怎样用几何画板绘制相似三角形

合集下载

三角形相似的判定数学教学教案

三角形相似的判定数学教学教案

三角形相似的判定数学教学教案一、教学目标:1. 让学生理解三角形相似的概念,掌握三角形相似的判定方法。

2. 培养学生运用几何知识解决实际问题的能力。

3. 提高学生的逻辑思维能力和团队协作能力。

二、教学内容:1. 三角形相似的定义2. 三角形相似的判定方法3. 相似三角形的性质4. 实际问题中的应用三、教学重点与难点:1. 教学重点:三角形相似的判定方法,相似三角形的性质。

2. 教学难点:三角形相似的证明,实际问题中的运用。

四、教学准备:1. 教学课件2. 练习题3. 几何画板或其他绘图工具五、教学过程:1. 导入:通过复习已有知识,如平行线、相交线等,引出三角形相似的概念。

2. 新课讲解:讲解三角形相似的定义,并通过几何画板演示相似三角形的判定过程。

3. 实例分析:分析实际问题,运用三角形相似的判定方法解决问题。

4. 课堂练习:让学生独立完成练习题,巩固所学知识。

5. 总结:对本节课的内容进行总结,强调三角形相似的判定方法和性质。

6. 作业布置:布置相关作业,让学生进一步巩固三角形相似的知识。

7. 课后反思:根据学生的课堂表现和作业情况,对教学方法进行调整,以提高教学质量。

六、教学策略:1. 采用问题驱动的教学方法,引导学生主动探索三角形相似的判定方法。

2. 利用几何画板直观演示,帮助学生理解并掌握相似三角形的性质。

3. 设计具有梯度的练习题,让学生在实践中巩固知识。

4. 鼓励学生进行小组讨论,提高团队协作能力。

七、教学方法:1. 讲授法:讲解三角形相似的定义和判定方法。

2. 演示法:利用几何画板展示相似三角形的判定过程。

3. 案例分析法:分析实际问题,引导学生运用三角形相似的知识。

4. 小组讨论法:组织学生进行小组讨论,分享解题心得。

八、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

2. 练习题完成情况:检查学生作业的完成质量,评估学生对知识的掌握程度。

《相似三角形》相似图形PPT课件

《相似三角形》相似图形PPT课件

定义
两个多面体,如果它们的对应角相等,对应边长 成比例,则称这两个多面体相似。
1. 对应角相等
通过测量或计算验证两个多面体的对应角是否相 等。
3
2. 对应边长成比例
通过测量或计算验证两个多面体的对应边长是否 成比例。
性质总结
性质一
相似多面体的对应面面 积之比等于相似比的平
方。
性质二
相似多面体的对应体积 之比等于相似比的立方
案例分析
测量河流宽度
通过构造相似三角形,可以测量 河流的宽度,为水利工程和桥梁
建设提供重要数据支持。
估算森林面积
利用航空照片和相似三角形的原理 ,可以对森林面积进行估算,为林 业资源管理和生态保护提供依据。
分析交通事故原因
在交通事故分析中,相似三角形可 以帮助分析事故原因,确定责任方 ,为交通事故处理提供科学依据。

性质三
相似多面体的对应棱的 中线之比等于相似比。
性质四
相似多面体的对应高的 比、对应中线的比和对 应角平分线的比都等于
相似比。
应用前景展望
建筑设计
在建筑设计中,利用相似多面体 的性质可以方便地按比例缩放建 筑模型,以适应不同规模和需求
的设计项目。
艺术创作
在机械、航空等工程领域,相似 多面体的概念可用于按比例放大 或缩小零部件和装置,以简化设

相似比与对应角关系
01
02
03
相似比
两个相似三角形的对应边 之间的比值称为相似比。
相等性
相似三角形的对应角相等 。
互补性
如果两个角在一个三角形 中是互补的,那么它们在 另一个相似三角形中也是 互补的。
性质总结
对应边成比例

