线段的定比分点
线段的定比分点

·P ·P1
·P2 (3)λ=-1/6
小结
2021/3/11
通过本课时的学习,要求 同学们掌握线段的定比分点坐 标公式及中点坐标公式,并能 熟练运用这两个公式解决相关 问题。
作业
2021/3/11
1、P117习题5.5第1、3、4、5
2、预习:P118—119
预习提纲:
(1)两向量的夹角有何前提? (2)平面向量的数量积的定义及其几何意义。 (3)平面向量的数量积的运算律有哪些?
足:
x
x1 x2 1
y
y1 y2 1
①
我们把①叫做有向线段P1P2的定比分点 坐标公式。
想一想
2021/3/11
设点P1(x1,y1),P2( x2,y2 ),P( x,y ),
且P1P=λPP2,那么点P分有向线段P2P1的定比分点坐 标公式与①相同吗?
结果是:相同
因x为:x2P2P1x11Px1P1,
2021/3/11
例2 如图,△ABC三个顶点的坐标分
别为A(x1,y1)、B (x2,y2)、C (x3,
y3),D是边AB的中点,G是CD上一点,
且CG:GD=2。求点G的坐标。
y
A
D
·G
B C
O
x
2021/3/11
例3 已知A(1,3),B(-2,0), C(2,1)为三角形的三个顶点,L、M 、N分别是BC、CA、AB上的点,满足 BL︰BC=CM︰CA=AN︰AB=1︰3, 求L、M、N三点的坐标。 y
提示:由已知,可
得L分CB、M分AC、 N分BA所成的比均为λ =2
A
N· ·M
·L
C x
BO
线段的定比分点《线段的定比分点》教案

《线段的定比分点》教案新疆兵团二中 徐蓉一、 教育教学目标:(一)知识目标: 1.“线段的定比分点”的概念;2.“分点P 分有向线段21P P 所成比λ”的概念;3. 线段的定比分点坐标公式及中点坐标公式。
(二)能力目标: 1. 掌握线段的定比分点坐标公式的推导过程;2. 熟练运用线段的定比分点坐标公式及中点坐标公式解决有关问题。
(三)德育目标: 1. 培养学生主动参与、积极探究的主体意识;2. 渗透由特殊到一般的思想,培养用新的数学语言对原有的数学现象加以概括、加以解决的能力;3. 培养和锻炼学生善于发现规律、及时解决问题的态度和能力。
二、教学重点:线段的定比分点问题的确立;线段的定比分点坐标公式的推导过程以及公式的应用。
三、教学难点:由学生原有知识中“线段的分点”向“有向线段的定比分点”这一概念过渡以及“分点P 分有向线段21P P 所成比λ”这一概念的建立过程。
四、教学方法:启发式、讲练结合法。
五、教学过程:(一)提出问题,探究新知问题:直线l 上两点、 ,在l 上取不同于, 的任一点P ,则P 点与有向线段 12PP 的位置有哪几种情形?(请一名学生回答)(师)我们发现,不管是上述哪一种情形,点P 、1P 、2P 三点共线,有共线向量的充要条件可知:1P 2P 1P 2P存在唯一的实数λ ,使得12PP PP λ= ,λ叫做点P 分有向线段12PP 所成的比。
即:我们今天所要研究的课题----------线段的定比分点(板书) (二)解决问题,得到新知1. 线段的定比分点的定义:存在唯一的实数λ ,使得12PP PP λ= ,λ叫做点P 分有向线段12PP 所成的比。
探究:点P 的位置与λ的取值范围的关系:①当λ>0时, 1PP 与2PP共线同向;②当λ<0时, 1PP 与2PP共线反向(当λ<-1时,点P 在有向线段12PP 的延长线上;当-1< λ<0时, 点P 在有向线段12PP 的反向延长线上)。
线段的定比分点PPT课件

二、提出问题,探究定理:
湖南长郡卫星远程学校
二、提出问题,探究定理:
1. 线段的定比分点及λ :
湖南长郡卫星远程学校
二、提出问题,探究定理:
1. 线段的定比分点及λ :
湖南长郡卫星远程学校
思 考:
湖南长郡卫星远程学校
思 考:
1. λ与点分线段之比有何区别?
