三角形的中位线逆定理证明

三角形的中位线逆定理证明

三角形中位线定理的证明

备课偶得—— 三角形中位线定理的再证明 王贵林 皖南陵县烟墩镇烟墩中心初级中学 241313 三角形中位线定理:三角形的中位线平行第三边且等于第三边长的半。 关于它的证明方法,课本上给出了一种证法。笔者在备课中发现它的证法有8种之多,而且非常有趣,这里写出来与同仁共享,企斧正。 已知:如图1,△ABC 中,D 、E 分别为AB 、AC 的中点,求证:D E ∥BC 且 证法一、(构造法)如图2,延长DE 到F ,使EF=DE ,连结AF 、CF 、 DC ∵E 为AC 中点 ∴AE=CE ∵EF=DE ∴四边形ADCF 为平行四边形 ∴CF AD ∵D 为AB 中点 ∴AD=BD ∴BD CF ∴四边形DBCF 为平行四边形 ∴DF BC ∴DE=EF ∴DE ∥BC 且 证法二、(构造法)如图3,过CF 作CF ∥AB 交DE 的延长线于F ,则 ∠A=∠ACF ∵E 为AC 中点 ∴AE=CF ∴△AD E ≌△CFE (ASA ) ∴CF=AD ∵D 为AB 中点 ∴AD=BD ∴CF=BD ∵CF ∥BD ∴CF BD ∴四边形DBCF 为平行四边形 ∴DF BC ∴△ADE ≌△CFE ∴DE=EF ∴D E ∥BC 且 证法三、(同一法)如图4,过D 作D E ′∥BC ,交AC 于E ′,过E ′作E ′F ∥AB ,交BC 于F ,则 ∠B=∠ADE ′=∠E ′FC ,∠AE ′D=∠C 四边形DBFE ′是平行四边形 ∴E ′F=BD ∵D 为AB 中点 ∴AD=BD ∴E ′F=AD ∴△ADE ′≌△E ′FC (AAS ) ∴AE ′=CE ′即E ′为AC 中点 ∵E 为AC 中点 ∴E 与E ′重合即DE ∥BC ,△ADE ≌△EFC ,四边形DBFE 为平行四边形 ∴DE=CF DE=BF 即 ∴DE ∥BC 且 图1 B C A D E 图2 B C A D E F 图3 B C A D E F C 图4 B A D E F E ′ 图5 B C A D E 1 2 DE BC =1 2 DE BC =1 2DE BC =12 DE BC =1 2DE BC =

三线合一性质的逆定理

三线合一性质的逆定理 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

一、等腰三角形的“三线合一”性质的逆定理 “三线合一”性质:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。 逆定理:①如果三角形中任一角的角平分线和它所对边的中线重合,那么这个三角形是等腰三角形。 ②如果三角形中任一角的角平分线和它所对边的高重合,那么 这个三角形是等腰三角形。 ③如果三角形中任一边的中线和这条边上的高重合,那么这个 三角形是等腰三角形。 简言之:三角形中任意两线合一,必能推导出它是一个等腰三角形。证明①:已知: ⊿ABC中,AD是∠BAC的角平分线, AD是BC边上的中线, 求证:⊿ABC是等腰三角形。 分析:要证等腰三角形就是要证AB=AC,直接 通过证明这两条线所在的三角形全等不行,那 就换种思路,在有中点的几何证明题中常用的 添辅助线的方法是“延长加倍”,即延长AD到E 点,使AD=ED,由此问题就解决了。 证明:延长AD到E点,使AD=ED,连接CE 在⊿ABD和⊿ECD中 AD=DE ∠ADB=∠EDC ∴⊿ABD≌⊿ECD

∴AB=CE, ∠BAD=∠CED ∵AD是∠BAC的角平分线 ∴∠BAD=∠CAD ∴∠CED=∠CAD ∴AC=CE ∴AB=AC ∴⊿ABC是等腰三角形。 三个逆定理中以逆定理②在几何证明的应用中尤为突 出。 证明②:已知: ⊿ABC中,AD是∠BAC的角平分线, AD是BC边上的高, 求证:⊿ABC是等腰三角形。 分析:通过(ASA)的方法来证明⊿ABD和⊿ACD的 全等,由此推出AB=AC得出⊿ABC是等腰三角形 证明③:已知: ⊿ABC中,AD是BC边上的中线,又是BC边上的高,求证:⊿ABC是等腰三角形。 分析:AD就是BC边上的垂直平分线,用(SAS)的方法来证明⊿ABD和⊿ACD的全等,由此推出AB=AC得出 ⊿ABC是等腰三角形。(即垂直平分线的定理) 二、“三线合一”的逆定理在辅助线教学中的应用 (1)逆定理②的简单应用 例题1

