工程材料及成形技术基础复习(重点完整版)
工程材料与成型基础复习

工程材料与成型技术基础第一个内容:工程材料的结构与性能1、合金:由两种或两种以上的金属元素组成,或者由金属元素和非金属元素组成的能体现金属性质的物质。
其独立、基本的单元叫做组元。
两元合金、三元合金、多元合金。
组元可以是纯元素和稳定的化合物。
2、合金的相:合金中具有相同的物理、化学性能的并与合金中其他部分以界分开的集合。
合金的相结构有固溶体和化合物。
3、合金的组织:是合金的微观形态,它是由合金中涉及到的相的形态所构成的。
这两个与合金的性质密切相关。
4、固溶体:顾名思义即可。
它有两种种类,置换固溶体和间隙固溶体。
顾名思义既可。
当溶质溶剂原子直径之比为不足以0.59时才能形成间隙固溶体。
5、化合物:若新相的晶体结构不同于任何一个组元的时候,就成了化合物(产生了化学反应)固溶体之所以称为是固溶体就是没有发生化合,能找得到与旧组元相同的晶体结构。
有三种类型:正常价化合物、电子化合物、间隙化合物。
6、合金性能:固溶强化:固溶体的塑性和韧性得到了强化,同等条件下,间隙固溶体比置换固溶体的硬度大。
第二相强化:针对于化合物来讲的,化合物本身具有高硬度,高脆性、高熔点、常常加在固溶体上面以增强合金性能。
7、工程材料的性能:硬度:材料抵抗外力变形的能力。
布氏硬度、维氏硬度、洛氏硬度三种分类。
第二个内容:金属材料的凝固与固态相变1、晶体的结晶:广义上来讲,物质的原子从一种排列状态变成另一种排列状态的过程就叫做结晶。
通常把液体变为固体结晶成为一次结晶,固态晶体结晶为另一种固态晶体成为二次结晶。
2、一次结晶的分析过程:在某一点温度下,液态和固态状态下物质的能量相等,处于动态平衡,可以长期共存,这点就是理论结晶温度也叫熔点(T0)T0上液态,T0下固态,所以要结晶得冷却到T0温度以下,这种现象叫过冷。
理论结晶温度与实际结晶温度之差为冷却度,冷却度的大小决定了结晶所需的驱动力的大小,成正比关系,△T=T0-Tn,所以直接的结晶的必要且充分条件是具有一定的冷却度。
工程材料及成形技术基础考试复习题库精选全文

可编辑修改精选全文完整版(1)一、区别下列名词(每题4分,4分×6= 24分)1、强度与塑性:强度:材料在力的作用下抵抗永久变形和断裂的能力塑性:材料在力的作用下发生永久变形而不致引起破坏的性能2、固溶体与化合物:固溶体:合金在固态下由组元间相互溶解而形成的均匀相化合物:合金间发生相互作用而形成的晶格类型和特性完全不同于任一组元且具有金属特性的新相3、淬透性与淬硬性:淬透性:钢在淬火时所得到的淬硬层(马氏体组织占50%处)的深度淬硬性:钢在淬火时所能达到的最高硬度,主要取决于M的含碳量4、过冷A与A残:过冷A:在临界点A1线(727度)以下尚未发生转变的不稳定奥氏体A残:过冷A在连续冷却过程中向M转变,由于某些原因一般不能进行到底,总有一部分A残留下来,称其为A残5、白口铸铁与灰口铸铁:白口铸铁:除少量碳固溶于铁素体中,绝大部分碳以渗碳体形态存在的铸铁灰口铸铁:碳全部或大部分以游离石墨形式存在断口为暗灰色6、落料与冲孔:落料与冲孔都是冲压的基本工序落料:落料时,冲的部分为成品,而余料为废料冲孔:冲孔是为了获得带孔的冲裁件,而冲落部分是废料,二、选择题(每题1分,1分×15= 15分)1、洛氏硬度与布氏硬度相比的优点是(C)。
A、不标单位B、数值较准确C、压痕小D、不宜测太薄、太硬的材料2、面心立方晶格的晶胞中独立原子数为(D)。
A、1B、2C、3D、 43、合金固溶强化的原因是(C )。
A、晶格类型的改变B、晶粒细化C、晶格发生畸变D、发生了化学反应4、珠光体是一种( C)。
A、固溶体B、金属化合物C、机械混合物D、单相组织金属5、在平衡状态下,45钢的室温组织是(C )。
A、FB、PC、P+FD、P+ Fe3C6、钢的质量等级的分类是按钢的( C )区分的。
A、力学性能B、含碳量C、杂质S、P含量D、有益的Mn、Si7、加热是钢进行热处理的第一步,其目的是使钢获得(B)。
A、均匀的基体组织B、均匀的A体组织C、均匀的P体组织D、均匀的M体组织8、完全退火主要用于(A)。
工程材料及成型基础知识点整理重点

工程材料及成型基础知识点整理重点PPT 填空题和简答题1 一、填空题1、金属结晶包括形核与长大两个过程。
3、晶粒和晶粒之间的界面称为晶界。
4、在结晶过程中,细化晶粒的措施有提高冷却速度、变质处理、振动。
5、由于溶质原子的溶入,固溶体发生晶格畸变,变形抗力增大,使金属的强度、硬度升高的现象称为固溶强化。
6、常见的金属晶格类型体心立方、面心立方和密排立方。
7、在晶体缺陷中,点缺陷主要有空位、间隙原子、置换原子,线缺陷主要有刃型位错、螺型位错,面缺陷主要有晶界、亚晶界8、金属结晶时,实际结晶温度必须低于理论结晶温度,结晶过冷度主要受冷却速度影响。
9、当金属化合物呈细小颗粒均匀分布在固溶体基体上时,将使合金的强度、硬度及耐磨性明显提高,这一现象称为固溶强化。
10、再结晶退火的前提是冷变形+足够高的温度,它与重结晶的区别在于无晶体结构转变。
1.奥氏体的晶格类型是面心立方 2. 铁素体的晶格类型是_ 体心立方 11、亚共析钢的室温组织是 F+P 。
1.钢的淬透性是指钢淬火时所能达到的最高硬度值。
23.渗碳钢渗碳后的热处理包括淬火和低温回火,以保证足够的硬度。
24. 在光学显微镜下观察,上贝氏体显微组织特征是羽毛状,下贝氏体显微组织特征呈针状。
5. 零件失效的基本类型为 _表面损伤、过量变形、断裂。
2.线型无定型高聚物的三种力学状态为玻璃态、高弹态、粘流态。
1、一个钢制零件,带有复杂形状的内腔,该零件毛坯常用铸造方法生产。
2、金属的流动性主要决定于合金的成分 3、流动性不好的铸件可能产生冷隔和浇不足缺陷。
4、铸造合金充型能力不良易造成冷隔和浇不足等缺陷, 12、过共析钢的室温组织是 P+Fe3C 。
13、共晶反应的产物是 Ld I. 20钢齿轮、45钢小轴、T12钢锉的正火的目的分别是:提高硬度,满足切削加工的要求作为最终热处理,满足小轴的使用要求______________ 、消除网状渗碳体2、在正火态的20钢、45钢、T8钢;、T13钢中, T8 钢的厅b 值最高。
