高功率光纤激光器的应用与展望

高功率光纤激光器的应用与展望
高功率光纤激光器的应用与展望

高功率光纤激光器的应用与展望

摘要:光纤激光器是当今光电子技术研究领域中最炙手可热的研究课题,尤其是大功率光纤激光器,已在很多领域表现出取代传统固体激光器和c02激光器的趋势。本文从光纤激光器的结构出发,详细论述了大功率光纤激光器的工作原理和关键技术,重点介绍了应用更为广泛的脉冲型光纤激光器技术,最后简单列举了大功率光纤激光器的优势及其在工业加工、国防、医疗等领域里的应用情况并对其未来发展前景进行了展望。

关键词:光纤激光器;包层泵浦技术;双包层掺杂光纤;光纤光栅;应用

引言

介绍与展望

光纤激光器的历史和激光器本身的历史几乎一样长。但是由于增益光纤和泵浦光源等技术上的限制,商用光纤激光器直到20世纪末才出现。20世纪70年代以来,随着光纤制备技术以及谐振腔结构的改进,光纤激光器有了很大的发展,特别是80年代中期英国南安普顿掺Er 3+光纤的突破,光纤激光器的实用化成为可能,并显示出十分诱人的应用前景,受到人们的广泛重视。90年代开始出现了双包层掺杂光纤激光器的研究。20世纪末宝利来公司的研究人员采用包层泵浦技术,在实验室获得了100 W的激光输出,使得光纤激光器的实用化进入实际阶段。2001年,SDL公司推出了第l 台商用的拉曼光纤激光器,采用Yb包层泵浦激光器泵浦光栅式级联拉曼激光器的结构,根据这种结构可方便地设计出适合输出1.30岫、1.45岬的谐振腔结构。I PG光子公司采用类似的结构实现了l 200~l 600 nm波段选择任意波长的激光输出,输出功率达到了lO W。DMNovE.M.等人用掺有P205的光纤实现l 240 nm、l 480 nm处的激光输出。2003年6月,美国I PG公司在德国激光展演示了一台1.1微米,连续输出10 kW的光纤激光器引起了业内的震撼!日前光纤激光器研究与开发主要集中在大功率双包层光纤激光器技术上。用双包层光纤实现大功率激光输出技术最初于1988年提出。

高功率双包层光纤激光器呈现出以下发展趋势:(1)单根光纤输出功率从百瓦级向千瓦级发展,目前单根光纤激光仅在实验室实现了千瓦级功率输出,并且不是单横模;( 2)从高功率连续光纤激光向高功率脉冲光纤激光器发展,从应用目标出发时,连续工作的光纤激光能提供的靶面功率密度较低,脉冲工作的光纤激光将会更为有用;(3)从常规的光纤激光组束技术向相干组束技术发展。

高功率光纤激光器将半导体激光器泵浦技术和双包层光纤掺杂制造技术有机结合起来,吸收两者优势,将高功率、低亮度、廉价的多模LD 光通过泵浦双包层纤结构,实现高亮度、衍射受限的单模激光输出,大大提高了耦合及转换效率,增加了输出激光功率。它以散热性能好、转换效率高、激光阈值低、可调谐范围宽、光束质量好、免维护等显著优势,受到各国科技工作者的重视。本文简要介绍高功率光纤激光器的工作机理及应用,并展望了其发展前景。

一.双包层光纤(DCF)

双包层光纤( DCF) 是高功率光纤激光器的关键部件,其结构如图l 所示。双包层光纤的基

本结构包括直径为l O~100扯m的掺杂纤芯,以及直径125~l 000微米、数值孔径约为0.45的内包层。设计双包层光纤取决于要求的功率和光束质量。多模泵浦光被耦合进内包层,在其内传输2~8 m,并不断被掺杂纤芯吸收。双包层光纤可以通过两端同时泵浦来提高可用泵浦功率。激光谐振腔由外部光学系统或用紫外激光在光纤芯层写入光纤布拉格光栅(FBG)构成。纤芯可以掺杂多种不同稀士元素,对应小同的激射波长。镱元素是可选掺杂物,因为它有宽吸收带和最高光能量转换效率为80%。

1.1光纤功率限制因素

由于很多因素限制,目前单模光纤激光器光功率限制在1 kW左右,这些限制光纤功率的因素主要有:

(1)光学非线性效应,包括受激布里渊散射,受激拉曼散射和自相位调制; (2)放大自发辐射,它和激射波长竞争存贮能最,限制最大粒子数反转和最终出射能量:

( 3) 光纤的热破裂极限大约为100 Wcm~。在不超过热破裂极限时,如果一在段10 m长光纤上能量消耗为15 Wm~,一个1 kW光纤激光器会消耗<15%的泵浦吸收能量,或者说每千瓦消耗150 w的热量;

( 4) 在l 060 m处如果最大功率大于l Mw,10 u m芯径的掺镱光纤中脉冲激发的块损坏阈值大于60 GW锄之,连续和表面损坏阈值相当低约为1 w咖~。脉冲长度小于100 ns 时,自聚焦阈值约为4Mw,必须考虑。增加模场直径、加大基模增益、插入空间滤波器、增加高阶模损耗、减少光纤长度、采用光子晶体或多孔光纤等都可以增加光纤最大输出功率,使单根光纤功率达到2 kW。但获得高功率

激光的最有效方法还是利用多束光纤组合输出。I PG公司将多束250~400 W瞥模光纤合束,获得输出为10 kW的高功率光纤激光系统。简单的光纤合束固然可以获得高功率输出,但是输出光束是多模的,在一些应用场合效果并不是很好。

1.2光纤寿命

虽然双包层光纤在1 kw量级时是易于处理的,但仍有很多问题影响双包层光纤的可靠性和寿命。例如,由于氟化聚合物包层的受损引起泵浦光衰减。氟化聚合物包层既作为泵浦波导又用为光纤的保护膜。其破坏机理如下:

水和玻璃表面作用引起表面形成氢氧根群,在945PAI处其吸收也随之增加。通过控制相对湿度保持光纤温度低于40。C时,在lO年内损耗可以小于5%,这个温度要求在泵浦功率达到约3 kW时,光纤要水制冷,而在多根光纤打捆时只需窄气制冷即可。又如,掺锗和掺铥光纤置于高功率脉冲激光器中,由于多光子效应会引起明显变黑。而掺镱光纤置于大于60 GW(1 060处脉冲)的激光中时,在5天内光纤的吸收不会产生变化。

二.高功率泵浦激光二极管

高功率泵浦激光二极管有3种类型:

( 1)单管芯激光二极管激光二极管芯片发光面尺寸约1 pm×500斗m,输出光功率可以达到5 W,一半采用TO封装,利用半导体冷器(TEC) 制冷。目前单管激光二极管售价为70~100美元/W。

( 2) 条状激光二极管阵列由50个左右的单管芯片(间隔约150 pm宽) 组成激光条,每个激光条可以输出大于60 w的功率。激光条置于空气制冷或水制冷的热沉上。售价也是为70~100美元/W。