勾股定理的逆定理专题练习

勾股定理的逆定理 专题训练 1.给出下列几组数:①111,,345 ;②8,15,16;③n 2-1,2n ,n 2+1;④m 2-n 2,2mn ,m 2+n 2(m>n>0).其中—定能组成直角三角形三边长的是( ). A .①② B .③④ C .①③④ D .④ 2.下列各组数能构成直角三角形三边长的是( ).A .1,2,3 B .4,5,6 C .12,13,14 D .9,40,41 3.等边三角形的三条高把这个三角形分成直角三角形的个数是( ).A .8 B .10 C .11 个D .12个 4.如果一个三角形一边的平方为2(m 2+1),其余两边分别为m -1,m + l ,那么 这个三角形是( ); A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形 5.ABC ?的两边分别为5,12,另—边c 为奇数,且a + b + c 是3的倍数,则c 应为_________,此三角形为________. 6.三角形中两条较短的边为a + b ,a - b (a>b ),则当第三条边为_______时,此三角形为直角三角形. 7.若A B C ?的三边a ,b ,c 满足a 2+b 2+c 2+50=6a +8b +l0c ,则此三角形是_______三角形,面积为______. 8.已知在ABC ?中,BC =6,BC 边上的高为7,若AC =5,则AC 边上的高为 _________. 9.已知一个三角形的三边分别为3k ,4k ,5k (k 为自然数),则这个三角形为______,理由是_______. 10.一个三角形的三边分别为7cm ,24 cm ,25 cm ,则此三角形的面积为_________。 11.如图18-2-5,在ABC ?中,D 为BC 上的一点,若AC =l7,AD =8,CD=15,AB =10,求ABC ?的周长和面积. 12.已知ABC ?中,AB =17 cm ,BC =30 cm ,BC 上的中线AD =8 cm ,请你判断ABC ?的形状,并说明理由 .

三角形中位线定理 知识讲解

三角形中位线定理 【学习目标】 1. 理解三角形的中位线的概念,掌握三角形的中位线定理. 2. 掌握中点四边形的形成规律. 【要点梳理】 要点一、三角形的中位线 1.连接三角形两边中点的线段叫做三角形的中位线. 2.定理:三角形的中位线平行于第三边,并且等于第三边的一半. 要点诠释:(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系. (2)三角形的三条中位线把原三角形分成可全等的4个小三角形.因而每个 小三角形的周长为原三角形周长的1 2 ,每个小三角形的面积为原三角形 面积的1 4 . (3)三角形的中位线不同于三角形的中线. 要点二、顺次连接特殊的平行四边形各边中点得到的四边形的形状 (1)顺次连接平行四边形各边中点得到的四边形是平行四边形. (2)顺次连接矩形各边中点得到的四边形是菱形. (3)顺次连接菱形各边中点得到的四边形是矩形. (4)顺次连接正方形各边中点得到的四边形是正方形. 要点诠释:新四边形由原四边形各边中点顺次连接而成. (1)若原四边形的对角线互相垂直,则新四边形是矩形. (2)若原四边形的对角线相等,则新四边形是菱形. (3)若原四边形的对角线垂直且相等,则新四边形是正方形. 【典型例题】 类型一、三角形的中位线 1、(优质试题?北京)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN. (1)求证:BM=MN; (2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长. 【思路点拨】(1)根据三角形中位线定理得MN=AD,根据直角三角形斜边中线定理得BM=AC,由此即可证明.

中考复习_中位线

中位线 一、选择题 1.(2011?湘西州)如图,在△ABC中,E、F分别是AB、AC的中点,若中位线EF=2cm,则BC边的长是() A、1cm B、2cm C、3cm D、4cm 考点:三角形中位线定理。 专题:计算题。 分析:由E、F分别是AB、AC的中点,可得EF是△ABC的中位线,直接利用三角形中位线定理即可求BC. 解答:解:∵△ABC中,E、F分别是AB、AC的中点,EF=2cm, ∴EF是△ABC的中位线 ∴BC=2EF=2×2=4cm. 故选D. 点评:本题考查了三角形中位线的性质,三角形的中位线是指连接三角形两边中点的线段,中位线的特征是平行于第三边且等于第三边的一半. 2.(2011江苏苏州,9,3分)如图,在四边形ABCD中,E、F分別是AB、AD的中点,若EF=2,BC=5,CD=3,则tanC等于() A.3 4B. 4 3C. 3 5D. 4 5 考点:锐角三角函数的定义;勾股定理的逆定理;三角形中位线定理. 专题:几何图形问题. 分析:根据三角形的中位线定理即可求得BD的长,然后根据勾股定理的逆定理即可证得△BCD是直角三角形,然后根据正切函数的定义即可求解. 解答:解:连接BD.

∵E、F分別是AB、AD的中点.∴BD=2EF=4 ∵BC=5,CD=3 ∴△BCD是直角三角形. ∴tanC= 4 3 故选B. 点评:本题主要考查了三角形的中位线定义,勾股定理的逆定理,和三角函数的定义,正确证明△BCD是直角三角形是解题关键. 3.(2011?贺州)如图,在梯形ABCD中,AB∥CD,AB=3CD,对角线AC、BD交于点O,中位线EF与AC、BD分别交于M、N两点,则图中阴影部分的面积是梯形ABCD面积的() A、错误!未找到引用源。 B、错误!未找到引用源。 C、错误!未找到引用源。 D、错误!未找到引用源。 考点:梯形中位线定理;三角形中位线定理。 分析:首先根据梯形的中位线定理,得到EF∥CD∥AB,再根据平行线等分线段定理,得到M,N分别是AD,BC的中点;然后根据三角形的中位线定理得到CD=2EM=2NF,最后根据梯形面积求法以及三角形面积公式求出,即可求得阴影部分的面积与梯形ABCD面积的面积比. 解答:解:过点D作DQ⊥AB,交EF于一点W, ∵EF是梯形的中位线, ∴EF∥CD∥AB,DW=WQ, ∴AM=CM,BN=DN. ∴EM=错误!未找到引用源。CD,NF=错误!未找到引用源。CD. ∴EM=NF, ∵AB=3CD,设CD=x,∴AB=3x,EF=2x, ∴MN=EF﹣(EM+FN)=x, ∴S△AME+S△BFN=错误!未找到引用源。×EM×WQ+错误!未找到引用源。×FN×WQ=错误!未找到引用源。(EM+FN)QW=错误!未找到引用源。x?QW, S梯形ABFE=错误!未找到引用源。(EF+AB)×WQ=错误!未找到引用源。QW, S△DOC+S△OMN=错误!未找到引用源。CD×DW=错误!未找到引用源。xQW,