《工程材料及成型技术基础》期末考试重点总结

1、金属三种晶格类型:体心立方晶格、面心立方晶格、密排六方晶格。
2、晶体缺陷:点缺陷、线缺陷、面缺陷。
位错属于线缺陷。
3、材料抵抗外物压入其表面的能力称为硬度。
HRC表示洛氏硬度,HB表示布氏硬度,HV维氏硬度4、金属塑性加工性能用塑性和变形抗力衡量。
5、铸造应力分为:热应力和机械应力。
其中热应力属于残余应力。
6、单相固溶体压力加工性能好,共晶合金铸造加工性能好。
7、金属经过冷塑性变形后强度提高,塑性降低的现象称为形变强化。
8、铸造性能是指:流动性和收缩性。
9、板料冲压成形基本工序:分离工序和成形工序两大类。
10、工艺选择四条基本原则:①使用性能足够原则②工艺性能良好原则③经济性能合理原则④材料、成形工艺、零件结构相适应原则。
11、HT200是灰铸铁材料,其中200表示:最低抗拉强度为200MPa。
12、确定钢淬火加热温度的基本依据是:Fe-3C相图。
13、为保证铸造质量,顺序凝固适合于:缩孔倾向大的铸造合金。
14、锤上锻模时,锻件最终成型是在终锻模膛中完成的,切边后才符合要求。
15、材料45钢、T12、20钢、20Gr.中,焊接性能最好的是20钢(含碳量越高,焊接性能越差)16、机床床身用灰铸铁铸造成型17、固溶体分为:置换固溶体和间隙固溶体18、金属件化合物:正常价化合物、电子化合物、间隙化合物。
19、塑性衡量:伸长率和断面收缩率。
20、晶粒大小:①常温下晶粒越小,金属的强度、硬度越高,塑性、韧性越好。
②晶粒大小与形核率和长大速度有关③影响因素:过冷度和难溶杂质④细化晶粒:增大过冷度,变质处理。
机械搅拌21、单相固溶体合金塑性好,变形抗力好,变形均匀,不易开裂,加工性能好22、单相固溶体塑性变形形式:滑移和孪生23、退火:目的:1,、降低硬度,改善切削加工性2、消除残余应力,稳定尺寸,减少变形与开裂倾向3、细化晶粒,调整组织,消除组织缺陷。
完全退火:适用于亚共析钢,锻件及焊接件。
加热到Ac3以上使奥氏体化,作用:使加热过程中造成的粗大不均匀组织均匀细化,降低硬度,提高塑性,改善加工性能,消除内应力。
材料成型基础复习重点

A 未变形区B 剧烈变形区C 已变形区D 弹性区半熔化区过热区正火区部分相变区热影响区焊缝区热作用区1、零件的四种加工方法:成形加工:凝固成形、塑性成形、焊接成形、粉末压制、塑料成形;切削加工:车、铣、刨、钻、磨、电火花、电解、超声加工、激光加工等;表面成形加工:表面形变、淬火强化、化学强化、表面镀层、气相沉积镀膜;热处理加工:退、正、淬、回火;2、金属材料成型方法:液态金属铸造成型、固态金属塑性成型、金属材料焊接成型3、材料成型作用:使材料形状发生改变;达到合格的尺寸精度;达到合格的表面精度、形位精度等;达到零件的使用性能的要求4、材料成型特点:1)多在热态下通过模具成型,生产周期短,质量稳定,能一次成型外形和内腔复杂的制件2)材料利用率高3)生产效率高4)产品性能好5)成型加工零件的尺寸精度较切削加工低,表面粗糙度值大。
5、成型方法的选用原则:根据材料的种类选择成型方法;根据材料的力学性能选择成型方法;根据零件的结构形状选择成型方法;根据零件的生产批量选择毛坯的成型方法;尽量根据本企业的生产和设备条件,不同的成型工艺方案,需要不同的装备、模具、生产条件等,应对各种方法进行技术经济分析,选择性价比高的成型方法。
6、质量增加过程的特征是加工材料在过程结束时的质量比过程开始时的最终质量有所增加。
化学热处理:渗碳、渗氮、氰化处理、气相沉积、喷涂、电镀、刷镀等。
装配与连接:焊接,粘接等。
7、质量减少过程(材料的4种去除方法):1)切削过程2)磨料切割、喷液切割、热力切割与激光切割、化学腐蚀等;3)超声波加工、电火花加工和电解加工4)落料、冲孔、剪切等金属成形过程。
8、铸造的特点1)适应性广。
适应铸铁,碳钢,有色金属等材料;铸件大小,形状和重量几乎不受限制;壁厚1mm到1m ,质量零点几克到数百吨(三峡的水轮机叶轮重达430T)。
2)可复杂成形。
适合形状复杂,尤其是有复杂内腔的毛坯或零件。
3)成本较低。
工程材料及成形技术基础课程复习

(0)绪论材料的分类及在机械工程技术中的应用、材料科学的发展、本课程的目的、任务和学习方法。
(一)金属材料的力学性能1、了解相关力学性能;2、理解强度、刚度、弹性、塑性、硬度、冲击韧性、疲劳强度的概念;3、理解σb、σs、σ、HBS(W)、HRC、HRA、HV、δ、δ5、ψ、σ-1等的含义。
(二)金属及合金的晶体结构与结晶1、晶体与非晶体,及其特点;掌握晶格、晶胞、晶格常数、晶面和晶向。
】2、掌握晶体的3种类型:体心、面心、密排六方;及其相关知识,如原子个数、致密度、属于此类型的金属。
3、理解单晶体与多晶体;掌握晶体缺陷的3种类型:点缺陷、线缺陷、面缺陷;并能举例;位错(密度)。
4、金属结晶、过冷(度)现象、晶粒大小、金属结晶过程(形核与长大)、晶粒大小、细化晶粒的方法、铸锭组织(3个晶区)、同素异晶转变。
5、合金、组元、组织、相的基本概念、合金的相结构、固溶体(概念、种类(置换与间隙固溶体、有限与无限固溶体)、固溶强化)、金属化合物(概念、特点)、机械混合物。
6、冷、热变形加工的划分标志;实例。
(三)铁碳合金相图1、纯铁的同素异构转变、二元合金相图基本知识、匀晶相图、共晶相图分析;合金的组成与组织。
2、铁碳合金的基本组织:铁素体、奥氏体、渗碳体、珠光体、莱氏体;铁碳合金的基本相:铁素体、奥氏体、渗碳体。
:3、铁碳合金相图(默画)分析:共晶反应、共析反应、相图中点、线的含义,特别是重要的点、线;铁碳合金的分类及室温组织。
4、典型合金结晶过程:共析钢、亚共析钢、过共析钢的结晶过程;共晶白口铁、亚共晶白口铁、过共晶白口铁的结晶过程。
5、铁碳合金成分、组织和性能之间的关系,相图的应用。
(四)钢的热处理1、热处理的概念、目的、种类。
2、钢加热时组织的转变:奥氏体化(以共析钢为例,其4个阶段)、晶粒的长大及控制(快速加热、短时间保温)。
3、钢冷却组织转变:过冷奥氏体的等温转变、C曲线及分析;过冷奥氏体连续冷却转变、马氏体转变。
工程材料及成形技术基础总复习.
