考点12:旋转圆法--带电粒子在磁场中运动的临界问题

合集下载

2024年高考物理热点磁场中的旋转圆、放缩圆、平移圆、磁聚焦模型(解析版)

2024年高考物理热点磁场中的旋转圆、放缩圆、平移圆、磁聚焦模型(解析版)

磁场中的旋转圆、放缩圆、平移圆、磁聚焦模型1.高考命题中,带电粒子在有界磁场中的运动问题,常常涉及到临界问题或多解问题,粒子运动轨迹和磁场边界相切经常是临界条件。

带电粒子的入射速度大小不变,方向变化,轨迹圆相交与一点形成旋转圆。

带电粒子的入射速度方向不变,大小变化,轨迹圆相切与一点形成放缩圆。

2.圆形边界的磁场,如果带电粒子做圆周运动的半径如果等于磁场圆的半径,经常创设磁聚焦和磁发散模型。

一、分析临界极值问题常用的四个结论(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.(2)当速率v 一定时,弧长越长,圆心角越大,则带电粒子在有界磁场中运动的时间越长,(3)当速率v 变化时,圆心角大的,运动时间长,解题时一般要根据受力情况和运动情况画出运动轨迹的草图,找出圆心,再根据几何关系求出半径及圆心角等(4)在圆形匀强磁场中,当运动轨远圆半径大于区域圆半径时,入射点和出射点为磁场直径的两个端点时轨迹对应的偏转角最大(所有的弦长中直径最长)。

二、“放缩圆”模型的应用适用条件速度方向一定,大小不同粒子源发射速度方向一定,大小不同的带电粒子进入匀强磁场时,这些带电粒子在磁场中做匀速圆周运动的轨迹半径随速度的变化而变化轨迹圆圆心共线如图所示(图中只画出粒子带正电的情景),速度v 越大,运动半径也越大。

可以发现这些带电粒子射入磁场后,它们运动轨迹的圆心在垂直初速度方向的直线PP ′上界定方法以入射点P 为定点,圆心位于PP ′直线上,将半径放缩作轨迹圆,从而探索出临界条件,这种方法称为“放缩圆”法三、“旋转圆”模型的应用适用条件速度大小一定,方向不同粒子源发射速度大小一定、方向不同的带电粒子进入匀强磁场时,它们在磁场中做匀速圆周运动的半径相同,若射入初速度为v 0,则圆周运动半径为R =mv 0qB。

如图所示轨迹圆圆心共圆带电粒子在磁场中做匀速圆周运动的圆心在以入射点P 为圆心、半径R =mv 0qB的圆上界定方法将一半径为R =mv 0qB的圆以入射点为圆心进行旋转,从而探索粒子的临界条件,这种方法称为“旋转圆”法四、“平移圆”模型的应用适用条件速度大小一定,方向一定,但入射点在同一直线上粒子源发射速度大小、方向一定,入射点不同,但在同一直线的带电粒子进入匀强磁场时,它们做匀速圆周运动的半径相同,若入射速度大小为v 0,则半径R =mv 0qB,如图所示轨迹圆圆心共线带电粒子在磁场中做匀速圆周运动的圆心在同一直线上,该直线与入射点的连线平行界定方法将半径为R =mv 0qB的圆进行平移,从而探索粒子的临界条件,这种方法叫“平移圆”法五、“磁聚焦”模型1.带电粒子的会聚如图甲所示,大量的同种带正电的粒子,速度大小相同,平行入射到圆形磁场区域,如果轨迹圆半径与磁场圆半径相等(R =r ),则所有的带电粒子将从磁场圆的最低点B 点射出.(会聚)证明:四边形OAO ′B 为菱形,必是平行四边形,对边平行,OB 必平行于AO ′(即竖直方向),可知从A 点发出的带电粒子必然经过B 点.2.带电粒子的发散如图乙所示,有界圆形磁场的磁感应强度为B ,圆心为O ,从P 点有大量质量为m 、电荷量为q 的正粒子,以大小相等的速度v 沿不同方向射入有界磁场,不计粒子的重力,如果正粒子轨迹圆半径与有界圆形磁场半径相等,则所有粒子射出磁场的方向平行.(发散)证明:所有粒子运动轨迹的圆心与有界圆圆心O 、入射点、出射点的连线为菱形,也是平行四边形,O 1A (O 2B 、O 3C )均平行于PO ,即出射速度方向相同(即水平方向).(建议用时:60分钟)一、单选题1地磁场能抵御宇宙射线的侵入,赤道剖面外地磁场可简化为包围地球一定厚度的匀强磁场,方向垂直该部面,如图所示,O为地球球心、R为地球半径,假设地磁场只分布在半径为R和2R的两边界之间的圆环区域内(边界上有磁场),磷的应强度大小均为B,方向垂直纸面向外。

带电粒子在磁场中的临界极值问题

带电粒子在磁场中的临界极值问题

带电粒子在磁场运动的临界与极值问题考点解读解决此类问题的关键是:找准临界点.找临界点的方法是:以题目中的“恰好”“最大”“最高”“至少”等词语为突破口,借助半径R和速度v(或磁场B)之间的约束关系进行动态运动轨迹分析,确定轨迹圆和边界的关系,找出临界点,然后利用数学方法求解极值,常用结论如下:(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.(2)当速度v一定时,弧长(或弦长)越长,圆周角越大,则带电粒子在有界磁场中运动的时间越长.(3)当速率v变化时,圆周角越大,运动时间越长.典例剖析1.磁感应强度的极值问题例1 如图所示,一带正电的质子以速度v0从O点垂直射入,两个板间存在垂直纸面向里的匀强磁场.已知两板之间距离为d,板长为d,O点是板的正中间,为使质子能从两板间射出,试求磁感应强度应满足的条件(已知质子的带电荷量为e,质量为m).2.偏角的极值问题例2 在真空中,半径r=3×10-2 m的圆形区域内有匀强磁场,方向如图所示,磁感应强度B=0.2 T,一个带正电的粒子以初速度v0=1×106 m/s从磁场边界上直径ab的一端a射入磁场,已知该粒子的比荷qm=1×108 C/kg,不计粒子重力.(1)求粒子在磁场中做匀速圆周运动的半径;(2)若要使粒子飞离磁场时有最大偏转角,求入射时v0与ab的夹角θ及粒子的最大偏转角.3.时间的极值问题例3如图所示,M、N为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间的各种数值.静止的带电粒子带电荷量为+q,质量为m(不计重力),从点P经电场加速后,从小孔Q进入N板右侧的匀强磁场区域,磁感应强度大小为B,方向垂直于纸面向外,CD为磁场边界上的一绝缘板,它与N板的夹角为θ=45°,孔Q到板的下端C 的距离为L,当M、N两板间电压取最大值时,粒子恰垂直打在CD板上,求:;(1)两板间电压的最大值U(2)CD板上可能被粒子打中的区域的长度x;(3)粒子在磁场中运动的最长时间t m.4.面积的极值问题例4如图12所示,一带电质点,质量为m,电量为q,以平行于Ox轴的速度v从y轴上的a点射入图中第一象限所示的区域。