勾股定理的逆定理及应用

勾股定理的逆定理及应用 下面有三组数分别是一个三角形的三边长a,b,c: ①5,12,13; ②7,24,25; ③8,15,17. 回答这样两个问题: 1.这三组数都满足a2+b2=c2吗 2.分别以每组数为三边长作出三角形,用量角器量一量,你能猜测最大的角的度数吗 _______________________________________________________________ __________________ 入门测试 1.如图,湖的两端有A,B两点,从与BA方向成直角的BC方向上的点C测得CA=130 m,CB =120 m,则AB为( ) A.30 m B.40 m C.50 m D.60 m 2.一个圆柱形的油桶高120 cm,底面直径为50 cm,则桶内所能容下的最长的木棒长为( ) A.5 cm B.100 cm C.120 cm D.130 cm 3.国庆假期中,小华与同学去玩探宝游戏,按照如图所示的探宝图,他们从门口A处出发先往东走8 km,又往北走2 km,遇到障碍后又往西走3 km,再向北走到6 km处往东拐,仅走了1 km,就找到了宝藏,则门口A到藏宝点B的直线距离是( ) A.20 km B.14 km C.11 km D.10 km 4.你听说过亡羊补牢的故事吧.为了防止羊的再次丢失,牧羊人要在高m,宽m的长方形栅栏门的相对角顶点间加固一条木板,则这条木板至少需__m长. 5.历史上对勾股定理的一种证法采用了下列图形,其中两个全等的直角三角形边AE、EB在一条直线上.证明中用到的面积相等关系是( ) A.S△EDA=S△CEB B.S△EDA+S△CEB=S△CDE C.S四边形CDAE=S四边形CDEB D.S△EDA+S△CDE+S△CEB=S四边形ABCD

《勾股定理》勾股定理的逆定理(含答案)精讲

第3章《勾股定理》: 3.2 勾股定理的逆定理 填空题 1.你听说过亡羊补牢的故事吗如图,为了防止羊的再次丢次,小明爸爸要在高0.9m,宽 1.2m的栅栏门的相对角顶点间加一个加固木板,这条木板需 m 长. (第1题)(第2题)(第3题)2.如图,将一根长24cm的筷子,底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露在杯子外面的长度为h cm,则h的最小值是 cm. 3.如图所示的一只玻璃杯,最高为8cm,将一根筷子插入其中,杯外最长4厘米,最短2厘米,那么这只玻璃杯的内径是厘米. 4.如图,一架10米长的梯子斜靠在墙上,刚好梯顶抵达8米高的路灯.当电工师傅沿梯上去修路灯时,梯子下滑到了B′处,下滑后,两次梯脚间的距离为2米,则梯顶离路灯米. (第4题)(第5题)(第6题) 5.如图所示的圆柱体中底面圆的半径是错误!,高为2,若一只小虫从A点出发沿着圆柱体的侧面爬行到C点,则小虫爬行的最短路程是.(结果保留根号) 6.如图,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC 的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是 m.(结果不取近似值)7.如图,这是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为4m的半圆,其边缘AB=CD=20m,点E在CD上,CE=2m,一滑板爱好者从A点滑到E点,则他滑行的最短距离约为 m.(边缘部分的厚度忽略不计,结果保留整数)

(第7题)(第8题)(第9题) 8.如图,有一圆柱,其高为12cm,底面半径为3cm,在圆柱下底面A点处有一只蚂蚁,它想得到上底面B处的食物,则蚂蚁经过的最短距离为 cm.(π取3) 9.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是. 10.如图是一个三级台阶,它的每一级长、宽、高分别是2米、0.3米、0.2米,A,B是这个台阶上两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿台阶面爬行到B点最短路程是米. (第10题)(第11题)(第12题)11.在一个长为2米,宽为1米的矩形草地上,如图堆放着一根长方体的木块,它的棱长和场地宽AD平行且>AD,木块的正视图是边长为0.2米的正方形,一只蚂蚁从点A处,到达C处需要走的最短路程是米.(精确到0.01米)12.如图是一个三级台阶,它的每一级的长、宽、高分别为7寸、5寸和3寸,A 和B是这个台阶的两个相对端点,A点上有一只蚂蚁想到B点去吃可口的食物,则它所走的最短路线长度是寸. 13.观察下列一组数: 列举:3、4、5,猜想:32=4+5; 列举:5、12、13,猜想:52=12+13; 列举:7、24、25,猜想:72=24+25; … 列举:13、b、c,猜想:132=b+c; 请你分析上述数据的规律,结合相关知识求得b= ,c= . 解答题 14.如图,P是等边三角形ABC内的一点,连接PA,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连接CQ. (1)观察并猜想AP与CQ之间的大小关系,并证明你的结论; (2)若PA:PB:PC=3:4:5,连接PQ,试判断△PQC的形状,并说明理由.