《27.2.1 相似三角形的判定(第3课时)》教学设计-人教九下优质课精品

《27.2.1 相似三角形的判定(第3课时)》教学设计-人教九下优质课精品

27.2.1相似三角形的判定(第3课时)一、内容和内容解析1.内容判定定理“三边成比例的两个三角形相似”和“两边成比例且夹角相等的两个三角形相似”.2.内容解析全等是相似中放缩比例为1的特殊情形,这为我们提供了一个思路:类比判定两个三角形全等的“SSS”“SAS”方法,发现并提出判定两个三角形相似的简单方法.在探究“三边成比例的两个三角形相似”的过程中,学生通过度量,发现结论成立,再通过作与△A'B'C'相似的三角形,把证明相似的问题转化为证明所作三角形与△ABC全等的问题.“两边成比例且夹角相等的两个三角形相似”的证法与前一个判定方法的证明方法类似,再次体现了定理“平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似”的基础性作用.基于以上分析,确定本节课的教学重点是:判定定理“三边成比例的两个三角形相似”和“两边成比例且夹角相等的两个三角形相似”.二、目标和目标解析1.目标(1)理解三角形相似的两个判定定理.(2)会运用三角形相似的两个判定定理解决简单的问题.2.目标解析达成目标(1)的标志是:理解两个判定定理的含义,能分清条件和结论,能用文字语言、图形语言和符号语言表示.达成目标(2)的标志是:会用两个判定定理判定两个三角形相似,从而解决简单的问题.三、教学问题诊断分析在两个判定定理的证明过程中,教科书作了一个中介三角形,使之与要证的三角形相似,再利用相似三角形对应边成比例和已知条件证明“中介三角形”与原三角形全等,这种转化的方法学生往往难以想到.其中通过线段的比相等证明线段相等,不同于以往常用的证明线段相等的方法,也会给定理的证明带来一定难度.基于以上分析,确定本节课的教学难点是:判定定理“三边成比例的两个三角形相似”的证明.四、教学过程设计 1.问题引入,类比猜想问题1 (1)两个三角形全等有哪些简便的判定方法?(2)全等是相似比为1的特殊情形.如图1,类比三角形全等的判定,判定△ABC 与△A'B'C'相似,是否有简便的判定方法?你有什么猜想?师生活动:问题(1)由学生口答.问题(2)组织学生分小组讨论,然后全班交流.如果学生对“两角对应相等的两个三角形相似”是否正确存在疑问,可存疑,留在下一节课解决.对学生提出的判断三角形相似的方法进行归纳整理,指出本节课先研究“三边”和“两边及其夹角”的情形.设计意图:通过全等三角形与相似三角形之间特殊与一般的关系,运用类比的思维方式,让学生猜想出两三角形相似的简单判定方法,从而引出下一步要探究的问题.2.画图探究,初步感知问题2 在△ABC 与△A'B'C'中,如果满足B A AB ''=C B BC ''=C A AC''=k ,那么能否判定这两个三角形相似?师生活动:(1)画图探究.教师引导学生任意画△ABC ,取一个便于操作的k 值(如21,2等),得到△A'B'C'的三边长,再作出△A'B'C'.指导学生把画好的三角形剪下,比较它们的对应角是否相等,判断这两个三角形是否相似.(2)教师借助《几何画板》对k 取任意值的情况进行演示,让学生归纳发现的结论.并说明k =1时两个三角形全等,即全等是相似的特殊情况.设计意图:在教师的指导下,学生通过自己动手,探索新知,并与他人交流探讨,感受探索过程.k 取1时,两个三角形全等,取其他值时,两个三角形相似,进一步感受相似与全等的紧密联系.《几何画板》的动态演示,有利于学生更直观地发现结论.ABCA 'B 'C '图13.构造中介,证明定理问题3 怎样证明“三边成比例的两个三角形相似”呢? 师生活动:(1)学生结合图形写出已知、求证并交流讨论.(2)当学生感到无处入手时,教师用学生剪出的△ABC 与△A'B'C'的纸片为模型,用较小的△ABC 放置于较大△A'B'C'的上(学生取的k 值不同,可能会出现两种图形,但证明的本质是相同的),点A 与点A'重合,点B 在边A'B'上,记为点D ,将点C 在A'C'上的位置记为点E .教师追问1:B'C'与DE 有什么位置关系?为什么? 师生活动:学生直观发现B'C'∥DE .教师追问2:由B'C'与DE 的位置关系可得到△A'DE 与△A'B'C'相似吗?为什么? 师生活动:学生回答由“平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似”,得到△A'DE 与△A'B'C'相似.教师追问3:我们先构造了一个与△ABC 全等的中介△A'DE ,得到△A'DE ∽△A'B'C',然后可得△ABC ∽△A'B'C'.