带电粒子在有界匀强磁场中运动的临界问题

带电粒子在有界匀强磁场中运动的临界问题
轨迹圆的圆心是在以O为圆心、以R=mv/qB为半径的圆弧上
分析方法:
(1)找圆心的集合, 画各个v方向的圆, 找临界圆
(2)先画某个v方向 上的圆,再将圆绕入 射点旋转,找临界圆 (“硬币法”)
应用2.如图所示,真空室内存在匀强磁场,磁场方向垂
直于纸面向里,磁感应强度的大小B=0.60T,磁场内有
O
几何法求半径(抓住弦、弧、半
径、角度的关系;
3、找回旋角 确定运动时间
(α单位为弧度) S为弧长
类型一:给定有界匀强磁场,研究带电粒子运动情况
情景1:带正电粒子入射速度方向确定,而大小变化,垂直进入无
界匀强磁场后所有可能的运动轨迹,这些轨迹有什么共同点
粒子进入单
边磁场时,入
射速度与边 界夹角等于
a
b
L
C s
解答:
DB
a
A
D
Bb
R L 2R
C s
情景3 :入射粒子的速度大小、方向都改变,那会是什么情况?
如图所示,两个同心圆为匀强磁场的内外边界,内半径为R1,外 半径为R2,磁场方向垂直纸面向里,已知带正电粒子的电荷为q, 质量为m,匀强磁场的磁感应强度为B,带正电的粒子以某一速 度v从内边界上的A点射入磁场区域。
y
已知圆的一条弦,以此弦为 直径的圆的面积是最小的
30°
a
v
R
r O’
O
b
x
v 60°
思考:若磁场区域是矩形,求最小的矩形面积
小结
带电粒子在有界磁场中运动时,经常会有极 值与临界问题的出现。--找临界圆是关键
类型一:给定有界磁场,研究带电粒子运动情况
情景1:入射速度方向确定,而大小变化