北师大版八年级数学下册6.4《三角形的中位线》知识点精讲

、定理 1.三角形的中位线平行于第三边(不与中位线接触),并且等于 第三边的一半。 2.连接三角形两边中点的线段,叫做三角形的中位线。 逆定理 逆定理一:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线。 逆定理二:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。 注意:在三角形内部,经过一边中点,且等于第三边一半的线段不一定是三角形的中位线。 (微课精讲) 三角形中的三条重要线段: 中线、角平分线、高线 概念 中线

在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线(median)。三角形的三条中线交于一点,这点称为三角形的重心。 如图,AD是边BC上的中线,BE是边AC上的中线,CF是边AB上的中线 三条中线交于点O,点O称为△A BC的重心 角平分线 在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

如图,AD平分∠BAC,BE平分∠ABC,CF平分∠ACB,三角形三条角平分线交于点O 点O称为△ABC的内心 高线 从三角形的一个顶点向它的对边所在直线作垂线,定点和垂足之间的线段叫做三角形的高线,简称三角形的高。

如图,AD⊥BC,BE⊥AC,CF⊥AB 三角形三条高线交于点O 点O称为△ABC的垂心 以上是我们在初一时所学的三角形三条重要线段,今天,我们将学习三角形中第四条重要的线段——中位线

(知识点精讲) 中位线 概念:连接三角形两边中点的线段叫做三角形的中位线 性质:三角形的中位线平行于第三边,且等于第三边的一半。 如图,E、F分别是三角形AB、AC边上的中点,所以,EF是三角形BC 边所对的中位线,则EF∥BC且EF=1/2BC 三角形的中位线衍生出很多重要的图形,其中最重要的就是中点四边形(微课堂精讲)

三角形中位线定理证明

三角形中位线定理证明 性质1中位线平行于第三边 性质2等于第三边的一半 1定理 2证明 3逆定理 1定理三角形的中位线平行于第三边(不与中位线接触),并且等于第三边的一半。[1] 三角形的中位线 2证明 如图,已知△ABC中,D,E分别是AB,AC两边中点。 求证DE平行于BC且等于BC/2 方法一:过C作AB的平行线交DE的延长线于G点。 ∵CG∥AD ∴∠A=∠ACG ∵∠AED=∠CEG、AE=CE、∠A=∠ACG(用大括号) ∴△ADE≌△CGE (A.S.A) ∴AD=CG(全等三角形对应边相等) ∵D为AB中点 ∴AD=BD ∴BD=CG 又∵BD∥CG ∴BCGD是平行四边形(一组对边平行且相等的四边形是平行四边形) ∴DG∥BC且DG=BC ∴DE=DG/2=BC/2 ∴三角形的中位线定理成立. 方法二:相似法: ∵D是AB中点 ∴AD:AB=1:2 ∵E是AC中点 ∴AE:AC=1:2 又∵∠A=∠A ∴△ADE∽△ABC ∴AD:AB=AE:AC=DE:BC=1:2

∠ADE=∠B,∠AED=∠C ∴BC=2DE,BC∥DE 方法三:坐标法: 设三角形三点分别为(x1,y1),(x2,y2),(x3,y3) 则一条边长为:根号(x2-x1)^2+(y2-y1)^2 另两边中点为((x1+x3)/2,(y1+y3)/2),和((x2+x3)/2,(y2+y3)/2) 这两中点距离为:根号((x2+x3)/2-(x1+x3)/2)^2+((y2+y3)/2-(y1+y3)/2)^2 最后化简时将x3,y3消掉正好中位线长为其对应边长的一半 方法4: 延长DE到点G,使EG=DE,连接CG ∵点E是AC中点 ∴AE=CE ∵AE=CE、∠AED=∠CEG、DE=GE ∴△ADE≌△CGE (S.A.S) ∴AD=CG、∠G=∠ADE ∵D为AB中点 ∴AD=BD ∴BD=CG ∵点D在边AB上 ∴DB∥CG ∴BCGD是平行四边形 ∴DE=DG/2=BC/2 ∴三角形的中位线定理成立[2] 方法五:向量DE=DA+AE=(BA+AC)/2=BC/2[3] ∴DE//BC且DE=BC/2 3逆定理 逆定理一:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线。 如图DE//BC,DE=BC/2,则D是AB的中点,E是AC的中点。 证明:∵DE∥BC ∴△ADE∽△ABC ∴AD:AB=AE:AC=DE:BC=1:2 ∴AD=AB/2,AE=AC/2,即D是AB中点,E是AC中点。 逆定理二:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。 如图D是AB的中点,DE//BC,则E是AC的中点,DE=BC/2 三角形的中位线 证明:取AC中点E',连接DE',则有 AD=BD,AE'=CE' ∴DE'是三角形ABC的中位线 ∴DE'∥BC 又∵DE∥BC

