《高等数学》(上) 试题 及参考答案
(完整word版)大一第一学期期末高等数学(上)试题及答案

第一学期期末高等数学试卷一、解答下列各题(本大题共16小题,总计80分) 1、(本小题5分)求极限 lim x x x x x x →-+-+-23321216291242、(本小题5分).d )1(22x x x⎰+求3、(本小题5分)求极限lim arctan arcsinx x x →∞⋅14、(本小题5分)⎰-.d 1x x x 求5、(本小题5分).求dt t dx d x ⎰+2021 6、(本小题5分)⎰⋅.d csc cot 46x x x 求7、(本小题5分).求⎰ππ2121cos 1dx x x8、(本小题5分)设确定了函数求.x e t y e t y y x dy dx t t==⎧⎨⎪⎩⎪=cos sin (),229、(本小题5分).求dx x x ⎰+3110、(本小题5分)求函数 的单调区间y x x =+-422 11、(本小题5分).求⎰π+202sin 8sin dx x x12、(本小题5分).,求设 dx t t e t x kt )sin 4cos 3()(ωω+=- 13、(本小题5分)设函数由方程所确定求.y y x y y x dy dx =+=()ln ,22614、(本小题5分)求函数的极值y e e x x =+-2 15、(本小题5分)求极限lim()()()()()()x x x x x x x →∞++++++++--12131101101111222216、(本小题5分).d cos sin 12cos x x x x⎰+求二、解答下列各题(本大题共2小题,总计14分) 1、(本小题7分),,512沿一边可用原来的石条围平方米的矩形的晒谷场某农场需建一个面积为.,,才能使材料最省多少时问晒谷场的长和宽各为另三边需砌新石条围沿2、(本小题7分).8232体积轴旋转所得的旋转体的所围成的平面图形绕和求由曲线ox x y x y ==三、解答下列各题 ( 本 大 题6分 )设证明有且仅有三个实根f x x x x x f x ()()()(),().=---'=1230一学期期末高数考试(答案)一、解答下列各题(本大题共16小题,总计77分) 1、(本小题3分)解原式:lim =--+→x x x x 22231261812 =-→limx xx 261218 =2 2、(本小题3分)⎰+xx xd )1(22⎰++=222)1()1d(21x x =-++12112x c .3、(本小题3分)因为arctan x <π2而lim arcsin x x →∞=1故lim arctan arcsin x x x →∞⋅=14、(本小题3分)⎰-x x xd 1xx x d 111⎰----=⎰⎰-+-=x xx 1d d=---+x x c ln .1 5、(本小题3分)原式=+214x x6、(本小题4分)⎰⋅x x x d csc cot 46⎰+-=)d(cot )cot 1(cot 26x x x=--+171979cot cot .x x c7、(本小题4分)原式=-⎰cos ()1112x d x ππ=-sin112xππ=-1 8、(本小题4分)解: dy dx e t t e t t t t t =+-22222(sin cos )(cos sin ) =+-e t t t t t t (sin cos )(cos sin )22229、(本小题4分)令 1+=x u原式=-⎰24122()u u du=-2535312()u u =11615 10、(本小题5分)),(+∞-∞函数定义域 01)1(222='=-=-='y x x x y ,当(][)+∞<'>∞->'<,1011,01函数的单调减区间为,当函数单调增区间为, 当y x y x 11、(本小题5分)原式=--⎰d x x cos cos 9202π=-+-163302lncos cos x x π=162ln 12、(本小题6分)dx x t dt ='()[]dt t k t k e kt ωωωωsin )34(cos )34(+--=- 13、(本小题6分)2265yy y y x '+'='=+y yx y 315214、(本小题6分)定义域,且连续(),-∞+∞'=--y e e x x 2122()驻点:x =1212ln由于''=+>-y e e x x 2022)21ln 21(,,=y 故函数有极小值15、(本小题8分)原式=++++++++--→∞lim()()()()()()x x x x x x x 112131*********2222=⨯⨯⨯⨯=1011216101172 16、(本小题10分)dxxxdx x x x ⎰⎰+=+2sin 2112cos cos sin 12cos :解⎰++=xx d 2sin 211)12sin 21( =++ln sin 1122x c二、解答下列各题(本大题共2小题,总计13分) 1、(本小题5分)设晒谷场宽为则长为米新砌石条围沿的总长为 x xL x x x ,,()51225120=+> '=-=L x x 2512162 唯一驻点 ''=>=L x x 10240163 即为极小值点故晒谷场宽为米长为米时可使新砌石条围沿所用材料最省165121632,,=(完整word 版)大一第一学期期末高等数学(上)试题及答案2、(本小题8分)解 :,,.x x x x x x 232311288204====V x x dx x x dxx =-⎡⎣⎢⎤⎦⎥=-⎰⎰ππ()()()223204460428464=⋅-⋅π()1415164175704x x π=-π=35512)7151(44三、解答下列各题 ( 本 大 题10分 )证明在连续可导从而在连续可导:()(,),,[,];,.f x -∞+∞03 又f f f f ()()()()01230====则分别在上对应用罗尔定理得至少存在[,],[,],[,](),011223f x ξξξξξξ1231230112230∈∈∈'='='=(,),(,),(,)()()()使f f f 即至少有三个实根'=f x (),0,,,0)(它至多有三个实根是三次方程又='x f由上述有且仅有三个实根'f x ()高等数学(上)试题及答案一、 填空题(每小题3分,本题共15分)1、.______)31(lim 2=+→xx x 。
