矢量,$\vec{n}$表示介质表面法向矢量。
当我们将这个式子应用于介质表面时,可以得到:
$$
B_{1n}=B_{2n}
$$
其中,$B_{1n}$表示介质1内部法向于表面方向上的磁场强度,
$B_{2n}$表示介质2内部法向于表面方向上的磁场强度。
因此,在第
三类边界条件下,法向于介质表面方向上的磁场强度在两侧介质中相等。
总结
电磁场三类边界条件分别是:第一类边界条件、第二类边界条件和第
三类边界条件。
第一类边界条件是指在介质表面上,法向于表面的电
场强度和切向于表面的磁感应强度均为零;第二类边界条件是指在介
质表面上,法向于表面的磁感应强度和切向于表面的电场强度均为零;第三类边界条件是指在介质表面上,法向于表面的电场强度和磁感应
强度在两侧介质中相等。
这些边界条件对于解决电磁场问题具有重要
意义。