勾股定理的逆定理的应用 公开课获奖教案

第2课时 勾股定理的逆定理的应用 1.进一步理解勾股定理的逆定理;(重点) 2.灵活运用勾股定理及逆定理解决实际问题.(难点) 一、情境导入 某港口位于东西方向的海岸线上,“远望号”“海天号”两艘轮船同时离开港口,各自沿一固定的方向航行,“远望号”每小时航行16海里,“海天号”每小时航行12海里,它们离开港口1个半小时后相距30海里,如果知道“远望号”沿东北方向航行,能知道“海天号”沿哪个方向航行吗? 二、合作探究 探究点:勾股定理的逆定理的应用 【类型一】 运用勾股定理的逆定理求角度 如图,已知点P 是等边△ABC 内 一点,P A =3,PB =4,PC =5,求∠APB 的度数. 解析:将△BPC 绕点B 逆时针旋转60°得△BEA ,连接EP ,判断△APE 为直角三角形,且∠APE =90°,即可得到∠APB 的度数. 解:∵△ABC 为等边三角形,∴BA =BC .可将△BPC 绕点B 逆时针旋转60°得△BEA ,连EP ,∴BE =BP =4,AE =PC =5,∠PBE =60°,∴△BPE 为等边三角形,∴PE =PB =4,∠BPE =60°.在△AEP 中,AE =5,AP =3,PE =4,∴AE 2=PE 2+P A 2,∴△APE 为直角三角形,且∠APE =90°,∴∠APB =90°+60°=150°. 方法总结:本题考查了等边三角形的判 定与性质以及勾股定理的逆定理.解决问题 的关键是根据题意构造△APE 为直角三角形. 【类型二】 运用勾股定理的逆定理求边长 在△ABC 中,D 为BC 边上的点, AB =13,AD =12,CD =9,AC =15,求BD 的长. 解析:根据勾股定理的逆定理可判断出△ACD 为直角三角形,即∠ADC =∠ADB =90°.在Rt △ABD 中利用勾股定理可得出BD 的长度. 解:∵在△ADC 中,AD =12,CD =9,AC =15,∴AC 2=AD 2+CD 2,∴△ADC 是直角三角形,∠ADC =∠ADB =90°,∴△ADB 是直角三角形.在Rt △ADB 中,∵AD =12,AB =13,∴BD =AB 2-AD 2=5,∴BD 的长为5. 方法总结:解题时可先通过勾股定理的逆定理证明一个三角形是直角三角形,然后再进行转化,最后求解,这种方法常用在解有公共直角或两直角互为邻补角的两个直角三角形的图形中. 【类型三】 勾股定理逆定理的实际应用 如图,是一农民建房时挖地基的 平面图,按标准应为长方形,他在挖完后测量了一下,发现AB =DC =8m ,AD =BC =6m ,AC =9m ,请你运用所学知识帮他检验一下挖的是否合格? 解析:把实际问题转化成数学问题来解决,运用直角三角形的判别条件,验证它是

“三线合一”性质的逆定理

一、等腰三角形的“三线合一”性质的逆定理 “三线合一”性质:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。 逆定理:①如果三角形中任一角的角平分线和它所对边的中线重合,那么这个三角形是等腰三角形。 ②如果三角形中任一角的角平分线和它所对边的高重合,那么 这个三角形是等腰三角形。 ③如果三角形中任一边的中线和这条边上的高重合,那么这个 三角形是等腰三角形。 简言之:三角形中任意两线合一,必能推导出它是一个等腰三角形。证明①:已知: ⊿ABC中,AD是∠BAC的角平分线, AD是BC边上的中线, 求证:⊿ABC是等腰三角形。 分析:要证等腰三角形就是要证AB=AC,直接通过证明这两条线所在的三角形全等不行,那就换种思路,在有中点的几何证明题中常用的添辅助线 的方法是“延长加倍”,即延长AD到E点,使AD=ED, 由此问题就解决了。 证明:延长AD到E点,使AD=ED,连接CE 在⊿ABD和⊿ECD中 AD=DE ∠ADB=∠EDC BD=CD ∴⊿ABD≌⊿ECD ∴AB=CE, ∠BAD=∠CED ∵AD是∠BAC的角平分线 ∴∠BAD=∠CAD ∴∠CED=∠CAD ∴AC=CE ∴AB=AC ∴⊿ABC是等腰三角形。 三个逆定理中以逆定理②在几何证明的应用中尤为突出。 证明②:已知: ⊿ABC中,AD是∠BAC的角平分线,AD是BC边 上的高, 求证:⊿ABC是等腰三角形。 分析:通过(ASA)的方法来证明⊿ABD和⊿ACD的全等,由此 推出AB=AC得出⊿ABC是等腰三角形 证明③:已知: ⊿ABC中,AD是BC边上的中线,又是BC边上 的高,

求证:⊿ABC是等腰三角形。 分析:AD就是BC边上的垂直平分线,用(SAS)的方法来 证明⊿ABD和⊿ACD的全等,由此推出AB=AC得出 ⊿ABC是等腰三角形。(即垂直平分线的定理) 二、“三线合一”的逆定理在辅助线教学中的应用 (1)逆定理②的简单应用 例题1 已知:如图,在⊿ABC中,AD平分∠BAC,CD⊥AD,D 为垂足,AB>AC。 求证:∠2=∠1+∠B 分析:由“AD平分∠BAC,CD⊥AD”推出AD所在的 三角形是等腰三角形,所以延长CD交AB于点E, 由逆定理②得出⊿AEC是等腰三角形由此就可得出 ∠2=∠AEC,又∠AEC=∠1+∠B,所以结论得证。 (2)逆定理②与中位线综合应用 例题1 已知:如图,在⊿ABC中,AD平分∠BAC,交BC于点D,过点C作AD的垂线,交AD的延长线于点E,F为BC的中点,连结EF。 求证: EF∥AB, EF=(AC-AB) 分析:由已知可知,线段AE既是∠BAC的角平分 线又是EC边上的高,就想到把AE所在的等腰三角形构造出 来,因而就可添辅助线“分别延长CE、AB交于点G”。 简单证明:由逆定理②得出⊿AGC是等腰三角形, ∴点E是GC的中点 ∴EF是⊿BGC的中位线 ∴得证。 例题2 如图,已知:在⊿ABC中,BD、CE分别平分∠ABC, ∠ACB,AG⊥BD于G,AF⊥CE于F,AB=14cm,AC=9cm,BC=18cm. 求: FG的长。 分析:通过已知条件可以知道线段CF和BG满足逆 定理②的条件,因此就想到了分别延长AG、A F来构造等腰三角形。 简单证明:分别延长AG、AF交BC于点K、H由逆定理②得出⊿ABK是等腰三角形 ∴点G是AK的中点 同理可得点F是AH的中点 ∴FG是⊿AHK的中位线 由此就可解出FG的长。

