6.2.2用坐标表示平移

合集下载

(word完整版)人教版七年级数学下册知识点大全,推荐文档

(word完整版)人教版七年级数学下册知识点大全,推荐文档

人教版七年级数学下册知识点大全第五章相交线与平行线5.1.1相交线1、如果两条直线只有一个公共点,就说这两条直线相交,该公共点叫做两直线的交点。

2、如果两个角有一个公共边,并且它们的另一边互为反向延长线,那么这两个角互为邻补角。

性质:邻补角互补。

(两条直线相交有4对邻补角。

)3、如果两个角的顶点相同,并且两边互为反向延长线,那么这两个角互为对顶角。

性质:对顶角相等。

(两条直线相交,有2对对顶角。

)5.1.2垂线4、当两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。

其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

5、由直线外一点向直线引垂线,这点与垂足间的线段叫做垂线段。

(要找垂线段,先把点来看。

过点画垂线,点足垂线段。

)6、垂线段是垂线上的一部分,它是线段,一端是一个点,另一端是垂足。

7、垂线画法:①放:放直尺,直尺的一边要与已知直线重合;②靠:靠三角板,把三角板的一直角边靠在直尺上;③移:移动三角板到已知点;④画线:沿着三角板的另一直角边画出垂线.8、垂线性质1:过一点有且只有一条直线与已知直线垂直。

9、过一点画已知线段(或射线)的垂线,就是画这条线段(或射线)所在直线的垂线.10、连接直线外一点与直线上各点的所有线段中,垂线段最短。

(垂线段最短.)11、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

5.1.3同位角、同旁内角、内错角12、同位角:如果两个角都在被截的两条直线的同方向,并且都在截线的同侧,即它们的位置相同,这样的一对角叫做同位角。

形如字母“F”。

13、内错角:如果两个角分别在被截的两条直线之间(内),并且分别在截线的两侧(错),这样的一对角叫做内错角。

形如字母“Z”。

14、同旁内角:如果两个角都在被截直线之间(内),并且都在截线的同侧(同旁),这样的一对角叫做同旁内角。

形如字母“U”。

5.2.1平行线15、在同一平面内,不相交的两条直线叫做平行线,记作:a∥b。

初中数学 6.2 坐标方法的简单应用 教案2

初中数学 6.2 坐标方法的简单应用 教案2

6.2坐标方法的简单应用(第2课时)
教学过程设计
活动一
问题
⑴如图将点A(-2,-3)向右平移5个单
位长度,得到点A1,在图上标出它的坐标,
把点A向上平移4个单位长度呢?
⑵把点A向左或向下平移4个单位长度,观
察他们的变化,你能从中发现什么规律吗?
⑶再找几个点,对他们进行平移,观察他们
的坐标是否按你发现的规律变化?
活动二
⑵将三角形ABC三个顶点的纵坐标都减去5,横坐标不变,分别得到点A2、B2、C2,依次连接A2、B2、C2各点,所得三角形A2B2C2与三角形ABC的大小、形状和位置上有什么关系?
引导学生动手操作,按要求画出图形后,解答此例题
活动三。

用坐标表示平移

用坐标表示平移

2 3 4
-1
x
C1
小 结
-2 B1 -3
-2 -3
(2)
拓 广 探 索6
3
4
^ y 制作动画时,经常要用到图形的平移,如图,小鸟从A到B, 8
再到C,到D,这几个过程中,分别进行了怎样的平移?
C
B D A
2
0
1
2
3
4
55
6
7
8
9
10
x
>
想一想?
这节课你有哪些收获?
(或向左) 在平面直角坐标系中,将点(x, y)向右 平移a个单位长度,可以得到对应点 (x+a,y) (或(x-a,y)).将点(x, y)向上 (或向下)平移b个 单位长度,可以得到对应点(x,y+b) (或(x,y-b))

-6 -4 -2
(4,3)
y
2
2 1
A C B
2
1 (1,2) -5 -4 -3 -2 -1 0 (-2,-2) -1 A1 -2 (-5,-3) C1 -3
-1 -2 -3
(3,1)
1
2 3
4
4
x
1

B1 (-3,-4)
-4
-4
•可通过左右平移和上下平移来完成。
自己动手做做吧?
如果将上个问题中的“横坐标都减6”“纵坐标都减5”相
(-2,3)
(3,1)
-3 -24xFra bibliotek-3则有A1 (-2,3),B1 (-3,1),C1 (-5,2) 。
猜想: △ A1B1C1与△ABC的大小、 形状和位置上有什么关系?
2,如图△ABC三个顶点的坐标: A(4,3) B(3,1) C(1,2)