几个重要概念 同素异晶转变 奥氏体 共析、共晶、包晶转变 杠杆定律 重点 铁碳相图 要求能对铁碳相图进行分析和解释 钢的A化和A的晶粒度 TTT和CCT曲线 过冷A转变产物(P,B,M)
第4章 金属材料热处理 基本概念
热处理基础:临界转变温度、奥氏体化、影响晶粒度 因素;冷却转变类型 普通热处理:四把火★(退火、正火、淬火+回火); 注意淬透性与回火脆性 表面热处理:表面淬火、渗碳、氮化的工艺特点与适 用性
钢的常规热处理工艺
正火的应用:
a.预先热处理 *钢材及铸件、锻件用正火细晶,消除组织缺陷,为后续热 处理作组织准备。 *过共析钢和渗碳零件用正火消除组织中网状渗碳体,为球 化退火和后一步热处理作组织准备。 b.最终热处理 细化组织,均匀组织,消除组织缺陷,提高强度、硬度和韧 性,对于普通结构件,机械性能要求不高时,可正火后使用。 C.改善低碳钢和低碳合金钢的切削加工性能。
第1章 工程材料的结构与性能
1.1 材料原子(或分子)的相互作用 1.2 晶体材料的原子排列
晶体结构:晶格、3种典型晶体结构(fcc bcc ,hcp,致密度 0.68/0.74/0.74)、3种缺陷(点、线、面),细晶强化 单晶体的各向异性 实际晶体中的各种缺陷及其对性能的影响(位错密度与强度的 关系)
下贝氏体转变(350~230℃): B下; 50~60HRC;
下贝氏体不仅具有较高的强度、硬度与耐磨性,同时具
有良好的塑性和韧性。
过饱和碳 α-Fe针叶状 Fe3C细片状 针叶状
B下 =过饱和碳 α-Fe针叶状 + Fe3C细片状
③马氏体型 ( M ) 转变 ( 230~ -50℃ )
1)定义:马氏体是一种碳在α– Fe中的过饱和间隙固 溶体。 2)转变特点: 在一个温度范围内连续冷却完成; 转变速度极快,即瞬间形核与长大;
工程材料及成形技术题库答案
《工程材料及成形技术基础》课复习提纲一、工程材料部分1.常见金属晶格类型2. 三种晶体缺陷。
3. 相的概念。
4.固态合金有哪些相。
5.过冷度的概念。
6.过冷度与晶粒度的关系。
7.结晶过程的普遍规律。
8.控制晶粒度的方法。
9.同素异构转变的概念。
10.绘制铁碳合金相图(各线、特殊点、成份、温度、组织、相)。
11.分析钢从奥氏体缓冷至室温时的结晶过程,画出典型铁碳合金(钢)显微组织示意图。
12.共晶反应式和共析反应式。
13.金属塑性变形的两种方式。
14.加工硬化的概念。
15再结晶温度的计算16热加工与冷加工的区别。
17.钢的热处理概念18.热处理工艺分类。
19.过冷奥氏体转变的产物。
20.决定奥氏体转变产物的因素。
21.马氏体的概念。
22会分析过冷奥氏体转变曲线。
知道淬透性与C曲线的关系。
23.退火和正火的目的。
24.淬火的概念。
25.一般怎样确定碳钢的淬火温度?26.影响淬透性的因素。
27.回火的目的28.何为回火脆性?29.回火的种类。
30.一般表面淬火的预备热处理方法和表面淬火后的组织。
31渗碳的主要目的。
32.钢按化学成分分类。
33.钢按质量分类34 钢按用途分类。
35机器结构钢的分类36 钢中S、P杂质的影响。
37合金元素在钢中的作用38.结构钢牌号表示的含义。
39.能区别渗碳钢、调质钢、弹簧钢、轴承钢的牌号和一般采用的热处理方法。
40按刃具钢的工作条件,提出哪些性能要求?41.根据碳钢在铸铁中存在形式及石墨形态,铸铁的分类。
二、材料成形技术部分1铸造工艺参数主要包括哪些内容?2流动性对铸件质量的影响。
3什么合金易于形成缩孔、什么合金易于形成缩松?。
3铸造应力分为哪几类?4减小和消除铸造应力的主要方法。
5绘制自由锻件图主要考虑哪些问题?。
6何谓拉深系数?有何意义?8.焊接的实质。
9. 碱性焊条的最主要优点。
10.焊接接头由哪几部分组成?11.低碳钢焊接热影响区的划分。
12.焊接变形的基本形式。
工程材料及成形技术基础复习重点完整版
一、二元相图的建立合金的结晶过程比纯金属复杂;常用相图进行分析;相图是用来表示合金系中各金在缓冷条件下结晶过程的简明图解;又称状态图或平衡图..合金系是指由两个或两个以上元素按不同比例配制的一系列不同成分的合金.. 组元是指组成合金的最简单、最基本、能够独立存在的物质..多数情况下组元是指组成合金的元素..但对于既不发生分解、又C..不发生任何反应的合物也可看作组元; 如Fe-C合金中的Fe3相图由两条线构成;上面是液相线;下面是固相线..相图被两条线分为三个相区;液相线以上为液相区L ;固相线以下为固溶体区;两条线之间为两相共存的两相区L+ ..3 枝晶偏析合金的结晶只有在缓慢冷却条件下才能得到成分均匀的固溶体..但实际冷速较快;结晶时固相中的原子来不及扩散;使先结晶出的枝晶轴含有较多的高熔点元素如Cu-Ni合金中的Ni; 后结晶的枝晶间含有较多的低熔点元素;如Cu-Ni合金中的Cu..在一个枝晶范围内或一个晶粒范围内成分不均匀的现象称作枝晶偏析..与冷速有关而且与液固相线的间距有关..冷速越大;液固相线间距越大;枝晶偏析越严重枝晶偏析会影响合金的力学、耐蚀、加工等性能..生产上常将铸件加热到固相线以下100-200℃长时间保温;以使原子充分扩散、成分均匀;消除枝晶偏析;这种热处理工艺称作扩散退火..2、二元共晶相图当两组元在液态下完全互溶;在固态下有限互溶;并发生共晶反应时所构成的相图称作共晶相图..以 Pb-Sn 相图为例进行分析..1 相图分析①相:相图中有L、、三种相; 是溶质Sn在 Pb中的固溶体; 是溶质Pb在Sn中的固溶体..②相区:相图中有三个单相区: L、、;三个两相区: L+ 、L+ 、+ ..③液固相线:液相线AEB;固相线ACEDB..A、B分别为Pb、Sn的熔点..④固溶线: 溶解度点的连线称固溶线..相图中的CF、DG线分别为Sn在 Pb中和 Pb在 Sn中的固溶线..固溶体的溶解度随温度降低而下降..⑤共晶线:水平线CED叫做共晶线..在共晶线对应的温度下183 ℃;E点成分的合金同时结晶出C点成分的固溶体和D点成分的固溶体;形成这两个相的机械混合物LE C+D在一定温度下;由一定成分的液相同时结晶出两个成分和结构都不相同的新固相的转变称作共晶转变或共晶反应..