湖南长郡卫星远程学校
λ> 0 (内分) P P1 P2
(外分)λ< 0 (λ<-1)
(外分)λ< 0 (-1<λ<0)
湖南长郡卫星远程学校
2. 定比分点公式的获得 :
湖南长郡卫星远程学校
2. 定比分点公式的获得 :
P1 P
O
P2
湖南长郡卫星远程学校
P1 P
O
P2
湖南长郡卫星远程学校
P1 P
O
P2
湖南长郡卫星远程学校
湖南长郡卫星远程学校
作业 课本117面-118面1-5题
湖南长郡卫星远程学校
3. 中点公式:
湖南长郡卫星远程学校
3. 中点公式:
P1 P
O
P2
湖南长郡卫星远程学校
4. 注意几个问题:
湖南长郡卫星远程学校
4. 注意几个问题:
(1) λ是关键, λ>0 内分, λ<0 外分, λ≠-1 .
湖南长郡卫星远程学校
4. 注意几个问题:
(1) λ是关键, λ>0 内分, λ<0 外分, λ≠-1 . (2) 中点公式是定比分点公式 的特例 .
湖南长郡卫星远程学校
湖南长郡卫星远程学校
(4) 公式:如 x1 , x2 , x , λ知三求一 .
线段中点坐标公式和定比分点坐标公式

线段中点坐标公式和定比分点坐标公式线段中点坐标公式和定比分点坐标公式是几何学中常用的计算坐标的公式,用于确定线段上点的位置。
它们在许多实际应用中都有重要的作用,如建筑设计、工程测量等。
本文将分别介绍线段中点坐标公式和定比分点坐标公式,并举例说明其应用。
设线段AB的两个端点分别为A(x1,y1)和B(x2,y2),则线段AB的中点C的坐标可通过以下公式计算:Cx=(x1+x2)/2Cy=(y1+y2)/2其中,Cx和Cy分别代表中点C的横坐标和纵坐标。
例如,若给定线段AB的两个端点分别为A(4,2)和B(8,6),则线段AB的中点C的坐标可通过以下计算得到:Cx=(4+8)/2=12/2=6Cy=(2+6)/2=8/2=4因此,线段AB的中点C的坐标为(6,4)。
线段中点坐标公式的应用十分广泛。
例如,在建筑设计中,我们常常需要确定一个房间或一个场地的中心点,以便布置家具或进行其他相应的规划工作。
在这种情况下,我们可以利用线段中点坐标公式计算出房间或场地的中心点的坐标。
除了线段的中点,我们还经常需要确定线段上的其他分点位置。
这时,我们可以使用定比分点坐标公式。
定比分点坐标公式:设线段AB的两个端点分别为A(x1,y1)和B(x2,y2),若在AB上有一点P将AB分为内部比例m:n(m+n>0)的两部分,那么点P的坐标可以通过以下公式计算:Px = (nx1 + mx2) / (m + n)Py = (ny1 + my2) / (m + n)其中,Px和Py分别代表点P的横坐标和纵坐标。
例如,若给定线段AB的两个端点分别为A(2,4)和B(6,8),且要在AB上以内部比例2:1将其分割,即将AB分为两段,其中一段长度为整体长度的2/3,另一段长度为整体长度的1/3、那么按照定比分点坐标公式,点P的坐标可通过以下计算得到:Px=(2*2+1*6)/(2+1)=(4+6)/3=10/3≈3.33Py=(2*4+1*8)/(2+1)=(8+8)/3=16/3≈5.33因此,点P的坐标为(3.33,5.33)。
定比分点公式证明过程

定比分点公式证明过程
标题,定比分点公式的证明过程。
在数学中,定比分点公式是一个非常重要的定理,它用于确定一条线段上的任意一点与两个端点的比例关系。
这个定理的证明过程非常有趣,让我们来看看它是如何被证明的。
首先,我们假设有一条线段AB,我们要找到一点P,使得AP与PB的比例为m:n。
我们将这个比例表示为m/n。
接下来,我们假设P点的坐标为(x, y),A点的坐标为(x1,
y1),B点的坐标为(x2, y2)。
根据定比分点公式,我们有以下关系式:
x = (mx2 + nx1) / (m + n)。
y = (my2 + ny1) / (m + n)。
现在,让我们来证明这些关系式。
首先,我们知道P点与A点的横坐标的比例为m:n,即(x x1) / (x2 x1) = m/n。