七年级数学下册第6章课外作业设计

七年级数学下册第6章课外作业设计

◆◆◆ 我们的追求:让每位同学都得到发展◆◆◆第6章 第1次作业 完成作业的自我评价:_________ 签名:________如果你本课作业时遇到不会解答的问题,请你直接找老师或请登录http// ,寻第1课时6.1.1 有序数对1. 如果将教室内最前面的1排的左边第3号,即“1排3号”用(1,3)表示,那么请用有序数对表示你的位置:( );你所在小组组长的位置是( );你右侧(或左侧)第二个人的位置是:( );(4,5)表示的位置上的同学是: .2. 如图,点A 的位置是(3,2),那么点B 的位置是________,点C 的位置是________,点D和点E 的位置分别是________,_________.3. 如图,从2街4巷走到4街2巷,走最短的路线,共有几种走法?并在图中表示出来.4. 用有序数对表示物体位置时,(2,4)和(4,2)表示的位置相同吗?请结合图形说明.5. 如图,四个正方形组成一个“T”字型,你能用四个这样的图形拼成一个正方形吗?请你画出示意图.E B C A D(第2题) 515(街)4322341(第3题)◆◆◆ 我们的追求:让每位同学都得到发展◆◆◆第6章 第2次作业 完成作业的自我评价:_________ 签名:________如果你本课作业时遇到不会解答的问题,请你直接找老师或请登录http// ,寻找1. 点A (-3,2)在第______象限;点B (3,-2)在第______象限;点C (3,2)在第______象限;点D (-3,-2)在第______象限;点E (0,2)在______上;点F (-3,0)在______上.2. 如果点P (1-a ,a -3)在x 轴上,那么a 的值为 ( )A .1B .-1C .3D .-33. 若点P 在第二象限,且点P 到x 轴的距离是6,到y 轴的距离为8,则点P 的坐标为 ( )A .(-6,8)B .(8,-6)C .(6,-8)D .(-8,6)4.对于任何数x ,点(x ,x -1)一定不在第 象限.点N (a +5,a -2)在y 轴上,则点N 到原点O 的距离是 .5.如图,长方形ABCD 中,AB =5,C (2,3),试求A ,B ,D 三点的坐标.6.如图,正方形ABCD 的边长为2,试求:(1)A ,B ,C ,D 四点的坐标;(2)正方形EFGH 的四个顶点的坐标.7.在同一平面直角坐标系中,描出下列各组点,并将各组内的点用线段依次连接起来.(1)(1,2),(3,2),(2,4);(2)(-3,2),(-1,2),(-2,4);(3)(1,-2),(3,-2),(2,0);(4)(-1,-2),(-3,-2)(-2,0).观察所得图形,你觉得有什么规律?B A OCD (第5题) y B ACD E F G H O x y◆◆◆ 我们的追求:让每位同学都得到发展◆◆◆第6章 第3次作业 完成作业的自我评价:_________ 签名:________如果你本课作业时遇到不会解答的问题,请你直接找老师或请登录http// ,寻找1. 已知坐标平面内点A (m ,n )在第四象限,那么点B (n ,m )在 ( )A .第一象限B .第二象限C .第三象限D .第四象限2. 点P (2,-6)到x 轴、y 轴的距离分别为 ( )A .2,6B .2,-6C .6,2D .-6,23. 已知点A (0,4),B (-2,4),则直线AB 与x 轴的位置关系是 ( )A .相交B .平行C .垂直D .不确定4. 已知平面内有一点P (x ,y ),使得22(1)0x y ++-=成立,则点P 在 ( )A .第一象限B .第二象限C .第三象限D .第四象限5. 点M (a +1,2a -1)的横坐标、纵坐标相同,则点M 到x 轴的距离是 ,点M 到y 轴的距离是 .6. 已知点A (3,0),与点A 在同一坐标轴上的点B 到A 的距离为3,则B 点的坐标为 .7. 各写出4个满足下列条件的点,并分别在平面直角坐标系中描出这4个点:(1)横坐标与纵坐标相等;(2)横坐标与纵坐标互为相反数;(3)横坐标与纵坐标的和是-3.观察每题中这些点的位置,它们各有什么规律?◆◆◆ 我们的追求:让每位同学都得到发展◆◆◆第6章 第4次作业 完成作业的自我评价:_________ 签名:________如果你本课作业时遇到不会解答的问题,请你直接找老师或请登录http// ,寻找第4课时6.2.1 用坐标表示地理位置1. 从车站向东走400m ,再向北走500m 到小张家;从车站向北走500m ,再向西走200m 到小李家,则下列说法正确的是 ( )A .小李家在小张家的正东B .小李家在小张家的正西C .小李家在小张家的正南D .小李家在小张家的正北2. 芳芳放学从校门向东走400m ,再往北走200m 到家;林林出校门向东走200m 到家,则林林家在芳芳家的 ( )A .东南方向B .西南方向C .东北方向D .西北方向3. 已知点A (3,4),B (3,1),C (4,1),则下列各式中,错误的是 ( )A .AB <AC B .AB >BC C .AB >ACD .AC >BC4. 在平面直角坐标系中,点A (-2,-1),B (-1,-4),C (5,-2)构成的三角形是________三角形.5. 所在位置的坐标为(-1 (2,-2),那么, 所在位置的坐标为 .6. 在平面直角坐标系内,A 、B 、C 三点的坐标 为(0,0)、(4,0)、(3,2),以A 、B 、C 三点为顶点画平行四边形,则第四个顶点的坐标为 .7.如图,一个机器人从点O 出发,向正东方向走3m 到达点A 1,再向正北方向走6m 到达点A 2,再向正西方向走9m 到达点A 3,再向正南方向走12m 到达点A 4,再向正东方向走15m 到达点A 5,设点O 为坐标原点,以正东、正北方向为x 轴、y 轴,按上述规律走下去,当机器人走到点A 6、A 7时,则点A 6的坐标为 ,点A 的坐标为 .相 炮 帅 士 相炮 (第5 题) O x (第7题) y A 1 A 2 A 3 A 4 A 5A 6◆◆◆ 我们的追求:让每位同学都得到发展◆◆◆第6章 第5次作业 完成作业的自我评价:_________ 签名:________如果你本课作业时遇到不会解答的问题,请你直接找老师或请登录http// ,寻找第5课时6.2.2 用坐标表示平移(1)1. 