八年级数学期末复习卷

合集下载

四川省成都市天府新区2022-2023学年八年级上学期期末考试数学试卷(含答案)

四川省成都市天府新区2022-2023学年八年级上学期期末考试数学试卷(含答案)

八年级上期期末数学测试卷(天府卷)(满分:150分时间:120分钟)班级________ 姓名________ 学号________ 得分A卷(共100分)第I卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1.9的算术平方根是()A.81B.-81C.3D.-32.在平面直角坐标系中,点A关于原点对称的点在第三象限,则点A在()A.第一象限B.第二象限C.第三象限D.第四象限3.下列各式中,计算正确的是()A. B.C. D.4.下列各组数中,是勾股数的是()A.5,6,7B.3,4,5C.1,2,D.0.6,0.8,15.在某促销活动前期,商场卖鞋商家对市场进行了一次调研,那么商家应最重视鞋码的()A.方差B.众数C.中位数D.平均数6.如图,由下列条件能判定的是()A. B.C. D.7.《九章算术》中记载了这样一个数学问题:今有甲发长安,五日至齐;乙发齐,七日至长安.今乙发已先二日,甲仍发长安.问:几何日相逢?译文:甲从长安出发,5日到齐国;乙从齐国出发,7日到长安.现乙先出发2日,甲才从长安出发.问:多久后甲、乙相逢?设甲出发日,乙出发日后甲、乙相逢,则所列方程组正确的是()A. B.C. D.8.关于一次函数,下列结论正确的是()A.图象不经过第二象限B.图象与轴的交点是(0,3)C.将一次函数的图象向上平移3个单位长度后,所得图象的函数表达式为D.点和在一次函数的图象上,若,则第Ⅱ卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9.比较大小:3_________.(填“>”“<”或“=”)10.若有意义,则的取值范围是________.11.平面直角坐标系中,点A在第二象限,且到x轴的距离是2,到y轴的距离是3,则点A 的坐标是_________.12.如图,直线:与直线:相交于点,则关于x,y的方程组的解为_________.13.如图,在中,按以下步骤作图:①以点B为圆心,任意长为半径作弧,分别交AB,BC于点D和E;②分别以点D,E为圆心,以大于的长为半径作弧,两弧相交于点F;③作射线BF交AC于点G;④过点G作交AB于点H.若,则的度数是___________.三、解答题(本大题共5个小题,共48分)14.(本小题满分12分,每题6分)(1)计算:;(2)解方程组:15.(本小题满分8分)如图,在平面直角坐标系中,各顶点的坐标分别为,,.(1)作出与关于轴对称的图形;(2)已知点,直线轴,求点P的坐标.16.(本小题满分8分)2022年11月29日23时08分,随着“神舟十五号”成功发射,拥有“三室三厅”的中国“天宫”也创下首次同时容纳6名航天员的纪录.对此,天府新区某学校想了解本校八年级学生对中国空间站相关知识的了解情况,组织开展了“中国空间站知多少”知识竞赛,现随机抽取部分学生的成绩分成五个等级(A:90~100分;B:80~89分;C:70~79分;D:60~69分;E:59分及以下)进行统计,并绘制成如图所示的两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)本次调查共抽取了_________名学生的成绩;(2)补全条形统计图;(3)若该校有800名学生参加此次竞赛,竞赛成绩为80分及其以上为优秀,请估计该校竞赛成绩为优秀的学生共有多少名.17.(本小题满分10分)如图,已知正方形ABCD,分别以AB,CD为斜边在正方形ABCD 内作直角和直角,且.(1)求证:;(2)连接EF,猜想线段EF与线段BC之间的位置关系,并说明理由.18.(本小题满分10分)如图,在平面直角坐标系中,点M,N的坐标分别为(2,0),(0,6),在x轴的负半轴上有一点A,且满足,连接MN,AN.(1)求直线AN的函数表达式.(2)将线段MN沿y轴方向平移至,连接,'.①当线段MN向下平移2个单位长度时(如图所示),求的面积;②当为直角三角形时,求点的坐标.B卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19.已知关于x,y的二元一次方程组为则的值为_________.20.已知x,y是实数,且,则_________.21.如图是由五个边长为1的小正方形组成的十字形,小明说只剪两刀就可以拼成一个没有缝隙的大正方形,则剪完后拼成的大正方形的边长是_________.22.如图,中,,分别以AC,AB为直角边在外作等腰直角和等腰直角,且,连接DE.若,,则的面积为__________.23.如图,AE和AD分别为的角平分线和高线,已知,且,,则AC的长为_________.二、解答题(本大题共3个小题,共30分)24.(本小题满分8分)随着疫情防控“新十条”出台,连日来,全国多地优化完善疫情防控措施,成都宣布不再按行政区域开展全员核酸检测,鼓励家庭自备抗原试剂盒.