西工大2021年4月机考《高等数学(上)》作业参考答案非免费

西工大2021年4月机考《高等数学(上)》作业试卷总分:100 得分:100答案网叫福到(这四个字的拼音)一、单选题(共50 道试题,共100 分)1.设,则().A.<img ">B.<img srC.<img >D.<img sr>正确答案:B2.设f(x)=1+,则以下说法正确的是().A.x=0是f(x)的连续点B.x=0是f(x)的可去间断点C.x=0是f(x)的跳跃间断点D.x=0是f(x)的第二类间断点正确答案:3.设函数的一个原函数是,则().A.<img s">B.<img srC.<img s>D.<img sr>正确答案:4.函数在内().A.单调增加B.单调减少C.不单调D.不连续正确答案:B5.().A.0B.2C.不存在D.<img sr>正确答案:6.函数的拐点是().A.<img s>B.<img srC.<img sr>D.不存在正确答案:7.().A.<img s6)B.<img s)C.<img sr6)D.<img sr6)正确答案:8.().A.<img sr>B.0C.3D.<img s>正确答案:9.().A.x ln(xB.x ln(xC.ln(x+D.ln(x+正确答案:10.下列广义积分收敛的是().A.<img s4">B.<img s">C.<img s>D.<img sr">正确答案:11.下列函数中,()是xsinx2的原函数.A.<img sx2B.2cosx2C.-2cosx2D.-<img s212.().A.<img >B.<img s>C.2D.4正确答案:13.下列各对函数中表示同一函数关系的是().A.<img s>B.<img s>C.<img s">D.<img s">正确答案:14.设在点取得极小值,则().A.2B.3C.<img s">D.<img sr>正确答案:15.设函数,则在上是().A.凸的B.凹的C.非凸非凹D.既凸又凹正确答案:16.经过且切线斜率为的曲线方程是().A.<img s>B.<img sr>C.<img sr">D.<img s">正确答案:17.().A.0C.-1D.<img s>正确答案:18.曲线在点处的切线方程是().A.<img sr>B.<img s">C.<img sr>D.<i正确答案:19.函数在内().A.单调增加B.单调减少C.不单调D.不连续正确答案:20.函数的拐点是().A.<img s">B.<img s">C.<imD.不存在正确答案:21.设函数,则在上是().A.凸的B.凹的C.非凸非凹D.既凸又凹正确答案:22.设函数,则().A.0B.-1C.2D.1正确答案:A.0B.1C.<img s>D.<img s>正确答案:B24.设函数,则().A.<img sr>B.-2<iC.2<img s>D.2<img sr">正确答案:25.设函数,则其水平渐近线是().A.<img sr>B.<img s">C.<img sr>D.<img s>正确答案:26.设,则().A.0B.<imgC.4D.<img sr">正确答案:27.下列函数在指定区间上满足罗尔中值定理条件的是().A.<img s">B.<img ">C.<img sr>D.<img sr>正确答案:28.().A.0B.<img sr>C.<img sD.<img s正确答案:29.设函数,则().B.-2<img s>C.2<img srD.2<img s>正确答案:30.().A.<imgB.1C.<img sD.0正确答案:31.曲线及直线,与轴所围平面图形的面积是().A.2B.1C.0D.4正确答案:32.设函数,则().A.0B.<img s">C.4D.<img s>正确答案:33.抛物线与直线所围成的图形面积等于().A.30B.18C.12D.<img s正确答案:34.曲线在点处的切线的斜率().A.<img s>B.<img sC.1D.<img s35.设,则().A.<img s>B.<img s>C.<img s>D.<img s正确答案:36.函数y=在(0,+)内是().A.有界函数B.无界函数C.常量D.无穷大量正确答案:37.若,则=().A.2B.0C.1D.-1正确答案:38.函数在处极限存在是在处连续的().A.必要不充分条件B.充分不必要条件C.充分必要条件D.既非必要又非充分条件正确答案:39.().A.<img sr>B.<img s>C.0D.不存在正确答案:40.下列函数中,不是的原函数的是().B.<img sr>C.<img sr">D.<img sr正确答案:41.设在处连续,则等于().A.1B.-1C.2D.-2正确答案:C42.().A.