这为我们证明“三边成比例的两个三角形相似”提供了一个思路:能否在△A'B'C'上作一个与△A'B'C'相似的△A'DE ,再证明它与△ABC 全等呢?如何作?师生活动:(1)学生思考交流.教师展示学生的不同作法,并请学生说明△A'DE 与 △ABC 全等的原因.(2)由学生整理出证明思路,教师板书,从而得到三角形相似的判定定理.设计意图:让学生在操作中发现解决问题的方法:作DE ∥B'C',证明△A'DE ∽△A'B'C',从而把证明“△ABC 与△A'B'C'相似”的问题转化为证明△ABC ≌△A'DE 的问题.4.类比实验,自主探究问题4 全等三角形有“SAS ”的判定方法,类似地,△ABC 和△A'B'C'中,如果满足B A AB''=C A AC''=k ,且∠A =∠A',那么能否判定这两个三角形相似? 师生活动:(1)教师借助《几何画板》对k 取任意值的情况进行演示,看△ABC 和△A'B'C'的另一组对应边的比是否为k ,另两组对应角是否相等.问:图中的△ABC 与△A'B'C'相似吗?为什么?学生提出猜想的结论.(2)学生模仿上一个定理的证明,讨论问题4的证明思路,在课后完成证明过程. (3)师生小结判定定理二的内容.并追问:对于△ABC 和△A'B'C',如果B A AB ''=C B BC'',且∠B =∠B',这两个三角形一定相似吗?如果将∠B =∠B'换成∠C =∠C',这两个三角形一定相似吗?为什么?让学生试着画画看,找出反例即可.设计意图:学生有前面探究活动的经验,教师提出问题后,利用《几何画板》辅助,学生容易获取初步结论,而且仿照上一个定理的证明,容易得到这个命题的证明思路.最后,学生通过考虑“两边和其中一边的对角”的情形,加强对三角形相似条件的理解与记忆.5.运用结论,解决问题例 根据下列条件,判断△ABC 和△A'B'C'是否相似,并说明理由: (1)AB =4 cm ,BC =6 cm ,AC =8 cm , A'B'=12 cm ,B'C'=18 cm ,A'C'=24 cm . (2)∠B =120°,AB =7 cm ,AC =14 cm , ∠A'=120°,A'B'=3 cm ,A'C'=6 cm .师生活动:师生共同分析从题干的条件中是否可能得到两个三角形相似的条件,教师提醒学生注意第(2)题中的角是不是已知两边的夹角.设计意图:使学生学会从现有条件中得到判定三角形相似的条件. 6.变式训练,巩固提高判断图中的两个三角形是否相似,并求出x 和y .师生活动:学生自主答题,写出相应的解答过程,然后互评. 设计意图:巩固本节课所学的相似三角形的判定定理. 7.回顾小结回顾本节课的学习,回答下列问题: (1)你学到了哪些判定三角形相似的方法? (2)你认为证明两个三角形相似的思路是什么?设计意图:引导学生归纳本节课的知识点及判定定理的证明思路. 8.布置作业A BDE C y ° x 4530 54 36 46°20 图2152025402745图11.教科书第34页练习第1,3题. 2.教科书第42页习题27.2第2(1),3题.3.证明判定定理“两边成比例且夹角相等的两个三角形相似”(画图,写出已知、求证,并进行证明).六、目标检测设计1.下列条件中可以判定△ABC ∽△C B A '''的是( ). A .AC AB =''''C A B A B .AC AB =''''C A B A ,∠B =∠B' C .B A AB ''=''C A AC =C B BC''D .''B A AB =''C A AC设计意图:考查对三角形相似的两个判定定理的条件特征的理解. 2.如图,已知△ABC ,则下列四个三角形中,与△ABC 相似的是( ).设计意图:考查判定定理“两边成比例且夹角相等的两个三角形相似”的应用. 3.在△ABC 和△A'B'C'中,AB =6,BC =8,AC =5,A'B'=3,B'C'=4,则当A'C'=______时,△ABC ∽△A'B'C'.设计意图:考查用“三边成比例的两个三角形相似”判定两个三角形相似.4.如图,在平面直角坐标系中,A (4,0),B (0,2),如果点C 在x 轴的正半轴上(点C 与点A 不重合),当点C 的坐标为 时,△BOC 与△AOB 相似.设计意图:结合平面直角坐标系的知识,考查用“两边成比例且夹角相等的两个三角形相似”判定两个三角形相似.5.如图,在正方形ABCD 中,点P 是BC 上的一点,BP =3PC ,点Q 是CD 中点,求证:△ADQ ∽△QCP .ABCDQP (第5题)A B C 555 555 55 56675° 75°30° 40° A B CD(第4题)设计意图:结合勾股定理,考查用“两边成比例且夹角相等的两个三角形相似”判定两个三角形相似.。