( 3 ) 叠层状激光二极管阵列通过堆叠约20个激光条构成。可输出高达l 200 w的连续激光。在这种结构中散热是主要问题,一般采用微通道制冷设计,使水在层叠的激光条之间的微小通道中流动,如图2所示。在设计岛功率光纤激光器时,泵浦激光二极管和光纤一样重要。最初的设计要求采用单横模激光二极管。但是现在双包层光纤的出现已经改变了这一要求。激光二极管的电光转换效率已经提高到接近50%,激光条叠层的功率量级也超过l kw。为制备具有竞争力的 1 kw量级的光纤激光器,需要有可提供图2微通道制冷器(20~100 pm)2.5~3 kw的功率的费用低廉的泵浦。除了激光条叠层器件很难有其他器件可提供这样量级的激光功率。而且,为与现存Nd:YAG和CO.激光器竞争,激光二极管价格必须降至每瓦50美元以下,并在不远的将来接近每瓦12美元。这样的价格在激光二极管规模生产时是可以实现的。有很多生产商如LI MO,美国的nLi ,德国Di LAS和Tr umpf 等可以提供输出功率达1.2 kw的激光二极管,寿命为10 000 h。到2008年,激光二极管输出功率量级可达二三千瓦同时寿命可达20 000 h。

三.泵浦激光耦合

二极管激光条/激光条叠层到双包层光纤的耦合是增加光纤激光器输出功率和降低激光器成本的关键之一。通常,通过改善激光二极管的光束质量或者通过光束转换可以提高耦合效率。光束质量是光束能够会聚的紧凑程度的度量。有多种参数描述这种会聚特性,最常用的是光束参数积引甲,它定义为光束束腰半径,即w,和光束远场发散角半角口.的积。在无像差的光学系统中,任何光束的这个量逐个定值。根据双包层光纤的内包层参数要求,二极管激光条/激光条叠层输出光应聚焦成直径为400~1 000 um、数值孔径NA约0.45的光束。这要求二极管激光器的BPP=100~259 mm。SPI宣布将已制成的400W输出功率耦合到直径为400 um的双包层光纤。如果泵浦发射功率达到2.5 kw,它可以耦合到直径为l mm 的双包层光纤,相应光纤激光器的输出功率约为 1 kw。英国南安普敦大学光电子学研究中

心于2004年6月也报道了一个掺镱大芯径( 43微米) 的8 m长的在l 090 I l I I l 处连续输出1.01 kw的光纤激光器。

四.光纤激光器相干合束

对不相干光源而言,总功率强度是由单个光源功率强度乘以光源个数和填充因子F,也就是说,所有单个光源功率之和乘以填充因子。在同相位相下光源的情况下,总功率强度则是各振幅相加然后平方,和不相干光源的情况相比,聚焦的模场半径减小了因子M,而其他参数相同。要实现相干合束并不容易。因为单个光源的相位必须被动态地监控和调节。美国诺斯罗普·格鲁曼(NOC)公司为军队设计了一个相干合束光纤激光器系统的原型,如图6所示,这里价格相对于性能是排在其后的。这个系统基于由美国Nufem公司生产的掺镱大模场面积偏正保持光纤,每个臂的斜度效率为77%,输出功率达150 w。每个臂的相位通过铌酸锂波导相位调整器控制。原则上系统可以升级到足够高的功率从而取代化学激光器作军事应用——导弹防护,目标照明和袭击地面目标。然而这种结构不太可能用于商用系统,因为它复杂而且费用昂贵,但是它对光纤激光器和激光二极管相干阵列器件技术的发展是一个很好的驱动,是它们可以借鉴的技术储备源。

五.光纤激光器设计

工业激光器可分为摹本两类:连续和脉冲。脉冲激光器在钻孔和切割时在减少热损坏一热影响区(如Z)一( 当脉冲宽度与材料中热扩散时间相比很小时,人部分热量会消散) 上很有用。在敲击切割时它是材料的切除刀。而对于光纤激光器,光纤可作为一个由连续或脉冲也即准连续(QCW) 激光二极管泵浦的激光振荡器或放大器。在准连续( QCW) 时,町达毫秒量级的泵浦脉冲宽度,无须采用振荡器,放大器结构。

5.1 连续长脉冲波1ms) 光纤激光器

如图3所示,连续光纤激光器的设计相对比较简单,它可由不同厂商提供的现存元件装配制作,输出功率至少可以达到10~20 w。二极管泵浦组件可以由单发射器、激光条甚至是叠层器件,它被熔接到光纤激光器组件集合。光到光的转换效率达到80%,是激光二极管泵浦棒设计的转换效率的两倍多,而且可以升级至1 kW。为达到脉冲工作,连续泵浦激光二极管由脉冲激光二极管取代,或者由和连续二极管激光器平均功率相同,但是可以产生峰值功率2~4倍于平均连续功率,脉宽小于1 ms的准连续(QCW) 激光二极管取代( SPI 供应一种平均功率100 w的器件,其峰值功率为400 W,占空因子为25%) 。

5.2脉冲光纤激光器——种子激光振荡放大

为满足大多数军事和宇航应用,需要纳米量级(10~100ns )的短脉冲,必须用光纤作为放大器连到主谐振腔上。谐振腔被直接调制或基于声光器件进行开关调制,以保证在脉冲重复频率20~50 kHz的1~500 ns的脉冲中有约1~l 00mJ的脉冲能量,这样可得高达100 W 的平均功率。脉冲激光器设计比连续激光器复杂得多,费用也高得多。

六.应用

高功率光纤激光器可能的应用包括:激光焊接(小于l mm的窄区) 、热处理、激光烧结、覆层塑料热合( 焊接)、软焊涂料剥除、连续缝焊激光成型、环氧固化自由形态加工、点焊医学应用、激光极管泵浦应用激光照明以及表面溶解混合成型等。最可能的应用是在大尺寸制造领域,目前还没有发挥很大的作用。其中一些领域被看作是有发展潜力的领域,包括:汽车、采暖通风与空调( HvAC) 、导管制造业、大型金属结构等。光纤激光器有多种军事应用。例如用于目标捕获的激光指示器( 单脉冲能量大于100 mJ ) 、激光测距仪(单脉冲能量大于100 mJ,脉宽小于10ns) 以及功率大于100 kW( 目标是1 Mw) 的激光武器。得到美国国防部高级研究计划署( DARPA) 资助的美国诺斯罗普·格鲁曼( NOC) 公司以及SPI 和I PG公司利用多光束相干合束技术研究高功率光纤激光器,为机载和舰载应用开发高于100 kW的光纤激光武器。

七.结论

过去10年光纤激光技术在输出功率、光束质量和亮度等方面取得了巨大进步。因为光纤激光器的高效率会进一步降低电功率需求( 有可能减小1/2),在工业制造方面有进一步突破,而这些新的制造技术会引发更多的目前尚未实现或等待开发的新设计和加工方法。高功率光纤激光器最终将会成为制造业的主流设备之一

高功率IPG光纤激光器应用简介

高功率IPG光纤激光器应用简介 一、IPG光纤激光器简介 1.光纤激光器简介 光纤激光器是指用掺稀土元素玻璃光纤作为增益介质的激光器,光纤激光器可在光纤放大器的基础上开发出来:在泵浦光的作用下光纤内极易形成高功率密度,造成激光工作物质的激光能级“粒子数反转”,当适当加入正反馈回路(构成谐振腔)便可形成激光振荡输出。 2.光纤激光器的优势 首先是使用成本低,光纤激光器替代了不稳定或高维修成本的传统激光器。其次,光纤激光的柔性导光系统,非常容易与机器人或多维工作台集成。第三,光纤激光器体积小,重量轻,工作位置可移动。第四,光纤激光器可以达到前所未有的大功率(至五万瓦级)。第五,在工业应用上比传统激光器表现更优越。它有适用于金属加工的最佳波长和最佳的光束质量,而且光纤激光器在每米焊接和切割上的费用最低。第六,一器多机,即一个激光器通过光纤分光成多路多台工作。第七,免维护,使用寿命长。最后,由于其极高的稳定性,大大降低了运行中对激光质量监控的要求。简单来说就是高功率下的极好光束质量,高光束质量下的极好电光效率,高功率高光束质量下的极小体积、可移动性和柔性。 3.IPG简介 全球最大的光纤激光制造商IPG Photonics由Valentin Gapontsev博士于1991年创建,总部设在美国东部麻省。IPG在德国、美国、俄罗斯和意大利设有生产、研发基地,并在全球设有销售和服务网点,覆盖美国、英国、欧洲、印度、日本、韩国、新加坡和中国,并于2006年在美国纳斯达克上市。