点M (-2,5)向右平移3个单位长度,所得对应点的坐标为 ;点N (4,6)向上平移6个,所得对应点的坐标为 .2. 在平面直角坐标系内,如果把平行四边形ABCD 的四个顶点的横坐标都减去5,那么所得平行四边形就是把原平行四边形向 平移 个单位长度;如果把平行四边形ABCD 各顶点的纵坐标都加5,那么所得平行四边形就是把原平行四边形向平移 个单位长度.3. 点P (-2,-3)向左平移1个单位长度,再向上平移3个单位长度,则所得到的点的坐标为 .4. 已知△ABC ,A (-3,2),B (1,1),C (-1,-2),现将△ABC 平移,使点A 1到点(1,-2)的位置上,则点B 1、C 1的坐标分别为________,________.5. 将点A 先向右平移4个单位长度,再向上平移6个单位长度,得到点B ,若点B 的坐标为(-6,-8),则点A 的坐标为 .6. 长方形ABCD 四个顶点的坐标分别为A (-2,1),B (-2,-2),C (3,-2),D (3,1).将长方形沿x 轴正方向平移一个单位长度,再沿y 轴正方向平移一个单位长度,则平移后的四个顶点坐标为 .7. 如图,将点A (3,2)向左平移5个单位长度,得到点A 1,请在图上标出这个点,并写出它的坐标.将点A 向下平移4个单位长度,得到点A 2,也请在图中标出这个点,也写出它的坐标.你能判断直线AA 1与x(第 7 题) -4 -5 -3 -2 -1 1 2 2 3 3 1 4 -1 -2 -3 xy O ·A◆◆◆ 我们的追求:让每位同学都得到发展◆◆◆第6章 第6次作业 完成作业的自我评价:_________ 签名:________如果你本课作业时遇到不会解答的问题,请你直接找老师或请登录http// ,寻找第6课时 用坐标表示平移(2)1. 已知点A (-4,2),B (1,2),则线段AB 的长度是 ( )A .3个单位长度B .4个单位长度C .5个单位长度D .6个单位长度2. 已知点A (-3,-5),B (-3,7),则线段AB 的长度是 ( )A .2个单位长度B .4个单位长度C .12个单位长度D .14个单位长度3. 已知坐标平面内三点D (5,4),E (2,4),F (4,2),那么△DEF 的面积为( )A .3平方单位B .5平方单位C .6平方单位D .7平方单位4.如图,三角形DEF 是三角形ABC 经过某种变换后得到的图形,观察图形分别写出点A 和点D ,点B 和点E ,点C 和点F 的坐标.并根据它们之间的内在联系,试猜想三角形中任意一点P (x ,y )的对应点Q 的坐标是什么?5. 在直角坐标系中,描出点A (1,1),B (-1,-1),C (2,0),并求出△ABC 的面积.6. 如图,四边形ABCD 的四个顶点的位置在平面直角坐标系内,求四边形ABCD 的面积.-2 1 -1 -3-4-5 -4 -5 -3 -2 -1 1 2 3 4 5 x y O D A C B(第6题) B A C E O x 1234567 -6-5-4-3-2-1 y 4 3 2 1 -1 -2 -3 -4 D F◆◆◆ 我们的追求:让每位同学都得到发展◆◆◆第6章 第7次作业 完成作业的自我评价:_________ 签名:________如果你本课作业时遇到不会解答的问题,请你直接找老师或请登录http// ,寻找1. 课间操时,小华、小军、小刚的位置如下图左,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成 ( )A .(5,4)B .(4,5)C .(3,4)D .(4,3) 2. 平行于y 轴的直线上的任意两点的坐标之间的关系是 ( )A .横坐标相等B .纵坐标相等C .横坐标的绝对值相等D .纵坐标的绝对值相等3. 若x 轴上的点P 到y 轴的距离为3,则点P 的坐标为 ( )A .(3,–3)B .(3,0)或(–3,0)C .(0,3)D .(3,0)或(0,–3)4. 一个长方形在平面直角坐标系中三个顶点的坐标为(–1,–1)、(–1,2)、(3,–1),则第四个顶点的坐标为 ( )A .(2,2)B .(3,2)C .(3,3)D .(2,3) 5. 若4,5==b a ,且点M (a ,b )在第四象限,则点M 的坐标是 ( )A .(5,4)B .(-5,4)C .(-5,-4)D .(5,-4)6.点P (x ,5)在第二象限,则x 的取值范围是 ( )A .x <0B .x >0C .x ≤0D .x ≥07.在直角坐标系内,点P (2,-2)和点Q (2,4)之间的距离等于 个单位长度.8.已知点P (a ,3),点Q (a +1,b ),若PQ ∥x 轴,则a ,b = .9.如图是小刚画的一张脸,他对妹妹说“如果我用(1,3)表示左眼,用(3,3)表示右眼,那么嘴的位置可以表示成 .”10.如图,小强告诉小华图中点A 的坐标为(–3,5),点B 的坐标为(3,5),小华一下就说出了点C 的坐标是 .·小军 (第1题) ·小华 ·小刚012341234◆◆◆ 我们的追求:让每位同学都得到发展◆◆◆第6章 第8次作业 完成作业的自我评价:_________ 签名:________如果你本课作业时遇到不会解答的问题,请你直接找老师或请登录http// ,寻找11.如图,在平行四边形ABCD 中,AD =5,点B 的坐标为(-5,4),则平行四边形ABCD 面积为________. 12.写出如图中“小鱼”上所标各点的坐标并回答:(1)点B 、E 的位置有什么特点?(2)从点B 与点E ,点C 与点D 的位置,看它们的坐标有什么特点?13.在某城市中,体育场在火车站以西4000m 再往北2000m 处,华侨宾馆在火车站以西3000m再往南2000m 处,时代超市在火车站以南3000m 再往东2000m 处,请建立适当的平面直角坐标系,分别写出各地的坐标.14.如图为风筝的图案.(1)写出图中所标各个顶点的坐标;(2)纵坐标保持不变,横坐标分别加-2,所得各点的坐标分别是什么?所得图案与原来图案相比有什么变化? (3)横坐标保持不变,纵坐标分别乘2,所得各点的坐标分别是什么?所得图案与原来图案相比有什么变化?A C O xyD B (第11题) AB CD E O y (第12题) x 小正方形的边长 表示1000m ·火车站 ·体育场 ·华侨宾馆·时代超市(第23题) 1 x y (第14题)A BC D E F。