<img s">B.0C.3D.<img sr>正确答案:43.函数的其铅直渐近线是().A.<img sr">B.<img s">C.<img srD.<img sr">正确答案:44.当x→0时,下面无穷小量中与x等价的无穷小量为().A.3xB.sin xC.<P><img s>D.x+sin x正确答案:45.设,则().A.0B.<img s>C.4D.<img s>46.设则下列结论正确的是().A.<img 为奇函数B.<img 为偶函数C.<img 都是奇函数D.<img 都是偶函数正确答案:47.函数在()内单调增加.A.<img s>B.<img >C.<img sD.不单调正确答案:48.().A.1B.<img s">C.<img s>D.<img s>正确答案:49.函数在()内单调增加.A.<img ">B.<img s>C.<img sr>D.<img sr">正确答案:50.函数在x = 0处连续,则k =().A.-2B.-1C.1D.2正确答案:二、多选题(共0 道试题,共0 分)以下内容仅供学习参考,可不予理会46.当时,与2比较是().A.高阶的无穷小量B.等阶的无穷小量C.低阶的无穷小量D.非等阶的同阶无穷小量正确答案:47.设函数,则是的().A.可去间断点B.可去间断点C.跳跃间断点D.振荡间断点正确答案:。
高数(大一上)期末试题及答案

高数(大一上)期末试题及答案第一学期期末考试试卷(1)课程名称:高等数学(上)考试方式:闭卷完成时限:120分钟班级:学号:姓名:得分:一、填空(每小题3分,满分15分)1.lim (3x^2+5)/ (5x+3x^2) = 02.设 f''(-1) = A,则 lim (f'(-1+h) - f'(-1))/h = A3.曲线 y = 2e^(2t) - t 在 t = 0 处切线方程的斜率为 44.已知 f(x) 连续可导,且 f(x)。
0,f(0) = 1,f(1) = e,f(2) = e,∫f(2x)dx = 1/2ex,则 f'(0) = 1/25.已知 f(x) = (1+x^2)/(1+x),则 f'(0) = 1二、单项选择(每小题3分,满分15分)1.函数 f(x) = x*sinx,则 B 选项为正确答案,即当x → ±∞ 时有极限。
2.已知 f(x) = { e^x。
x < 1.ln x。
x ≥ 1 },则 f(x) 在 x = 1 处的导数不存在,答案为 D。
3.曲线 y = xe^(-x^2) 的拐点是 (1/e。
1/(2e)),答案为 C。
4.下列广义积分中发散的是 A 选项,即∫dx/(x^2+x+1)在区间 (-∞。
+∞) 内发散。
5.若 f(x) 与 g(x) 在 (-∞。
+∞) 内可导,且 f(x) < g(x),则必有 B 选项成立,即 f'(x) < g'(x)。
三、计算题(每小题7分,共56分)1.lim x^2(e^(2x)-e^(-x))/((1-cosx)sinx)lim x^2(e^(2x)-e^(-x))/((1-cosx)/x)*x*cosxlim x(e^(2x)-e^(-x))/(sinx/x)*cosxlim (2e^(2x)+e^(-x))/(cosx/x)应用洛必达法则)2.lim {arcsin(x+1) + arcsin(x-1) - 2arcsin(x)}/xlim {arcsin[(x+1)/√(1+(x+1)^2)] + arcsin[(x-1)/√(1+(x-1)^2)] - 2arcsin(x)/√(1+x^2)}lim {arcsin[(x+1)/√(1+(x+1)^2)] - arcsin(x/√(1+x^2)) + arcsin[(x-1)/√(1+(x-1)^2)] - arcsin(x/√(1+x^2))}lim {arcsin[(x+1)/√(1+(x+1)^2)] - arcsin(x/√(1+(x+1)^2)) + arcsin[(x-1)/√(1+(x-1)^2)] - arcsin(x/√(1+(x-1)^2))}lim {arcsin[(x+1)/√(1+(x+1)^2)] - arcsin[(x-1)/√(1+(x-1)^2)]} π/2 (应用洛必达法则)3.y = y(x) 由 x + y - 3 = 0 确定,即 y = 3 - x,因此 dy/dx = -1.4.f(x) = arctan(2x-9) - arctan(x-3) 的导数为 f'(x) = 1/[(2x-9)^2+1] - 1/[(x-3)^2+1],因此 f'(x)。
高数题库及答案

高数题库及答案【篇一:大学高等数学上考试题库(附答案)】>一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是().(a)f?x??lnx 和 g?x??2lnx (b)f?x??|x| 和 g?x??2(c)f?x??x 和 g?x??2(d)f?x??|x|x和 g?x??122.函数f?x???ln?1?x??a?x?0x?0在x?0处连续,则a?().(a)0 (b)14(c)1 (d)23.曲线y?xlnx的平行于直线x?y?1?0的切线方程为().(a)y?x?1 (b)y??(x?1)(c)y??lnx?1??x?1?(d)y?x 4.设函数f?x??|x|,则函数在点x?0处().(a)连续且可导(b)连续且可微(c)连续不可导(d)不连续不可微5.点x?0是函数y?x4的().(a)驻点但非极值点(b)拐点(c)驻点且是拐点(d)驻点且是极值点6.