2.7电磁场的边界条件解析

合集下载

2.7电磁场的边界条件解析

2.7电磁场的边界条件解析
电磁场与电磁波
第2章
电磁场的基本规律
1
2.7 电磁场的边界条件
en
媒质1 媒质2
• 什么是电磁场的边界条件?
et
实际电磁场问题都是在一定的物理空
间内发生的,该空间中可能是由多种不同
媒质组成的。边界条件就是不同媒质的分 界面两侧的电磁场物理量满足的关系。
中国矿业大学
电磁场与电磁波
第2章
电磁场的基本规律
将上式对时间 t 积分,得
1 2 7 8 H1 ( z, t ) ey [2 10 cos(15 10 t 5 z ) 107 cos(15 108 t 5 z)] A/m 0 3
中国矿业大学
电磁场与电磁波
第2章
电磁场的基本规律
14
同样,由 E2 2 H 2 ,得 t 4 H 2 ( z, t ) ey 107 cos(15 108 t 5 z ) A/m 30 (3)z = 0 时
tg1 1 同理可证: tg 2 2
E1 sin 1 E2 sin 2 tg1 1 tg 2 2
中国矿业大学
电磁场与电磁波
第2章
电磁场的基本规律
10
2. 理想导体表面上的边界条件 理想导体:电导率为无限大的导电媒质 特征:理想导体内没有电磁场 设媒质2为理想导体,则E2=D2=H2=B2=0 则理想导体表面上的边界条件为:
则得:
D1z -D2 z z 0 =0
D1z
z 0
D2 z
D1z
z 0
0 (3 z )
z 0
3 0 z 0
3 0 3 E1z z 0 z 0 z 0 1 5 0 5 3 最后得到: E1 ( x, y,0) ex 2 y e y 5 x ez 5 D1 ( x, y,0) ex10 0 y e y 25 0 x ez 3 0

【精品】第八讲:麦克斯韦方程组、电磁场的边界条件

【精品】第八讲:麦克斯韦方程组、电磁场的边界条件

第八讲:麦克斯韦方程组、电磁场的边界条件2.6麦克斯韦方程组2.7电磁场的边值关系1、了解麦克斯韦方程组的建立过程,掌握它的基本性质;2、了解边界上场不连续的原因,能导出电磁场的边值关系;3、掌握电磁场方程微分形式和边界形式的联系与区别。

重点:1)麦克斯韦方程组的基本性质;2)电磁场的边值关系 难点:电磁场切向边值关系的推导 讲授法、讨论 2学时2.6麦克斯韦方程组(Maxwell ’sEquations )一、麦克斯韦方程1865年发表了关于电磁场的第三篇论文:《电磁场的动力学理论》,在这篇论文中,麦克斯韦提出了电磁场的普遍方程组,共20个方程,包括20个变量。

直到1890 年,赫兹才给出简化的对称形式:00001(1)(2)0(3)(4)BE E tE B B J tρεμμε⎧∂∇⋅=∇⨯=-⎪∂⎪⎨∂⎪∇⋅=∇⨯=+⎪∂⎩实验定律3、法拉第电磁感应定律4、电荷守恒定律12314dq dq dF RR πε=S D dS q ⋅=⎰0l E dl ⋅=⎰34JdV R dB R μπ⨯=0SB dS ⋅=⎰()0=⋅∇B CH dl I ⋅=⎰()JH =⨯∇tB E ∂∂-=⨯∇ 0=∂∂+⋅∇tJ ρ 0J ∇⋅≡对矛盾的解决麦克斯韦理论稳恒况缓变情况2、毕奥-沙伐尔定律1、库仑定律()/ερ=⋅∇E()=⨯∇E t S d B dt d S ∂⎰⋅∂-=Φ-= ε0S QJ dS t ∂⋅+=∂⎰→上式即为真空中的麦克斯韦方程组,其中(2)(4)含有对时间的偏导数,对应 运动方程,(1)(3)为约束方程。