用几何画板做数学_陈咸存

用几何画板做数学_陈咸存
2 2 #$ 2 2 2 a b LN = a , 显 然 #$ ! " ! = , 有 #$ 1+2!rcos"+ ! 1+2!rcos"+ ! !r " , MN = !r "" 2 2 b MN ! ! 1+! " 1+! " #$ #$ LN = A C = a , 且 k = sin!+!rsin(!+") , k = sin$+!rsin($+") ,易求 tan∠LNM= kLN - kMN LN #$ #$ b cos!+!rcos(!+") MN cos$+!rcos($+") 1+kLN kMN MN BC 2
( 责任编辑 张红波 )
67
Solving Math Pr oblem with SKETCH PAD
CHEN Xian- cun
( Ningbo Institute of Education, Ningbo 315010, China)
Abstr act: This paper suggests that by using software of SKETCH PAD students experience process of problem- solving and enjoy achievement of creation so that they can learn how to study, research and find Math laws. Key wor ds: SKETCH PAD; Math experiment; solve math problem; ratio of division; similarity transformation

利用方格纸画相似三角形

利用方格纸画相似三角形

利用方格纸画相似三角形陈 凤 萍江苏省泰州市智堡中学 225300数学教学改革的根本目的是让学生在学习数学的过程中主动参与,充分享受到学习数学知识的快乐,树立自信,通过动手、动脑,积极主动地探索应用,形成自己独特的思维方式,并加以应用。

“相似三角形”的学习中利用学生的好奇心、求知欲,尝试着在方格纸上画出与已知的格点三角形相似的格点三角形,并试着探索其中的规律。

例1. 如图①所示,在6×6的方格纸上,请画出与已知⊿ABC 相似的格点三角形,想一想(1)可以画出多少种格点三角形?(2)你能找出最大的格点三角形吗?分析:先给出格点三角形的定义,如图①所示,我们把像⊿ABC 这样顶点在小正方形顶点上的三角形称为格点三角形,然后复习相似三角形的条件,可利用的方法有(1)两角对应相等的两个三角形相似;(2)两边对应成比例且夹角相等的两个三角形相似;(3)三边对应成比例的两个三角形相似;(4)平行线的性质等。

我们很容易画出图②中⊿111C B A 、⊿222C B A 、⊿333C B A ,其实我们想要找出与⊿ABC 相似的所有格点三角形,可以考虑从各种可能的相似比入手,由于要找出与⊿ABC 相似的三角形,从图形中可以看出AC 对应的边n n C A 只有两种,一种是格点的边,另一种则是格点的对角线,因此它们的相似比是整数或特殊的无理数。

解:如图②所示,与⊿ABC 相似的三角形(1)相似比是整数时,我们考虑⊿ABC 的最长边的对应边的长度:因为⊿ABC 的最长边为5,而方格图中最长边为72,我们只能画出5、22和53,而8054就无法画出了,所以相似比只能取1、2、3;(2)当相似比是无理数时,考虑到既可画出,又在格点上。

因为n n C A 昌方格中矩形的对角线长,有与(1)相同的原因只能图①B AC1B 3B 图②1A 3A 1C 2C 2A 2B 3C是2、22、5、10,相似比只能取2、22、5、10。