一、铁碳合金的组元和相C1. 组元:Fe、 Fe32. 相⑴铁素体——碳在-Fe中的固溶体称铁素体;用F或表示碳在–Fe中的固溶体用表示;体心立方间隙固溶体..铁素体的溶碳能力很低;在727℃时最大为0.0218%;室温下仅为0.0008%..铁素体的组织为多边形晶粒;性能与纯铁相似..2 奥氏体碳在 -Fe中的固溶体称奥氏体..用A或表示..是面心立方晶格的间隙固溶体..溶碳能力比铁素体大;1148℃时最大为2.11%..组织为不规则多面体晶粒;晶界较直..强度低、塑性好;钢材热加工都在区进行;碳钢室温组织中无奥氏体..3 渗碳体Fe3C含碳6.69%;用Fe3C或Cm表示..Fe3C硬度高、强度低 b35MPa;脆性大;塑性几乎为零..由于碳在 -Fe中的溶解度很小;因而常温下碳在铁碳合金中主要以Fe3C或石墨的形式存在..重要知识点五个重要的成份点: P、S、E、C、F四条重要的线: ECF、PSK、ES、GS三个重要转变: 共晶转变反应式、共析转变反应式、包晶转变本节略二个重要温度: 1148 ℃、727 ℃第一节退火和正火一般零件的工艺路线为:毛坯铸造或锻造→退火或正火→机械粗加工→淬火+回火或表面热处理→机械精加工..退火与正火常作为预备热处理;其目的是为消除毛坯的组织缺陷;或为以后的加工作准备;淬火和回火工艺配合可强化钢材;提高零件使用性能;作为最终热处理..一、退火将工件加热到适当温度;保温一定时间;缓慢冷却热处理工艺目的根据不同情况;退火的作为可归纳为降低硬度;改善钢的成形和切削加工性能;均匀钢的化学成分和组织;消除内应力等..①调整硬度以便进行切削加工;②消除残余内应力;以防止钢件在淬火时产生变形或开裂;③细化晶粒;改善组织;提高力学性能;为最终热处理作准备..1、退火类型1 完全退火完全退火是将工件完全奥氏体化后缓慢冷却;获得接近平衡组织的退火工艺..工艺加热温度为Ac3以上20℃~30℃;保温时间依工件的大小和厚度而定;使工件热透;保证全部得到均匀化的奥氏体;冷却方式可采用随炉缓慢冷却;实际生产时为提高生产率;退火冷却至600℃左右即可出炉空冷..2球化退火工艺球化退火的加热温度为Ac1以上20℃~30℃;采用随炉缓冷;至500℃~600℃后出炉空冷;3去应力退火去除工件塑性变形加工、切削加工或焊接造成的内应力及铸件内存在的残余内应力而进行的退火工艺..工艺去应力退火加热温度较宽;但不超过AC1点;一般在500℃~650℃之间;铸铁件去应力退火温度一般为500℃ ~ 550℃;焊接工件的去应力退火温度一般为500℃ ~600℃..去应力退火的保温时间也要根据工件的截面尺寸和装炉量决定..去应力退火后的冷却应尽量缓慢;以免产生新的应力..4扩散退火为减少铸件或锻坯的化学成分和组织不均匀性;将其加热到略低于固相线固相线以下 100℃~200℃的温度;长时间保温10h~15h;并进行缓慢冷却的热处理工艺;称为扩散退火或均匀化退火..二、正火1、正火的概念工艺正火处理的加热温度通常在Ac3或Accm以上30℃~50℃..对于含有V、Ti、Nb等碳化物形成元素的合金钢;采用更高的加热温度AC3 + 100℃~150℃..正火冷却方式常用的是将钢件从加热炉中取出在空气中自然冷却..对于大件也可采用吹风、喷雾和调节钢件堆放距离等方法控制钢的冷却速度;达到要求的组织和性能..第二节钢的淬火将亚共析钢加热到Ac3以上;共析钢与过共析钢加热到Ac1以上;低于Accm的温度;保温后以大于Vk的速度快速冷却;使奥氏体转变为马氏体或贝氏体的热处理工艺叫淬火..马氏体强化是钢的主要强化手段;因此淬火的目的就是为了获得马氏体;提高钢的机械性能..淬火是钢的最重要的热处理工艺也是热处理中应用最广的工艺之一..1、淬火温度的确定淬火温度即钢的奥氏体化温度;是淬火的主要工艺参数之一..选择淬火温度的原则是获得均匀细小的奥氏体组织..亚共析钢的淬火温度一般为Ac3以上30~50℃;淬火后获得均匀细小的马氏体组织..温度过高;奥氏体晶粒粗大而得到粗大的马氏体组织;而使钢的机械性能恶化;特别是塑性和韧性降低;淬火温度低于Ac3;淬火组织中会保留未溶铁素体;使钢的强度硬度下降..4、钢的淬透性1淬透性与淬硬性的概念钢的淬透性是指奥氏体化后的钢在淬火时获得马氏体的能力也称为淬透层深度;其大小用钢在一定条件下淬火获得的淬硬层深度来表示..淬硬层深度指由工件表面到半马氏体区50%M + 50%P的深度..淬硬性是指钢淬火后所能达到的最高硬度;即硬化能力..淬透性与淬硬层深度的关系同一材料的淬硬层深度与工件尺寸、冷却介质有关..工件尺寸小、介质冷却能力强;淬硬层深.. 淬透性与工件尺寸、冷却介质无关..它只用于不同材料之间的比较;通过尺寸、冷却介质相同时的淬硬层深度来确定的..2淬透性的测定及其表示方法同一材料的淬硬层深度与工件的尺寸;冷却介质有关;工件尺寸小、冷却能力强;淬硬层深;工件尺寸小、介质冷却能力强;淬硬层深;而淬透性与工件尺寸、冷却介质无关;它只用于不同材料之间的比较;是在尺寸、冷却介质相同时;用不同材料的淬硬层深度进行比较的..淬透性常用末端淬火法测定如下图所示;将标准化试样奥氏体化后;对末端进行喷水冷却..然后从水冷段开始;每隔一定距离测量一个硬度值;即可得到试样沿轴向的硬度分布曲线;称为钢的淬透性曲线..即用 表示J 表示末端淬透性;d 表示半马氏体区到水冷端的距离;HRC 为半马氏体区的硬度..3 影响淬透性的因素钢的淬透性取决于临界冷却速度V K ; V K 越小;淬透性越高..V K 取决于C 曲线的位置;C 曲线越靠右;V K 越小..凡是影响C 曲线的因素都是影响淬透性的因素;即除Co 外;凡溶入奥氏体的合金元素都使钢的淬透性提高;奥氏体化温度高、保温时间长也使钢的淬透性提高..影响淬硬层深度的因素淬透性 冷却介质 工件尺寸对于截面承载均匀的重要件;要全部淬透..如连杆、模具等..对HRC J d于承受弯曲、扭转的零件可不必淬透淬硬层深度一般为半径的1/2-1/3;如轴类、齿轮等..