曲线y?1|x|的渐近线情况是().(a)只有水平渐近线(b)只有垂直渐近线(c)既有水平渐近线又有垂直渐近线(d)既无水平渐近线又无垂直渐近线 7.?f???2dx的结果是(). ?x?x??1??1??1(b)(c)?c?f??cf????x??x??x?x(a)f??8.?dxe?ex??1(d)?c?f????x???c ?的结果是().x?x(a)arctane?c (b)arctane?c (c)e?e x?x?c (d)ln(e?ex?x)?c9.下列定积分为零的是().?(a)?4?arctanx1?x2??4dx (b)?4??4xarcsinxdx (c)?11?1e?e2x?x1?1?x2?x?sinxdx10.设f?x?为连续函数,则?f??2x?dx等于().(a)f?2??f?0? (b)12??f?11??f?0???(c)12??f?2??f?0???(d)f?1??f?0?二.填空题(每题4分,共20分)?e?2x?1?1.设函数f?x???x?a?x?0x?056在x?0处连续,则a?.2.已知曲线y?f?x?在x?2处的切线的倾斜角为?,则f??2??3.y?4.?xx?12.的垂直渐近线有条.dxx?1?lnx?2?.?5.?2??xsinx?cosx?dx?4?2.三.计算(每小题5分,共30分) 1.求极限①lim x??2x?1?x????x?②limx?0x?sinxxe?x2?1?2.求曲线y?ln?x?y?所确定的隐函数的导数y?. x3.求不定积分①?四.应用题(每题10分,共20分) 1.作出函数y?x?3x的图像. 232dx?x?1??x?3?②??a?0? ③?xe?xdx2.求曲线y?2x和直线y?x?4所围图形的面积.《高数》试卷1参考答案一.选择题1.b 2.b 3.a 4.c 5.d 6.c 7.d 8.a 9.a 10.c 二.填空题 1.?22.?三.计算题1①e2 ②11633.24.arctanlnx?c 5.22.y??x1x?y?13. ①ln|2x?1x?3|?c②ln|x|?c③?e?x?x?1??c四.应用题1.略2.s?18《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ). (a) f?x??x和g?x??(b) f?x??22x?1x?122和y?x?1(c) f?x??x和g?x??x(sinx?cosx)(d) f?x??lnx和g?x??2lnx ?sin2?x?1??x?1??2.设函数f?x???2?2x?1???x?1x?1 ,则limfx?1?x??().x?1(a) 0 (b) 1(c)2(d) 不存在3.设函数y?f?x?在点x0处可导,且f??x?0, 曲线则y?f?x?在点?x0,f?x0??处的切线的倾斜角为{}. (a) 0 (b)?2(c)锐角(d) 钝角4.曲线y?lnx上某点的切线平行于直线y?2x?3,则该点坐标是( ). ??1?1??(b) 2,?ln??? 2?2??2?x(a) ?2,ln (c)??1??1?,ln2? (d) ?,?ln2? ?2??2?5.函数y?xe及图象在?1,2?内是( ).(a)单调减少且是凸的 (b)单调增加且是凸的 (c)单调减少且是凹的 (d)单调增加且是凹的6.以下结论正确的是( ).(a) 若x0为函数y?f?x?的驻点,则x0必为函数y?f?x?的极值点. (b) 函数y?f?x?导数不存在的点,一定不是函数y?f?x?的极值点. (c) 若函数y?f?x?在x0处取得极值,且f??x0?存在,则必有f??x0?=0. (d) 若函数y?f?x?在x0处连续,则f??x0?一定存在.17.设函数y?f?x?的一个原函数为xex,则f?x?=( ).21111(a) ?2x?1?ex (b)2x?ex(c)?2x?1?ex(d) 2xex 8.若?f?x?dx?f?x??c,则?sinxf?cosx?dx?( ).(a) f?sinx??c (b) ?f?sinx??c (c) f?cosx??c (d) ?f?cosx??c 9.设f?x?为连续函数,则?f??1?x??dx=( ). ?2???1??(a) f?1??f?0? (b)2??f?1??f?0??? (c) 2??f?2??f?0??? (d)2?f?2??f?0??????10.定积分?dx?a?b?在几何上的表示( ).ab(a) 线段长b?a (b) 线段长a?b (c) 矩形面积?a?b??1 (d) 矩形面积?b?a??1 二.填空题(每题4分,共20分) ?ln?1?x2??1.设 f?x???1?cosx?a?x?0x?0, 在x?0连续,则a=________.2.设y?sin2x, 则dy?_________________dsinx.3.函数y?xx?12?1的水平和垂直渐近线共有_______条.4.不定积分?xlnxdx?______________________.5. 定积分?1?1xsinx?11?x22?___________.三.计算题(每小题5分,共30分) 1.求下列极限:?①lim?1?2x?x ②limx?01?arctanx1xx???2.求由方程y?1?xe所确定的隐函数的导数y?x.3.求下列不定积分:①?tanxsec3xdx②?ya?0?③?xedx2x四.应用题(每题10分,共20分) 1.作出函数y?13x?x的图象.(要求列出表格)3【篇二:高等数学试题及答案】>一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