解方程可得x = (mx2 + nx1) / (m + n)。
同理,P点与A点的纵坐标的比例也为m:n,即(y y1) / (y2 y1) = m/n。
解方程可得y = (my2 + ny1) / (m + n)。
因此,我们得到了点P的坐标与m:n的比例关系,证明了定比分点公式。
通过这个证明过程,我们可以清楚地看到定比分点公式是如何被推导出来的。
这个定理在数学和几何中有着广泛的应用,它帮助我们理解线段上点的比例关系,为我们解决实际问题提供了重要的数学工具。
线段的定比分点

课题:线段的定比分点.目的:掌握有向线段的定比分点和线段的中点公式,并能简单应用. 重点、难点:线段的定比分点.过程:一、复习引入前面我们学习了有向直线,有向线段,有向线段的长度,有向线段的数量等许多概念和符号.今天我们想在此基础上跟大家讨论线段的定比分点.二、新授1.定义:有向直线l 上的一点P ,把l 上的有向线段21P P 分成两条有向线段P P 1和2PP .P P 1和2PP 数量的比叫做点P 分21P P 所成的比,通常用字母λ来表示这个比值,21PP P P =λ,点P 叫做21P P 的定比分点. 2.说明: (1)21P P 是在过两点1P 、2P 的一条有向直线上的有向线段,1P 是起点,2P 是终点;(2)P P 1是以1P 为起点,P 为终点;2PP 是以P 为起点,2P 为终点.顺序不能颠倒,否则λ的值就会随之改变;(为了联系紧密,P 为分点,∴21PP P P =λ中,P P →1,2P P →,就是起点→分点,分点→终点.)(3)21PP P P 不是线段的长度之比,而是有向线段的数量之比,这个比与过21P P 的有向直线无关;(4)在21PP P P 中,分子是由线段的起点1P 到分点P 的有向线段P P 1的数量,分母是由分点P 到终点2P 的有向线段2PP 的数量.请思考,点P 分21P P 所成的比和点P 分12P P 所成的比有何关系.3.练习:如图,求点B 分AC ,点B 分CA ,点C 分AB ,点C 分BA ,点A分BC ,点A 分CB 所成的比.(23,32,25-,52-,53-,35-) 由此回答:(1)P 分21P P 的比与P 分12P P 的比互为倒数;(2)λ的符号与点P 的位置有关.4.小结:若点P 在线段21P P 上,点P 叫做21P P 的内分点,此时0>λ;若点P 在线段12P P 或21P P 的延长线上,点P 叫做21P P 的外分点,此时0<λ.三、解几的基础是坐标系、点的坐标,那么我们怎样求定比分点的坐标呢?问题:设21P P 的两个端点分别为),(111y x P 和),(222y x P ,点P 分21P P 所成的比为λ(1-≠λ),求分点P 的坐标),(y x .分析:过点1P 、2P 、P 分别作x 轴的垂线11M P 、22M P 、PM ,则垂足分别是)0,(11x M 、)0,(22x M 、)0,(x M .根据平行线分线段成比例定理,得2121MM M M PP PP =.如果点P 在线段21P P 上,那么点M 也在线段21M M 上;如果点P 在线段21P P 或12P P 的延长线上,那么点M 也在线段21M M 或12M M 的延长线上.因此21PP P P 与21MM M M 的符号相同,所以21PP P P =21MM M M . ∵11x x M M -=,x x MM -=22,∴xx x x --=21λ, 即21)1(x x x λλ+=+,当1-≠λ时,得λλ++=121x x x . 同理可以求得y y y y --=21λ,λλ++=121y y y . 因此,当已知两个端点为),(111y x P 、),(222y x P ,点),(y x P 分21P P 所成的比为λ时,点P 的坐标是λλ++=121x x x ,λλ++=121y y y (1-≠λ). (1)把P P 1、2PP ,M M 1、2MM 看成一般的线段,根据初中几何平行截割定理得2121MM M M PP PP =;(2)从有向线段的数量的符号来验证这个比例. 