例析带电粒子在匀强磁场中的临界问题

例析带电粒子在匀强磁场中的临界问题

ʏ重庆市第四十九中学 廖华英带电粒子在匀强磁场中做圆周运动,当题目中出现 恰好 最大 最小 至少 等词语时,往往意味着存在临界现象㊂求解带电粒子在匀强磁场中的临界问题,首要任务是借助轨迹圆半径R 和速度v (或磁感应强度B )之间的约束关系进行动态分析,确定粒子运动轨迹和磁场边界(或磁感应强度B )的关系,找出临界状态㊂下面以两类常见临界问题为例,阐述解题策略,供同学们参考㊂类型一:求解磁场约束条件的临界问题这类问题主要解决的是欲使带电粒子完成规定要求的磁约束,需要满足的磁感应强度的最值或磁场区域的最小面积等问题㊂图1例1 如图1所示,坐标系O x y 所在空间区域内分布着垂直于纸面向内的匀强磁场,在原点O 处有一放射源,它可以在纸面内向四周均匀地发射质量为m ,带电荷量为+q ,速率均为v 0的粒子㊂厚度不计的竖直挡板MN 放置在原点O 左侧,挡板与x 轴的交点为O ',在纸面内挡板两端点M ㊁N 与原点O 恰好构成等边三角形㊂已知挡板两端点M ㊁N 间的距离为L ,不计粒子自身重力及粒子间的相互作用㊂(1)要使所有粒子都不能打到挡板上,求磁感应强度的最小值㊂(2)要使有粒子打到挡板的左侧,求磁感应强度的最大值㊂解析:因为әO MN 为边长为L 的正三角形,所以O ㊁O '两点间的距离L O O '=L c o s 30ʎ=3L2㊂设磁感应强度为B ,粒子的轨迹圆半径为r ,根据洛伦兹力提供向心力得q v 0B =m v 20r ,解得r =m v 0q B ㊂因为放射源发射的粒子的质量均为m ,带电荷量均为+q ,速率均为v 0,所以所有粒子的轨迹圆半径r 只与磁感应强度B 有关,且磁感应强度B越大,轨迹圆半径r 越小㊂图2(1)要使所有粒子都不能打到挡板上,则需从放射源沿y 轴正方向射出的粒子的轨迹圆在挡板所在位置右侧㊂画出粒子在磁场中的运动轨迹的动态圆,如图2所示,其中与挡板相切于O '点的轨迹圆的半径最大㊂根据几何知识可知,最大轨迹圆半径r m a x =12L O O '=3L4,最小磁感应强度B m i n =43m v 03qL ㊂(2)要使有粒子打到挡板的左侧,则需挡板的两端点M ㊁N 均位于从放射源沿y 轴正方向射出的粒子的轨迹圆内部㊂画出粒子在图3磁场中的运动轨迹的动态圆,如图3所示,其中经过M ㊁N 两点的轨迹圆的半径最小㊂因为最小轨迹圆的内接әO MN 为正三角形,所以最小轨迹圆半径r m i n =L 2c o s 30ʎ=3L 3,最大磁感应强度B m a x =3m v 0qL ㊂点评:本题考查带电粒子在匀强磁场中73解题篇 经典题突破方法 高考理化 2024年3月的受约束运动㊂因为所有粒子的入射速度大小相同,所以粒子在不同磁感应强度的匀强磁场中的运动轨迹是一组放缩圆,在同一匀强磁场中的运动轨迹是一组半径相同的旋转圆㊂解答本题的关键是根据几何知识判断出粒子在不同磁感应强度的匀强磁场中运动时的轨迹圆与约束条件的关系㊂图4例2 在平面直角坐标系O x y 中,曲线y =x220位于第一象限的部分如图4所示,第三象限内分布着方向竖直向上的匀强电场和垂直于纸面向里的匀强磁场(图中未画出),磁感应强度B =π10T ㊂在曲线上不同点以初速度v 0向x 轴负方向水平抛出质量为m ,带电荷量为+q 的小球,小球下落过程中都会通过坐标原点,之后进入第三象限恰好做匀速圆周运动,并在做匀速圆周运动的过程中都能打到y 轴的负半轴上㊂取重力加速度g =10m /s 2,q m=100C /k g ㊂求:(1)电场强度E 的大小㊂(2)小球的初速度v 0㊂(3)为了使所有的小球都能打到y 轴的负半轴,所加匀强磁场区域的最小面积㊂解析:(1)因为小球在第三象限内恰好做匀速圆周运动,所以在竖直方向上小球受力平衡,即m g =qE ,解得E =0.1N /C ㊂(2)设小球的抛出点坐标为(x ,y ),根据平抛运动规律得x =v 0t ,y =12g t 2,整理得y =g 2v 20x 2,又有y =x 220,则g 2v 20=120,解得v 0=10m /s ㊂(3)设小球进入第三象限时的速度为v ,与x 轴负半轴间的夹角为α,则v 0=v c o s α㊂根据洛伦兹力提供向心力得q v B =m v2r,解得r =m vq B ㊂根据几何知识可知,小球打在y 轴负半轴上的点与原点间的距离H =2r c o s α=2m v 0qB ,可见所有小球均从y 轴负半轴上同一点进入第四象限,因此所加最小磁场区域应为一半径R =m v 0qB 的半圆,其面积S m i n =πR 22,解得S m i n =0.5m 2㊂点评:本题中小球的重力不可忽略,但其重力与静电力是一对平衡力,小球在第三象限内的运动相当于仅受洛伦兹力的匀速圆周运动㊂若小球的抛出点不同,则进入磁场时的速度方向与大小都将不同㊂解答本题的关键是通过分析得出所有的小球都是从y 轴负半轴上同一点离开磁场区域的,这样才能顺利找到所加最小磁场区域的边界㊂类型二:求解带电粒子初始运动条件的临界问题这类问题主要解决带电粒子以怎样的运动条件进入限定的有界磁场区域,使带电粒子在有限的空间内发生磁偏转,从规定的位置射出磁场区域㊂一般是求带电粒子的初速度的大小范围或运动时间的极值等㊂图5例3 如图5所示,长度为L 的水平两极板间分布着垂直于纸面向里的匀强磁场,磁感应强度为B ,两极板间距也为L ㊂初始状态下,两极板不带电,质量为m ,带电荷量为-q 的粒子从两极板左侧中点处以水平速度v 垂直于磁感线射入磁场㊂不计粒子自身重力㊂欲使粒子打到极板上,求其初速度v 的大小范围㊂解析:根据左手定则可知,粒子进入磁场时所受洛伦兹力的方向向下,粒子将向下偏转㊂粒子最终恰好打到下极板右端点和左端点是两个临界状态,分别作出这两个临界状态下粒子的运动轨迹,如图6甲㊁乙所示㊂当粒子最终恰好打到下极板的右端点时,设粒子的运动轨迹半径为R 1,根据几何知识可知,在R t әO A B 中有R 21=R 1-L 22+L 2,解得R 1=5L4㊂根据洛伦兹力提供向心力得83 解题篇 经典题突破方法 高考理化 2024年3月q v 1B =m v 21R 1,解得v 1=5q B L 4m ㊂当粒子最终恰好打到下极板的左端点时,设粒子的运动轨迹半径为R 2,根据几何知识得R 2=L 4㊂根据洛伦兹力提供向心力得q v 2B =m v22R 2,解得v 2=q B L 4m ㊂因此欲使粒子打到极板上,其初速度v 的大小范围应为qB L 4mɤv ɤ5q B L 4m㊂图6点评:外界磁场区域范围的限定,使得带电粒子的初始运动条件有了相应的限制㊂求解本题的关键是要确定临界状态,找出临界状态下粒子运动轨迹的圆心,求出对应轨迹圆的半径㊂图7例4 如图7所示,矩形区域a b c d 内分布着磁感应强度为B ,方向垂直于纸面向里的匀强磁场,矩形区域的a d 边长为L ,a b 边足够长㊂现有一带电粒子从a d 边的中点O 以初速度v 0垂直于磁感线射入磁场区域,已知粒子的质量为m ,带电荷量为q ,初速度v 0与直线O d 间的夹角α=30ʎ,不计粒子自身重力㊂(1)若粒子能从a b 边射出磁场区域,求初速度v 0的大小范围㊂(2)求粒子在磁场中运动的最长时间,以及在这种情况下粒子从磁场中射出时所在位置的范围㊂解析:(1)画出粒子在磁场中的运动轨迹的动态圆,如图8所示㊂能够从a b边射出的图8粒子的两个临界运动轨迹是圆弧O C D和圆弧O E F ,其中圆弧O C D 与d c 边相切于C 点,与a b 边相交于D 点,圆心为O 1,对应粒子的最大轨迹圆半径;圆弧O E F 与a b 边相切与E 点,与a d 边相交于F 点,圆心为O 2,对应粒子的最小轨迹圆半径㊂当粒子在磁场中的运动轨迹为圆弧O C D 时,根据几何知识得轨迹圆半径r 1=L ,根据洛伦兹力提供向心力得q v 0m a xB =m v 20m a x r 1,解得v 0m a x =q B L m ㊂当粒子在磁场中的运动轨迹为圆弧O E F 时,根据几何知识得轨迹圆半径r 2=L 3,根据洛伦兹力提供向心力得q v 0m i n B =m v 20m i n r 2,解得v 0m i n =q B L 3m ㊂因此满足题意的初速度v 0的大小范围为q B L 3m <v 0ɤq B L m㊂(2)当粒子从a d 边射出时,粒子在磁场中的运动轨迹所对的圆心角最大,运动时间最长㊂根据几何知识可知,当粒子从a d 边射出时,在磁场中的运动轨迹所对的圆心角均为300ʎ,粒子从a d 边射出时的位置在O ㊁F 两点之间㊂因为粒子在磁场中做匀速圆周运动的周期T =2πmqB ,所以粒子在磁场中的最长运动时间t m a x =56T =5πm3qB ,O ㊁F 两点之间的距离L O F =r 2=L3,即粒子射出磁场区域时的位置在a d 边上O 点上方0~L3范围内㊂点评:根据速率可变的带电粒子刚好穿出磁场边界的条件是带电粒子在磁场中的运动轨迹与边界相切,可以确定粒子在磁场中的临界运动轨迹;根据速率与轨迹半径的关系,可以确定粒子初速度的大小范围;根据粒子在磁场中的运动时间与轨迹圆所对圆心角的关系,可以求解运动时间的极值㊂(责任编辑 张 巧)93解题篇 经典题突破方法 高考理化 2024年3月。