某公司为员工集体采购了一批抗原试剂盒以保证每个员工恰好都能检测一次,采购的抗原试剂盒信息如下:名称规格销售价格抗原试剂盒A25支/盒200元/盒抗原试剂盒B20支/盒180元/盒已知该公司共有员工5000人,花费42500元.(1)该公司采购了抗原试剂盒A和抗原试剂盒B各多少盒?(2)若抗原试剂盒B在原价的基础上打九折销售,该公司打算再次采购1000盒抗原试剂盒,其中抗原试剂盒A有m盒,采购费用为W元,请写出W关于m的函数关系式.25.(本小题满分10分)已知和都是等腰直角三角形,,且A,D,E三点在同一条直线上.(1)当与在如图1所示位置时,连接CE,求证:;(2)在(1)的条件下,判断AE,CE,BD之间的数量关系,并说明理由;(3)当与在如图2所示的位置时,连接CE,若BE平分,,求的面积.26.(本小题满分12分)如图,在平面直角坐标系中,直线:交x轴于点A,交y轴于点B,点在直线上,直线经过点C和点.(1)求直线的函数表达式;(2)Q是直线上一动点,若,求点Q的坐标;(3)在x轴上有一动点E,连接CE,将沿直线CE翻折后,点D的对应点恰好落在直线上,请求出点E的坐标.八年级上期期末数学测试卷(天府卷)A卷1.C2.A3.D4.B5.B6.C7.D8.C9.< 10.11.12.13.110°14.(1)解:原式.(2)解:化简,得②×3+①,得.解得.将代入②,得.解得.∴原方程组的解为15.解:(1)如图,即为所求.(2)∵,点与点B关于x轴对称,∴.∵,轴,∴点P的纵坐标为1,∴,∴,∴,∴点的坐标为.16.解:(1)100(2)C等级的学生为100×20%=20(名).故B等级的学生为100-26-20-10-4=40(名).补全条形统计图如图所示:(3)(名),即估计该校竞赛成绩为优秀的学生共有528名.17.(1)证明:∵四边形ABCD是正方形,∴.在和中,∴,∴.在正方形ABCD中,∵,∴,∴.在和中,∴.(2)解:.理由如下:由(1)可知,,∴,,∴,∴,∴.∵,∴,∴,∴,∴.∵四边形ABCD是正方形,∴,∴.18.解:(1)∵,∴.∵,∴.又∵点A在x轴的负半轴上,∴.设直线AN的函数表达式为.将,代入上式,得解得∴直线的函数表达式为.(2)①∵将线段MN向下平移2个单位长度,∴,.由,,可得直线的函数表达式为.设直线与y轴相交于点C,则.∴.②设将线段MN沿y轴方向平移m个单位长度至,则,.∴,,.当时,,解得,此时,;当时,,解得,此时,;当时,不成立.综上所述,点的坐标为或.B卷19.7解:①+②,得.20.1解:由题意知,,,∴且,∴,∴,∴,∴.21.解:由题意知,五个边长为1的小正方形组成的十字形的面积为1×1×5=5.∵小明只剪两刀就可以将其拼成一个没有缝隙的大正方形,∴拼成的大正方形的面积为5,∴拼成的大正方形的边长为.22.30解:如图,过点D作AB的垂线交BA的延长线于点H,交DE于点F,则.又∵,∴,∴.又∵,∴,∴,.在中,,,∴,∴.∵是等腰直角三角形,∴,,∴,,∴.又∵,∴,∴,∴.∵,∴.23.解:如图,在AD上截取AG,使,则,∴.∵,∴.设,,则,.在中,由勾股定理,得,即,化简,得.由AD是的高线,,易得,即,∴.联立解得∴,∴,,∴.在中,.设点E到直线AB的距离为h,则,∴.∵AE是的角平分线,∴点E到直线AC的距离为.设,则.∵,∴,解得或(舍去),∴.24.解:(1)设该公司采购了抗原试剂盒A x盒,抗原试剂盒B y盒.由题意,得,解得故该公司采购了抗原试剂盒A100盒,抗原试剂盒B125盒.(2)由题意,得.即W关于m的函数关系式为.25.(1)证明:∵和都是等腰直角三角形,∴.如图1,记BC与AE相交于点O,则,∴在和中,.(2)解:.理由如下:如图1,过点C作于点F.∵,∴.由(1)知,,∴,即.在和中,∴,∴,.在等腰直角中,,∴,∴,∴,∴,∴是等腰直角三角形,∴,∴,即.(3)解:如图2,过点C作交AE的延长线于点F.∵,∴.在和中,∴,∴,.又∵,∴,∴,∴,∴,∴是等腰直角三角形,∴,∴.∵平分,而在等腰直角中,,∴,∴,∴,∴,∴,∴.∵,∴,∴.在中,.∴.26.解:(1)∵点在直线:上,∴,∴,∴.设直线的函数表达式为.∵点,在直线上,∴,解得∴直线的函数表达式为.(2)由直线:,可知,如图1,分以下两种情况讨论:①当点Q在线段DC的延长线上时,∵,∴,∴,∴.②当点Q在线段DC上时,在y轴上取一点M,使得,则.∵,∴点Q在直线AM上.设,则.在中,,∴,解得.∴.由,,可得直线AM的函数表达式为.联立解得∴.综上所述,点的坐标为或.(3)①当点E在点A的左侧时,如图2所示.∵,,,∴,,,∴,∴为直角三角形,且.∵将沿直线翻折得到,∴.以为直角边作等腰直角,交射线CE于点F,构造,使,可得.设直线CF的函数表达式为.将,代入上式,得解得∴直线的函数表达式为.令,则,∴.②当点E在点A的右侧时,如图3所示.同理可得:.以为直角边作等腰直角,交直线CE于点F,构造,使,可得.设直线的函数表达式为.将,代入上式,得解得∴直线的函数表达式为.令,则,∴.综上所述,点的坐标为或.。