二、麦克斯韦方程组的基本性质 1、线性性麦克斯韦方程组是一组线性方程,表明场服从迭加原理。

2、自洽性方程组各个方程彼此协调,且与电荷守恒定律协调。

如(2)式和(3)式一致:由(2)式有:()0=∂⋅∂∇-=⨯∇⋅∇tBE⇒C B =⋅∇ ,考虑到静磁时0=⋅∇B,所以取0=C 。

(完整版)电磁场的边界条件

(完整版)电磁场的边界条件

电磁场的边界条件姓名:学号:专业:班级:提交日期:桑薇薇0990*******通信工程电工 1401 2016.5.28成绩:电磁场的边界条件1.引言2.边界条件分类3.边界条件的作用4.结束语5.参考文献1. 引言在两种不同媒质的分界面上,场矢量E,D,B,H 各自满足的关系,称为电磁场的边界条件。

在实际的电磁场问题中, 总会遇到两种不同媒质的分界面 (例如: 空气与玻璃的分界面、导体与空气的分界面等) ,边界条件在处理电磁场问题中占据十分重要的地位。

2. 边界条件分类1、电场法向分量的边界条件如图 3.9 所示的两种媒质的分界面, 第一种媒质的介电常数、磁导率和电导率分别为1,1和1,第二种媒质的介电常数、磁导率和电导率分别为2,2和 2 。

在这两种媒质分界面上取一个小的柱形闭合面,图 3.9 电场法向分量的边界条件如图 3.9 所示,其高h 为无限小量,上下底面与分界面平行,并分别在分界面两侧, 且底面积 S 非常小,可以认为在 S 上的电位vv v移矢量 D和面电荷密度S是均匀的。

n 1 n 2分别为上下底面的外法线单位矢量, , 在柱形闭合面上应用电场的高斯定律? v vv v S v vSSD gdS n 1 gD 1 n 2 gD 2 SS故v v v vn 1gD 1 n 2 gD 2S(3.48a)vv vvv若规定 n 为从媒质Ⅱ指向媒质Ⅰ为正方向,则 n 1 n ,n2n,式 (3.48a) 可写为v vvng(D 1D 2 )S(3.48b)或D1nD2nS(3.48c)式 (3.48 ) 称为电场法向分量的边界条件。

vvv 因为 DE ,所以式 (3.48) 可以用 E 的法向分量表示v v v v1n 1gE 12 n 2 gE 2S(3.49a)或1E 1n2 E 2nS(3.49b)若两种媒质均为理想介质时, 除非特意放置, 一般在分界面上不存在自由面电荷,即S,所以电场法向分量的边界条件变为D1nD2n(3.50a)或1E1n 2E2 n(3.50b)若媒质Ⅰ为理想介质,媒质Ⅱ为理想导体时, 导体内部电场为零,即E2,D2,在导体表面存在自由面电荷密度,则式(3.48) 变为v vn 1 gD 1 D 1nS(3.51a)或1E1ns(3.51b)2 、电场切向分量的边界条件在两种媒质分界面上取一小的矩形闭合回路 abcd ,如图 3.10 所示,该回路短边 h 为无限小量,其两个长边为l ,且平行于分界面,并分别在分界面两侧。

电磁场的边界条件

电磁场的边界条件

磁感应强度B的边界条件
ÑS BgdS B1nS B2nS 0 1
n
B1
ΔS h
n•(B1-B2)=0
2
B2
2.7 电磁场的边界条件
第二章 电磁场的基本规律
电位移矢量D的边界条件
n•(D1-D2)=ρS
小结
在不同媒质的分界面两侧,电场强度的切向分 量和磁感应强度的法向分量总是连续的;若分 界面上不存在面电流和面电荷,则磁场强度的 切向分量和电位移矢量的法向分量是连续的
2.7 电磁场的边界条件
第二章 电磁场的基本规律
一、边界条件的一般形式 磁场强度H的边界条件 1 2
ÑC H gdl H1gl H2 gl JS gNl
l (N n)l
n H1 h
H2 Δl
n×(H1-H2)=JS
2.7 电磁场的边界条件

第二章 电磁场的基本规律
电场强度E的边界条件
n×(E1-E2)=0
2.7 电磁场的边界条件
第二章 电磁场的基本规律
二、理想导体表面上的边界条件
理想导体 E、D、B、H=0
n×H1=JS n×E1=0 n•B1=0 n•D1=ρS
n×(H1-H2)=JS n×(E1-E2)=0 n•(B1-B2)=0 n•(D1-D2)=ρS