淬硬层深度与工件尺寸有关;设计时应注意尺寸效应..第三节钢的回火回火——将淬火钢加热到Ac1以下的某温度保温后冷却的热处理工艺..1、回火的目的消除或减少淬火内应力;防止工件变形或开裂;获得工艺所要求的力学性能;稳定工件尺寸..淬火马氏体和残余奥氏体都是非平衡组织;有自发向平衡组织铁素体加渗碳体转变的倾向..回火可使马氏体和残余奥氏体转变为平衡或接近平衡的组织;防止使用时变形..对于未经淬火的钢;回火是没有意义的;而淬火钢不经回火一般也不能直接使用;为避免淬火件在放置过程中发生变形或开裂;钢件经淬火后应及时回火..3、回火工艺1低温回火<250℃低温回火后得到回火马氏体组织..其目的是降低钢的淬火应力和脆性;回火马氏体具有高的硬度一般为58~64HRC、强度和良好耐磨性..低温回火特别适用于刀具、量具、滚动轴承、渗碳件及高频表面淬火等工求高硬度和耐磨性的工件..2中温回火350-500℃中温回火时发生如下变化;得到T回组织;即为在保持马氏体形态的铁素体基体上分布着细粒状渗碳体的组织..使钢具有高的弹性极限;较高的强度和硬度一般为35 ~ 50HRC;良好的塑性和韧性..中温回火主要用于各种弹性元件及热作模具..3高温回火>500℃高温回火后得到回火索氏体组织;即为在多边性铁素体基体上分布着颗粒状Fe3C的组织 ..工件淬火并高温回火的复合热处理工艺称为调质..高温回火主要适用于中碳结构钢或低合金结构钢制作的曲轴、连杆、螺栓、汽车半轴、等重要的机器零件..4、回火时的性能变化回火时力学性能变化总的趋势是随回火温度提高;钢的强度、硬度下降;塑性、韧性提高..5、回火脆性淬火钢的韧性并不总是随温度升高而提高..在某些温度范围内回火时;会出现冲击韧性下降的现象..1低温回火脆性淬火钢在250℃~350℃范围内回火时出现的脆性叫做低温回火脆性..几乎所有的钢都存在这类脆性..这是一种不可逆回火脆性;目前尚无有效办法完全消除这类回火脆性..所以一般都不在250℃~350℃这个温度范围内回火..2高温回火脆性淬火钢在500℃~650℃范围内回火时出现的脆性称为高温回火脆性;称为第二类回火脆性..这种脆性主要发生在含Cr、Ni、Si、Mn等合金元素的结构钢中..这种脆性与加热、冷却条件有关..加热至600℃以上后;以缓慢的冷却速度通过脆化温度区时;出现脆性;快速通过脆化区时;则不出现脆性..此类回火脆性是可逆的;在出现第二类回火脆性后;重新加热至600℃以上快冷;可消除脆性..第四节钢的表面淬火钢的表面热处理有两大类:一类是表面加热淬火热处理;通过对零件表面快速加热及快速冷却使零件表层获得马氏体组织;从而增强零件的表层硬度;提高其抗磨损性能..另一类是化学热处理;通过改变零件表层的化学成分;从而改变表层的组织;使其表层的机械性能发生变化..1、表面淬火表面具有高的强度、硬度和耐磨性;不易产生疲劳破坏;而心部则要求有足够的塑性和韧性..采用表面淬火可使钢的表面得到强化;满足工件这种“表硬心韧”的性能要求..1 表面淬火目的使表面具有高的硬度、耐磨性和疲劳极限;心部在保持一定的强度、硬度的条件下;具有足够的塑性和韧性..适用于承受弯曲、扭转、摩擦和冲击零件2 表面淬火用材料0.4-0.5%C的中碳钢..含碳量过低;则表面硬度、耐磨性下降含碳量过高;心部韧性下降;铸铁提高其表面耐磨性..3 预备热处理工艺对于结构钢为调质或正火..前者性能高;用于要求高的重要件;后者用于要求不高的普通件..目的①为表面淬火作组织准备②获得最终心部组织..表面淬火后的回火采用低温回火;温度不高于200℃..目的为降低内应力保留淬火高硬度耐磨性..表面淬火+低温回火后的组织:表层组织为M回;心部组织为S回调质或F+S正火..第五节化学热处理化学热处理是将钢件置于一定温度的活性介质中保温;使一种或几种元素渗入它的表面;改变其化学成分和组织;达到改进表面性能;满足技术要求热处理过程..目的1、提高渗层硬度和耐磨性;如渗碳、氮等;2、提高零件接触疲劳强度和提高抗擦伤能力;渗氮等;3、提高零件抗氧化、耐高温性能;如渗入铝、铬等;4、提高零件抗蚀性;如渗入硅、铬等..化学热处理基本过程1介质的分解—即加热时介质中的化合物分子发生分解并释放出活性原子;2工件表面的吸收—即活性原子向固溶体中溶解或与钢中某些元素形成化合物;3原子向内部扩散—即溶入的元素原子在浓度梯度的作用下由表层向钢内部的扩散..1、渗碳原理渗碳是指向钢表面渗入碳原子的过程..渗碳是为了使低碳钢工件含碳量为0.1%~0.25%表面获得高的碳浓度0.85%~1.05%;从而提高工件表面的硬度、耐磨性及疲劳强度;同时保持心部良好的韧性和塑性..若采用中碳以上的钢渗碳;则将降低工件心部的韧性..渗碳主要用于那些对耐磨性要求较高、同时承受较大冲击载荷的零件..2渗碳件用钢一般采用碳质量分数为0.1%~0.25%的低碳钢或低碳合金钢;20、20Cr、20CrMnTi等..可使渗碳件表面高硬度、耐磨;心部高强韧性、承受较大冲击..3渗碳后的热处理及性能渗碳缓冷后组织:表层为P+网状Fe3CⅡ; 心部为F+P;中间为过渡区..渗碳后必须经淬火+低温回火后才能满足使用性能的要求..热处理后使渗碳件表面具有马氏体和碳化物的组织;表面硬度58~64HRC..而心部根据采用钢材淬透性的大小和零件尺寸大小;获得低碳马氏体或其他非马氏体组织;具有心部良好强韧性..常用方法是渗碳缓冷后;重新加热到Ac1+30-50℃淬火+低温回火..表层:M回+颗粒状碳化物+A’少量; 心部:淬透时;M回+F..2、渗氮渗氮是在一定温度下于一定介质中使氮原子渗入工件表层的化学热处理工艺..方法主要有气体渗氮和离子渗氮等..1气体渗氮渗氮温度一般为500~560℃;时间一般为20~50小时;采用氨气NH3 作渗氮介质..氨气在450℃以上温度时即发生分解;产生活性氮原子: 2NH3——3H2+2N2渗氮的特点渗氮件的表面硬度高达;相当于65HRC~72HRC..并可保持到560~600℃而不降低..氮化后钢件不需其他热处理;渗氮件的变形小..渗氮后具有良好的耐腐蚀性能..