八年级数学下学期期末考试卷-冀教版(含答案)

八年级数学下学期期末考试卷-冀教版(含答案)
【1题答案】
【答案】D
【2题答案】
【答案】B
【3题答案】
【答案】D
【4题答案】
【答案】D
【5题答案】
【答案】D
【6题答案】
【答案】A
【7题答案】
【答案】A
【8题答案】
【答案】C
【9题答案】
【答案】B
【10题答案】
【答案】D
【11题答案】
【答案】B
【12题答案】
【答案】C
【13题答案】
【答案】A
【14题答案】
4.下列结论中,矩形具有而平行四边形不一定具有的性质是( )
A.对边平行且相等B.对角线互相平分C.任意两个邻角互补D.对角线相等
5.如图,表示A点的位置,正确的是( )
A.距O点3km的地方
B.在O点的东北方向上
C.在O点东偏北40°的方向
D.在O点北偏东50°方向,距O点3km的地方
6.一次函数 图像如图所示,则k和b的取值范围是( )
学生测试成绩频数分布表
组别
成绩x(分)
频数(人)
频率A401B100.25
C
m
n
D
8
0.2
E
6
0.15
(1) ______, ______;
(2)补全频数分布直方图;
(3)若要画出该组数据的扇形统计图,计算组别C对应的扇形圆心角的度数;
(4)若测试成绩不低于80分就可以获得“防疫小达人”奖章,若该校共有2000人参加此次知识测试,请估计获得“防疫小达人”奖章的人数.
21.在平面直角坐标系中, 的位置如图所示.
(1)分别写出以下顶点的坐标:A______;B______;C______;

八年级下期末考试数学试卷四套试卷(含答案)

八年级下期末考试数学试卷四套试卷(含答案)