电磁场的边界条件

电磁场的边界条件

1)麦克斯韦方程组可以应用于任何连续的介质内部。

2)在两种介质界面上,介质性质有突变,电磁场也会突变。

3)分界面两边按照某种规律突变,称这种突变关系为电磁场的边值关系或边界条件。

4)推导边界条件的依据是麦克斯韦方程组的积分形式。

一、边界条件的一般形式 1、B 的边界条件:2、D 的边界条件结论:电位移矢量 在不同媒质分界面两侧的法向分量不连续,其差值等于分界面上自由电荷面密度。

3. H 的边界条件h∆→n-2B11220B dS B dS ⇒⋅+⋅=120B n B n ⇒⋅-⋅=210lim S h D H l H l J sl t→∂⇒⋅-⋅=⋅-⋅∂2t t SH H J⇒-=12()S n H H J⇒⨯-=21,S H l H l J s l n s⇒⋅-⋅=⋅=⨯()C sD H dl J dSt∂=+∂⎰⎰μ1μ2Hn1Hh →ls12()S n H H J⨯-=12()D D n σ-⋅=⇒2εε2D 1D n S∆n-n12n n D D σ⇔-=0S B dS ⋅=⎰12()0n B B ⋅-=21n nB B⇒=SD dS q =⋅⎰⇒⇒式中: S J 为介质分界面上的自由电流面密度。

结论:磁场强度 D 在不同媒质分界面两侧的切向分量不连续,其差值等于分界面上的电流面密度S J4.E 的边界条件结论:电场强度E 在不同每只分界面两侧的切向分量连续。

二、理想介质是指电导率为零的媒质,0=γ2)在理想介质内部和表面上,不存在自由电荷和自由电流。

结论:在理想介质分界面上,E 、H 矢量切向连续; 在理想介质分界面上,B 、D 矢量法向连续。

三、理想导体表面上的边界条件1)理想介质是指电导率为无穷大的导体,12t t E E⇒=12()0n E E ⇒⨯-= 2ε1ε2En1E2θl sl S BE dl d St∂⋅=-⋅∂⎰⎰12()0n E E ⨯-=⇒12t t EE=0s J =0ρ=12t t H H =⇒12n n D D=12()0n D D ⋅-=⇒12()0n B B ⋅-=12n n B B=⇒12()0n H H ⨯-=2)电场强度和磁感应强度均为零。

电磁场的边界条件与电磁波的辐射和传播

电磁场的边界条件与电磁波的辐射和传播

电磁场的边界条件与电磁波的辐射和传播[摘要]:本文结合相关示意图简要总结了电磁场的边界条件,在参考大量相关文献的基础上,由边界条件出发分析了交变电磁场传播的原理,联系实际解释了电磁场的辐射和传播。

关键字:电磁场;电磁波;边界条件;辐射;传播。

一、电磁场的边界条件电磁场在两种不同媒质分界面上,从一侧过渡到另一侧时,场矢量E、D、B、H一般都有一个跃变。

电磁场的边界条件就是指场矢量的这种跃变所遵从的条件,也就是两侧切向分量之间以及法向分量之间的关系。

电磁场的边界条件可以由麦克斯韦方程组的积分形式推出,它实际上是积分形式的极限结果。

这些边界条件是:n·(D1-D2)=ρs; (1)n×(E1-E2)=0; (2)n·(B1-B2)=0; (3)n×(H1-H2)=J)s。

(4)式中n为两媒质分界面法线方向的单位矢量,场矢量E、D、B、H的下标1或2分别表示在媒质1或2内紧靠分界面的场矢量,ρ为分界面上的自由电荷面密度,J为分界面上的传导电流面密度。

式(1)表示在分界面两侧电位移矢量D的法向分量的差等于分界面上的自由电荷面密度。

当分界面上无自由电荷时,两侧电位移矢量的法向分量相等,即其法向分量是连续的。

式(2)表示在分界面两侧电场强度E的切向分量是连续的。

式(3)表示在分界面两侧磁通密度B的法向分量是连续的。

式(4)表示在分界面两侧磁场强度H的切向分量的差等于分界面上的表面传导电流面密度。

当分界面上无表面传导电流时,两侧磁场强度的切向分量相等,即其切向分量是连续的。

当媒质2为理想导体时,E2、D2、B2、H2等于零,式(1)表示D1的法向分量等于自由电荷面密度;式(2)表示E1无切向分量.式(3)表示B1的法向分量为零;式(4)表示H1的切向分量等于表面传导电流面密度,并且与电流方向正交。