《高等数学》练习题库及答案,DOC(word版可编辑修改)

A、xarctan1/xB、arctan1/x C、tan1/xD、cos1/x 13、设 f(x)在点 x0 连续,g(x)在点 x0 不连续,则下列结论成立是() A、f(x)+g(x)在点 x0 必不连续 B、f(x)×g(x)在点 x0 必不连续须有 C、复合函数 f[g(x)]在点 x0 必不连续 D、在点 x0 必不连续
C、-1/2D、1
48、两椭圆曲线 x2/4+y2=1 及(x—1)2/9+y2/4=1 之间所围的平面图形面积等于()
A、лB、2лC、4лD、6л
49、曲线 y=x2—2x 与 x 轴所围平面图形绕轴旋转而成的旋转体体积是()
A、лB、6л/15
C、16л/15D、32л/15
50、点(1,0,-1)与(0,-1,1)之间的距离为()
5.下列命题正确的是()
A.发散数列必无界 B.两无界数列之和必无界
C.两发散数列之和必发散 D.两收敛数列之和必收敛
6. lim sin(x2 1) ()
x1 x 1
A.1B。0
C。2D.1/2
7.设 lim(1 k )x e 6 则 k=()
x
x
A。1B.2
C.6D。1/6
8。当 x 1 时,下列与无穷小(x-1)等价的无穷小是()
7、已知ρ=ψsinψ+cosψ/2,求 dρ/dψ|ψ=л/6=()
8、已知 f(x)=3/5x+x2/5,求 f`(0)=()
9、设直线 y=x+a 与曲线 y=2arctanx 相切,则 a=()
《高等数学》练习题库及答案,DOC(word 版可编辑修改) 10、函数 y=x2-2x+3 的极值是 y(1)=()
(完整版)大一第一学期期末高等数学(上)试题及答案

第一学期期末高等数学试卷一、解答下列各题(本大题共16小题,总计80分)1、(本小题5分)求极限 lim x x x x x x →-+-+-23321216291242、(本小题5分) .d )1(22x x x ⎰+求3、(本小题5分) 求极限limarctan arcsinx x x →∞⋅14、(本小题5分)⎰-.d 1x x x 求5、(本小题5分) .求dt t dx d x ⎰+2021 6、(本小题5分)⎰⋅.d csc cot 46x x x 求7、(本小题5分) .求⎰ππ2121cos 1dx x x8、(本小题5分) 设确定了函数求.x e t y e ty y x dy dx t t ==⎧⎨⎪⎩⎪=cos sin (),229、(本小题5分) .求dx x x ⎰+301 10、(本小题5分)求函数 的单调区间y x x =+-42211、(本小题5分) .求⎰π+202sin 8sin dx x x 12、(本小题5分).,求设 dx t t e t x kt )sin 4cos 3()(ωω+=-13、(本小题5分) 设函数由方程所确定求.y y x y y x dy dx =+=()ln ,226 14、(本小题5分)求函数的极值y e e x x =+-215、(本小题5分) 求极限lim ()()()()()()x x x x x x x →∞++++++++--121311011011112222Λ16、(本小题5分) .d cos sin 12cos x x x x ⎰+求二、解答下列各题(本大题共2小题,总计14分)1、(本小题7分),,512沿一边可用原来的石条围平方米的矩形的晒谷场某农场需建一个面积为.,,才能使材料最省多少时问晒谷场的长和宽各为另三边需砌新石条围沿2、(本小题7分) .8232体积轴旋转所得的旋转体的所围成的平面图形绕和求由曲线ox x y x y ==三、解答下列各题 ( 本 大 题6分 )设证明有且仅有三个实根f x x x x x f x ()()()(),().=---'=1230一学期期末高数考试(答案)一、解答下列各题(本大题共16小题,总计77分)1、(本小题3分)解原式:lim =--+→x x x x 22231261812 =-→lim x x x 261218 =22、(本小题3分) ⎰+x x x d )1(22 ⎰++=222)1()1d(21x x =-++12112x c .3、(本小题3分) 因为arctan x <π2而limarcsin x x →∞=10故limarctan arcsin x x x →∞⋅=10 4、(本小题3分) ⎰-x x x d 1 x x x d 111⎰----= ⎰⎰-+-=x x x 1d d =---+x x c ln .1 5、(本小题3分)原式=+214x x6、(本小题4分) ⎰⋅x x x d csc cot 46⎰+-=)d(cot )cot 1(cot 26x x x=--+171979cot cot .x x c7、(本小题4分) 原式=-⎰cos ()1112x d x ππ=-sin 112x ππ=-1 8、(本小题4分) 解: dy dx e t t e t t t t t =+-22222(sin cos )(cos sin ) =+-e t t t t t t (sin cos )(cos sin )2222 9、(本小题4分)令 1+=x u 原式=-⎰24122()u u du=-2535312()u u =11615 10、(本小题5分) ),(+∞-∞函数定义域 01)1(222='=-=-='y x x x y ,当 (][)+∞<'>∞->'<,1011,01函数的单调减区间为,当函数单调增区间为, 当y x y x 