这是由于渗氮后表面形成致密的氮化物薄膜;气体渗氮所需时间很长;渗氮层也较薄一般为0.3-0.6mm;38CrMoAl钢制压缩机活塞杆为获得0.4-0.6mm的渗氮层深度气体渗氮保温时间需60h左右..氮化缺点工艺复杂;成本高;氮化层薄..用于耐磨性、精度要求高的零件及耐热、耐磨及耐蚀件..第六节铸铁一、铸铁的成分、组织和性能特点1、铸铁的成分特点a. 含碳量理论上含C:2.11%~ 6.69% 的铁碳合金都属于铸铁; 但工业上常用铸铁的含碳量一般在:2.50%~4.00%之间..三、铸铁的分类1、灰口铸铁普通铸铁石墨呈片状;典型灰口铸铁;这类铸铁机械性能不高;但生产工艺简单;价格低廉;工业上所用铸铁几乎全部属于这类铸铁..灰口铸铁又根据第三阶段石墨化程度的不同分为:铁素体灰铁、 F+P灰铁、珠光体灰铁2、白口铸铁炼钢生铁第一、二、三阶段石墨化过程完全被抑制;Fe-C合金完全按照Fe-Fe3CC形式存在组织中存在莱氏体组织;断口呈白亮结晶而得到的铸铁;以Fe3色;故得名白口铸铁..白口铸铁硬脆;主要作为炼钢原料..3、可锻铸铁韧性铸铁;玛钢C分解而得到团石墨呈团絮状;用白口铸铁经长时间高温退火后;Fe3絮状石墨组织的铸铁..由于石墨呈团絮状;对基体的割裂作用比片状石墨小一些;故机械性能尤其冲击韧性高于灰口铸铁..可锻铸铁由于生产工艺复杂;成本较高;应用很少..4、球墨铸铁石墨组织呈球状;这种铸铁强度高;生产工艺比可锻铸铁简单;且可通过热处理进一步提高强度..球墨铸铁既保持了铸铁的特点;又具钢的高强度、高韧性;故应用越来越多..1球化处理与孕育处理Ⅰ球化处理铁水浇铸前;加入一定量的球化剂镁;硅铁-镁;铜-镁系;以促使石墨结晶时生长成为球状的工艺;称为球化处理..Ⅱ孕育处理变质处理球化处理只能在铁水中有石墨核心产生时;才能促使石墨生长成球状;而球化剂都是阻碍石墨化的元素;所以必须进行孕育处理变质处理;往铁水中加入变质剂75% Si-Fe..第七节铝及铝合金1性能特点纯铝银白色金属光泽;密度小2.72;熔点低660.4℃;导电导热性能优良..耐大气腐蚀;易于加工成形 ..具有面心立方晶格..铝合金一般具有有限固溶型共晶相图..可将铝合金分为变形铝合金和铸造铝合金两大类..3形变铝合金的牌号、性能变形铝及铝合金牌号表示方法;国标规定;变形铝及铝合金可直接引用国际四位数字体系牌号或采用国标规定的四位字符牌号..GB 3190-82中的旧牌号表示方法为防锈铝合金:LF +序号硬铝合金: LY +序号超硬铝合金:LC +序号锻铝合金: LD +序号4铸造铝合金牌号、分类Al- Si系:代号为ZL1+两位数字顺序号Al-Cu系:代号为ZL2+两位数字顺序号Al-Mg系:代号为ZL3+两位数字顺序号Al-Zn系:代号为ZL4+两位数字顺序号二、铜及铜合金1性能特点纯铜呈紫红色;又称紫铜;具有面心立方晶格;无同素异构转变;无磁性..纯铜具有优良的导电性和导热性;在大气、淡水和冷凝水中有良好的耐蚀性..塑性好..2黄铜以Zn为主要合金元素的铜合金称为黄铜..黄铜按化学成分可分为普通黄铜和特殊黄铜..按工艺可分为加工黄铜和铸造黄铜..单相黄铜塑性好;常用牌号有H80、H70、H 68..适于制造冷变形零件;如弹壳、冷凝器管等..三七黄铜两相黄铜热塑性好; 强度高..常用牌号有H59、H62..适于制造受力件;如垫圈、弹簧、导管、散热器等..四六黄铜3青铜青铜主要是指Cu-Sn合金..加工青铜的牌号为:Q +主加元素符号及其平均百分含量 + 其他元素平均百分含量.. QSn4-3含4%Sn 3%Zn 常用青铜有锡青铜、铝青铜、铍青铜、硅青铜、铅青铜等..常用牌号有:QSn4-3、QSn6.5-0.4、ZCuSn10Pb1轴承合金制造滑动轴承的轴瓦及其内衬的耐磨合金称为轴承合金..滑动轴承是许多机器设备中对旋转轴起支撑..由轴承体和轴瓦两部分组成..与滚动轴承相比滑动轴承具有承载面积大;工作平稳;无噪音及拆装方便等优点..一、组织性能要求速旋转时;轴瓦与轴颈发生强烈摩擦;承受轴颈施加的交变载荷和冲击力..⑴足够的强韧性;承受交变冲击载荷;⑵较小的热膨胀系数;良好的导热性和耐蚀性;以防止轴与轴瓦之间咬合;⑶较小的摩擦系数;良好的耐磨性和磨合性;以减少轴颈磨损;保证轴与轴瓦良好的跑合..为满足上述性能要求;轴承合金的组织应是软的基体上分布着硬的质点..当轴旋转时;软的基体或质点被磨损而凹陷;减少了轴颈与轴瓦的接触面积;有利于储存润滑油..软基体或质点还能起嵌藏外来硬杂质颗粒的作用;以避免擦伤轴颈..这类组织承受高负荷能力差;属于这类组织的有锡基和铅基轴承合金;又称为巴氏合金babbitt alloy1、锡基轴承合金以锡为主并加入少量锑、铜等元素组成的合金熔点较低;是软基体硬质点组织类型的轴承合金..锡基轴承合金具有较高的耐磨性、导热性、耐蚀性和嵌藏性;摩擦系数和热膨胀系数小;但疲劳强度较低;工作温度不超过150 ℃;价格高..广泛用于重型动力机械;如气轮机、涡轮机和内燃机等大型机器的高速轴瓦..2、铅基轴承合金以铅为主加入少量锑、锡、铜等元素的合金;软基体硬质点型轴承合金;ZChPbSb16Sn16Cu2..铅基轴承合金的强度、硬度、耐蚀性和导热性都不如锡基轴承合金;但其成本低;高温强度好;有自润滑性..常用于低速、低载条件下工作的设备;如汽车、拖拉机曲轴的轴承等..。
材料成型技术基础复习重点
1.11.常用的力学性能判据各用什么符号表示?它们的物理含义各是什么?塑性,弹性,刚度,强度,硬度,韧性1.2金属的结晶:即液态金属凝固时原子占据晶格的规定位置形成晶体的过程。
细化晶粒的方法:生产中常采用加入形核剂、增大过冷度、动力学法等来细化晶粒,以改善金属材料性能。
合金的晶体结构比纯金属复杂,根据组成合金的组元相互之间作用方式不同,可以形成固溶体、金属化合物和机械混合物三种结构。
固溶强化:通过溶入某种溶质元素形成固溶体而使金属的强度、硬度升高的现象。
1.3铁碳合金的基本组织有铁素体、奥氏体、渗碳体、珠光体和莱氏体1.4钢的牌号和分类影响铸铁石墨化的因素主要有化学成分和冷却速度1.5塑料即以高聚物为主要成分,并在加工为成品的某阶段可流动成形的材料。