二、电磁波的辐射和传播电磁波的产生与发射是通过天线来实现的。

由振荡电路产生的强大交变讯号通过互感耦合到天线上,天线就有交变电流产生,如下图所示。

电磁场的源与边界条件

电磁场的源与边界条件

2、 电位移矢量 D 的散度、旋度和边界条件 (1) 电位移矢量 D 的散度 根据由电介质时的 Gauss 定理的微分形式,电位移矢量 D 的散度为
D
式中 为闭合面包围的自由电荷密度。
3/9
电磁场与电磁波
第二章 电磁场的基本规律
学习报告
(2) 电位移矢量 D 的旋度 对于各向P endS
因此,穿出闭合面 S 的正电荷为 P dS 。与之对应,留在闭合面 S 内的极化电荷量为
S
q p P dS PdV
S V
又由于
qP P dV
V
故有
P P
(2)极化强度 P 的旋度 对于各向同性和线性介质,有 P e 0 E ,其中合成电场强度 E 为自由电荷产生的外 电场 E 0 和极化电荷产生的附加电场 E 的叠加,由于两种电场强度的旋度都为零,故
第二章 电磁场的基本规律
学习报告
(1)磁化强度 M 的散度 对于各向同性和线性磁介质, M m H ,由于 H 的散度为零,故
M m H 0
(2)磁化强度 M 的旋度 在磁介质中任取一个有闭合回路 C 限定的曲面 S , S 的法向与 回路的绕行方向构成右手螺旋关系。在周线 C 上取长度元 dl ,其方 向与分子磁矩 pmi 的夹角为 。以分子电流环面积 S 为底、dl 为斜 高作一个圆柱体,如图 7 所示。此时只有分子电流中心在圆柱内的 分子电流才对圆柱体内的磁化电流有贡献。 设单位体积中的分子数为
S (r ) lim
S 0
q dq S ' dS '
3、 电荷线密度 如果电荷分布在横截面积可以忽略的细长状空间区域, 则可把电荷看作分布在线上, 并

电磁场的边界条件

电磁场的边界条件

2.7 电磁场的边界条件
第二章 电磁场的基本规律
二、理想导体表面上的边界条件
理想导体 E、D、B、H=0
n×H1=JS n×E1=0 n•B1=0 n•D1=ρS
n×(H1-H2)=JS n×(E1-E2)=0 n•(B1-B2)=0 n•(D1-D2)=ρS
2.7 电磁场的边界条件
第二章 电磁场的基本规律
一、边界条件的一般形式
磁场强度H的边界条件 1 2
H C
dl H1
l H2
l JS
N l
l (N n)l
n H1 h
H2 Δl
n×(H1-H2)=JS
2.7 电磁场的边界条件
第二章 电磁场的基本规律
电场强度E的边界条件
n×(E1-E2)=0
磁感应强度B的边界条件
S B dS B1nS B2nS 0 1
n
B1
ΔS h
n•(B1-B2)=0
2
B2
2.7 电磁场的边界条件
第二章 电磁场的基本规律
电位移矢分界面两侧,电场强度的切向分 量和磁感应强度的法向分量总是连续的;若分 界面上不存在面电流和面电荷,则磁场强度的 切向分量和电位移矢量的法向分量是连续的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁场与电磁波
第2章
电磁场的基本规律
1
2.7 电磁场的边界条件
en
媒质1 媒质2
• 什么是电磁场的边界条件?
et
实际电磁场问题都是在一定的物理空
间内发生的,该空间中可能是由多种不同
媒质组成的。边界条件就是不同媒质的分 界面两侧的电磁场物理量满足的关系。
中国矿业大学
电磁场与电磁波
第2章
电磁场的基本规律
en ( H1 H 2 ) J S en ( E1 E2 ) 0 en (B1 B2 ) 0 en (D1 D2 ) S
中国矿业大学
en
媒质1 媒质2
et
en en en en
H1 J S E1 0 B1 0 D1 S
H1t J s E 0 1t 或 B1n 0 D1n S
电磁场与电磁波
第2章
电磁场的基本规律
11
H1t J s E 0 1t B1n 0 D1n S
理想导体表面上的电流密度等于H 的切向分量 理想导体表面上 E 的切向分量为0 理想导体表面上 B 的法向分量为0 理想导体表面上的电荷密度等于 D的法向分量
D 右边 = J dS dS S S t
0 s 0
J S dl J S e p l
l
故得: [en (H1 H 2 )] ep l J S e p l
中国矿业大学
en (H1 H 2 ) J S 或H1t H 2t J S
电磁场与电磁波
第2章
电磁场的基本规律
媒质1 Δl
7
同理由MEⅡ可证明电场的边界条件:
B C E dl S t dS
则: en (E1 E2 ) 0
en
E1
Δh
0
S 0
ep et
媒质2
E2