十八年来,IPG致力于纵向合成,所有的核心配件均为IPG研发、生产和拥有,同时也是唯一一个能为客户提供高性价比的光纤和半导体激光器的厂家。 高功率是IPG的优势。全世界已有上千台IPG的高功率(>1KW)光纤激光器在汽车制造、船舶制造、海上平台和石油管道、航空航天和技术加工等工业领域中得以应用。在日本,我们向丰田、三菱、住友在内的客户售出了数百台IPG的大功率光纤激光器。这些激光器的成功应用,说明了IPG光纤激光已成熟,且成为制造业的技术工具之一。依近期国内各厂家、院校、集成商对IPG光纤激光器大量的订单来看,光纤激光在中国市场广泛应用的局面会很快到来,尤其是在金属加工(切割、焊接、熔覆、快速成型等)方面。 二、高功率光纤激光应用领域 1.激光焊接领域的应用 光纤激光器的光束质量好,连续功率大,适用于深熔焊和浅表热导焊。连续激光通过调制可提供激光脉冲,从而获得高峰值功率和低平均功率,适用于需要低热输入要求的焊接。由于高功率激光的调制频率高达1万赫兹,因而能够提高脉冲焊接的产能。光纤输送方式使激光能够灵活地集成在传统焊钳、振镜头、机器人和远程焊接系统内。无论采用何种光束输送方式,光纤激光器都具有无可比拟的性能。典型的点焊应用包括依靠振镜头传送光束,从而完成剃须刀片和硬盘挠曲的焊接,从而充分地利用光纤激光器的脉冲功能。光纤激光器的光斑小,焦距长,因而远距离激光焊接的能力大大提高。1-2米的工作间距与传统机器人相比使工作区域提高了数倍,配备光纤激光器的远程焊接工位包括车门焊接、多点焊接和整个车身框架的搭接焊接。光纤激光器焊接的其它例子包括传动部件全熔焊、船用厚钢板深熔焊、电池组密封焊接、高压密封等等。图1展示了光纤激光焊接的效果。

2010最新脉冲光纤激光器说明书(一体机)

脉冲光纤激光器使用说明书

安全信息 在使用该产品之前,请先阅读和了解这份用户手册并熟悉我们为您提供的信息。 这份用户手册提供了重要的产品操作,安全以及其他信息给您以及所有将来的用户作参考。为了确保操作安全和产品的最佳性能,请遵循以下注意和警告事项以及该手册的其他信息去操作。 ●锐科公司脉冲光纤激光器是IV级的激光产品。在打开24VDC电源前,要确保连 接是正确的24VDC的电源并确认正负极,错误连接电源,将会损坏激光器。 ●该激光器在1064nm波长范围内发出超过5W、10W、15W、20W、25W、30W(根 据不同激光器型号)的激光辐射。避免眼睛和皮肤接触到光输出端直接发出或散射出来的辐射。 ●不要打开机器,因为没有可供用户使用的产品零件或配件。所有保养或维修只能在 锐科公司内进行。 ●不要直接观看输出头,在操作该机器时要确保长期配戴激光安全眼镜。 安全标识及位置 上面二个安全标识符号表示有激光辐射,我们把这符号标在产品光纤盒体盖顶上。

目录 1.产品描述 (1) 1.1 产品描述 (1) 1.2实际配置清单 (1) 1.3使用环境要求及注意事项 (1) 1.4技术参数 (2) 2.安装 (3) 2.1 安装尺寸图 (3) 2.2 安装方法 (4) 3.控制接口 (5) 4.操作程序 (6) 4.1 前期检查工作 (6) 4.2 操作步骤 (6) 4.3打标过程中应注意的事项 (6) 5.质保及返修、退货流程 (7) 5.1一般保修 (7) 5.2保修的限定性 (7) 5.3服务和维修 (7)

1.产品描述 1.1 产品描述 锐科脉冲激光器是是为高速和高效的激光打标系统而专门发展的。为工业激光打标机和其它应用提供了一款理想的高功率激光能量源。 脉冲激光器相对于传统的激光器,能够对每瓦的泵浦光转换效率提高10倍以上,低能量消耗的自动设计,适合实验室或室外操作。精巧,可独立放置,可随时使用,能够直接嵌入用户的设备上。 激光器可发出1064nm波长的脉冲激光,通过工业激光器标准接口来控制,激光器需要使用24V直流供电。 1.2实际配置清单 请根据图表1参考所包括的清单。 表1 1.3使用环境要求及注意事项 脉冲激光器需使用24VDC±1V直流电。 1)注意:使用激光器时要将接地线可靠接地。 2)没有内置可供使用的零件,所有维修应由合格的锐科人员来进行,为了防止电击, 请不要损坏标签和揭开盖子,否则产品的任何损坏将不被保修。 3)激光器的输出头是与光缆相连接的,使用时请小心处理输出头,防止灰尘或其它污 染,清洁输出端透镜时请使用专用的镜头纸。激光器没有安装在系统设备上且不 出光的时候,请将光隔离器保护罩盖好以免灰尘污染。

浅析高功率光纤激光器

浅析高功率光纤激光器 高功率光纤激光器,是相对于光纤通讯中作为载波的低功率光纤激光器而言(功率为mW级),是定位于机械加工、激光医疗、汽车制造和军事等行业的高强度光源。高功率光纤激光器巧妙地把光纤技术与激光原理有机地融为一体,铸造了21世纪最先进和最犀利的激光器。即使是在激光技术发达的国家,光纤激光器也是尖端、神秘和充满诱惑的代名词。2002年6月,光纤激光器空降中国,震撼了中国激光学术和产业界,引起了尊至院士的深情关注! 一、光纤技术 光纤激光器的最大特点就是一根光纤穿到底,整台机器高度实现光纤一体化。而那些只在外部导光部分采用光纤传输或者LD泵浦源采用尾纤来耦合的激光器都不是真正意义上的光纤激光器。 光纤是以SiO2为基质材料拉成的玻璃实体纤维,主要广泛应用于光纤通讯,其导光原理就是光的全反射机理。普通裸光纤一般由中心高折射率玻璃芯(芯径一般为9-62.5μm)、中间低折射率硅玻璃包层(芯径一般为125μm)和最外部的加强树脂涂层组成。〈见图一〉光纤可分为单模光纤和多模光纤。单模光纤:中心玻璃芯较细(直径9μm+0.5μm),只能传一种模式的光,其模间色散很小,具有自选模和限模的功能。多模光纤:中心玻璃芯较粗(50μm+1μm),可传多种模式的光,但其模间色散较大,传输的光不纯。 用于高功率光纤激光器中的光纤不是普通的通讯光纤,而是掺杂了多种稀有离子、结构更为复杂、耐高辐射的特种光纤---双包层光纤。