初中数学 6.2 坐标方法的简单应用(第2课时)教案

初中数学 6.2 坐标方法的简单应用(第2课时)教案

6.2坐标方法的简单应用(2)用坐标表示平移[教学目标]1.知识技能掌握坐标变化与图形平移的关系;能利用点的平移规律将平面图形进行平移;会根据图形上点的坐标的变化,来判定图形的移动过程.2.数学思考发展学生的形象思维能力,和数形结合的意识.3.解决问题用坐标表示平移体现了平面直角坐标系在数学中的应用.4.情感态度培养学生探究的兴趣和归纳概括的能力,体会使复杂问题简单化.[教学重点与难点]1.重点:掌握坐标变化与图形平移的关系.2.难点:利用坐标变化与图形平移的关系解决实际问题.[教学过程]一、引言上节课我们学习了用坐标表示地理位置,本节课我们继续研究坐标方法的另一个应用.二、新课展示问题:教材第56页图.(1)如图将点A(-2,-3)向右平移5个单位长度,得到点A1,在图上标出它的坐标,把点A向上平移4个单位长度呢?(2)把点A向左或向下平移4个单位长度,观察他们的变化,你能从中发现什么规律吗?(3)再找几个点,对他们进行平移,观察他们的坐标是否按你发现的规律变化?规律:在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(,));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(,)).教师说明:对一个图形进行平移,这个图形上所有点的坐标都要发生相应的变化;反过来,从图形上的点的坐标的某种变化,我们也可以看出对这个图形进行了怎样的平移.例如图(1),三角形ABC三个顶点坐标分别是A(4,3),B(3,1),C(1,2).(1)将三角形ABC三个顶点的横坐标后减去6,纵坐标不变,分别得到点A1、B1、C1,依次连接A1、B1、C1各点,所得三角形A1B1C1与三角形ABC的大小、形状和位置上有什么关系?(2)将三角形ABC三个顶点的纵坐标都减去5,横坐标不变,分别得到点A2、B2、C2,依次连接A2、B2、C2各点,所得三角形A2B2C2与三角形ABC的大小、形状和位置上有什么关系?引导学生动手操作,按要求画出图形后,解答此例题.解:如图(2),所得三角形A1B1C1与三角形ABC的大小、形状完全相同,三角形A1B1C1可以看作将三角形ABC向左平移6个单位长度得到.类似地,三角形A2B2C2与三角形ABC的大小、形状完全相同,它可以看作将三角形ABC向下平移5个单位长度得到.思考题:由学生动手画图并解答.归纳:三、练习教材第58页练习;习题6.2中第1、2、4题.四、作业教材第59页第3题.。

七年级数学用坐标表示点的平移1(1)

七年级数学用坐标表示点的平移1(1)
求 A′B′C′的 坐标Biblioteka C B O A巩固新知
y
练习1:如图, 6 △ AOB沿x轴向 5 A 4 右平移3个单位 3 后得到 2 △A′B′C′,则 1 B △A′B′C′的三 -6 -5 -4 -3 -2 -1o 1 2 3 4 5 6 7 8 -1 个顶点坐标为 -2 多少?
-3 -4 -5 -6
在平面直角坐标系中,有一点P(-4,2),若将P: ( -6,2) (1)向左平移2个单位长度,所得点的坐标为 ______ ; (2)向右平移3个单位长度,所得点的坐标为 ______ ; ( -1,2)
(3)向下平移4个单位长度,所得点的坐标为 ______ ; ( -4, -2)
(4)先向右平移5个单位长度,再向上平移3个单位长 ( 1,5)。 度,所得坐标为 _______
在平面直角坐标系中,有一点(1,3), 要使它平移到点(-2,-2),应怎样平移? 说出平移的路线。 y
7 6 5 4 3 2 1 - 7- 6- 5- 4 - 3- 2- 1 0 1 2 3 4 5 6 7 -1 -2 -3 -4 -5 -6 -7
x
例题1: △ ABC的三 个顶点分别 为A(1,-2) B(6,2),C(4,5) 把△ABC向 左移3个单位, 再向下平移 四个单位, 得△A′B′C′
归纳:
在平面直角坐标系中,将点(x,y)向右(或左)平移 a个单位长度,对应点的横坐标加上a(或减去a),而 纵坐标不变,即坐标变为(x+a,y)或(x-a,y)。 在平面直角坐标系中,将点(x,y)向上(或下)平移 b个单位长度,对应点的纵坐标加上b(或减去b),而 横坐标不变,即坐标变为(x,y+b)或(x,y-b)。
1、如果A,B的坐标分别为A(-4,5), 3 个单位长 下 平移___ B(-4,2),将点A向___ 3 个单位 上 平移___ 度得到点B;将点B向___ 长度得到点A 。

人教版数学下册知识点大全《初中一年级》

人教版初中一年级数学下册知识点大全订交线与平行线5.1.1 订交线1、假如两条直线只有一个公共点,就说这两条直线订交,该公共点叫做两直线的交点。

2、假如两个角有一个公共边,并且它们的另一边互为反向延伸线,那么这两个角互为邻补角。

性质:邻补角互补。

(两条直线订交有 4 对邻补角。

)3、假如两个角的极点同样,并且两边互为反向延伸线,那么这两个角互为对顶角。

性质:对顶角相等。

(两条直线订交,有 2 对对顶角。

)5.1.2 垂线4、当两条直线订交,所成的四个角中有一个角是直角,那么这两条直线相互垂直。

此中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

5、由直线外一点向直线引垂线,这点与垂足间的线段叫做垂线段。

(要找垂线段,先把点来看。

过点画垂线,点足垂线段。

)6、垂线段是垂线上的一部分,它是线段,一端是一个点,另一端是垂足。

7、垂线画法:①放 : 放直尺 , 直尺的一边要与已知直线重合;②靠 : 靠三角板 , 把三角板的向来角边靠在直尺上;③移 : 挪动三角板到已知点 ;④画线 : 沿着三角板的另向来角边画出垂线.8、垂线性质 1:过一点有且只有一条直线与已知直线垂直。