带电粒子在磁场中运动的临界问题

带电粒子在磁场中运动的临界问题

带电粒子在磁场中运动的临界问题一、“矩形”有界磁场中的临界问题【例1】如图所示,一足够长的矩形区域abcd 内充满方向垂直纸面向里、磁感应强度为B 的匀强磁场,在ad 边中点O ,方向垂直磁场向里射入一速度方向跟ad 边夹角θ=30°、大小为v 0的带正电粒子,已知粒子质量为m ,电量为q ,ad 边长为L ,ab 边足够长,粒子重力不计,求(1)粒子能从ab 边上射出磁场的v 0大小范围。

(2)若粒子速度不受上述v 0大小的限制,求粒子在磁场中运动的最长时间。

解析: (1)①假设粒子以最小的速度恰好从左边偏转出来时的速度为v 1,圆心在O 1点,如图 (甲),轨道半径为R 1,对应圆轨迹与ab 边相切于Q 点,由几何知识得:R 1+R 1sin θ=0.5L由牛顿第二定律得1211R v m B qv =; 得m qBLv =1②假设粒子以最大速度恰好从右边偏转出来,设此时的轨道半径为R 2,圆心在O 2点,如图 (乙),对应圆轨迹与dc 边相切于P 点。

由几何知识得:R 2=L由牛顿第二定律得2222R v m B qv =;得m qBLv =2粒子能从ab 边上射出磁场的v 0应满足mqBLv m qBL ≤≤3(2)如图 (丙)所示,粒子由O 点射入磁场,由P 点离开磁场,该圆弧对应运行时间最长。

粒子在磁场内运行轨迹对应圆心角为πα35=。

而απ2T t m = 由Rv mqvB 2=,得qB mv R =,qBmT π2= qBmt m 35π=【练习1】如图所示,宽度为d 的有界匀强磁场,磁感应强度为B ,MM ′和NN ′是它的两条边界线,现有质量m 、电荷量为q 的带电粒子沿图示方向垂直磁场射入,要使粒子不能从边界NN ′射出,粒子最大的入射速度v 可能是( )A .小于mqBdB .小于()mqBd22+C .小于mqBd2 D .小于()mqBd22—解析:BD二、“角形磁场区”情景下的临界问题【例2】如图所示,在坐标系xOy 平面内,在x =0和x =L 范围内分布着匀强磁场和匀强电场,磁场的下边界AB 与y 轴成45°,其磁感应强度为B ,电场的上边界为x 轴,其电场强度为E .现有一束包含着各种速率的同种粒子由A 点垂直y 轴射入磁场,带电粒子的比荷为q /m .一部分粒子通过磁场偏转后由边界AB 射出进入电场区域.不计粒子重力,求: (1)能够由AB 边界射出的粒子的最大速率;(2)粒子在电场中运动一段时间后由y 轴射出电场,射出点与原点的最大距离. 解: (1)由于AB 与初速度成45°,所以粒子由AB 线射出磁场时速度方向与初速度成45°角.粒子在磁场中做匀速圆周运动,速率越大,圆周半径越大.速度最大的粒子刚好由B 点射出. 由牛顿第二定律Rv mB qv 2=由几何关系可知 r =L ,得 mqBLv =(2)粒子从B 点垂直电场射入后,在竖直方向做匀速运动,在水平方向做匀加速运动. 在电场中,由牛顿第二定律Eq =ma 此粒子在电场中运动时221at L =d =vt ,得mEqLBL d 2=【例3】如图所示,M 、N 为两块带异种电荷正对的金属板,其中M 板的表面为圆弧面,P 为M 板中点;N 板的表面为平面,Q 为N 板中点的一个小孔.PQ 的连线通过圆弧的圆心且与N 板垂直.PQ 间距为d ,两板间电压数值可由从0到某最大值之间变化,图中只画了三条代表性电场线.带电量为+q ,质量为m 的粒子,从点P 由静止经电场加速后,从小孔Q 进入N 板右侧的匀强磁场区域,磁感应强度大小为B ,方向垂直纸面向外,CD 为磁场边界线,它与N 板的夹角为α=45°,孔Q 到板的下端C 的距离为L .当M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上. 不计粒子重力,求:(1)两板间电压的最大值Um ;(2)CD 板上可能被粒子打中的区域长度x ; (3)粒子在磁场中运动的最长时间tm .解: (1)M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上,所以圆心在C 点,如图所示. C H =QC =L ,故半径R 1=L又1211R v m B qv = 2121mv qU m =得mL qB U m 222=(2)设轨迹与CD 板相切于K 点,半径为R 2在△AKC 中:2245sin R L R -=︒,得()L R 122-=因KC 长等于()L R 122-=,所以,CD 板上可能被粒子打中的区域长度x 为HK :()L R R x 2221-=-=(3)打在QE 段之间的粒子在磁场中运动时间最长,均为半周期:qBm T t m π==21三、“圆形磁场区”情景下的临界问题 【例4】(2012,揭阳调考)如图,相距为R 的两块平行金属板M 、N 正对放置,s 1、s 2分别为M 、N 板上的小孔,s 1、s 2、O 三点共线且水平,且s 2O =R 。