中考数学几何专项——相似模型(相似三角形)

中考数学几何专项——相似模型(相似三角形)

相似模型【相似模型一:A 字型】 特征 模型结论DE ∥BCCBCBBC D E ADA E DA AD:AB=AE:AC=DE:BC 顺着比∠B=∠AEDCB CBDA EDAAD:AC=AE:AB=DE:BC 反着比AD×AB=AE×AC 顺着乘∠B =∠ACDCBED AAD:AC=AC:AB=CD:BC AC²=AD×AB当∠ BAC=90°AD B CB①△ABD ∽△CBA AB ²=BD×BC ②△ACD ∽△BCAAC²=CD×BC③△ADB ∽△CDA AD²=BD×CD特征 模型结论AC ∥BDAD B CO DB A CC A OD BAD B CODBACCAO D B① △BD0∽△ACO ② DO:0C=BO:0A=BD:AC 交叉比③ △AOD 与△C0B 不相似∠B=∠C(也叫蝴蝶型相似)A D BC ODBACCAD B CODBACC① △AOC ∽△DOB② AO:OD=0C:0B=AC:BDAO×OB=OC×0D 顺着比,交叉乘 ③ △BOC∽△DOA特征 模型 结论成比例线段共端点① △ABC ∽△ADE② △ABD∽△ACE特征 模型结论AB ∥EF ∥CDFEBCD AF EDCBA图2① 有两对A 字型相似△BEF ∽△BCD △DEF∽△DAB ② 有一对X 型相似△AEB ∽△DEC ③111AB CD EF+=特征模型结论ECD BAA BDC EEDCBA90度,45度; 120度,60度60°45°图2图1旋转N M 60°120°E D CB A 45°ED C B A ①△ABN ∽△MAN ∽△MCA ②△ABD ∽△CAE ∽△CBA【相似模型六:三角形内接矩形模型】 特征模型结论矩形EFGH 或正方形EFGH 内接与三角形H G FED C BA【相似模型七:十字模型】 特征 模型 结论正方形①若AF=BE,则AF ⊥BE ②若AF ⊥BE ,则AF=BE,长方形PEAB CD矩形ABCD 中,CE ⊥BD ,则△CDE ∽△BCD ,CE CDBD BC平行四边形△GME ∽△HNF△MED ≌△BFA三角形MED CAB在△ABC 中,AB =AC ,AB ⊥AC ,①D 为中点,②AE ⊥BD ,③BE :EC=2:1,④∠ADB =∠CDE ,⑤∠AEB =∠CED ,⑥∠BMC =135°,⑦2BMMC =,这七个结论中,“知二得五”【A 型,X 型,三平行模型】1.如图,在△ABC 中,EF ∥DC ,∠AFE =∠B ,AE =6,ED =3,AF =8,则AC =_________,CDBC=_________.F E DCBABCDE FA2.如图,AB ∥CD ,线段BC ,AD 相交于点F ,点E 是线段AF 上一点且满足∠BEF =∠C ,其中AF =6,DF =3,CF =2,则AE =_________.3.如图,在Rt △ABD 中,过点D 作CD ⊥BD ,垂足为D ,连接BC 交AD 于点E ,过点E 作EF ⊥BD 于点F ,若AB =15,CD =10,则BF :FD =_____________.FEBCAN MEDCBA4.如图,在□ABCD 中,E 为BC 的中点,连接AE ,AC ,分别交BD 于M ,N ,则BM :DN =_____________.5.如图所示,AB ∥CD ,AD ,BC 相交于点E ,过E 作EF ∥AB 交BD 于点F .