9、过一点画已知线段( 或射线 ) 的垂线 , 就是画这条线段 ( 或射线 ) 所在直线的垂线 .10、连结直线外一点与直线上各点的全部线段中,垂线段最短。

(垂线段最短.)11、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

5.1.3 同位角、同旁角、错角12、同位角:假如两个角都在被截的两条直线的同方向,并且都在截线的同侧,即它们的地点同样,这样的一对角叫做同位角。

形如字母“F”。

13、错角:假如两个角分别在被截的两条直线之间(),并且分别在截线的双侧(错),这样的一对角叫做错角。

形如字母“Z”。

14、同旁角:假如两个角都在被截直线之间(),并且都在截线的同侧(同旁),这样的一对角叫做同旁角。

形如字母“U”。

5.2.1 平行线15、在同一平面,不订交的两条直线叫做平行线,记作:a∥b。

初一数学上下册知识点总结与重点难点、公式总结

第一册第一章有理数1.1正数和负数以前学过的0以外的数前面加上负号“-”的书叫做负数。

以前学过的0以外的数叫做正数。

数0既不是正数也不是负数,0是正数与负数的分界。

在同一个问题中,分别用正数和负数表示的量具有相反的意义1.2有理数1.2.1有理数正整数、0、负整数统称整数,正分数和负分数统称分数。

整数和分数统称有理数。

1.2.2数轴规定了原点、正方向、单位长度的直线叫做数轴。

数轴的作用:所有的有理数都可以用数轴上的点来表达。

注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。

⑵同一根数轴,单位长度不能改变。

一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a 个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。

1.2.3相反数只有符号不同的两个数叫做互为相反数。

数轴上表示相反数的两个点关于原点对称。

在任意一个数前面添上“-”号,新的数就表示原数的相反数。

1.2.4绝对值一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。

一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。

在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。

比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数。

⑵两个负数,绝对值大的反而小。

1.3有理数的加减法1.3.1有理数的加法有理数的加法法则:⑴同号两数相加,取相同的符号,并把绝对值相加。

⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

⑶一个数同0相加,仍得这个数。

两个数相加,交换加数的位置,和不变。

加法交换律:a+b=b+a三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。

加法结合律:(a+b)+c=a+(b+c)1.3.2有理数的减法有理数的减法可以转化为加法来进行。

有理数减法法则:减去一个数,等于加这个数的相反数。

最新优化设计人教版七年级下册数学答案名师优秀教案

优化设计(人教版)七年级下册数学答案优化设计七年级下册数学答案5.1相交线学前温故 1、两方无2、180? 新课早知1、邻补角2、对顶角3、?BOD ?AOC 和?BOD 4、相等5、C 轻松尝试应用 1,3 CAC 4、15?5、?AOF 和?BOE 6、解:因为?AOD与?BOC是对顶角所以?AOD=?BOC 又因为?AOD+?BOC=220?所以?AOD=110?而?AOC与?AOD是邻补角则?AOC+?AOD=180? 所以?AOC=70?智能演练能力提升 1,3 CCC 4、10?5、对顶角邻补角互为余角 6、135?40?7、90?8、不是9、解:因为OE平分?AOD, ?AOE=35?, 所以?AOD=2?AOE=70?由?AOD与?AOC是邻补角,得?AOC=180?-?AOD=110?因此?COE=?AOE+?AOC=35?+110?=145? 10、2 6 12 n(n-1) 4046132 5.1.2垂线学前温故90?新课早知1、垂直垂线垂足2、D BE CD C 3、一条垂线段 4、B 5、垂线段的长度 6、D 轻松尝试应用1,3 DBD 4、?1与?2互余 5、30?6、解:由对顶角相等,可知?EOF=?BOC=35?,又因为OG?AD, ?FOG=30?,所以?DOE=90?-?FOG-?EOF=90?-30?-35?=25? 智能演练能力提升1,3 AAB 4、?? 5、解:如图.6、解:因为CD?EF, 所以?COE=?DOF=90 ? 因为?AOE=70?,所以?AOC=90?-70?=20?, ?BOD=?AOC=20?,所以?BOF=90?-?BOD=90?-20?=70?因为OG平分?BOF,所以?BOG=0.5×70?=35?, 所以?BOG=35?+20?=55?7、解(1)因为OD平分?BOE,OF平分?AOE, 所以?DOE=1/2?BOE, ?EOF=1/2?AOE,因为?BOE+?AOE=180?,所以?DOE+?EOF=1/2?BOE+1/2?AOE=90?,即?FOD=90?,所以OF?OD(2)设?AOC=x,由?AOC: ?AOD=1:5,得?AOD=5x.因为?AOC=?AOD=180?,所以x+5x=180?,所以x=30?.所以?DOE=?BOD=?AOC=30?.因为?FOD=90?,所以?EOF=90?-30?=60?8、D 9解:(1)如图所示:(2)如图所示:(3)= =(4)角平分线上的点到角两边的距离相等.5.1.3同位角、内错角、同旁内角快乐预习感知学前温故1、相等互补2、直角新课早知 1、同位角内错角同旁内角2、B 3、A 互动课堂例解:同位角有?1和?2,?3和?5; 内错角有?1和?3,?2和?5;同旁内角有?1和?4,?4和?5 轻松尝试应用1、B 2、B 3、同位同旁内内错 4、内错AB BC AC 同旁内 AC BC AB 5、解:(1)中,?1与?2是直线c、d被直线l所截得的同位角,?3与?4是直线a,b被直线l所截得的同旁内角;(2)中,?1与?2是AB,CD被直线BC所截得的同位角,?3与?4是直线AB,CD被直线AC所截得的内错角 ;(3)中,?1与?2是直线AB,CD被直线AG所截得的同位角,?3与?4是直线AG,CE被直线CD所截得的内错角;(4)中,?1与?2是直线AD,BC被直线AC所截得的内错角,?3与?4是直线AB,CD被直线AC所截得的内错角能力升级 1,5 ADCCB 6、?B ?A ?ACB和?B 7、BD 同位 AC 内错 AC AB BC 同旁内 AB AC BD 同位 AB EF BD 同旁内 8、解:?1与?5;?1与7;?4与?39、解:因为?1与?2互补,?1=110?,所以?2=180?-110?=70?,因为?2与?3互为对顶角,所以?3=?2=70?因为?1+?4=180? 所以?4=180?-?1=180?-110?=70?10、解:(1)略(2)因为?1=2?2,?2=2?3,所以?1=4?3.又因为?1+?3=180? 所以4?3=?3=180?所以?3=36?所以?1=36?×4=144?,?2=36?×2=72?5.2.1平行线学前温故有且只有一个新课早知 1、平行2、C 3、一条4、互相平行 5、A 轻松尝试 1,3 DBB 4、AB?CD ,AD?BC 5、? ? 6、略能力升级 1,4 BCAB 5、3 A′B′, C′D,CD 6、在一条直线上过直线外一点有且只有一条直线与已知直线平行 7、解:(1)CD?MN,GH?PN.(2)略.8 解:(1)如图?示.(2)如图?所示.9解:(1)平行因为PQ?AD,AD?BC, 所以PQ?BC .(2)DQ=CQ 10、解:(1)图略(2)AH=HG=GM=MC (3)HD:EG:FM:BC=1:2:3:45.2.2平行线的判定学前温故同一同侧之间两侧之间同侧新课早知 1、不相交平行同位角平行内错角平行同旁内角互补平行 2、C 3、A 轻松尝试1,4、ABDC 5、EF 内错角相等,两直线平行 BC 同旁内角互补,两直线平行 AD BC 平行于同一条直线的两直线平行能力提升 1,5 DCDDD 6、?FEB=100?7、内错角相等,两直线平行 8、AB EC 同位角相等地,两直线平行 AB EC 内错角相等,两直线平行 AC ED 内错角相等,两直线平行 AB EC 同旁内角互补,两直线平行 9、解:因为DE平分?BDF,AF平分?BAC, 所以2?1=?BDF,2?2=?BAC 又因为?1=?2,所以?BDF=?BAC.所以DF?AC(同位角相等,两直线平行) 10、解:(1)因为AB?EF,CD?EF,所以AB?CD. 理由:两条直线都垂直于同一条直线,这两条直线平行。