提高班讲义之带电粒子在磁场中的临界问题

提高班讲义之带电粒子在磁场中的临界问题

带电粒子在磁场中做圆周运动的临界问题一、知识规律梳理1、此类题目的特征词:“刚好”、“时间最长”、“恰好”、“最大”、“最高”、“至少“2、解决此类问题的关键是:找准临界点,然后再利用半径r与速度v及磁场B之间的联系进行动态轨迹分析,确定圆与边界的关系,然后找到临界点。

3、常用结论:(1)刚好穿出磁场边界的条件是带电粒子在磁场中与边界相切(2)当速度v一定时,弧长或弦长越长(圆心角越大)则带电粒子在磁场中运动的时间就越长(3)连接进入磁场和射出磁场点的弦是磁场最小面积的直径(4)当带电粒子的偏转圆半径与圆形磁场的半径相等连接进出点和两圆心的四边形一定是菱形或正方形(磁聚焦)二、解决临界问题的常见两种方法1、放缩法(针对速度方向一定,大小不定的临界问题)理论演示:例题1:如图所示,一足够长的矩形区域abcd内充满方向垂直纸面向里的、磁感应强度为B的匀强磁场,在ad边中点O,方向垂直磁场向里射入一速度方向跟ad边夹角θ = 30°、大小为v0的带正电粒子,已知粒子质量为m,电量为q,ad边长为L,ab边足够长,粒子重力不计,求:(1)粒子能从ab边上射出磁场的v0大小范围.(2)如果带电粒子不受上述v0大小范围的限制,求粒子在磁场中运动的最长时间.a bcd针对训练:如图2所示,在真空区域内,有宽度为L的匀强磁场,磁感应强度为B,磁场方向垂直纸面向里,MN、PQ为磁场的边界.质量为m、带电荷量为-q的粒子,先后两次沿着与MN夹角为θ(0°<θ<90°)的方向垂直于磁感线射入匀强磁场中,第一次粒子是经电压U1加速后射入磁场的,粒子刚好没能从PQ边界射出磁场;第二次粒子是经电压U2加速后射入磁场的,粒子刚好能垂直于PQ射出磁场.(不计粒子重力,粒子加速前的速度认为是零,U1、U2未知)图2(1)加速电压U1、U2的比值U1/U2为多少?(2)为使粒子经电压U2加速射入磁场后沿直线射出PQ边界,可在磁场区域加一个匀强电场,求该电场的场强.2、旋转法(针对速度大小一定,方向不定临界问题)理论演示:例题2:如图所示,在0≤x≤a、o≤y≤a/2范围内有垂直手xy平面向外的匀强磁场,磁感应强度大小为B。

高三物理二轮复习:专题13 带电粒子在磁场中的临界问题 PDF版

【典例精讲 4】三个质子 1、2 和 3 分别以大小相等、方向如图所示的初速度 v1、v2 和 v3 ,经过平板 MN 上的小孔 O 射入匀强磁场 B ,磁场方向垂直纸面向里,整个装置放 在真空中,且不计重力。这三个质子打到平板 MN 上的位置到小孔的距离分别为 s1、s2 和 s3 ,则( )。
A. s1 < s2 < s3 B. s1 > s2 > s3 C. s1 = s3 > s2 D. s1 = s3 < s2
【典例精讲 3】如图所示,在直角坐标系 xOy 中,x 轴上方有匀强磁场,磁感应强度 的大小为 B,磁场方向垂直于纸面向外。许多质量为 m、电荷量为+q 的粒子以相同的速率 v 沿纸面内由 x 轴负方向与 y 轴正方向之间各个方向从原点 O 射入磁场区域。不计重力及粒 子间的相互作用。下列图中阴影部分表示带电粒子在磁场中可能经过的区域,其中 R=mv,
-4-
专题 13 带电粒子在磁场中的临界问题
解析:质子带正电,磁场方向向里,根据左手定则可判断其
洛伦兹力方向和偏转方向,三者初速度相等,洛伦兹力提供
向心力,
F洛
=
qvB
=
m
v2 rபைடு நூலகம்
,运动半径
r = mv
qB
相等,运动轨迹
如图所示。由图可知 s1 = s3 < s2 ,故 D 项正确,ABC 项错误。 综上所述,本题正确答案为 D。
mv = d ,得 v =
eB
Bed m ,故 B 项正确。
综上所述,本题正确答案为 B。
规律总结: 所有粒子都是从 O 点(入射点)射入,在磁场中做匀速圆周运动;不同速度的粒子在
运动时就会形成一个个过 O 点并且圆心都在垂直于初速度的直线上的大大小小的圆;依据 题目要求选择合适运动轨迹进而求解,一般取一些特殊情况,例如带电粒子恰好从有界磁场 的各个边界射出的最小(最大)速度,带电粒子在磁场中运动的最长时间等,根据题目要求, 先大致描绘出粒子的运动轨迹,然后定圆心、表示出半径,进而求解。

高中物理|巧学带电粒子在磁场中运动的临界问题!