则下列结论:①△EFD ∽△ABD ;②EF BF CD BD =;③1EF EF FD BF AB CD BD BD +=+=;④111AB CD EF+=.其中正确的有___________. F EDCBA图26.在△ABC 中,AB=9,AC=6,点M 在边AB 上,且AM=3,点N 在AC 边上.当AN= 时,△AMN 与原三角形相似.7.如图,在△ABC 中,∠C=90°,AC=8,BC=6,D 是边AB 的中点,现有一点P 位于边AC 上,使得△ADP 与△ABC 相似,则线段AP 的长为 .8.如图,已知O 是坐标原点,点A.B 分别在y x 、轴上,OA=1,OB=2,若点D 在x 轴下方,且使得△AOB 与△OAD 相似,则这样的点D 有 个.9.如图,在Rt △ACB 中,∠C=90°,AC=16cm ,BC=8cm ,动点P 从点C 出发,沿CA 方向运动;动点Q 同时从点B 出发,沿BC 方向运动,如果点P 的运动速度均为4cm/s ,Q 点的运动速度均为2cm/s ,那么运动几秒时,△ABC 与△PCQ 相似.10.将△ABC的纸片按如图所示的方式折叠,使点B落地边AC上,记为点B',折叠痕为EF,已知AB=AC=8,BC=10,若以点B'.F.C为顶点的三角形与△ABC相似,那么BF的长度是.11.如图,在中,,,是角平分线.求证:(1)(2)12.如图,四边形中,平分,,,为的中点.(1)求证:;(2)与有怎样的位置关系?试说明理由;(3)若,,求的值.13.如图,在中,为上一点,,,,于,连接.(1)求证:;(2)找出图中一对相似三角形,并证明.14.如图,在中,,分别是,上的点,,的平分线交于点,交于点.(1)试写出图中所有的相似三角形,并说明理由(2)若,求的值.15.如图,在平行四边形ABCD中,对角线AC、BD交于点O.M为AD中点,连接CM交BD于点N,且ON=1.(1)求BD的长;(2)若△DCN的面积为2,求四边形ABNM的面积.16.如图,在中,于点,于点,连接,求证: ..17.如图,在△ABC中,DE∥FG∥BC,AD∶DF∶FB=1∶2∶3,若EG=3,则AC=________.图1 图218..如图,平行于BC的直线DE把△ABC分成的两部分面积相等.则ADAB= _________.19.如图所示,AD=DF=FB, DE∥FG∥BC,则S1:S2:S3=__________.20.如图,在矩形ABCD中,对角线AC,BD相交于点O,OE⊥BC于点E,连接DE交OC于点F,作FG⊥BC于点G,则线段BG与GC的数量关系是___.21. 如图,已知点C 为线段AB 的中点,CD ⊥AB 且CD=AB=4,连接AD ,BE ⊥AB ,AE 是∠DAB 的平分线,与DC 相交于点F ,EH ⊥DC 于点G ,交AD 于点H ,则HG 的长为 .22.如图1,在△ABC 中,点D 、E 、Q 分别在边AB 、AC 、BC 上,且DE ∥BC ,AQ 交DE 于点P . (1)求证: ;(2)如图,在△ABC 中,∠BAC =90°,正方形DEFG 的四个顶点在△ABC 的边上,连接AG 、AF ,分别交DE 于M 、N 两点.如图2,若AB =AC =1,直接写出MN 的长;如图3,求证MN 2=DM【母子型】1、已知:如图,△ABC 中,∠ACB=90°,CD ⊥AB 于D ,S △ABC=20,AB=10。