初一知识点总结

第一册第一章有理数1.1正数和负数以前学过的0以外的数前面加上负号“-”的书叫做负数.以前学过的0以外的数叫做正数.数0既不是正数也不是负数,0是正数与负数的分界.在同一个问题中,分别用正数和负数表示的量具有相反的意义1.2有理数1.2.1有理数正整数、0、负整数统称整数,正分数和负分数统称分数.整数和分数统称有理数.1.2.2数轴规定了原点、正方向、单位长度的直线叫做数轴.数轴的作用:所有的有理数都可以用数轴上的点来表达.注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可.⑵同一根数轴,单位长度不能改变.一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度.1.2.3相反数只有符号不同的两个数叫做互为相反数.数轴上表示相反数的两个点关于原点对称.在任意一个数前面添上“-”号,新的数就表示原数的相反数.1.2.4绝对值一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值.一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0.在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数. 比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数.⑵两个负数,绝对值大的反而小.1.3有理数的加减法1.3.1有理数的加法有理数的加法法则:⑴同号两数相加,取相同的符号,并把绝对值相加.⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.⑶一个数同0相加,仍得这个数.两个数相加,交换加数的位置,和不变.加法交换律:a+b=b+a三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变.加法结合律:(a+b)+c=a+(b+c)1.3.2有理数的减法有理数的减法可以转化为加法来进行.有理数减法法则:减去一个数,等于加这个数的相反数.a-b=a+(-b)1.4有理数的乘除法1.4.1有理数的乘法有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.乘积是1的两个数互为倒数.几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数. 两个数相乘,交换因数的位置,积相等.ab=ba三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.(ab)c=a(bc)一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.a(b+c)=ab+ac数字与字母相乘的书写规范:⑴数字与字母相乘,乘号要省略,或用“”⑵数字与字母相乘,当系数是1或-1时,1要省略不写.⑶带分数与字母相乘,带分数应当化成假分数.用字母x表示任意一个有理数,2与x的乘积记为2x,3与x的乘积记为3x,则式子2x+3x是2x与3x的和,2x与3x叫做这个式子的项,2和3分别是着两项的系数.一般地,合并含有相同字母因数的式子时,只需将它们的系数合并,所得结果作为系数,再乘字母因数,即ax+bx=(a+b)x上式中x是字母因数,a与b分别是ax与bx这两项的系数.去括号法则:括号前是“+”,把括号和括号前的“+”去掉,括号里各项都不改变符号.括号前是“-”,把括号和括号前的“-”去掉,括号里各项都改变符号.括号外的因数是正数,去括号后式子各项的符号与原括号内式子相应各项的符号相同;括号外的因数是负数,去括号后式子各项的符号与原括号内式子相应各项的符号相反.1.4.2有理数的除法有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.a÷b=a• (b≠0)两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.因为有理数的除法可以化为乘法,所以可以利用乘法的运算性质简化运算.乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果.1.5有理数的乘方1.5.1乘方求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂.负数的奇次幂是负数,负数的偶次幂是正数.正数的任何次幂都是正数,0的任何正整数次幂都是0.有理数混合运算的运算顺序:⑴先乘方,再乘除,最后加减;⑵同级运算,从左到右进行;⑶如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行1.5.2科学记数法把一个大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法.用科学记数法表示一个n位整数,其中10的指数是n-1.1.5.3近似数和有效数字接近实际数目,但与实际数目还有差别的数叫做近似数.精确度:一个近似数四舍五入到哪一位,就说精确到哪一位.从一个数的左边第一个非0 数字起,到末位数字止,所有数字都是这个数的有效数字.对于用科学记数法表示的数a×10n,规定它的有效数字就是a中的有效数字.第二章一元一次方程2.1从算式到方程2.1.1一元一次方程含有未知数的等式叫做方程.只含有一个未知数(元),未知数的指数都是1(次),这样的方程叫做一元一次方程.分析实际问题中的数量关系,利用其中的相等关系列出方程,是数学解决实际问题的一种方法.解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解.2.1.2等式的性质等式的性质1 等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.2.2从古老的代数书说起——一元一次方程的讨论⑴把等式一边的某项变号后移到另一边,叫做移项.2.3从“买布问题”说起——一元一次方程的讨论⑵方程中有带括号的式子时,去括号的方法与有理数运算中括号类似.解方程就是要求出其中的未知数(例如x),通过去分母、去括号、移项、合并、系数化为1等步骤,就可以使一元一次方程逐步向着x=a的形式转化,这个过程主要依据等式的性质和运算律等.去分母:⑴具体做法:方程两边都乘各分母的最小公倍数⑵依据:等式性质2⑶注意事项:①分子打上括号②不含分母的项也要乘2.4再探实际问题与一元一次方程第三章图形认识初步3.1多姿多彩的图形现实生活中的物体我们只管它的形状、大小、位置而得到的图形,叫做几何图形.3.1.1立体图形与平面图形长方体、正方体、球、圆柱、圆锥等都是立体图形.此外棱柱、棱锥也是常见的立体图形. 长方形、正方形、三角形、圆等都是平面图形.许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形.3.1.2点、线、面、体几何体也简称体.长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体.