高中物理|巧学带电粒子在磁场中运动的临界问题!
“带电粒子在磁场中的运动”是高考中的一个重要考点,而带电粒子在有界磁场中的运动”则是此考点中的一个难点,关键在于带电粒子进入设定的有界磁场后只运动一段圆弧就飞出磁场边界,其轨迹不是完整的圆,这就要求我们根据带电垃子运动的几何图形去寻找几何关系,分析临界条件,然后应用数学工具和相应物理规律处理问题。

如何分析这些临界条件?德华盛物理名师团通过实际教学过程中总结以下几种方法,供广大考生参考!
旋转圆
当粒子的速度大小不变而入射方向不同时,粒子做圆周运动的轨迹半径相同,且有一固定点,而圆心变化,先画出某一特殊粒子的轨迹,按照顺时针或逆时针旋转这一轨迹,从圆的动态变化中即可发现“临界点”。

放缩圆
当粒子的入射方向不变、质量一定而速度大小可变(或速度不变而质量不同)时,粒子做圆周运动的轨迹圆心一定在入射点所受洛伦兹力所表示的射线上,但位置(半径r)不确定,画出半径最小(成最大)的圈轨迹,依据半径变化将圆放大(或缩小).寻找圆周与磁场边界的切点,即可发现“临界点”。

平移圆
当粒子的速度大小不变及入射方向平行,且分布在一定范围内时,粒子在均匀磁场中做圆周运动的轨迹半径一定.先画出某一特殊粒子的轨迹,沿边界平移这一轨迹,从圆的动态变化中即可发现“临界点”。

综合以上题型,我们可以看到,这些问题的解答能很好考查学生的思维能力以及空同想象能力,要求学生能够由一条确定的轨迹借助于“旋转圆、放缩圆、平移圆”的策略想到多条动态轨迹,并最终判定临界状态,这需要在平时的学习中多涉猎一些有代表性的习题,以最终形成这些思维能力以及空间想象能力,才能在高考应试中得心就
手,应对自如.。

2019年高考物理用放缩法和旋转法求解带电粒子在磁场中的临界问题

巧用旋转圆放缩圆法解决带电粒子在磁场中运动临界问题动圆放缩法:带电粒子以任意速度、沿特定方向射入匀强磁场时,它们将在磁场中做匀速圆周运动,其轨迹半径随速度的变化而变化。

通过画出动态放缩的圆可以帮助我们确定临界条件。

圆心在磁场边界圆心在过入射点与圆心在过入射点与边界垂直的直线上速度方向垂直的直线上方法提炼:例题1、如图,在POQ区域内分布有磁感应强度为B的匀强磁场,磁场方向垂直于纸面向里,有一束正离子流(不计重力),沿纸面垂直于磁场边界OQ方向从A点垂直边界射入磁场,已知OA=d,∠POQ=45º,离子的质量为m、带电荷量为q、要使离子不从OP边射出,离子进入磁场的速度最大不能超过多少?例题2、如图,A、B为水平放置的足够长的平行板,板间距离为d =1.0×10-2m,A板上有一电子源P,Q点在P点正上方B板上,在纸面内从P点向Q点发射速度在0~3.2×107m/s范围内的电子。

若垂直纸面内加一匀强磁场,磁感应强度B=9.1×10-3T,已知电子质量m=9.1×10-31kg ,电子电量q=1.6×10-19C ,不计电子重力和电子间的相互作用力,且电子打到板上均被吸收,并转移到大地,求电子击在A、B两板上的范围。

变式:如图,一端无限伸长的矩形区域abcd内存在着磁感应强度大小为B,方向垂直纸面向里的匀强磁场。

从边ad中点O射入一速率v0、方向与Od夹角θ=30º的正电粒子,粒子质量为m,重力不计,带电量为q,已知ad=L。

(1)要使粒子能从ab边射出磁场,求v0的取值范围。

(2)从ab边射出的粒子在磁场中运动时间t 的范围。

定圆旋转法:带电粒子从某一点以大小不变而方向不限定的速度射入匀强磁场中,把其轨迹连续起来观察可认为是一个半径不变的圆,根据速度方向的变化以出射点为旋转轴在旋转。

例题3、如图,水平放置的平板MN上方有方向垂直于纸面向里的匀强磁场(未画出),磁感应强度为B,许多质量为m,带电量为+q的粒子,以相同的速率v沿位于纸面内的各个方向,由小孔O射入磁场区域,不计重力,不计粒子间的相互影响。