(完整版)人教版八年级下三角形中位线定理

知识点回顾(笔记) 证一证 如图,在△ABC 中,点D,E 分别是AB,AC 边的中点. 1 .2 DE BC DE BC =求证:∥, 证法1:证明:延长DE 到F ,使EF=DE .连接AF 、CF 、DC . ∵AE=EC ,DE=EF , ∴四边形ADCF 是_______________. ∴CF ∥AD ,CF=AD , ∴CF_____BD ,CF_____BD , ∴四边形BCFD 是____________ ∴DF_____BC ,DF_______BC , 12 DE DF =又∵, ∴DE_____BC ,DE=______BC. 证法2:证明:延长DE 到F ,使EF=DE .连接FC . ∵∠AED=∠CEF ,AE=CE , ∴△ADE_____△CFE .(全等) ∴∠ADE=∠_____,AD=_______, ∴CF______AD,∴BD______CF. ∴四边形BCFD 是___________________. ∴DF_______BC. 12DE DF =又∵, ∴DE_____BC ,DE=______BC.

类型1 三角形中位线的定理及运用 例1如图,在△ABC中,D、E分别为AC、BC的中点,AF平分∠CAB,交DE于点F.若DF=3,求AC的长. 例2 如图,在四边形ABCD中,AB=CD,M、N、P分别是AD、BC、BD的中点,∠ABD=20°,∠BDC=70°,求∠PMN的度数. 类型2中位线辅助线的构造 例3如图,在△ABC中,AB=AC,E为AB的中点,在AB的延长线上取一点D,使BD=AB,求证:CD=2CE. 例4. 如图,在△ABC中,AB=AC,CD是AB边上的中线,延长AB到点E,使BE=AB,连接CE.求 证:CD= CE。

勾股定理及其逆定理 一

勾股定理及其逆定理 一、知识点 1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。(即:a 2+b 2=c 2) 2、勾股定理的逆定理:如果三角形的三边长:a 、b 、c 有关系a 2+b 2=c 2 ,那么这个三角形是直角三角形。 3、满足2 22c b a =+的三个正整数,称为勾股数。 二、典型题型 1、求线段的长度题型 2、判断直角三角形题型 3、求最短距离 三、主要数学思想和方法(1)面积法. 例1已知 △ABC 中,∠ACB =90°,AB =5㎝.BC =3㎝,CD ⊥AB 于点D ,求CD 的长. (2)构造法.例8、已知:如图,在△ABC 中,AB =15,BC =14,AC =13.求△ABC 的面积. (3)分类讨论思想.(易错题) 例3在Rt △ABC 中,已知两边长为3、4,则第三边的长为 . 例4. 在△ABC 中,AB=15,AC=20,BC 边上的高线AD=12。试求BC 的长。 例5、在△ABC 中,AB=17,AC=10,BC 边上的高等于8,则△ABC 的周长为 . 练习: 1、在Rt △ABC 中,已知两边长为5、12,则第三边的长为 2、等腰三角形的两边长为10和12,则周长为________,底边上的高是________,面积是_________。

(5)方程思想. 例6如图4,AB 为一棵大树,在树上距地面10米的D 处有两只猴子,它们同时发现C 处有一筐苹果,一只猴子从D 往上爬到树顶A 又沿滑绳AC 滑到C 处,另一只猴子从D 滑到B ,再由B 跑到C .已知两只猴子所经路程都是15米.试求大树AB 的高度. 例题7、如图,已知长方形ABCD 中AB=8 cm,BC=10 cm,在边CD 上取一点E ,将△ADE 折叠使点D 恰好落在BC 边上的点F ,求CE 的长. 例9. 如图,在Rt △ABC 中,CD 是斜边AB 上的高线,且AB=10,BC=8,求CD 的长。 练习: 1、如图,把矩形ABCD 纸片折叠,使点B 落在点D 处,点C 落在C ’处,折痕EF 与BD 交于点O ,已知AB=16,AD=12,求折痕EF 的长。 C ' F E O D C B A 图4 C A

八年级数学三角形中位线培优专题训练

八年级数学三角形中位线培优专题训练 一、内容提要 1. 三角形中位线平行于第三边,并且等于第三边的一半。 梯形中位线平行于两底,并且等于两底和的一半。 2. 中位线性质定理的结论,兼有位置和大小关系,可以用它判定平行,计算线段的长度, 确定线段的和、差、倍关系。 3. 运用中位线性质的关键是从出现的线段中点,找到三角形或梯形,包括作出辅助线。 4. 中位线性质定理,常与它的逆定理结合起来用。它的逆定理就是平行线截比例线段定理 及推论, ①一组平行线在一直线上截得相等线段,在其他直线上截得的线段也相等 ②经过三角形一边中点而平行于另一边的直线,必平分第三边 ③经过梯形一腰中点而平行于两底的直线,必平分另一腰 5. 有关线段中点的其他定理还有: ①直角三角形斜边中线等于斜边的一半 ②等腰三角形底边中线和底上的高,顶角平分线互相重合 ③对角线互相平分的四边形是平行四边形 ④线段中垂线上的点到线段两端的距离相等 因此如何发挥中点作用必须全面考虑。 二、例题 例1. 已知:△ABC 中,分别以AB 、AC 为斜边作等腰直角三角形ABM 和CAN ,P 是BC 的中 点。求证:PM =PN 证明:作ME ⊥AB ,NF ⊥AC ,垂足E ,F ∵△ABM 、△CAN 是等腰直角三角形 ∴AE =EB =ME ,AF =FC =NF , 根据三角形中位线性质 PE = 21AC =NF ,PF =2 1 AB =ME P