包围着体的是面.面有平的面和曲的面两种.面和面相交的地方形成线.线和线相交的地方是点.几何图形都是由点、线、面、体组成的,点是构成图形的基本元素.3.2直线、射线、线段经过两点有一条直线,并且只有一条直线.两点确定一条直线.点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点.类似的还有线段的三等分点、四等分点等.直线桑一点和它一旁的部分叫做射线.两点的所有连线中,线段最短.简单说成:两点之间,线段最短.3.3角的度量角也是一种基本的几何图形.度、分、秒是常用的角的度量单位.把一个周角360等分,每一份就是一度的角,记作1;把1度的角60等分,每份叫做1分的角,记作1;把1分的角60等分,每份叫做1秒的角,记作1.3.4角的比较与运算3.4.1角的比较从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线.类似的,还有叫的三等分线.3.4.2余角和补角如果两个角的和等于90(直角),就说这两个角互为余角.如果两个角的和等于180(平角),就说这两个角互为补角.等角的补角相等.等角的余角相等.本章知识结构图第四章数据的收集与整理收集、整理、描述和分析数据是数据处理的基本过程.4.1喜爱哪种动物的同学最多——全面调查举例用划记法记录数据,“正”字的每一划(笔画)代表一个数据.考察全体对象的调查属于全面调查.4.2调查中小学生的视力情况——抽样调查举例抽样调查是从总体中抽取样本进行调查,根据样本来估计总体的一种调查.统计调查是收集数据常用的方法,一般有全面调查和抽样调查两种,实际中常常采用抽样调查的方式.调查时,可用不同的方法获得数据.除问卷调查、访问调查等外,查阅文献资料和实验也是获得数据的有效方法.利用表格整理数据,可以帮助我们找到数据的分布规律.利用统计图表示经过整理的数据,能更直观地反映数据规律.4.3课题学习调查“你怎样处理废电池?”调查活动主要包括以下五项步骤:一、\x09设计调查问卷⑴设计调查问卷的步骤①确定调查目的;②选择调查对象;③设计调查问题⑵设计调查问卷时要注意:①提问不能涉及提问者的个人观点;②不要提问人们不愿意回答的问题;③提供的选择答案要尽可能全面;④问题应简明;⑤问卷应简短.二、实施调查将调查问卷复制足够的份数,发给被调查对象.实施调查时要注意:⑴向被调查者讲明哪些人是被调查的对象,以及他为什么成为被调查者;⑵告诉被调查者你收集数据的目的.三、处理数据根据收回的调查问卷,整理、描述和分析收集到的数据.四、交流根据调查结果,讨论你们小组有哪些发现和建议?五、写一份简单的调查报告第二册第五章相交线与平行线5.1相交线5.1.1相交线有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角. 两条直线相交有4对邻补角.有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角.两条直线相交,有2对对顶角.对顶角相等.5.1.2两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直.其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.注意:⑴垂线是一条直线.⑵具有垂直关系的两条直线所成的4个角都是90.⑶垂直是相交的特殊情况.⑷垂直的记法:a⊥b,AB⊥CD.画已知直线的垂线有无数条.过一点有且只有一条直线与已知直线垂直.连接直线外一点与直线上各点的所有线段中,垂线段最短.简单说成:垂线段最短.直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.5.2平行线5.2.1平行线在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:a∥b.在同一平面内两条直线的关系只有两种:相交或平行.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.如果两条直线都与第三条直线平行,那么这两条直线也互相平行.5.2.2直线平行的条件两条直线被第三条直线所截,在两条被截线的同一方,截线的同一旁,这样的两个角叫做同位角.两条直线被第三条直线所截,在两条被截线之间,截线的两侧,这样的两个角叫做内错角.两条直线被第三条直线所截,在两条被截线之间,截线的同一旁,这样的两个角叫做同旁内角. 判定两条直线平行的方法:方法1 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:同位角相等,两直线平行.方法2 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.方法3 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补,两直线平行.5.3平行线的性质平行线具有性质:性质1 两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.性质2 两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.性质3 两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补. 同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做着两条平行线的距离. 判断一件事情的语句叫做命题.5.4平移⑴把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各组对应点的线段平行且相等.图形的这种移动,叫做平移变换,简称平移.第六章平面直角坐标系6.1平面直角坐标系6.1.1有序数对有顺序的两个数a与b组成的数对,叫做有序数对.6.1.2平面直角坐标系平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系.水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴取2向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点.平面上的任意一点都可以用一个有序数对来表示.建立了平面直角坐标系以后,坐标平面就被两条坐标轴分为了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限.坐标轴上的点不属于任何象限.6.2坐标方法的简单应用6.2.1用坐标表示地理位置利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下:⑴建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;⑵根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;⑶在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.6.2.2用坐标表示平移在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b)).