带电粒子在匀强磁场中运动的临界极值及多解问题

带电粒子在匀强磁场中运动的临界极值及多解问题带电粒子在匀强磁场中的临界问题可以通过“放缩法”解决。

当速度方向一定,大小不同时,带电粒子在磁场中做匀速圆周运动的轨迹半径随速度的变化而变化。

通过以入射点为定点,将半径放缩作轨迹,探索出临界条件。

另一种解决有界磁场中的临界问题的方法是“旋转法”。

当速度大小一定,方向不同时,带电粒子在磁场中做匀速圆周运动的半径相同。

圆心在以入射点为圆心、半径为mv/qB的圆上。

通过旋转圆心,将问题转化为无界磁场中的问题。

旋转法”是一种探索临界条件的方法,它通过让圆绕着入射点旋转来实现。

在一个真空室内,存在一个垂直于纸面向里的匀强磁场,磁感应强度为B=0.60 T。

在磁场内有一块平面感光板ab,板面与磁场方向平行。

距离ab为l=16cm处有一个点状的α粒子放射源S,它向各个方向发射速度为v=3.0×10m/s的α粒子。

已知α粒子的比荷为5.0×10C/kg,现只考虑在纸面内运动的α粒子,求ab板上被α粒子打中区域的长度。

解题思路是过S 点作ab的垂线,根据左侧最值相切和右侧最值相交计算。

由于带电粒子的电性不确定,可能带正电荷,也可能带负电荷。

在相同的初速度的条件下,正、负粒子在磁场中运动轨迹不同,导致形成多解。

在一个宽度为d的有界匀强磁场中,磁感应强度为B,MM′和NN′是磁场左右的两条边界线。

现有一质量为m、电荷量为q的带电粒子沿图示方向垂直磁场射入。

要使粒子不能从右边界NN′射出,需要求粒子入射速率的最大值。

由于粒子电性不确定,所以分成正、负粒子讨论,不从NN′射出的临界条件是轨迹与NN′相切。

题目描述:一个正方形的匀强磁场区域abcd,e是ad的中点,f是cd 的中点,如果在a点沿对角线方向以速度v射入一带负电的粒子,恰好从e点射出,则()。

解题思路:根据题目描述,可以画出如下示意图:image.png](/upload/image_hosting/ed6v3v6v.png)由于粒子带负电,所以在磁场中会受到洛伦兹力的作用,从而偏转方向垂直于速度方向和磁场方向的方向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点12:旋转圆法--带电粒子在磁场中运动的临界问题当粒子的入射速度大小确定而方向不确定时,所有不同方向入射的粒子的轨迹圆是一样大的,只是位置绕入射点发生了旋转,从定圆的动态旋转(作图)中,也容易发现“临界点”.另外,要重视分析时的尺规作图,规范而准确的作图可突出几何关系,使抽象的物理问题更形象、直观,如图. ①适用条件a.速度大小一定,方向不同粒子源发射速度大小一定,方向不同的带电粒子进入匀强磁场时,它们在磁场中做匀速圆周运动的半径相同,若入射初速度为v 0,由q v 0B =m v 20R 得圆周运动半径为R =m v 0qB .b.轨迹圆圆心共圆带电粒子在磁场中做匀速圆周运动的圆心在以入射点O 为圆心、半径R =m v 0qB 的圆(这个圆在下面的叙述中称为“轨迹圆心圆”)上. ②界定方法将半径为R =m v 0qB 的圆的圆心沿着“轨迹圆心圆”移动,从而探索出临界条件,这种方法称为“旋转圆法”.1.如图所示,平行边界MN 、PQ 间有垂直纸面向里的匀强磁场,磁场的磁感应强度大小为B ,两边界间距为d ,MN 上有一粒子源A ,可在纸面内沿各个方向向磁场中射入质量均为m 、电荷量均为q 的带正电的粒子,粒子射入磁场的速度v =2qBd3m ,不计粒子的重力,则粒子能从PQ 边界射出的区域长度为( ) A .d B.23dC.233dD.32d答案 C解析 粒子在磁场中运动的半径R =m v qB =23d ,粒子从PQ 边射出的两个边界粒子的轨迹如图所示:由几何关系可知,从PQ 边射出粒子的区域长度为s =2⎝⎛⎭⎫23d 2-⎝⎛⎭⎫13d 2=233d ,C 项正确.2.如图所示,在边长ab =1.5L 、bc =3L 的矩形区域内存在着垂直纸面向里、磁感应强度为B 的匀强磁场,在ad 边中点O 处有一粒子源,可以垂直磁场向区域内各个方向发射速度大小相等的同种带电粒子.若沿Od 方向射入的粒子从磁场边界cd 离开磁场,该粒子在磁场中运动的时间为t 0,圆周运动半径为L ,不计粒子的重力和粒子间的相互作用.下列说法正确的是( )A.粒子带负电C.粒子的比荷为πBt 0D.粒子在磁场中运动的最长时间为2t 0 2.D[由题设条件作出以O 1为圆心的轨迹圆弧,如图所示,由左手定则可知该粒子带正电,选项A 错误;由图中几何关系可得sin θ=32L L =32,解得θ=π3,可得T =6t 0,选项B 错误;根据洛伦兹力公式和牛顿第二定律可得T =2πm qB ,解得m q =3t 0Bπ,选项C 错误;根据周期公式,粒子在磁场中运动时间t =mαqB ,在同一圆中,半径一定时,弦越长,其对应的圆心角α越大,则粒子在磁场中运动时间最长时的轨迹是以O 2为圆心的圆弧,如图所示,由图中几何关系可知α=2π3,解得t =2t 0,选项D 正确.]3.如图所示,平行边界MN 、PQ 间有垂直纸面向里的匀强磁场,磁场的磁感应强度大小为B ,两边界间距为d ,MN 上有一粒子源A ,可在纸面内沿各个方向向磁场中射入质量均为m 、电荷量均为q 的带正电的粒子,粒子射入磁场的速度v =2qBd3m ,不计粒子的重力,则粒子能从PQ 边界射出的区域长度为( ) A .d B.23dC.233dD.32d答案 C解析 粒子在磁场中运动的半径R =m v qB =23d ,粒子从PQ 边射出的两个边界粒子的轨迹如图所示:由几何关系可知,从PQ 边射出粒子的区域长度为s =2⎝⎛⎭⎫23d 2-⎝⎛⎭⎫13d 2=233d ,C 项正确.4.如图所示,在0≤x ≤3a 的区域内存在与xOy 平面垂直的匀强磁场,磁感应强度大小为B .在t =0时刻,从原点O 发射一束等速率的相同的带电粒子,速度方向与y 轴正方向的夹角分布在0°~90°范围内.其中,沿y 轴正方向发射的粒子在t =t 0时刻刚好从磁场右边界上P (3a ,3a )点离开磁场,不计粒子重力,下列说法正确的是( )A .粒子在磁场中做圆周运动的半径为3aB .粒子的发射速度大小为4πa t 0C .带电粒子的比荷为4π3Bt答案 D解析 根据题意作出沿y 轴正方向发射的带电粒子在磁场中做圆周运动的运动轨迹如图所示, 圆心为O ′,根据几何关系,可知粒子做圆周运动的半径为r =2a ,故A 错误;沿y 轴正方向发射的粒子在磁场中运动的圆心角为2π3 ,运动时间t 0=2π3×2a v 0,解得:v 0=4πa3t 0,选项B 错误;沿y 轴正方向发射的粒子在磁场中运动的圆心角为2π3,对应运动时间为t 0,所以粒子运动的周期为T =3t 0,由Bq v 0=m ⎝⎛⎭⎫2πT 2r ,则q m =2π3Bt 0,故C 错误;在磁场中运动时间最长的粒子的运动轨迹如图所示,由几何知识得该粒子做圆周运动的圆心角为4π3,在磁场中的运动时间为2t 0,故D 正确.5.如图所示,半径为r 的圆形区域内有垂直纸面向里的匀强磁场,磁感应强度大小为B ,磁场边界上A 点有一粒子源,源源不断地向磁场发射各种方向(均平行于纸面)且速度大小相等的带正电的粒子(重力不计),已知粒子的比荷为k ,速度大小为2kBr 。