11、(本小题5分)原式=--⎰d x x cos cos 9202π=-+-163302ln cos cos x x π=162ln12、(本小题6分) dx x t dt ='()[]dt t k t k e kt ωωωωsin )34(cos )34(+--=- 13、(本小题6分) 2265yy y y x '+'='=+y yx y 315214、(本小题6分) 定义域,且连续(),-∞+∞ '=--y e e x x 2122()驻点:x =1212ln 由于''=+>-y e e x x 20 22)21ln 21(,,=y 故函数有极小值 15、(本小题8分) 原式=++++++++--→∞lim ()()()()()()x x x x x x x 1121311011011112222Λ =⨯⨯⨯⨯=101121610117216、(本小题10分) dx x x dx x x x ⎰⎰+=+2sin 2112cos cos sin 12cos :解⎰++=x x d 2sin 211)12sin 21(=++ln sin 1122x c 二、解答下列各题(本大题共2小题,总计13分)1、(本小题5分)设晒谷场宽为则长为米新砌石条围沿的总长为 x xL x x x ,,()51225120=+> '=-=L x x 2512162 唯一驻点 ''=>=L x x 10240163 即为极小值点 故晒谷场宽为米长为米时可使新砌石条围沿所用材料最省165121632,,= 2、(本小题8分)解 :,,.x x x x x x 232311288204====V x x dx x x dx x =-⎡⎣⎢⎤⎦⎥=-⎰⎰ππ()()()223204460428464=⋅-⋅π()1415164175704x x π=-π=35512)7151(44三、解答下列各题( 本 大 题10分 ) 证明在连续可导从而在连续可导:()(,),,[,];,.f x -∞+∞03又f f f f ()()()()01230====则分别在上对应用罗尔定理得至少存在[,],[,],[,](),011223f x ξξξξξξ1231230112230∈∈∈'='='=(,),(,),(,)()()()使f f f 即至少有三个实根'=f x (),0,,,0)(它至多有三个实根是三次方程又='x f由上述有且仅有三个实根'f x ()高等数学(上)试题及答案一、 填空题(每小题3分,本题共15分)1、.______)31(lim 20=+→x x x 。
大一上高等数学(I )试题及答案
高等数学(I )一.填空题(每小题5分,共30分)1. 已知0)(2sin lim 30=+>-x x xf x x , 则20)(2lim xx f x +>-= 。
2. 曲线x y ln =上曲率最大的点为__________________。
3. 极限]cos 1[cos lim x x x -+∞>-的结果是_________。
4. 极限 20arcsin lim ln(1)x x x x x →-+=_____________。
5. 曲线)0()1ln(>+=x xe x y 的斜渐近线为( )。
6. 当1→x 时,已知1-x x 和k x a )1(-是等价无穷小,则a =_____,.___=k二、计算题(每小题5分,共20分) 1. x x x x e sin 1023lim ⎪⎪⎭⎫ ⎝⎛+->-2.dx e x x 32⎰ 3.dx x ⎰+cos 2114. 22(tan 1)x e x dx +⎰三.(6分)已知曲线)(x y y =的参数方程⎩⎨⎧++==)41ln(2arctan 2t t y t x ,求22dx y d dx dy ,。
四.(8分)设xx x f )1ln()(ln +=,求⎰dx x f )(五.(10分)设)(x f 31+=x ,把)(x f 展开成带Peano 型余项的n 阶麦克劳林公式,并求).0()50(f六(12分).已知)(x f 是周期为5的连续函数,它在0=x 的某邻域内满足关系式)sin 1(x f +-)(8)sin 1(3x x x f α+=-,其中)(x α是当0→x 时比x 高阶的无穷小,且)(x f 在1=x 处可导,求曲线)(x f y =在点))6(,6(f 处的切线方程。
七.(14分)设函数)(x f 在],[b a 上具有连续导函数)(x f ',且0)()(==b f a f , 证明:2)(4)(a b M dx x f b a -≤⎰,其中|)(|],[x f Max M b a x '=∈。
高等数学试题(含答案)
7.解.特征方程为 k 2 k 0 ,得到特征根 k1 0, k2 1,
故对应的齐次方程的通解为 y c1 c2ex ,
由观察法,可知非齐次方程的特解是 y 1 e x , 2
因而,所求方程的通解为
y
c1
c2ex
1 2
e x ,其中 c1 , c2
第4页,共12页
报考学校:______________________报考专业:______________________姓名:
准考证号:
-------------------------------------------------------------------------------------密封线---------------------------------------------------------------------------------------------------
是任意常数.