双包层光纤比普通光纤在纤芯外多了一个内包层,对泵浦光而言是多模的,直径和受光角较大,能大肆吸收高亮度的多模泵浦光,在光纤内聚集大量的光子。实践证明:横截面为D型和矩形的双包层光纤具有95%的耦合效率因而得到广泛应用。对于脉冲光纤激光器而言,一个重大的课题就是如何提高光纤的耐辐射能力。目前世界上光纤激光器的单脉冲能力可以达到20,000W,一根头发丝大小的光纤如何能承受如此高的激光辐射?所以必须考虑在光纤内掺杂某种特殊离子防止光纤被烧坏。比如掺杂了铈离子的光纤就是在核辐射情况下,既不会因染色而失去透光能力,更不会受热变形。 二、传统固体激光器 激光器说白了就是一个波长转换器---波长短的泵浦光激励掺杂离子转换成长波长的光辐射,它一般由3部分组成:工作物质、谐振腔和泵浦系统。由于光纤激光器本质上属于固体激光器,所以在此仅比较一下传统Nd:YAG激光器的特性。 工作物质: 工作物质是固体激光器的心脏,它的物理性质由基质材料决定,光谱性质由激活离子内的能级结构决定。在YAG单晶体中掺入三价的Nd3+,便构成了目前广泛应用的YAG激光晶体。它主要有如下明显的特点: 1、YAG棒生长速度很慢,一般小于1mm/h。目前最大晶体棒的直径为40mm,长180mm,所以激光增益从根本上受到限制,无法实现特高功率激光输出。

光纤激光器工作原理及发展

光纤激光器的工作原理及其发展前景 1 引言 光纤激光器于1963年发明,到20世纪80年代末第一批商用光纤激光器面市,经历了20多年的发展历程。光纤激光器被人们视为一种超高速光通信用放大器。光纤激光器技术在高速率大容量波分复用光纤通信系统、高精度光纤传感技术和大功率激光等方面呈现出广阔的应用前景和巨大的技术优势。光纤激光器有很多独特优点,比如:激光阈值低、高增益、良好的散热、可调谐参数多、宽的吸收和辐射以及与其他光纤设备兼容、体积小等。近年来光纤激光器的输出功率得到迅速提高。已达到10—100 kW。作为工业用激光器,现已成为输出功率最高的激光器。光纤激光器的技术研究受到世界各国的普遍重视,已成为国际学术界的热门前沿研究课题。其应用领域也已从目前最为成熟的光纤通讯网络方面迅速地向其他更为广阔的激光应用领域扩展。本文简要介绍了光纤激光器的结构、工作原理、分类、特点及其研究进展,最后对光纤激光器的发展前景进行了展望。 2 光纤激光器的结构及工作原理 2.1光纤激光器的结构 和传统的固体、气体激光器一样。光纤激光器基本也是由泵浦源、增益介质、谐振腔三个基本的要素组成。泵浦源一般采用高功率半导体激光器(LD),增益介质为稀土掺杂光纤或普通非线性光纤,谐振腔可以由光纤光栅等光学反馈元件构成各种直线型谐振腔,也可以用耦合器构成各种环形谐振腔泵浦光经适当的光学系统耦合进入增益光纤,增益光纤在吸收泵浦光后形成粒子数反转或非线性增益并产生自发辐射所产生的自发辐射光经受激放大和谐振腔的选模作用后.最终形成稳定激光输出。图1为典型的光纤激光器的基本构型。 增益介质为掺稀土离子的光纤芯,掺杂光纤夹在2个仔细选择的反射镜之间.从而构成F—P谐振器。泵浦光束从第1个反射镜入射到稀土掺杂光纤中.激射输出光从第2个反射镜输出来。 2.2 光纤激光器的工作原理 掺稀土元素的光纤放大器促进了光纤激光器的发展,因为光纤放大器可以通过适当的反馈机理形成光纤激光器。当泵浦光通过光纤中的稀土离子时.就会被稀土离子所吸收。这时吸收光子能量的稀土原子电子就会激励到较高激射能级,从而实现离子数反转,反转后的离子数就会以辐射形式从高能级转移到基态,并且释放出能量,完成受激辐射。从激发态到基态的辐射方式有2种:自发辐射和受激辐射。其中,受激辐射是一种同频率、同相位的辐射,可

高功率光纤激光器发展概况

2009年第12 期 中文核心期刊 高功率光纤激光器发展概况 Survey of high-power fiber lasers ZHANG Jing-song (Electronic communications technology department, Shenzhen Institute of Information Technology,Shenzhen Guangdong 518029,China) Abstract :High-power fiber lasers have wide applications in the filed of optical communication,printing,marking,material processing,medicine etc.High-power fiber lasers may substitute conventional lasers large-ly,have new application of laser,broaden the scope of laser industry.The history and recent development of high-power fiber lasers home and aboard are surveyed.The prospect of high-power fiber lasers is discussed.Key words :high-power fiber laser,double-clad fiber,cladding pump 张劲松 (深圳信息职业技术学院电子通信技术系,广东深圳518029) 摘要:高功率光纤激光器以其优越的性能和超值的价格,在光通信、印刷、打标、材料加工、医疗等领域 有着广阔的应用,将会很大程度上替代传统激光器,并开辟一些新的激光应用领域,扩大激光产业的规模。概述国内外高功率光纤激光器的发展历史与现状。展望了高功率光纤激光器的发展前景。 关键词:大功率光纤激光器;双包层光纤;包层泵浦中图分类号:TN248 文献标识码:A 文章编号:1002-5561(2009)12-0008-03 0引言 从1960年第一台激光器(美国Maiman 等首先用红宝石晶体获得了激光输出)问世到现在近50年过去了,激光技术确如人们所期,渗入了各行各业:通信、生物技术、医学、印刷、制造、军事、娱乐业等。在某些领域,它已经成为不可替代的核心技术。但是激光产业规模还不够大,究其原因,不是人类不需要激光,而是传统激光器不好用:成本高、效率低、故障多。 光纤激光器的出现带来了扩大激光产业规模的希望。光纤激光器激光光束质量好,电-光转换效率高,输出功率大;所有的半导体器件及光纤组件都可以融接成一体,避免了元件的分立,可靠性得到极大提高。 1国外高功率光纤激光器发展概况 光纤激光器的最早有关研究可以追溯到20世纪 60年代初期,当时激光器刚刚出现不久,人们对激光 器的研究投入了极大热情,积极研制开发各种新型激光器。1961年,美国光学公司的E.Snitzer 等在光纤激 光器领域进行了开创性的工作,他们利用棒状掺钕(Nd 3+)玻璃波导获得了波长1.06μm 的激光。 20世纪70年代,光纤通信的研究开始起步,新兴 的光纤通信系统对新型光源的需求极大地刺激了激光器的研究工作。但由于人们的注意力集中到迅猛发展的半导体激光器技术上,以及光纤激光器自身的一些当时无法克服的困难,光纤激光器的研究逐渐沉寂下来。尽管如此,仍然取得了一些值得一提的成就。例如,1973年,J.Stone 等成功地研制出能够在室温下连续工作的掺钕光纤激光器,他们采用的半导体注入型激光器终端泵浦方式对以后实用型光纤激光器的研究具有重要的意义。 20世纪80年代,英国Southampton 大学的S.B.Poole 等用MCVD 法成功地制备了低损耗的掺钕和掺 铒光纤,因为掺铒光纤光纤激光器的激射波长恰好位于通信光纤的1.55μm 低损耗窗口,人们开始认识到光纤放大器和光纤激光器在提高传输速率和延长传输距离等方面无疑将给光纤通信带来一场革命。掺铒光纤放大器(EDFA )得到了迅速的发展并成为一项成熟的应用技术。但是,光纤通信用的光纤激光器输出功率一般都是毫瓦级,一直以来只局限于光通讯等领域;同时由于巨大的行业差距,几乎无人把它与激光 收稿日期:2009-08-31。 作者简介:张劲松(1969-),男,博士,高工,现主要从事光纤激光器、放大器等方面的研究。 ⑧