热塑性塑料:即具有热塑性的材料,在塑料整个特征温度范围内,能反复加热软化和反复加热硬化,且在软化状态通过流动能反复模塑为制品。
热固性塑料:即具有热固性的塑料,加热或通过其他方法,能变成基本不溶、不熔的产物。
橡胶橡胶是可改性或已被改性为某种状态的弹性体。
1.6复合材料:由两种或两种以上性质不同的材料复合而成的多相材料。
通常是其中某一组成物为基体,而另一组成物为增强体,用以提高强度和韧性等。
1.8工程材料的发展趋势据预测,21世纪初期,金属材料在工程材料中仍将占主导地位,其中钢铁仍是产量最大、覆盖面最广的工程材料,但非金属材料和复合材料的发展会更加迅速。
今后材料发展的总趋势是:以高性能和可持续发展为目标的传统材料的改造及以高度集成化、微细化和复合化为特征的新一代材料的开发。
2.0材料的凝固理论凝固:由液态转变为固态的过程。
结晶:结晶是指从原子不规则排列的液态转变为原子规则排列的晶体状态的过程。
粗糙界面:微观粗糙、宏观光滑;将生长成为光滑的树枝;大部分金属属于此类光滑界面:微观光滑、宏观粗糙;将生长成为有棱角的晶体;非金属、类金属(Bi、Sb、Si)属于此类偏析:金属凝固过程中发生化学成分不均匀的现象宏观偏析通常指整个铸锭或铸件在大于晶粒尺度的大范围内产生的成分不均匀的现象2.1铸件凝固组织:宏观上指的是铸态晶粒的形态、大小、取向和分布等情况,铸件的凝固组织是由合金的成分和铸造条件决定的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、二元相图的建立合金的结晶过程比纯金属复杂,常用相图进行分析,相图是用来表示合金系中各金在缓冷条件下结晶过程的简明图解,又称状态图或平衡图。
合金系是指由两个或两个以上元素按不同比例配制的一系列不同成分的合金。
组元是指组成合金的最简单、最基本、能够独立存在的物质。
多数情况下组元是指组成合金的元素。
但对于既不发生分解、又不发生任何反应的合物也可看作组元,如Fe-C合金中的Fe3C。
相图由两条线构成,上面是液相线,下面是固相线。
相图被两条线分为三个相区,液相线以上为液相区L ,固相线以下为α固溶体区,两条线之间为两相共存的两相区(L+ α)。
(3) 枝晶偏析合金的结晶只有在缓慢冷却条件下才能得到成分均匀的固溶体.但实际冷速较快,结晶时固相中的原子来不及扩散,使先结晶出的枝晶轴含有较多的高熔点元素(如Cu-Ni合金中的Ni), 后结晶的枝晶间含有较多的低熔点元素,如Cu-Ni合金中的Cu)。
在一个枝晶范围内或一个晶粒范围内成分不均匀的现象称作枝晶偏析。
与冷速有关而且与液固相线的间距有关.冷速越大,液固相线间距越大,枝晶偏析越严重枝晶偏析会影响合金的力学、耐蚀、加工等性能。
生产上常将铸件加热到固相线以下100-200℃长时间保温,以使原子充分扩散、成分均匀,消除枝晶偏析,这种热处理工艺称作扩散退火.2、二元共晶相图当两组元在液态下完全互溶,在固态下有限互溶,并发生共晶反应时所构成的相图称作共晶相图。
以Pb-Sn 相图为例进行分析.(1) 相图分析①相:相图中有L、α、β三种相,α是溶质Sn在Pb中的固溶体,β是溶质Pb在Sn中的固溶体。
②相区:相图中有三个单相区:L、α、β;三个两相区:L+α、L+β、α+ β。
③液固相线:液相线AEB,固相线ACEDB。
A、B分别为Pb、Sn的熔点。
④固溶线: 溶解度点的连线称固溶线.相图中的CF、DG线分别为Sn在Pb中和Pb在Sn中的固溶线。
固溶体的溶解度随温度降低而下降。
⑤共晶线:水平线CED叫做共晶线。
在共晶线对应的温度下(183 ℃),E点成分的合金同时结晶出C点成分的α固溶体和D点成分的β固溶体,形成这两个相的机械混合物L E⇄ (αC + βD)在一定温度下,由一定成分的液相同时结晶出两个成分和结构都不相同的新固相的转变称作共晶转变或共晶反应.一、铁碳合金的组元和相1. 组元:Fe、Fe3C2。
相⑴铁素体——碳在α—Fe中的固溶体称铁素体,用F或α表示碳在α–Fe中的固溶体用α表示,体心立方间隙固溶体。
铁素体的溶碳能力很低,在727℃时最大为0。
0218%,室温下仅为0。
0008%。
铁素体的组织为多边形晶粒,性能与纯铁相似。
(2)奥氏体碳在γ -Fe中的固溶体称奥氏体。
用A或γ表示.是面心立方晶格的间隙固溶体.溶碳能力比铁素体大,1148℃时最大为2。
11%。
组织为不规则多面体晶粒,晶界较直。
强度低、塑性好,钢材热加工都在γ区进行,碳钢室温组织中无奥氏体。
(3) 渗碳体(Fe3C)含碳6.69%,用Fe3C或C m表示。
Fe3C硬度高、强度低(σb ≈ 35MPa),脆性大,塑性几乎为零。
由于碳在α—Fe中的溶解度很小,因而常温下碳在铁碳合金中主要以Fe3C或石墨的形式存在。
重要知识点◆五个重要的成份点:P、S、E、C、F◆四条重要的线: ECF、PSK、ES、GS◆三个重要转变:共晶转变反应式、共析转变反应式、包晶转变(本节略)◆二个重要温度: 1148 ℃、727 ℃第一节退火和正火一般零件的工艺路线为:毛坯(铸造或锻造)→退火或正火→机械(粗)加工→淬火+回火(或表面热处理)→机械(精)加工.退火与正火常作为预备热处理,其目的是为消除毛坯的组织缺陷,或为以后的加工作准备;淬火和回火工艺配合可强化钢材,提高零件使用性能,作为最终热处理。
一、退火将工件加热到适当温度,保温一定时间,缓慢冷却热处理工艺【目的】根据不同情况,退火的作为可归纳为降低硬度,改善钢的成形和切削加工性能;均匀钢的化学成分和组织;消除内应力等。
①调整硬度以便进行切削加工;②消除残余内应力,以防止钢件在淬火时产生变形或开裂;③细化晶粒,改善组织,提高力学性能,为最终热处理作准备。
1、退火类型(1)完全退火完全退火是将工件完全奥氏体化后缓慢冷却,获得接近平衡组织的退火工艺。