当点P 在两点1P 、2P 之间,这时点M 也在两点1M 、2M 之间,有向线段P P 1和2PP 都具有相同的方向,它们的数量符号相同,∴=λ21PP P P 是正的.同样有向线段M M 1、2MM 也具有相同的方向,它们的数量的符号也相同,所以21MM M M 也是正的,因此,=λ21PP P P =21MM M M . 当点P 在线段21P P 或12P P 的延长线上,那么点M 也在线段21M M 或12M M 的延长线上,而P P 1与2PP 的符号相反,于是=λ21PP P P 0<.同样M M 1、2MM 的符号也相反,所以21MM M M 也是负的,因此,=λ21PP P P =21MM M M . 所以1P 、2P 不论在哪个象限,相互位置关系怎样,也不论点P 在21P P 上或在延长线上,定比分点公式都是正确的.特别地,当点P 是线段21P P 的中点时,有21PP P P =,即1=λ,因此线段21P P 中点P 的坐标是221x x x +=,221y y y +=.四.简单应用例.点1P 和2P 的坐标分别是)6,1(--和)0,3(,点P 的横坐标为37-.求点P 分21P P 所成的比λ和点P 的纵坐标y . 解:由λ的定义,可得x x x x --=21λ41373)1(37-=⎪⎭⎫ ⎝⎛-----=. 84110416121-=⎪⎭⎫ ⎝⎛-+⋅⎪⎭⎫ ⎝⎛-+-=++=λλy y y . 点P 分21P P 所成的比是41-,点P 的纵坐标是8-. 五.练习1.已知两点)2,3(1-P 、)4,9(2-P .求点)0,(x P 分21P P 所成的比λ及x 的值.2.点M 分有向线段21M M 的比为λ,求点M 的坐标),(y x ,其中)5,1(1M 、)3,2(2M ,2-=λ; 六.小结1.定比分点P 的位置与λ的符号关系;2.定比分点坐标公式;3.λ的求法.七.作业。
线段定比分点
练习:
例、已知抛物线 y x 2x 8
2
(1)求抛物线顶点的坐标 (2)求将这条抛物线的顶 点平移到 点(2, 3)时的函数解析式 (3)将此抛物线按怎样的向 量平移,能使
平移后的曲线的函数解 析式为y x
2
(3)将函数y log3 (2 x 1) 4的图象,按向量 a平移 后得到的函数是 y log3 2 x, 求a
知识提要 3、图形的平移
所有点 将平面坐标系内的图形F上___________ 同一方向移动相同的长度 得到图形, 按照________________________, 把这一过程叫做图形的平移
4、平移公式
将P ( x , y )按a ( h, k )平移到P ( x , y ),
' ' '
(2)ABC中三个顶点的坐标分别 是A(2,1), B(3,4), C (2,1)则ABC的重心坐标是(-1,2) _____
(3)已知点A( x,5)关于点P(1, y)的对称点 是B(2,3), 求点(x, y)到原点的距离 17
(4)已知两点A(1,6), B(3,0), 在直线AB上 1 求一点P, 使的 AP AB 3
x x h 则平移公式: ' y yk
'
(1) y 2 x 1的图象C按a (2,0)平移得到
y 2 x 3 C ' , 则C '的解析式为_________
(2)把一个函数的图象按 a ( ,2)平移 6 后得到图象的解析式为 y 2 cos(x ) 2 6 y 2 cos x 则原函数解析式为_________
P 1P PP2
5-4线段的定比分点与平移
答案:A
)
首页Βιβλιοθήκη 上页下页末页
第五章
平面向量
4.(教材P1352题改编)将点A(-4,3)按向量a=(5,-2)
平移后的坐标是 ( A.(9,-5) C.(1,1) B.(-9,5) D.(-8,1) )
《 走 向 高 考 》 高 考 总 复 习 · ( 数 学 配 统 编 教 材 版
解析:按向量平移公式计算得知应选C.