高功率脉冲光纤激光器的系列关键技术及其设备研究可行性报告

2009年度浙江省科技计划重大科技专项项目项目可 行性报告及经费概算 重大科技专项名称:重大应用电子技术和新型电子元器件 (一)光电子集成器件的研发 项目名称:高功率脉冲光纤激光器的系列关键技术及其设备研究 申请日期:2008年05月 一、项目可行性报告 (一)立项的背景和意义。 激光技术的发展自20世纪六十年代激光问世以来,已经极大地改变了现代人的思想观念和生活质量。大功率的光纤激光作为一种特殊的光源,近几年来其发展势头之猛,已经远远超出人们当初的想象。本项目将针对高功率脉冲光纤激光器在二个主要方面的应用,即作为精密微加工应用的激光光源和激光频率变换系统的泵浦光源开展工作,研制高品质的高功率脉冲光纤激光器,特别是线偏振输出的高功率脉冲光纤激光器。 随着科学的发展和社会的进步,高效、环保、精密的绿色加工正在从概念走向现实。作为一种蓬勃发展的高新技术,激光加工技术近年来已经在各方面显示绿色加工特有的优势,如采用高功率二氧化碳激光器的金属切割、焊接,采用高功率Nd:YAG激光器的钻孔、刻划、打标等等,都在所应用领域极大地提高了生产效率和产品的质量,降低了工作强度,减少了环境污染。典型的如,大家非常熟悉的原先采用传统手工刻制的公司和私人印章,其加工工艺已经毫无例外地被激光雕刻机加工所取代,其加工的时间也从原来的几天缩短到目前的不到半小时。国际上一些著名的飞机和汽车生产企业,如波音、空客、大众、奔驰等公司都已经在生产中引入了激光加工生产线,作为典型例子,空客公司的正在试飞、即将投入正式运营的空客

A380,正是由于其有效地采用了激光加工技术,提高了加工的精度,因此才能在进一步提高飞机机械强度的同时,大幅度地减少飞机本身的重量,从而为大幅度提高载客量奠定了基础。因为机体体积的显著增大,毫无疑问将使得对机身强度和重量的要求大幅度提高,很难想象,如果没有激光加工技术的广泛应用,空客A380能否实现从原来的载客300人左右提高到目前的580人。 与一般传统的加工用高功率激光器相比,近二年在国际上突飞猛进的光纤激光器具有独特的优点。由于单模光纤独特的光束限制作用,使得光纤激光的光束质量并不会由于激光功率的增加而降低,光纤本身特有的大表面积,又使得严重影响常规固体激光器光束质量的热畸变问题在光纤激光器中也不再是一个问题。非常清楚的是,光束质量的提高,使得激光能被光学系统聚焦到接近于衍射极限的极小斑点内,这使得高质量的精密加工成为可能。由于热控问题的简化, 高功率的光纤激光器在结构上可以得到很大的简化,整体成本大幅降低,这为光纤激光器进入实际生产过程创造了非常有利的条件。举个典型的例子,如果采用常规的Nd:YAG或Nd:YVO4激光器,60W的单横模输出,光束质量因子(M2)小于1.2,价格约为300万人民币,而采用光纤激光器,同样的技术指标,市场售价不到70万。同样,对于20W的高光束质量的固体激光器,价格不会低于35万人民币(此时,较低的价格只能保证光束质量在低于10W时接近单模),而同样功率的光纤激光器的价格低于10万人民币。正因为如此,高的性价比使得光纤激光在绝大多数的领域正在取代传统的常规灯泵和半导体泵浦的固体激光器。 长期以来,高功率的脉冲紫外激光器是精密激光微加工的首选光源。紫外激光加工相对应的激光处理表面可以具有特殊的完整性与光滑度,这主要源于紫外激光在与物质作用中,其过程是直接将分子撕裂、而并非依赖热作用。传统的灯泵或半导体泵浦的固体激光器,为实现高功率的优质基频光输出,需要极为复杂的热耗控制和热透镜畸变补偿系统,这使得整个激光器在结构上相当复杂,稳定性也成为问题。大功率的紫外激光器因此价格昂贵,这也制约了其在各个领域的广泛应用。若能采

激光20wmopa系列光纤激光器应用介绍2018.2.22

20W MOPA光纤激光器应用介绍 应用工程师:无锡创永激光刘工 2016年7月18日

20W MOPA参数表 长脉宽单脉冲能量高,热效应明显,窄脉宽单脉冲能量低,热效应弱;高频率,平均功率高,热效应明显,低频率(10KHz),平均功率低,热效应弱;低扫描速度,低填充密度,激光能量集中,热效应明显,高扫描速度,中等填充密度(),激光能量分散,热 效应弱。

固定脉宽,100%功率,频率由小增大,平均功率线性增大,直至降功率频率(4ns400KHz),降功率频率到最大频率,功率趋于稳定。 固定脉宽,100%功率,频率由小增大,峰值功率增大,直至降功率频率(4ns400KHz),降功率频率到最大频率,峰值功率呈反比例函数递减。 其他脉宽类似。 MOPA光纤激光器,脉宽可调,脉冲频率范围大,应用范围十分广泛,本文中介绍了20W MOPA光纤激光器部分常见应用,用于20W MOPA应用介绍和推广。其中不同材料参数设置有所差异,文中参数

可作为参考,如有不同之处,敬请谅解。

1. 阳极氧化铝标刻 小米手机壳阳极氧化铝标刻黑色LOGO 小米充电宝阳极氧化铝标刻白色LOGO 阳极氧化铝上标刻黑色二维码,显微镜下可扫描 2. 304不锈钢标刻 304不锈钢打彩色LOGO 304不锈钢名牌标刻黑色 304不锈钢深雕 3.部分高分子材料标刻 公牛插座、苹果手机数据线等某些白色高分子材料标刻深色 PA66+、PE等某些黑色高分子材料标刻浅色 4. 电子器件标刻 电解电容标记黑色参数 PCB板标刻白色二维码和参数 电镀电子器件标刻 IC芯片等电子器件参数标刻 5. 漆剥除 汽车、电脑、手机等透光件漆剥除 亚克力瓶、橡胶按键表面漆剥除 电脑铝制外壳导通处漆剥除 6. 铜制器件标刻 黄铜件标记白色尺寸参数 7. 微弧氧化铝合金标刻黑色名牌 8. 碳钢轴承标记黑色参数 9. 铝箔、锡箔、铜箔切割

光纤激光器论文

激光器件与技术期中论文 光纤激光器浅谈浅谈光纤激光器以及我国光纤激光器研究现状

摘要: 光纤激光器作为光源在光通信领域已得到广泛应用,而随着大功率双保层光纤激光器的出现,其应用正向着激光加工、激光测距、激光雷达、激光艺术成像、激光防伪和生物医疗等更广阔的领域迅速扩展。本文以下内容概述了光纤激光器的原理、特点、应用及其发展前景。 关键词:光纤激光器应用扩展发展前景 abstract: Fiber laser as a light source in the field of optical communication has been widely used, and as the dual-protection layer of high-power fiber lasers appear, its application is toward to the laser processing, laser ranging, laser radar, laser art of imaging, security and bio-medical laser rapid expansion of a wider area. The following article outlines the principles of fiber lasers, characteristics, applications and prospects for development. Keywords: fiber laser applications development prospects.