PE ∥AC ,PF ∥AB ∴∠PEB =∠BAC =∠PFC 即∠PEM =∠PFN ∴△PEM ≌△PFN ∴PM =PN 例2.已知△ABC 中,AB =10,AC =7,AD 是角平分线,CM ⊥AD 于M ,且N 是BC 的中点。求MN 的长。 分析:N 是BC 的中点,若M 是另一边中点, 则可运用中位线的性质求MN 的长, 根据轴称性质作出△AMC 的全等三角形即可。 辅助线是:延长CM 交AB 于E (证明略 例3.如图已知:△ABC 中,AD 是角平分线,BE =CF ,M 、N 分别是BC 和EF 的中点 求证:MN ∥AD 证明一:连结EC ,取EC 的中点P ,连结PM 、PN MP ∥AB ,MP = 21AB ,NP ∥AC ,NP =2 1 AC ∵BE =CF ,∴MP =NP ∴∠3=∠4=2 MPN -180∠ ∠MPN +∠BAC =180 (两边分平行的两个角相等或互补) ∴∠1=∠2=2 MPN -180∠ , ∠2=∠3 ∴NP ∥AC ∴MN ∥AD 证明二:连结并延长EM 到G ,使MG =ME 连结CG ,FG 则MN ∥FG ,△MCG ≌△MBE ∴CG =BE =CF ∠B =∠BCG ∴AB ∥CG ,∠BAC +∠FCG =180 N C

勾股定理逆定理实际应用

勾股定理逆定理(2)教学设计

上节课我们学习了勾股定理的逆定理,请说出它的内容及用途;并说明它与勾 组成的三角形是不 、借助三角板画出如下方位角所确定的射 . 位于东西方向的海岸线 “海天”号轮船同时离开港 号每小 12 30 号沿东北方向航行, , ABCD 学生通过思考举 手回答及总结得 出勾股定理的逆 定理。 独立思考,得出 答案后相互交流 ⑴了解方位角, 及方位名词; ⑵依题意画出图 形; ⑶依题意可得 PR=12×1.5=18, PQ=16×1.5=24, QR=30; ⑷因为 242+182=302, PQ2+PR2=QR2,根 据勾股定理的 逆定理,知∠ QPR=90°; ⑸∠PRS=∠QPR- ∠QPS=45°。 (2)教师提出你 能根据题意画出 相关图形吗? 读题是学生理 解题意的重要 环节,只有正 确接收有关信 息,才能为下 一步利用这些 信息进行分析 打好基础。 画图对学生来 说,会有一定 的难度 学生能准确的 画出也可利用 学生画的图进 行进一步的分 析(画图也是 本节课的难 点) 让学生明确, 仅仅基于测量 结果得到的结 论未必可靠, 需要进一步通 过说理等方式 使学生确信结

解:∵ AB=3,BC=4,∠B=90°, ∴ AC=5.又∵ CD=12,AD=13, ∴ AC2+CD2=52+122=169. 又∵ AD2=132=169, 即 AC2+CD2=AD2, ∴ △ACD 是直角三角形. ∴ 四边形ABCD 的面积为 问题2 通过例1及例2的学习,我们进一步学习了像18,24,30;3,4,5;5,12,13这样的勾股数,大家有没有发现18,24,30;3,4,5 这两组勾股数有什 么关系? 追问1 类似这样的关系6,8,10;9,12,15是否也是勾股数?如何验证? 追问 2 通过对以上勾股数的研究,你有什么样的猜想? 结论:若a ,b ,c 是一组勾股数,那么ak ,bk ,ck (k 为正整数)也是一组勾股数. 【活动三】巩固拓展 练习1:如图,南北向MN 为我国领域,即MN 以西为我国领海,以东为公海.上午9时50分,我反走私A 艇发现正东方向有一走私艇C 以13海里/时的速度偷偷向我领海开来,便立即通知正在MN 线上巡逻的我国反走私艇B.已知A 、C 两艇的距离是13海里,A 、B 两艇的距离是5海里;反走私艇测得离C 艇的距离是12海里.若走私艇C 的速度不变,最早会在什么时间进入我国领海? 分析:为减小思考问题的“跨度”,可将原问题分解成下述“子问题”: (1)△ABC 是什么类型的三角形? (2)走私艇C 进入我领海的最近距离是多 (在学生都尝试画了之后,教师再在黑板上或多媒体中画出示意图) 11 345123622+=????