E1t E2t
中国矿业大学
电磁场与电磁波
第2章
电磁场的基本规律
8
2.7.2 两种常见的情况
1. 两种理想介质分界面上的边界条件
在两种理想介质分界面上,通常没有电荷和 电流分布,即JS=0、ρS=0 媒质1 媒质2
en
en ( H1 H 2 ) J S en ( E1 E2 ) 0 en (B1 B2 ) 0 en (D1 D2 ) S

S
B dS 0
电磁场与电磁波
第2章
电磁场的基本规律
6
(2)电磁场量的切向边界条件
在分界面两侧,选取如图所示的小环路,令Δh →0,则: D en H1 C H dl S ( J t ) dS Δ l 媒质1 附录A1.1式: ep et
tg1 1 同理可证: tg 2 2
E1 sin 1 E2 sin 2 tg1 1 tg 2 2
中国矿业大学
电磁场与电磁波
第2章
电磁场的基本规律
10
2. 理想导体表面上的边界条件 理想导体:电导率为无限大的导电媒质 特征:理想导体内没有电磁场 设媒质2为理想导体,则E2=D2=H2=B2=0 则理想导体表面上的边界条件为:
en (H1 H 2 ) 0 H1t H 2t E E 1t en (E1 E2 ) 0 2t 或 en ( B1 B2 ) 0 B1n B2n e ( D D ) 0 D1n D2n n 1 2
2
本节内容
2.7.1 边界条件一般表达式
2.7.2 两种常见的情况
中国矿业大学
电磁场与电磁波
第2章
电磁场的基本规律
3
2.7.1
边界条件一般表达式
D C S ( J t ) dS B dS C E dl S t S B dS 0 S D dS V ρdV H dl
中国矿业大学
H 的切向分量连续 E 的切向分量连续 B 的法向分量连续 D 的法向分量连续
电磁场与电磁波
第2章
电磁场的基本规律
9
方向角: tg1 1 tg 2 2 tg1 1 tg 2 2

媒质1 媒质2
en 1
2
证明:
D1n D2n 1 E1n 2 E2 n 1 E1 cos 1 2 E2 cos 2 又 E1t E2t
H1t H 2t J S E1t E2t B1n B2n D1n D2n S
分界面上的自由电荷面密度
中国矿业大学
电磁场与电磁波
第2章
电磁场的基本规律
5
边界条件的推证
(1)电磁场量的法向边界条件
在两种媒质的交界面上任取一
点P,作一个包围点P 的扁平圆柱 曲面S,如图表示。(Δh →0)则:
媒质1 媒质2
en
ΔS
D1
Δh
S
P
D2

S
D dS ρdV
V
(D1 D2 ) en S S S

即: en (D1 D2 ) S 同理 ,由
中国矿业大学
D1n D2n S
en (B1 B2 ) 0 或 B1n B2n
A BC
左边=(H1 H 2 ) l


l e p en l
B (C A) (C A) B
媒质2
H2
Δh
(H1 H 2 ) l (H1 H 2 ) (e p en ) l [en (H1 H 2 )] e p l
en
媒质1 媒质2
et
中国矿业大学
电磁场与电磁波
第2章
电磁场的基本规律
分界面上的自由电流面密度
4
边界条件的一般形式:
en ( H1 H 2 ) J S en ( E1 E2 ) 0 en (B1 B2 ) 0 en (D1 D2 ) S
相关文档
最新文档