017-2018学年下学期期末考试八年级数学试题说明:1.考试用时100分钟,满分为120分;2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卷上填写自己的姓名、考试号、座位号等;3.考生必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卷各题目区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效;4.考生务必保持答题卷的整洁.考试结束时,将答题卷交回.一、选择题(本大题10小题,每小题3分,共30分;在每小题列出的四个选项中,只有一个是正确的,请将正确答案填写在答题卷相应的位置上).1.有意义,则x 的取值范围是( ). A .3x ≥B .3x >C .3x ≤D .3x <2.下列各式中属于最简二次根式的是( ).A B .12D .5.0 3.一次数学测验中,某小组五位同学的成绩分别是:110,105,90,95,90.则这五个数据的中位数是( ).A .90B .95C .100D .1054.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( ). A .甲B .乙C .丙D .丁5.下列各组数中,不能构成直角三角形的是( ).A .3,4,5B .6,8,10C .4,5,6D .5,12,13 6.点A (1,-2)在正比例函数(0)y kx k =≠的图象上,则k 的值是( ). A .1B .-2C .12D .12-7.一次函数y =3x -2的图象不经过( ).A .第一象限B .第二象限C .第三象限D .第四象限8.如图,在△ABC 中,点D ,E 分别是AB ,AC 的中点, 若BC =6,则DE 等于( ). A .3 B .4 C .5 D .69.如图,□ABCD 中,下列说法一定正确的是( ). A .AC =BD B .AC ⊥BD C .AB =CD D .AB =BC10.如图,将一个长为10cm ,宽为8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( ). A .210cmB .220cmC .240cmD .280cm第9题图 第10题图二、填空题(本大题6小题,每小题4分,共24分;请将下列各题的正确答案填写在答题卷相应的位置上).11.在新年晚会的投飞镖游戏环节中,7名同学的投掷成绩(单位:环)分别是:7,9,9,4,9,8,8,则这组数据的众数是.12.若x 、y 为实数,且满足,则x +y 的值是.13.在直角三角形中,两条直角边分别是3cm 和4cm ,则斜边上的中线长是cm . 14.一次函数y =(m -3)x +5的函数值y 随着x 的增大而减小,则m 的取值范围. 15.一次函数y =kx +3的图象如图所示,则方程kx +3=0的解为.16.如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;把正方形A 1B 1C 1D 1边长按原法延长一倍得到正方形A 2B 2C 2D 2(如图(2));以此下去···,则正方形A 4B 4C 4D 4的面积为__________.三、解答题(一)(本大题3小题,每小题6分,共18分). 17.01)-+.18.已知,如图在ΔABC 中,AB =BC =AC =2cm ,AD 是边BC 上的高.求AD 的长.第15题图第16题图(1)1B 1C 1D 1A BC D D 2A 2B 2C 2D 1C 1B 1A 1A BC D 第16题图(2)19.如图,□ABCD 中,E 、F 分别是AD 、BC 的中点,求证:BE =DF .四、解答题(二)(本大题3小题,每小题7分,共21分). 20.一次函数y =2x -4的图像与x 轴的交点为A ,与y 轴的交点为B . (1)A ,B 两点的坐标分别为A (,),B (,); (2)在平面直角坐标系中,画出此一次函数的图像.21.某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙两个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录.甲、乙两个小组各项得分如下表:(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果研究报告、小组展示、答辩按照4:3:3计算成绩,哪个小组的成绩最高?22.如图,在海上观察所A ,我边防海警发现正北5km 的B 处有一可疑船只正在向东方向12km 的C 处行驶.我边防海警即刻派船前往C 处拦截.若可疑船只的行驶速度为60km/h ,则我边防海警船的速度为多少时,才能恰好在C 处将可疑船只截住?12km CAB 5km五、解答题(三)(本大题3小题,每小题9分,共27分). 23.观察下列各式:312311=+; 413412=+; 514513=+;…… 请你猜想:(1=,=;(2) 计算(请写出推导过程). (3)请你将猜想到的规律用含有自然数n (n ≥1)的代数式表达出来. .24.如图1,将一张矩形纸片ABCD 沿着对角线BD 向上折叠,顶点C 落到点E 处,BE 交AD 于点F .(1)求证:BF =DF ;(2)如图2,过点D 作DG ∥BE ,交BC 于点G ,连结FG 交BD 于点O .①求证:四边形BFDG 是菱形; ②若AB =3,AD =4,求FG 的长.25.已知一次函数y =kx +b 的图象过P (1,4),Q (4,1)两点,且与x 轴交于A 点.(1)求此一次函数的解析式; (2)求△POQ 的面积;(3)已知点M 在x 轴上,若使MP +MQ 的值最小, 求点M 的坐标及MP +MQ 的最小值.