………..1 分 ………..3 分 ………..5 分
……….6 分
8.解.因为 ln1 x x x 2 x3 x 4 1n x n1 (1 x 1) ,
234
n 1
….3 分
所以 x 2 ln1 x x 2 (x x 2 x3 x 4 1n x n1 )
1
1.解法一(1). S e e x dx
0
ex e x 1 e e 1 1 . 0
1
(2).V e2 e2x dx
0
e2 x 1 e2x 1
2 0
e2
1 2
e2
1
2
e2 1
1
解法二.(1) S e e x dx
高等数学上册试题及参考答案
2023年高等数学上册试题及参考答案2023年高等数学上册试题及参考答案为题,我们将探讨高等数学的一些重要知识点和解题方法,希望能够帮助大家更好地理解和应用数学知识。
首先,我们来看一道基础的题目:试题:已知函数 f(x) 在区间 [a, b] 上连续且可导,且满足f'(a) = f'(b),证明必存在一点c ∈ (a, b),使得 f'(c) = 0。
解析:根据题目条件,我们可以得出 f'(a) = f'(b)。
根据罗尔定理,如果一个函数在闭区间的两端点处取得相同的函数值,那么在这个闭区间内必然存在一个点,使得其导数为零。
所以,我们可以得出结论,必存在一点 c ∈ (a, b),使得f'(c) = 0。
接下来,我们来看一道稍复杂一些的题目:试题:已知函数 f(x) 为2π 周期的连续函数,且在区间 [0,2π] 上可导。
若 f(x) 在[0, 2π] 上有 4 个零点,证明必存在一点c ∈ (0, 2π),使得 f'(c) = 0。
解析:设 f(x) 在[0, 2π] 上的一个零点为 x1。
根据题目条件,我们可以知道 f(x) 在[x1, x1+2π] 上也有一个零点,设为 x2。
根据零点的定义,可以得知 f(x1) = f(x2) = 0。
根据罗尔定理,我们可以知道在区间 [x1, x2] 内存在至少一个点 c1,使得 f'(c1) = 0。
同理,我们继续分析[x2, x2+2π] 区间内的情况,可以得到在区间内存在至少一个点 c2,使得 f'(c2) = 0。
总结上述分析,我们可以得出结论,在区间(0, 2π) 内必然存在至少两个点 c1 和 c2,使得 f'(c1) = f'(c2) = 0。
所以,我们可以得出结论,必存在一点 c ∈ (0, 2π),使得f'(c) = 0。
通过解析以上两道题目,我们可以看到数学中一些重要的定理和方法的应用,比如罗尔定理。
高等数学上册试题及答案
高等数学上册试题及答案一、选择题(每题4分,共40分)1. 设函数f(x)=x^2-4x+c,若f(1)=0,则c的值为()。
A. -3B. 0C. 3D. 42. 函数y=x^3-3x+1的导数为()。
A. 3x^2-3B. x^2-3C. 3x^2-3xD. x^3-33. 极限lim(x→0) (sinx/x)的值为()。
A. 0B. 1C. -1D. 24. 函数y=e^x的不定积分为()。
A. e^x + CB. e^x - CC. x*e^x + CD. x*e^x - C5. 以下哪个选项是微分方程y''-y=0的通解()。
A. y=C1*cos(x)+C2*sin(x)B. y=C1*e^x+C2*e^(-x)C. y=C1*x+C2D. y=C1*x^2+C2*x6. 曲线y=x^2在点(1,1)处的切线斜率为()。
A. 0B. 1C. 2D. 47. 已知函数f(x)=x^3-6x^2+11x-6,求f'(x)=()。
A. 3x^2-12x+11B. 3x^2-12x+6C. 3x^2-6x+11D. 3x^2-6x+68. 函数y=ln(x)的导数为()。
A. 1/xB. xC. ln(x)D. 19. 已知函数f(x)=x^2-2x+1,求f(2)=()。
A. 1B. 3C. 5D. 710. 极限lim(x→∞) (1/x)的值为()。
A. 0B. 1C. ∞D. -∞二、填空题(每题4分,共20分)1. 若函数f(x)=x^3+2x^2-5x+1,则f'(x)=______。
2. 求定积分∫(0 to 1) (2x+3)dx的值,结果为______。
3. 函数y=x^2-4x+c在x=2处的极值点,当c=______时,该点为极大值点。
4. 函数y=e^(-x^2)的二阶导数为______。
5. 曲线y=x^3-3x^2+2在点(1,0)处的切线方程为y=______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
任课教师:丁体明程正琼杜世平王莉莉系(教研室)主任签字:
高等数学试卷
1
《高等数学》工科试题
姓名学号专业班级
本试题一共4道大题(21)小题,共4页,满分100分.考试时间120分钟.