则粒子在磁场中运动的最长时间为( ) A.πkB B.π2kBC.π3kBD.π4kB答案 C解析 粒子在磁场中运动的半径为R =m v qB =2kBrBk =2r ;当粒子在磁场中运动时间最长时,其轨迹对应的圆心角最大,此时弦长最大,其最大值为磁场圆的直径2r ,故t =T 6=πm 3qB =π3kB,故选C 正确。

6.如图所示,在直角坐标系xOy 中,x 轴上方有匀强磁场,磁感应强度的大小为B ,磁场方向垂直于纸面向外。

许多质量为m 、电荷量为+q 的粒子,以相同的速率v 沿纸面内,由x 轴负方向与y 轴正方向之间各个方向从原点O 射入磁场区域,不计重力及粒子间的相互作用。

下列图中阴影部分表示带电粒子在磁场中可能经过的区域,其中R =m vqB,正确的图是( )答案 D解析 粒子在磁场中做匀速圆周运动,根据左手定则和R =m vqB 知沿x 轴 负轴的刚好进入磁场做一个圆周,沿y 轴进入的刚好转半个圆周,如图,在两图形的相交的部分是粒子不经过的地方,故D 正确。

7.(多选)如图,一粒子发射源P 位于足够长绝缘板AB 的上方d 处,能够在纸面内向各个方向发射速率为v 、比荷为k 的带正电的粒子,空间存在垂直纸面的匀强磁场,不考虑粒子间的相互作用和粒子重力。

已知粒子做圆周运动的半径大小恰好为d ,则( ) A .磁感应强度的大小为dk vB .磁感应强度的大小为vkdC .同一时刻发射出的带电粒子打到板上的最大时间差为7πd6vD .同一时刻发射出的带电粒子打到板上的最大时间差为πkd6v答案 BC解析 根据q v B =m v 2R 和R =d 、qm =k 得B =v kd ,选项A 错误,B 正确;能打到板上的粒子中,在磁场中运动时间最长和最短的运动轨迹示意图如图所示,由几何关系,最长时间t 1=34T ,最短时间t 2=16T ,T =2πRv ,所以最大时间差Δt =t 1-t 2=712T =7πd6v,选项C 正确,D 错误。

8.(2017·全国卷Ⅱ·18)如图,虚线所示的圆形区域内存在一垂直于纸面的匀强磁场,P 为磁场边界上的一点,大量相同的带电粒子以相同的速率经过P 点,在纸面内沿不同的方向射入磁场,若粒子射入速率为v 1,这些粒子在磁场边界的出射点分布在六分之一圆周上;若粒子射入速率为v 2,相应的出射点分布在三分之一圆周上,不计重力及带电粒子之间的相互作用,则v2∶v 1 为( ) A.3∶2 B.2∶1 C.3∶1 D .3∶ 2答案 C解析 设圆形磁场半径为R ,若粒子射入的速率为v 1,轨迹如图甲所示,由几何知识可知,粒子运动的轨道半径为r 1=R cos 60°=12R ;若粒子射入的速率为v 2,轨迹如图乙所示,由几何知识可知,粒子运动的轨道半径为r 2=R cos 30°=32R ;根据轨道半径公式r =m v qB可知,v 2∶v 1=r 2∶r 1=3∶1,故选项C 正确.甲 乙9.如图所示,在坐标系xOy 平面的x >0区域内,存在电场强度大小E =2×105N/C 、方向垂直于x 轴的匀强电场和磁感应强度大小B =0.2 T 、方向与xOy 平面垂直向外的匀强磁场.在y 轴上有一足够长的荧光屏PQ ,在x 轴上的M (10,0)点处有一粒子发射枪向x 轴正方向连续不断地发射大量质量m =6.4×10-27kg 、电荷量q =3.2×10-19C 的带正电粒子(重力不计),粒子恰能沿x 轴做匀速直线运动.若撤去电场,并使粒子发射枪以M 点为轴在xOy 平面内以角速度ω=2π rad/s 顺时针匀速转动(整个装置都处在真空中).(1)判断电场方向,求粒子离开发射枪时的速度; (2)带电粒子在磁场中运动的轨迹半径; (3)荧光屏上闪光点的范围距离;(4)荧光屏上闪光点从最低点移动到最高点所用的时间. 答案 见解析解析 (1)带正电粒子(重力不计)在复合场中沿x 轴做匀速直线运动,据左手定则判定洛伦兹力方向向下,所以电场力方向向上,电场方向向上,有qE =q v B ,速度v =E B =2×1050.2m /s =106 m/s(2)撤去电场后,有q v B =m v 2R ,所以粒子在磁场中运动的轨迹半径,R =m v qB =6.4×10-27×1063.2×10-19×0.2m =0.1 m(3)粒子运动轨迹如图所示,若粒子在荧光屏上能最上端打在B 点,最下端打在A 点由图可知:d OA =R tan 60°=3R ,d OB =R所以荧光屏上闪光点的范围距离为d AB =(3+1)R ≈0.273 m(4)因为粒子在磁场中做圆周运动的周期T =2πm qB ≈6.28×10-7 s ,所以粒子在磁场中运动的时间可以忽略不计,闪光点从最低点移到最高点的过程中,粒子发射枪转过的圆心角φ=5π6。

所用的时间t =φω=5π62π s =512s ≈0.42 s10.在xOy 平面内有一个半径为R 的圆形区域与x 轴相切于O 点,在圆形区域外(包括圆形边界)的空间存在垂直xOy 平面向外的匀强磁场,磁感应强度为B ,如图11所示。

发射源从坐标原点O 以与x 轴正方向成θ角的方向向第一象限发射一个比荷为k 的带正电的粒子(不计重力),该粒子恰好沿平行于x 轴的方向进入圆形区域。

相关文档
最新文档