最新人教版九年级数学下册第二十七章27.2.1《相似三角形的判定》说课稿

最新人教版九年级数学下册第二十七章27.2.1《相似三角形的判定》说课稿

《相似三角形的判定》说课稿各位评委老师:大家好!我今天说课的内容是《相似三角形的判定》,下面我将从说教材、说学生、说教学方法、说教学过程、板书设计五个大板块来给大家阐述我的教学思路和教学设计。

一、说教材首先进入我的第一个大板块“说教材”。

我把说教材这个板块分为三个小环节来进行,它们分别是教材分析、教学目标、教学重难点。

1、教材分析本节课《相似三角形的判定》是选自新人教版九年级下册第二十七章第二节第二课时的内容。

是在学习了第一节相似多边形的概念、第一课时平行线分线段成比例的定理及推论后,研究相似三角形的定义以及三角形一边的平行线的判定定理。

本节课是判定三角形相似的起始课,是本章的重点之一。

一方面,该定理是前面知识的延伸和全等三角形性质的拓展;另一方面,不仅可以直接用来证明有关三角形相似的问题,而且还是证明其他三种判定定理的主要根据,所以把它叫做相似三角形判定定理的“预备定理”。

因此,这节课在本章中有着举足轻重的地位。

2、教学目标根据教学大纲的要求和贯彻全面发展的教育方针,我制定了如下的教学目标:(1)知识与技能:理解相似三角形的定义,掌握相似三角形判定定理的“预备定理”。

(2)过程与方法:让学生经历观察---探索----猜想----验证----运用----巩固的过程,渗透类比的思想方法,培养学生探究新知识、提高分析问题和解决问题的能力。

(3)情感态度和价值观:通过实物演示和电化教学手段,把抽象问题直观化,激发学生学习的求知欲,通过主动探究、合作交流,在学习活动中体验获得成功的喜悦。

3、教学重难点为了达到以上的教学目标,我制定了以下的教学重难点:教学重点:相似三角形的定义,判定两个三角形相似的预备定理。

教学难点:探究两个三角形相似的预备定理的过程。

二、说学生说完了教材,我想跟大家分析一下我所授课的学生所具有的特点,也就是学情分析。

老师们,我们都知道九年级的学生接受能力相比七八年级强,想得到老师的鼓励。

《相似三角形》完整版教学课件

《相似三角形》完整版教学课件

易错点及注意事项
易错点
在判定两个三角形是否相似时,容易 忽略对应角和对应边的关系,导致判 断错误。
注意事项
在解答相似三角形问题时,要注意单 位统一和比例关系的正确应用,避免 计算错误。
拓展知识点介绍
射影定理
在直角三角形中,斜边上的高是两条直角边在斜边射影的比例中项,每一条直角边又是这条直角边在斜边上的射 影和斜边的比例中项。
、建筑物等的高度。
又如,利用相似三角形的性质, 可以测量河流的宽度或海峡的宽
度等。
求解比例尺问题
比例尺是一种表示实际距离与地图上 距离之间比例关系的工具。
例如,已知比例尺和地图上的距离, 可以计算出实际的距离;反之,已知 实际距离和比例尺,也可以计算出地 图上的距离。
利用相似三角形的性质,可以通过比 例尺求解实际距离或地图上距离。
相似比概念
相似比
相似三角形对应边的比值叫做相似比 。
性质
相似三角形的周长之比等于相似比, 面积之比等于相似比的平方。
应用举例
利用相似三角形测量高度
01
通过构造相似三角形,可以测量出建筑物、山峰等高大物体的
高度。
利用相似三角形证明几何题
02
在几何证明题中,经常需要利用相似三角形的性质来证明线段
或角的相等或比例关系。
对应边与相似比关系
在相似三角形中,对应边的长度之比等于相似比。通过已知 的两边长度,可以计算出相似比,进而求出第三边的长度。
面积比与相似比关系
面积比等于相似比的平方
相似三角形的面积之比等于相似比的平方。这是因为在相似三角形中,面积与对应边长度的平方成正 比。
利用面积过开方运算求出它们的相似比。
性质应用举例
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

怎样用几何画板绘制相似三角形
三角形在几何绘图中出现很多,三角形相似是很重要的一种几何关系,如何用几何画板绘制相似三角形呢?
具体操作步骤如下:
1.绘制三角形ABC。

利用点工具和线段工具作三角形ABC。

利用点工具和线段工具作三角形ABC
2.构造一条直线。

利用线段工具,按住Shift键,作出线段。

选中线段的两个端点,按“Ctrl+H”隐藏直线上的两个控制点,如下图所示。

利用线段工具作出线段并隐藏两个端点
3。

构造标记比。

用点工具在直线上构造三个点D、E、F,用移动箭头工具依次选取点D、E、F,由菜单“变换”——“标记比”,标记这个比。

将构造出来的三个点依次选中在菜单“变换”中选择“标记比"
4。

构造相似三角形。

双击点A,选取三角形的三边和三个顶点,由菜单“变换”——“缩放"弹出缩放对话框后,选择“标记比”点击“缩放"进行设置,如下图所示。

选中三角形后大“变换”菜单中选择“缩放”并进行相应设置”
5.拖动点F在直线上移动,可以看到相似三角形的变化.
拖动点F可以观察相似三角形的变化
以上教程向大家介绍了如何利用标记比和缩放在几何画板构造相似三角形的方法。

相关文档
最新文档