在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.第七章三角形7.1与三角形有关的线段7.1.1三角形的边由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.相邻两边组成的角,叫做三角形的内角,简称三角形的角.顶点是A、B、C的三角形,记作“△ABC”,读作“三角形ABC”.三角形两边的和大于第三边.7.1.2三角形的高、中线和角平分线7.1.3三角形的稳定性三角形具有稳定性.7.2与三角形有关的角7.2.1三角形的内角三角形的内角和等于180.7.2.2三角形的外角三角形的一边与另一边的延长线组成的角,叫做三角形的外角.三角形的一个外角等于与它不相邻的两个内角的和.三角形的一个外角大于与它不相邻的任何一个内角.7.3多边形及其内角和7.3.1多边形在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.n边形的对角线公式:各个角都相等,各条边都相等的多边形叫做正多边形.7.3.2多边形的内角和n边形的内角和公式:180(n-2)多边形的外角和等于360.7.4课题学习镶嵌第八章二元一次方程组8.1二元一次方程组含有两个未知数,并且未知数的指数都是1的方程叫做二元一次方程把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 使二元一次方程两边的值相等两个未知数的值,叫做二元一次方程的解二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.8.2消元由二元一次方程组中的一个方程,将一个未知数用含有另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,简称代入法.两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程.这种方法叫做加减消元法,简称加减法.8.3再探实际问题与二元一次方程组第九章不等式与不等式组9.1不等式9.1.1不等式及其解集用“<”或“>”号表示大小关系的式子叫做不等式.使不等式成立的未知数的值叫做不等式的解.能使不等式成立的未知数的取值范围,叫做不等式解的集合,简称解集.含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式.9.1.2不等式的性质不等式有以下性质:不等式的性质1 不等式两边加(或减)同一个数(或式子),不等号的方向不变.不等式的性质2 不等式两边乘(或除以)同一个正数,不等号的方向不变.不等式的性质3 不等式两边乘(或除以)同一个负数,不等号的方向改变.9.2实际问题与一元一次不等式解一元一次方程,要根据等式的性质,将方程逐步化为x=a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为x<a(或x>a)的形式.9.3一元一次不等式组把两个不等式合起来,就组成了一个一元一次不等式组.几个不等式的解集的公共部分,叫做由它们所组成的不等式的解集.解不等式就是求它的解集.对于具有多种不等关系的问题,可通过不等式组解决.解一元一次不等式组时.一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.2.2用坐标表示平移
1、(2011•南昌)把点A(-2,1)向上平移2个单位,再向右平移3个单位后得到B,点B的坐标是()
A、(-5,3)
B、(1,3)
C、(1,-3)
D、(-5,-1)
【答案】B
2、(2011山东日照)以平行四边形ABCD的顶点A为原点,直线AD为x轴建立直角坐
标系,已知B、D点的坐标分别为(1,3),(4,0),把平行四边形向上平移2个单位,那么C点平移后相应的点的坐标是()
(A)(3,3)(B)(5,3)(C)(3,5)(D)(5,5)
【答案】D
.3、(2011内蒙古乌兰察布)在平面直角坐标系中,已知线段AB的两个端点分别是A( 4 ,-1).B(1,1) 将线段AB平移后得到线段A 'B',若点A'的坐标为(-2 , 2 ) ,则点B'的坐标为()
A . ( -5 , 4 )
B . ( 4 , 3 ) C. ( -1 , -2 ) D .(-2,-1)
【答案】A
4、如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()
A、2
B、3
C、4
D、5
【答案】A
5、如图,把图中的⊙A经过平移得到⊙O(如左图),如果左图中⊙A上一点P的坐标为
(m,n),那么平移后在右图中的对应点P’的坐标为()
A、(m+2,n+1)
B、(m-2,n-1)
C、(m-2,n+1)
D、(m+2,n-1)
【答案】D
6、(2011•宁夏)若线段CD是由线段AB平移得到的,点A(-2,3)的对应点为C(3,6),
则点B(-5,-2)的对应点D的坐标是.
【答案】(0,1)
7、点P(-3,2)到点P′(2,2),它向平移了单位长度得出.
【答案】右, 5
8、(2011江苏宿迁)在平面直角坐标系中,已知点A(-4,0)、B(0,2),现将线段
AB向右平移,使A与坐标原点O重合,则B平移后的坐标是.
【答案】(4,2)
9、点P(-2,5)向右平移个单位长度,向下平移个单位长度,变为P′(0,1).【答案】2, 4
10、在平面直角坐标系中,如果将一个图形先向左平移3个单位,再向下平移4个单位,即是将图形各顶点横坐标,纵坐标可得到.
【答案】减3,减4
11、如图,在平面直角坐标系中描出4个点A(0,2),B(-1,0),C(1,-1),D(3,1)
(1)顺次连接A,B,C,D,组成四边形ABCD,求四边形ABCD的面积;
(2)如果四边形ABCD向左平移3个单位长度,向上平移1个单位长度,求平移后四边形A1B1C1D1各点的坐标,及其面积.
解:(1)四边形ABCD如图所示;
S四边形ABCD=3×4- 12×2×1- 12×1×2- 12×1×3- 12×2×2=6.5;
(2)四边形ABCD向左平移3个单位长度,向上平移1个单位长度,
所有点横坐标减3,纵坐标加1,得出对应点的坐标:
A1(-3,3);B1(-4,1);C1(-2,0);D1(0,2)
平移不改变图形的形状和大小,平移后四边形面积不变,
即S四边形A1B1C1D1=6.5.
12、如图,在平面直角坐标系中,P(a,b)是△ABC的边AC上一点,△ABC经平移后点P的对应点为P1(a+6,b+2),
(1)请画出上述平移后的△A1B1C1,并写出点A、C、A1、C1的坐标;
(2)求出以A、C、A1、C1为顶点的四边形的面积.
解:(1)如图,画△A1B1C1;
各点的坐标为:A(-3,2)、C(-2,0)、A1(3,4)、C1(4,2);
(2)如图,连接AA1、CC1;S△AC1A1=12×7×2=7;
S△AC1C=12×7×2=7;(11分)
四边形ACC1A1的面积为7+7=14.
答:四边形ACC1A1的面积为14.。

相关文档
最新文档