光纤激光器简介

目录 第一章、激光基础 第二章、激光器 第三章、光纤的特性 第四章、光纤激光器 第五章、实验室激光器型号及操作安全

第一章激光基础 1.1什么是激光? 激光在我国最初被称为“莱赛”,即英语“Laser”的译音,而“Laser”是“Light amplification by stimulated emission of radiation”的缩写。意为“辐射的受激发射光放大”,大约在1964年,根据钱学森院士的建议,改名为“激光”。激光是通过人工方式,用光或者放电等强能量激发特定的物质而产生的光。 激光的四大特性:高亮度、高单色性、高方向性、高相干性。具有高亮度的激光束经过透镜聚焦后,能在焦点附近产生数千度乃至上万度的高温,这就使其能够加工几乎所有材料。由于激光的单色性极高,从而保证了光束能精确地聚焦到焦点上,得到很高的功率密度。 1.2激光产生的基本理论 1.2.1原子能级和辐射跃迁 按照玻尔的氢原子理论,绕原子核高速旋转的电子具有一系列不连续的轨道,这些轨道称为能级,如图1-1。 图1-1 原子能级图

当电子在不同的能级时,原子系统的能量是不相同的,能量最低的能级称为基态。当电子由于外界的作用从较低的能级跃迁到较高的能级时,原子的能量增 图1-2 电子跃迁图 加,从外界吸收能量。反之,电子从较高能级跃迁到较低能级时,向外界发出能量。在这个过程中,若原子吸收或发出的能量是光能(辐射能),则称此过程为辐射跃迁。发出或吸收的光的频率满足普朗克公式(hv=E2-E1)。 1.2.2受激吸收、自发辐射、和受激辐射 受激吸收:处于低能级上的原子,吸收外来能量后跃迁到高能级,则称之为受激吸收。 自发辐射:由于物质有趋于最低能量的本能,处于高能级上的原子总是要自发跃迁到低能级上去,如果跃迁中发出光子,则这个过程称为自发辐射。

高功率脉冲光纤激光器的系列关键技术及其设备研究可行性报告

2009年度浙江省科技计划重大科技专项项目项目可行性报告及经费概算 重大科技专项名称:重大应用电子技术和新型电子元器件(一)光电子集成器件的研发 项目名称:高功率脉冲光纤激光器的系列关键技术及其设备研究 申请日期:2008年05月

一、项目可行性报告 (一)立项的背景和意义。 激光技术的发展自20世纪六十年代激光问世以来,已经极大地改变了现代人的思想观念和生活质量。大功率的光纤激光作为一种特殊的光源,近几年来其发展势头之猛,已经远远超出人们当初的想象。本项目将针对高功率脉冲光纤激光器在二个主要方面的应用,即作为精密微加工应用的激光光源和激光频率变换系统的泵浦光源开展工作,研制高品质的高功率脉冲光纤激光器,特别是线偏振输出的高功率脉冲光纤激光器。 随着科学的发展和社会的进步,高效、环保、精密的绿色加工正在从概念走向现实。作为一种蓬勃发展的高新技术,激光加工技术近年来已经在各方面显示绿色加工特有的优势,如采用高功率二氧化碳激光器的金属切割、焊接,采用高功率Nd:YAG激光器的钻孔、刻划、打标等等,都在所应用领域极大地提高了生产效率和产品的质量,降低了工作强度,减少了环境污染。典型的如,大家非常熟悉的原先采用传统手工刻制的公司和私人印章,其加工工艺已经毫无例外地被激光雕刻机加工所取代,其加工的时间也从原来的几天缩短到目前的不到半小时。国际上一些著名的飞机和汽车生产企业,如波音、空客、大众、奔驰等公司都已经在生产中引入了激光加工生产线,作为典型例子,空客公司的正在试飞、即将投入正式运营的空客A380,正是由于其有效地采用了激光加工技术,提高了加工的精度,因此才能在进一步提高飞机机械强度的同时,大幅度地减少飞机本身的重量,从而为大幅度提高载客量奠定了基础。因为机体体积的显著增大,毫无疑问将使得对机身强度和重量的要求大幅度提高,很难想象,如果没有激光加工技术的广泛应用,空客A380能否实现从原来的载客300人左右提高到目前的580人。 与一般传统的加工用高功率激光器相比,近二年在国际上突飞猛进的光纤激光器具有独特的优点。由于单模光纤独特的光束限制作用,使得光纤激光的光束质量并不会由于激光功率的增加而降低,光纤本身特有的大表面积,又使得严重影响常规固体激光器光束质量的热畸变问题在光纤激光器中也不再是一个问题。非常清楚的是,光束质量的提高,使得激光能被光学系统聚焦到接近于衍射极限的极小斑点内,这使得高质量的精密加工成为可能。由于热控问题的简化,

高功率光纤激光器研究进展

收稿日期:2005-08-30;修订日期:2005-11-25 作者简介:楼祺洪(1942-),男,浙江慈溪人,研究员,学士,主要从事光学、激光技术及其应用研究。 第35卷第2期 红外与激光工程 2006年4月Vol.35No.2 InfraredandLaserEngineering Apr.2006 0引言 自1988年Snitzer等人提出双包层光纤以来,基于这种包层泵浦技术的光纤激光器和放大器获得了快速发展。特别是近年来,随着高功率半导体激光器泵浦技术和双包层光纤制作工艺的发展,光纤激光器的输出功率水平快速提升,单根光纤的输出已经从最 初的几百毫瓦上升到了千瓦级水平[1],并在高精度激光加工、激光医疗、光通信及国防等领域获得了广泛应用。 双包层光纤是由掺杂纤芯、内包层、外包层、保护层4部分组成,和常规光纤相比,多了一个可以传输泵浦光的内包层。纤芯由掺稀土元素的SiO2构成,它作为产生激光的波导,一般情况下是单模的;内包层 高功率光纤激光器研究进展 楼祺洪,周军,朱健强,王之江 (中国科学院上海光学精密机械研究所,上海201800) 摘要:高功率掺镱双包层光纤激光器由于在效率、散热和光束质量方面的优势,在工业加工、医疗和国防等领域具有广泛的应用前景,是目前国际上激光技术研究的热点之一。首先综述了国际上高功率光纤激光器的研究进展情况,然后重点介绍了中国科学院上海光学精密机械研究所在连续光纤激光和脉冲光纤激光方面所取得的进展,采用双端泵浦技术,在15m的国产双包层光纤中获得440W的连续输出,采用MOPA方式,以4m长的国产光纤作为放大介质,在100kHz时,获得了133W的平均功率输出。 关键词:激光技术;光纤激光器; 双包层掺镱光纤 中图分类号:TN248 文献标识码:A 文章编号:1007-2276(2006)02-0135-04 Recentprogressofhigh!powerfiberlasers LOUQi!hong,ZHOUJun,ZHUJian!qiang,WANGZhi!jiang (ShanghaiInsitituteofOpticsandFineMechanics,ChineseAcademyofSciences,Shanghai201800,China) Abstract:High!powerYb!dopeddouble!cladfiberlasershaveincitedparticularinterestasefficient,compactlaserswithgoodbeamqualityforavarietyofapplicationsinindustryprocessing,medicalinstrumentsandnationaldefense.Inthispaper,therecentprogressofCWandpulseddouble!cladfiberlasersatSIOMarereportedupon.ACW440Wfiberlaserisdemonstratedwithtwoendspumpingconfigurationbyusinga15mhome!madedouble!cladYb!dopedfiber.Forpulsedoperation,a133Waverage!poweroutputat100kHzrepetitionrateisobtainedwith4mdouble!cladfiberbyusingMOPAtechnology. Keywords:Lasertechnology; Fiberlaser; Yb!dopeddouble!cladfiber