17.2勾股定理的逆定理(优质课)优秀教学设计

《17.2勾股定理的逆定理》教学设计 Y qzx Bmm 【内容和教材分析】 内容教材第31-33页,17.2勾股定理的逆定理. 教材分析“勾股定理的逆定理”一节,是在上节“勾股定理”之后,继续学习的一个直角三角形的判断定理,它是前面只是的继续和深化.勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中,将有十分广泛的应用,同时在应用中渗透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔,所以本节也是本章的重要内容之一. 【教学目标】 知识与技能 1.理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理. 2.理解原命题、逆命题、逆定理的概念关系. 3.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是不是直角三角形. 过程与方法 1.通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成过程. 2.通过用三角形三边的数量关系来判断三角形的形状,体验数与形结合方法的应用.3.通过勾股定理的逆定理的证明,体会数与形结合方法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题. 情感、态度与价值观 1.通过用三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一的关系. 2.在探究勾股定理的逆定理的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神. 【教学重难点及突破】 重点 1.勾股定理的逆定理及运用. 2.灵活运用勾股定理的逆定理解决实际问题. 难点 1.勾股定理的逆定理的证明. 2.说出一个命题的逆命题及辨别其真假性. 【教学突破】 1.勾股定理的逆定理的题设实际上是给出了三条边的条件,其形式和勾股定理的结论形式一致.证明在此条件下的三角形是一个直角三角形,需要构造直角三角形才能完成,构造直角三角形是解决问题的关键.可以从特例推向一般,设置两个动手操作问题. 2.勾股定理的逆定理给出的是判定一个三角形是直角三角形的方法,和前面学过的一些判定方法不同,它通过计算来做判断. 3.几何中有许多互逆的命题、互逆的定理,它们从正反两个方面揭示了图形的特征性质,所以互逆命题和互逆定理是几何中的重要概念.对互逆命题、互逆定理的概念,理解它们通常困难不大.但对那些不是以“如果……那么……”形式给出的命题,叙述它们的逆命题有时就会有困难,可以尝试首先把命题变为“如果……那么……”. 4.勾股定理的逆定理可以解决生活中的许多问题.在解决实际问题时,常先画出图形,根

三角形中位线定理 优秀教案

三角形中位线定理 【教学目标】 1.本节课的认知目的是使学生了解三角形的中位线概念及其性质定理,重点是熟悉和掌握三角形中位线定理,并能正确地运用这个定理去解决一些简单的几何问题。 2.本节课利用几何画版平台,动态演示了例题几何图形的多种变化,使学生初步认识事物的动与静、变与不变这一矛盾的对立与统一的辩证唯物主义思想。 【教学重难点】 重点:掌握定理的实质和定理的应用。 难点:定理的证明。 【教学过程】 教 学 过 程 设计思路及应用分析 导读 1.概括这节课的学习内容和认知目标; 2.引入三角形的中位线概念。 连结三角形两边中点的线段叫三角形的中位线 注意:三角形的中位线和三角形的中线不同。 C B A E D C B A E D 对比:三角形有三条中位线,它们组成一个三角形; 三角形有三条中线,它们相交于一点。 C B A E D C B A E D F F 特别强调了本节课的制作特色是动态演示,学习方法是探索研究。 这里用动态连结并配上音 乐,以引起学生的注意。 这里的三条中位线和三条 中线使用闪烁的手法,加 强对比的效果。

三角形中位线定理: 三角形的中位线平行于第三边,并且等于它的一半 定理表达式 证明:延长DE 到F ,使EF=DE ,连结CF 。 演示:打开几何画板 1.依次拖动三角形的三个顶点,注意DE 和 BC 长度的变化,观察它们的数量关系。 2.自点 D 作 BC 的平行线 FG ,再拖动三个顶点,观察 DE 与 BC 的位置关系。 定理表达式更能清楚地反 映定理的题设和结论。 中位线定理的证明方法较多,因为不作为本节课的重点,所以这里只选用了一种学生比较熟悉的直接证法。 也可以先演示再证明,通过 演示,使学生更直观地了解三角形的中位线和第三边的数量关系以及位置关系。 说明:关闭几何画板时,选择“不保存”。 本例题选自课本,证法一与课本相同。 引导学生分析为什么要连辅助线。 C B A E D A B C D E F

三角形中位线定理及逆定理的证明教学教材

定理 三角形的中位线平行于第三边(不与中位线接触),并且等于第三边的一半。[1] 三角形的中位线 2证明 如图,已知△ABC中,D,E分别是AB,AC两边中点。 求证DE平行于BC且等于BC/2 方法一:过C作AB的平行线交DE的延长线于G点。 ∵CG∥AD ∴∠A=∠ACG ∵∠AED=∠CEG、AE=CE、∠A=∠ACG(用大括号) ∴△ADE≌△CGE (A.S.A) ∴AD=CG(全等三角形对应边相等) ∵D为AB中点 ∴AD=BD ∴BD=CG

又∵BD∥CG ∴BCGD是平行四边形(一组对边平行且相等的四边形是平行四边形) ∴DG∥BC且DG=BC ∴DE=DG/2=BC/2 ∴三角形的中位线定理成立. 方法二:相似法: ∵D是AB中点 ∴AD:AB=1:2 ∵E是AC中点 ∴AE:AC=1:2 又∵∠A=∠A ∴△ADE∽△ABC ∴AD:AB=AE:AC=DE:BC=1:2 ∠ADE=∠B,∠AED=∠C ∴BC=2DE,BC∥DE 方法三:坐标法: 设三角形三点分别为(x1,y1),(x2,y2),(x3,y3) 则一条边长为:根号(x2-x1)^2+(y2-y1)^2 另两边中点为((x1+x3)/2,(y1+y3)/2),和((x2+x3)/2,(y2+y3)/2) 这两中点距离为:根号((x2+x3)/2-(x1+x3)/2)^2+((y2+y3)/2-(y1+y3)/2)^2 最后化简时将x3,y3消掉正好中位线长为其对应边长的一半 方法四:

延长DE到点G,使EG=DE,连接CG ∵点E是AC中点 ∴AE=CE ∵AE=CE、∠AED=∠CEF、DE=GE ∴△ADE≌△CGE (S.A.S) ∴AD=CG、∠G=∠ADE ∵D为AB中点 ∴AD=BD ∴BD=CG ∵点D在边AB上 ∴DB∥CG ∴BCGD是平行四边形 ∴DE=DG/2=BC/2 ∴三角形的中位线定理成立[2] 方法五:向量DE=DA+AE=(BA+AC)/2=BC/2[3] ∴DE//BC且DE=BC/2 3逆定理

相关文档
最新文档