总分题号一二三四
阅卷人题分18362818
核分人得分
注:1.答题前,请准确、清楚地填写各项,涂改及模糊不清者、试卷作废.
2.试卷若有雷同以零分记.
一、选择填空(每小题3分,共18分)
1、数列
nx有界是数列n
x
收敛的()
A.必要条件B.充分条件C.充要条件D
.无关条件
2、若()fx是奇函数,且'(0)f存在,则0x是函数xxfxF)()(的()
A.连续点B.极大值点C.可去间断点D
.极小值点
3、设函数20(2)xytdt则y在1x有()
A.极小值B.极大值C.无极值D
.有极小值也有极大值
4、当0x时,sinxx与x1-cos比较为()
A.等价无穷小B.同阶无穷小C.高阶无穷小D
.低阶无穷小
5、下列命题中正确的是()
A
.二元函数在某点可导,则在该点连续.
B
.若
0()0fx,则0
()fx
是极值点或拐点.
C
.若(,)fxy在闭区域上可微,则在该闭区域上一定可导.
D
.函数)(xf在开区间,ab内可导,则,ab,使()()()fbfafba.
6、在yoz面上的直线2zy绕oz轴旋转所得的旋转面方程为()
A
.
2222()zxyB.2zxyC.222
4()zxy
D
.
22
2zxy
二、填空题(每小题4分,共36分):
7、20sin2limln1xxxxx();
8、设0a,且1ln1axdx,则a();
9、若二元函数),(yxfz在),(00yx处可微,则必有),(lim),(),(00yxfyxyx();
10、若已知2cosln12arcsintxttyt,则0tdxdy=();
11、cos1sinxddxx();
12、)12ln(2xyz定义域为();
13、231(ln)dxxx=();
14、平面曲线
2
21xy
在点1,1处的曲率K=();
15、设
32
),,(zyxzyxf
,则grad)1,1,0(f=();
三、计算题(每小题7分,共28分):
16、设222()()4xxftdtFxx,其中)(xf为连续函数,求2lim()xFx.
17、求曲面
22
24
z
xyxze
在点1,1,0处的切面方程和法线方程.
18、设
22
'(sin)cosfxx
,求()fx.
19、求2121sin11xxdxx.
四、综合题(每小题9分,共18分)
20.设()fx在区间,ab上连续,且()0fx,
()(),[,]
()
xx
ab
dt
Fxftdtxab
ft
,(1).证明'()2Fx;(2)求Fx的最值.
21.设22xzyfxz,f可微,求zzzyxy.
《高等数学》Ⅰ试题参考答案
一.选择填空(每小题3分共18分)
ACABCC
二.填空(每小题4分,共36分)
7891011
0
e
00
,fxy
ln2
cos
1sin
x
dx
x
12131415
2
,210xyyx
l
ln3
417
289
1,2,3
三.解答题(每小题7分共28分)
16、设222()()4xxftdtFxx,其中)(xf为连续函数,求2lim()xFx.
解一因为)(xf为连续函数,所以由罗必大法则
原式
2
2
2
2()
lim
2
x
x
xftdtxfx
x
2.f
解二因为)(xf为连续函数,所以由积分中值定理
原式
2
2
(2)
2
lim
22
x
xfx
xx
2.f
17、求曲面
22
24
z
xyxze
在点1,1,0处的切面方程和法线方程.
4
5