【工艺】加热温度为Ac3以上20℃~30℃,保温时间依工件的大小和厚度而定,使工件热透,保证全部得到均匀化的奥氏体,冷却方式可采用随炉缓慢冷却,实际生产时为提高生产率,退火冷却至600℃左右即可出炉空冷.(2)球化退火【工艺】球化退火的加热温度为Ac1以上20℃~30℃,采用随炉缓冷,至500℃~600℃后出炉空冷;(3)去应力退火去除工件塑性变形加工、切削加工或焊接造成的内应力及铸件内存在的残余内应力而进行的退火工艺。
【工艺】去应力退火加热温度较宽,但不超过AC1点,一般在500℃~650℃之间,铸铁件去应力退火温度一般为500℃~ 550℃;焊接工件的去应力退火温度一般为500℃~600℃.去应力退火的保温时间也要根据工件的截面尺寸和装炉量决定。
去应力退火后的冷却应尽量缓慢,以免产生新的应力。
(4)扩散退火为减少铸件或锻坯的化学成分和组织不均匀性,将其加热到略低于固相线(固相线以下100℃~200℃)的温度,长时间保温(10h~15h),并进行缓慢冷却的热处理工艺,称为扩散退火或均匀化退火.二、正火1、正火的概念【工艺】正火处理的加热温度通常在Ac3或Accm以上30℃~50℃。
对于含有V、Ti、Nb 等碳化物形成元素的合金钢,采用更高的加热温度(AC3 + 100℃~150℃)。
正火冷却方式常用的是将钢件从加热炉中取出在空气中自然冷却.对于大件也可采用吹风、喷雾和调节钢件堆放距离等方法控制钢的冷却速度,达到要求的组织和性能。
第二节钢的淬火将亚共析钢加热到Ac3以上,共析钢与过共析钢加热到Ac1以上,低于Accm的温度,保温后以大于Vk的速度快速冷却,使奥氏体转变为马氏体或贝氏体的热处理工艺叫淬火。
马氏体强化是钢的主要强化手段,因此淬火的目的就是为了获得马氏体,提高钢的机械性能.淬火是钢的最重要的热处理工艺也是热处理中应用最广的工艺之一。
1、淬火温度的确定淬火温度即钢的奥氏体化温度,是淬火的主要工艺参数之一。
选择淬火温度的原则是获得均匀细小的奥氏体组织.亚共析钢的淬火温度一般为Ac3以上30~50℃,淬火后获得均匀细小的马氏体组织。
温度过高,奥氏体晶粒粗大而得到粗大的马氏体组织,而使钢的机械性能恶化,特别是塑性和韧性降低;淬火温度低于Ac3,淬火组织中会保留未溶铁素体,使钢的强度硬度下降.4、钢的淬透性(1)淬透性与淬硬性的概念钢的淬透性是指奥氏体化后的钢在淬火时获得马氏体的能力(也称为淬透层深度),其大小用钢在一定条件下淬火获得的淬硬层深度来表示。
淬硬层深度指由工件表面到半马氏体区(50%M + 50%P)的深度.淬硬性是指钢淬火后所能达到的最高硬度,即硬化能力.淬透性与淬硬层深度的关系同一材料的淬硬层深度与工件尺寸、冷却介质有关。
工件尺寸小、介质冷却能力强,淬硬层深。
淬透性与工件尺寸、冷却介质无关。
它只用于不同材料之间的比较,通过尺寸、冷却介质相同时的淬硬层深度来确定的.(2)淬透性的测定及其表示方法同一材料的淬硬层深度与工件的尺寸,冷却介质有关,工件尺寸小、冷却能力强,淬硬层深,工件尺寸小、介质冷却能力强,淬硬层深,而淬透性与工件尺寸、冷却介质无关,它只用于不同材料之间的比较,是在尺寸、冷却介质相同时,用不同材料的淬硬层深度进行比较的。
淬透性常用末端淬火法测定(如下图所示),将标准化试样奥氏体化后,对末端进行喷水冷却。
然后从水冷段开始,每隔一定距离测量一个硬度值,即可得到试样沿轴向的硬.即用表示J 表示末端淬透性;d 表示半马氏体区到水冷端的距离;HRC 为半马氏体区的硬度.(3)影响淬透性的因素钢的淬透性取决于临界冷却速度V K,V K越小,淬透性越高。
V K取决于C曲线的位置,C 曲线越靠右,V K越小。
凡是影响C曲线的因素都是影响淬透性的因素,即除Co 外,凡溶入奥氏体的合金元素都使钢的淬透性提高;奥氏体化温度高、保温时间长也使钢的淬透性提高。
◆影响淬硬层深度的因素淬透性冷却介质工件尺寸对于截面承载均匀的重要件,要全部淬透.如连杆、模具等。
对于承受弯曲、扭转的零件可不必淬透(淬硬层深度一般为半径的1/2—1/3),如轴类、齿轮等.淬硬层深度与工件尺寸有关,设计时应注意尺寸效应.第三节钢的回火回火——将淬火钢加热到Ac1以下的某温度保温后冷却的热处理工艺。
1、回火的目的◆消除或减少淬火内应力,防止工件变形或开裂;◆获得工艺所要求的力学性能;◆稳定工件尺寸。
淬火马氏体和残余奥氏体都是非平衡组织,有自发向平衡组织铁素体加渗碳体转变的倾向.回火可使马氏体和残余奥氏体转变为平衡或接近平衡的组织,防止使用时变形.对于未经淬火的钢,回火是没有意义的,而淬火钢不经回火一般也不能直接使用,为避免淬火件在放置过程中发生变形或开裂,钢件经淬火后应及时回火。
3、回火工艺(1)低温回火(〈250℃)低温回火后得到回火马氏体组织.其目的是降低钢的淬火应力和脆性,回火马氏体具有高的硬度(一般为58~64HRC)、强度和良好耐磨性。
低温回火特别适用于刀具、量具、滚动轴承、渗碳件及高频表面淬火等工求高硬度和耐磨性的工件。
(2)中温回火(350-500℃)中温回火时发生如下变化,得到T回组织,即为在保持马氏体形态的铁素体基体上分布着细粒状渗碳体的组织。
使钢具有高的弹性极限,较高的强度和硬度(一般为35 ~ 50HRC),良好的塑性和韧性。
中温回火主要用于各种弹性元件及热作模具。
(3)高温回火(〉500℃)高温回火后得到回火索氏体组织,即为在多边性铁素体基体上分布着颗粒状Fe3C的组织.工件淬火并高温回火的复合热处理工艺称为调质。
高温回火主要适用于中碳结构钢或低合金结构钢制作的曲轴、连杆、螺栓、汽车半轴、等重要的机器零件。
4、回火时的性能变化回火时力学性能变化总的趋势是随回火温度提高,钢的强度、硬度下降,塑性、韧性提高。
5、回火脆性淬火钢的韧性并不总是随温度升高而提高。
在某些温度范围内回火时,会出现冲击韧性下降的现象。
(1)低温回火脆性淬火钢在250℃~350℃范围内回火时出现的脆性叫做低温回火脆性。
几乎所有的钢都存在这类脆性。
这是一种不可逆回火脆性,目前尚无有效办法完全消除这类回火脆性。
所以一般都不在250℃~350℃这个温度范围内回火.(2)高温回火脆性淬火钢在500℃~650℃范围内回火时出现的脆性称为高温回火脆性,称为第二类回火脆性.这种脆性主要发生在含Cr、Ni、Si、Mn等合金元素的结构钢中。