光纤激光器常见问题解答

光纤激光器常见问题解答 1. 我现在使用的是灯泵浦YAG激光器,改用光纤激光器会给我带来哪些好处? ?光纤激光器的电光转换效率高达28 %,而灯泵浦YAG激光只有1.5%~2% ?不用更换灯管,因而更加省钱:光纤激光器中使用了寿命长达10万小时的电信级单芯结半导体激光管 ?所有功率级的光斑大小和形状都是固定的 ?免维护或低维护 ?备件极少 ?风冷或基本不需要冷却 ?体积相当小 ?工作距离更长 ?不需要调整 ?无需预热,立即可用 2. 哪里能够买到光纤激光器的光束传送部件? 目前,所有第三方光束传送部件制造商都可提供光纤激光器使用的光束传送部件,IPG可为您提供制造商名单。 3.原有的YAG光束传送部件是否还能使用? 基本可以,但是需要使用适配器对IPG光纤连接器进行转换。有些情况下为了充分发挥光纤激光器的优势,需要提高焦距。 4. 这些激光器产品是否能够集成在我现在的工作单元内? 可以,光纤激光器配备了各种工业接口,能够很容易地对接标准的工业控制装置。 5. 有提供交钥匙服务的系统集成商吗? 有,有许多多年从事光纤激光器交钥匙服务的系统集成商,IPG可提供交钥匙服务集成商和OEM的名单。 6. 光纤激光器有质保服务吗? 在业内,IPG提供的质保期最长:光纤激光器的标准质保期为购买后整2年时间,IPG最长可提供8年质保期,详情请与我们的销售人员联系。 7. 哪里能够实际观摩到光纤激光器产品? IPG在许多地方设有应用开发设施,包括马萨诸塞州牛津市、密歇根州的底特律市、德国的Burbach 市、日本的横滨市,目前我们正计划在俄罗斯、中国和牛津总部建立增设新的应用开发设施。另外,我们还在北美、欧洲、亚洲的多所大学内设有光纤激光器技术研究中心。 8. 你们的竞争对手说你们的光纤激光器存在后向反射的问题,是真的吗? 说这些话的人并不熟悉光纤激光器技术,如果传送光纤选择合适的话,我们的数千瓦功率低模光纤激光器不会发射后向反射问题。单模激光都很少出现这种问题。但是,如果后向反射太高的话,设备一旦检测到会自动关闭。使用隔离器也能消除该问题。IPG已经有无数的设备应用在铜和铝等高反光材料的切割和焊接领域。

高功率光纤激光器的应用与展望

高功率光纤激光器的应用与展望 摘要:光纤激光器是当今光电子技术研究领域中最炙手可热的研究课题,尤其是大功率光纤激光器,已在很多领域表现出取代传统固体激光器和c02激光器的趋势。本文从光纤激光器的结构出发,详细论述了大功率光纤激光器的工作原理和关键技术,重点介绍了应用更为广泛的脉冲型光纤激光器技术,最后简单列举了大功率光纤激光器的优势及其在工业加工、国防、医疗等领域里的应用情况并对其未来发展前景进行了展望。 关键词:光纤激光器;包层泵浦技术;双包层掺杂光纤;光纤光栅;应用 引言 介绍与展望 光纤激光器的历史和激光器本身的历史几乎一样长。但是由于增益光纤和泵浦光源等技术上的限制,商用光纤激光器直到20世纪末才出现。20世纪70年代以来,随着光纤制备技术以及谐振腔结构的改进,光纤激光器有了很大的发展,特别是80年代中期英国南安普顿掺Er 3+光纤的突破,光纤激光器的实用化成为可能,并显示出十分诱人的应用前景,受到人们的广泛重视。90年代开始出现了双包层掺杂光纤激光器的研究。20世纪末宝利来公司的研究人员采用包层泵浦技术,在实验室获得了100 W的激光输出,使得光纤激光器的实用化进入实际阶段。2001年,SDL公司推出了第l 台商用的拉曼光纤激光器,采用Yb包层泵浦激光器泵浦光栅式级联拉曼激光器的结构,根据这种结构可方便地设计出适合输出1.30岫、1.45岬的谐振腔结构。I PG光子公司采用类似的结构实现了l 200~l 600 nm波段选择任意波长的激光输出,输出功率达到了lO W。DMNovE.M.等人用掺有P205的光纤实现l 240 nm、l 480 nm处的激光输出。2003年6月,美国I PG公司在德国激光展演示了一台1.1微米,连续输出10 kW的光纤激光器引起了业内的震撼!日前光纤激光器研究与开发主要集中在大功率双包层光纤激光器技术上。用双包层光纤实现大功率激光输出技术最初于1988年提出。 高功率双包层光纤激光器呈现出以下发展趋势:(1)单根光纤输出功率从百瓦级向千瓦级发展,目前单根光纤激光仅在实验室实现了千瓦级功率输出,并且不是单横模;( 2)从高功率连续光纤激光向高功率脉冲光纤激光器发展,从应用目标出发时,连续工作的光纤激光能提供的靶面功率密度较低,脉冲工作的光纤激光将会更为有用;(3)从常规的光纤激光组束技术向相干组束技术发展。 高功率光纤激光器将半导体激光器泵浦技术和双包层光纤掺杂制造技术有机结合起来,吸收两者优势,将高功率、低亮度、廉价的多模LD 光通过泵浦双包层纤结构,实现高亮度、衍射受限的单模激光输出,大大提高了耦合及转换效率,增加了输出激光功率。它以散热性能好、转换效率高、激光阈值低、可调谐范围宽、光束质量好、免维护等显著优势,受到各国科技工作者的重视。本文简要介绍高功率光纤激光器的工作机理及应用,并展望了其发展前景。 一.双包层光纤(DCF) 双包层光纤( DCF) 是高功率光纤激光器的关键部件,其结构如图l 所示。双包层光纤的基