为________.
答案:y=log2(x+6)+4
)
首页
上页
下页
末页
第五章
平面向量
5.将函数 y=2sin2x 的图象按向量 a 的方向平移,得到 π 函数 y=2sin(2x+ )+1 的图象,则向量 a 的坐标为( 3 π A.(-3,1) π B.(-6,1) )
《 走 向 高 考 》 高 考 总 复 习 · 数 学 配 统 编 教 材 版
《 走 向 高 考 》 高 考 总 复 习 · ( ) 数 学 配 统 编 教 材 版
首页
上页
下页
末页
第五章
平面向量
2.平移公式 设 P(x,y)为图形 F 上任一点,它按向量 a=(h,k)平移 后的图形 F′上对应点为
x′=x+h P′(x′, y′), 则有 y′=y+k
,
《 走 向 高 考 》 高 考 总 复 习 · ( 数 学 配 统 编 教 材 版
首页
上页
下页
末页
第五章
平面向量
《 走 向 高 考 》 高 考 总 复 习 · ( ) 数 学 配 统 编 教 材 版
首页
上页
下页
末页
第五章
平面向量
该类问题要正确地选取线段的起点与终点,应用定比
线段的定比分点
线段的定比分点
教学目标:⑴明白得定比分点的概念,能依照线段长度求比值λ;
⑵把握定比分点坐标公式,中点坐标公式的推导及应用。
教学回忆:
一.定比分点的概念
1.设直线l 上两点P P P ,,21是l 上不同于21,P P 的任意一点,若存在一个实数λ,使 ,则λ叫做点P 分21p p 所成的比。
2.当P 是线段21P P 的内分点时,=λ ;当P 是线段21P P 的外分点时,=λ 。
例题1⑴若点P 分AB 所成比为5
2,求点A 分PB 所成的比λ; ⑵若点P 分AB 所成比为2-,求点B 分AP 所成的比λ。
二.定比分点坐标公式:
3.设P P P ,,21的坐标分别为()()()y x y x y x ,,,,,2211,则=x ,=y , 当1=λ时,即点P 为线段21P P 的中点,则=x ,=y 。
4.设P P P ,,21的坐标分别为()()()y x y x y x ,,,,,2211,则P 分21p p 所成的比=λ = 。
例题2见书本P116
⑶点P 是AB 的内分点,()()3,4,4,0B A ,且点P 分AB 所成的比与点B 分PA 所成的
比互为相反数,求P 点的坐标。
三.定比分点的应用:
例题3 ⑴已知()()()3,5,0,4,8,0--C B A ,点D 分AB 的比为
3
1,E 在BC 上,且使△BDE 的面积是△ABC 面积的一半,求点E 的坐标;
⑵*已知()()()4,2,1,3,4,1C B A -,求△ABC 中∠A 的平分线AD 的长。
教案 高教版(数学)第二册——7.7 线段的中点坐标公式和定比分点坐标公式
线段的中点坐标公式和定比分点坐标公式教学目标1、理解点P 分有向线段所成的比λ的含义,能确定λ的正负号;明确点P 的位置与λ的范围的关系;2、掌握有向线段的定比分点和中点的坐标公式,并能熟练运用这两个公式解决实际问题;3、向学生渗透数形结合的思想,培养学生的思维能力,发现事物间的变化规律。
教学重点线段的定比分点和中点坐标公式的应用。