高功率光纤激光器简介

高功率光纤激光器是光纤材料中掺杂了稀土元素,连续激光功率达到百瓦、千瓦甚至万瓦级的光纤激光器,高功率光纤激光器已成为光通信领域的另一个研究热点,能够提供高增益,输出符合光通信低损耗窗口的激光,并且可以用半导体激光器作为泵浦源,既经济又实惠。 目录 高功率光纤激光器的特点 几种高功率光纤激光器主要参数 高功率光纤激光器的结构 高功率光纤激光器的应用 我国高功率光纤激光器现状 高功率光纤激光器的特点 *转换效率高(可高达20%); *寿命长(平均无故障工作时间在10万小时以上); *可在恶劣的环境下工作(由于其共振腔置于光纤内部,即使在高冲击,高震动,高湿度,有灰尘的条件下皆可正常运转,而环境温度范围允许在-20 C至+70 C之间); *无论是连续或脉冲的运转方式皆无需庞大的水冷或风冷系统.只需一般的散热体或简便的风冷即可, *其外型紧凑体积小(光纤激光器模块的体积大约有一本字典的大小); *方便光纤导出; *易于系统集成; *无有体积庞大的电源系统。 几种高功率光纤激光器主要参数 工作点上的激光功率输出光束参数工作点上的聚焦直径# 300W <0.7mm*mrad <30mm 500W <1.4mm*mrad <50mm 700W <1.4mm*mrad <50mm #在焦长超过150mm处 高功率光纤激光器的结构 工作物质-----双包层特种光纤: 1、单模纤芯由掺镱离子等元素的石英材料构成,作为激光振荡通道;而内包层则由横向尺寸和数值孔径比纤芯大的多、折射率比纤芯小的纯石英材料构成,它是接受多模LD泵浦光的多模光纤;正是因为掺杂激活纤芯和接受多模泵浦光的多模内包层分开,才得以实现了多模光泵浦而单模光输出的可能,从而无形化解了激光功率和光束质量这一矛盾。 2、整个双包层光纤采用D型等结构,旋光效应小,吸收充分,光光转换80%以上。 3、光纤两侧生出无数杈纤,每分衩可与带尾纤的LD无缝耦合形成分点泵浦,可极大地提高输出功率,同时又避免了传统端泵带来的一系列热效应问题。 1、光纤采用比普通玻璃性能更好的石英材料制成,同时掺杂耐高辐射离子,整段光纤可承受高达10,000W的激光能量而不会出现热损伤情况。 2、Yb3+没有激发态吸收,可高浓度掺杂,同时光纤可达几百米,一可大大提高激光增益,二又增大了散热面积;光纤盘在热沉上,简单风冷便可稳定工作。 3、Yb3+的吸收谱比Nd3+要宽10倍,对LD光源模式十分宽松,几乎不受波长温漂的影响,可大大转换效率。 4、Yb3+能级为简单的二能级,亚稳态寿命是Nd3+的三倍,小功率泵源就可在激发态积累贮存大量的能量,十分合适在极窄的纤芯内形成高密度的离子数反转,从而可输出稳定的强激光。 光学谐振腔----光纤光栅: 1、光纤光栅是利用光纤材料的光敏性:即外界入射光子和纤芯相互作用而引起后者折射率的永久性变化,用紫外激光直接写入法在单模光纤的纤芯内形成的空间相位光栅,其实质是在纤芯内形成一个窄带的滤光器或反射镜。 2、

光纤激光器的详细介绍

光纤激光器的详细介绍 光纤激光器应用范围非常广泛,包括激光光纤通讯、激光空间远距通讯、工业造船、汽车制造、激光雕刻激光打标激光切割、印刷制辊、金属非金属钻孔/切割/焊接(铜焊、淬水、包层以及深度焊接)、军事国防安全、医疗器械仪器设备、大型基础建设,作为其他激光器的泵浦源等等。 工作原理 光纤是以SiO2为基质材料拉成的玻璃实体纤维,其导光原理是利用光的全反射原理,即当光以大于临界角的角度由折射率大的光密介质入射到折射率小的光疏介质时,将发生全反射,入射光全部反射到折射率大的光密介质,折射率小的光疏介质内将没有光透过。普通裸光纤一般由中心高折射率玻璃芯、中间低折射率硅玻璃包层和最外部的加强树脂涂层组成。光纤按传播光波模式可分为单模光纤和多模光纤。单模光纤的芯径较小,只能传播一种模式的光,其模间色散较小。多模光纤的芯径较粗,可传播多种模式的光,但其模间色散较大。按折射菲菲内部可分为阶跃折射率光纤和渐变折射率光纤。 以稀土掺杂光纤激光器为例,掺有稀土离子的光纤芯作为增益介质,掺杂光纤固定在两个反射镜间构成谐振腔,泵浦光从M1入射到光纤中,从M2输出激光。当泵浦光通过光纤时,光纤中的稀土离子吸收泵浦光,其电子呗激励到较高的激发能级上,实现了离子数反转。反转后的粒子以辐射形成从高能级转移到基态,输出激光。 类型 按照光纤材料的种类,光纤激光器可分为: 1、晶体光纤激光器。工作物质是激光晶体光纤,主要有红宝石单晶光纤激光器和nd3+:YAG 单晶光纤激光器等。 2、非线性光学型光纤激光器。主要有受激喇曼散射光纤激光器和受激布里渊散射光纤激光器。 3、稀土类掺杂光纤激光器。光纤的基质材料是玻璃,向光纤中掺杂稀土类元素离子使之激活,而制成光纤激光器。 4、塑料光纤激光器。向塑料光纤芯部或包层内掺入激光染料而制成光纤激光器。 按增益介质分类为: a)晶体光纤激光器。工作物质是激光晶体光纤,主要有红宝石单晶光纤激光器和Nd3+:Y AG 单晶光纤激光器等。 b)非线性光学型光纤激光器。主要有受激喇曼散射光纤激光器和受激布里渊散射光纤激光器。 c)稀土类掺杂光纤激光器。向光纤中掺杂稀土类元素离子使之激活,(Nd3+、Er3+、Yb3+、Tm3+等,基质可以是石英玻璃、氟化锆玻璃、单晶)而制成光纤激光器。 d)塑料光纤激光器。向塑料光纤芯部或包层内掺入激光染料而制成光纤激光器。 (2)按谐振腔结构分类为F-P腔、环形腔、环路反射器光纤谐振腔以及“8”字形腔、DBR光纤激光器、DFB光纤激光器等。 (3)按光纤结构分类为单包层光纤激光器、双包层光纤激光器、光子晶体光纤激光器、特种光纤激光器。 (4)按输出激光特性分类为连续光纤激光器和脉冲光纤激光器,其中脉冲光纤激光器根据其脉冲形成原理又可分为调Q光纤激光器(脉冲宽度为ns量级)和锁模光纤激光器(脉冲宽度为ps或fs量级)。 (5)根据激光输出波长数目可分为单波长光纤激光器和多波长光纤激光器。

高功率光纤激光器原理及组成部分介绍

高功率光纤激光器原理及组成部分介绍 本文章出自https://www.360docs.net/doc/c917703296.html,作者:光博士激光网址https://www.360docs.net/doc/c917703296.html, https://www.360docs.net/doc/c917703296.html, 典型的高功率光纤激光加工系统一般包括以下几个基本单元:1.高功率光纤激光器系统①.传输光纤/操作光纤②.光闸/光纤耦合器③.激光模块 ④.激光模块电源⑤.制冷机组⑥.控制接口 关键字:IPG,光纤激光器,培训一、典型的高功率光纤激光加工系统一般包括以下几个基本单元: 1.高功率光纤激光器系统 ①.传输光纤/操作光纤 ②.光闸/光纤耦合器 ③.激光模块 ④.激光模块电源 ⑤.制冷机组 ⑥.控制接口 ⑦.监控软件 典型光纤激光器系统 IPG光纤激光器内部结构 2.准直与聚焦系统:在外壳内,同中心光轴地置有发射可见光束的半导体激光二极管和聚焦透镜。聚焦透镜将可见光束聚焦耦合进入准直光纤内,由活动连接的输出耦合头耦合进入激光工作光纤内,从激光工作光纤输出端观察激光工作光纤与准直光纤的相对位置并调整两者准直位置后,去掉准直光纤,接上泵浦源的泵浦光输出光纤。 3.运动机构 4.控制系统 5.辅助系统 二、IPG光纤激光器内部结构 1.激光电源:该机柜可安装10--40KW激光电源,最高可支持12KW激光输出。 2.空格:空余空间可为将来激光器升级预留出位置。 3.合束器:合束器将单模光纤耦合进传导光纤内,性能稳定。该和束器可以进行更换。 4.控制安全界面:控制和安全界面均按照工业标准设计,客户也可以按照自己需求选择其他界面如Tnterbus和PROFINET等。 5.光学模块:光纤激光为模块化设计,每个模块可产生几百瓦甚至上千瓦激光。 6.冗余设计:IPG为高功率激光器配备了备用模块,一旦莫一模块发生了故障,备用模块会自动启动,保持激光器稳定输出。 三、IPG光纤概述 1.光纤的外形 光纤激光器外观

相关文档
最新文档