教学难点利用线段定比分点坐标公式解题时确定λ的值。
教学过程一、定比分点设P 1、P 2是直线l 上的两个点,P 是l 上不同于P 1,P 2的点,则存在一个实数λ,使得12PP PP λ=,则λ叫做点P 分有向线段12PP 所成的比,点P 叫做定比分点。
注意:1、1212,,PP PP PP 均是有向线段,P 1为起点,P 2为终点,P 为分点,这三条有向线段的顺序不能颠倒,否则λ的值会改变.记忆规律:1PP :起点到分点;2PP :分点到终点。
2、当点P 在线段P 1P 2上时,λ>0,这时称P 为内分点;当点P 在线段P 1P 2或P 2P 1的延长线上时,λ<0(1λ=-),此时称P 为外分点。
具体地说,当点P 在线段P 1P 2的延长线上时,1λ<-;当点P 在线段P 2P 1的延长线上时,10λ-<<。
3、具体解题时,起点、分点、终点可根据情况灵活决定.这样计算过程稍有不同,但结果一样。
二、定比分点公式 1、坐标形式设点P 分有向线段12PP 所成的比为λ,即12PP PP λ=,则12111OP OP OP λλλ=+++ (线段的定比分点的向量公式) ⎪⎪⎩⎪⎪⎨⎧++=++=.1,12121λλλλy y y x x x (线段定比分点的坐标公式)(1)2、特别地,当1λ=时,显然此时点P 为12PP 的中点,1212121212(1)12x x x x x x y y y y y y λλλλλ++⎧⎧==⎪⎪⎪⎪+≠⇒⎨⎨++⎪⎪==⎪⎪+⎩⎩……….中点坐标公式(2)我们将(2)式称为有向线段12PP 的中点坐标公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§5.5线段的定比分点
教学目标:⑴理解定比分点的概念,能根据线段长度求比值λ;
⑵掌握定比分点坐标公式,中点坐标公式的推导及应用。
教学回顾:
一.定比分点的概念
1.设直线l 上两点P P P ,,21是l 上不同于21,P P 的任意一点,若存在一个实数λ,使 ,则λ叫做点P 分21p p 所成的比。
2.当P 是线段21P P 的内分点时,=λ ;当P 是线段21P P 的外分点时,=λ 。
例题1⑴若点P 分所成比为5
2,求点A 分所成的比λ; ⑵若点P 分所成比为2-,求点B 分所成的比λ。
二.定比分点坐标公式:
3.设P P P ,,21的坐标分别为()()()y x y x y x ,,,,,2211,则=x ,=y , 当1=λ时,即点P 为线段21P P 的中点,则=x ,=y 。
4.设P P P ,,21的坐标分别为()()()y x y x y x ,,,,,2211,则P 分21p p 所成的比=λ = 。
例题2见书本P116
⑶点P 是AB 的内分点,()()3,4,4,0B A ,且点P 分AB 所成的比与点B 分PA 所成的
比互为相反数,求P 点的坐标。
三.定比分点的应用:
例题3 ⑴已知()()()3,5,0,4,8,0--C B A ,点D 分的比为
3
1,E 在BC 上,且使△BDE 的面积是△ABC 面积的一半,求点E 的坐标;
⑵*已知()()()4,2,1,3,4,1C B A -,求△ABC 中∠A 的平分线AD 的长。