参考答案1-10、ABBBC BBACA11、912、013、14、m<315、x=316、62517、18、19、证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,DE∥BF,∴四边形DEBF是平行四边形,∴BE=DF.20、解:(1)A(2,0)、B(0,-4).(2)作直线AB,直线AB就是此一次函数的图象.21、(1)乙组第一名、甲组第二名(2)甲组成绩最高22、23、24、(1)证明:如图1,根据折叠,∠DBC=∠DBE,又AD∥BC,∴∠DBC=∠ADB,∴∠DBE=∠ADB,∴DF=BF;(2)①∵四边形ABCD是矩形,∴AD∥BC,∴FD∥BG,又∵DG∥BE,∴四边形BFDG是平行四边形,∵DF=BF,∴四边形BFDG是菱形;②∵AB=3,AD=4,∴BD=5.25、解:(1)把P(1,4),Q(4,1)代入一次函数解析式,则此一次函数的解析式为y=-x+5;(2)对于一次函数y=-x+5,令y=0,得到x=5,∴A(5,0),(3)如图,作Q点关于x轴的对称点Q′,连接PQ′交x轴于点M,则MP+MQ的值最小.∵Q(4,1),∴Q′(4,-1).设直线PQ′的解析式为y=mx+n.2017-2018八年级(下)期末数学试卷一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确,请将你认为正确答案的序号填在题后的括号内)1.(3分)要使二次根式有意义,字母的取值范围是()A.x≥B.x≤C.x>D.x<2.(3分)下列计算正确的是()A.+=B.2+=2C.=+D.﹣=03.(3分)下列四组线段中,可以构成直角三角形的是()A.1,, B.2,3,4 C.1,2,3 D.4,5,64.(3分)一次函数y=﹣x+1的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限5.(3分)在中山市举行“慈善万人行”大型募捐活动中,某班50位同学捐款金额统计如下:则在这次活动中,该班同学捐款金额的众数和中位数分别是()A.20元,30元B.20元,35元C.100元,35元D.100元,30元6.(3分)10名学生的平均成绩是x,如果另外5名学生每人得90分,那么整个组的平均成绩是()A.B.C. D.7.(3分)如图,在平行四边形ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF 等于()A.2 B.3 C.4 D.68.(3分)矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对边相等C.对角线相等D.对角线互相平分9.(3分)如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB 的长为()A.B.2 C.D.210.(3分)直线y=﹣kx+k﹣3与直线y=kx在同一坐标系中的大致图象可能是()A.B.C.D.二、填空题(本题共8小题,每小题3分,共24分,请将答案直接填写在题中的横线上)11.(3分)计算:=.12.(3分)某茶叶厂用甲,乙,丙三台包装机分装质量为200g的茶叶,从它们各自分装的茶叶中分别随机抽取了20盒,得到它们的实际质量的方差如下表所示:根据表中数据,可以认为三台包装机中,包装茶叶的质量最稳定是.13.(3分)如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是.14.(3分)一次函数y=(2m﹣1)x+1,若y随x的增大而增大,则m的取值范围是15.(3分)如图,已知一次函数y=kx+b的图象如图所示,当y≤0时,x的取值范围是.16.(3分)某公司招聘一名人员,应聘者小王参加面试和笔试,成绩(100分制)如表所示:如果面试平均成绩与笔试成绩按6:4的比确定,请计算出小王的最终成绩.17.(3分)如图,E为正方形ABCD对角线BD上一点,且BE=BC,则∠DCE=.18.(3分)如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC,AD=3,DF=1,四边形DBEC面积是三、解答题(3小题,共32分)19.(20分)计算:(1)+﹣(2)2(3)(+3﹣)(4)(2﹣3)2﹣(4+3)(4﹣3)20.(6分)如图,四边形ABCD中,AB=AD=2,BC=3,CD=1,∠A=90°,请问△BCD是直角三角形吗?请说明你的理由.21.(6分)已知:实数a,b在数轴上的位置如图所示,化简:+2﹣|a﹣b|.四、解答题(2小题,共16分)22.(8分)如图,已知直线l1:y=2x+3,直线l2:y=﹣x+5,直线l1、l2分别交x轴于B、C两点,l1、l2相交于点A.(1)求A、B、C三点坐标;(2)求△ABC的面积.23.(8分)如图,菱形ABCD对角线交于点O,BE∥AC,AE∥BD,EO与AB交于点F.(1)试判断四边形AEBO的形状,并说明你的理由;(2)求证:EO=DC.五、解答题(2小题,共18分)24.(9分)某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如表所示该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[毛利润=(售价﹣进价)×销售量](1)该商场计划购进国外品牌、国内品牌两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少的数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,该商场应该怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润25.(9分)四边形ABCD是正方形,AC与BD,相交于点O,点E、F是直线AD上两动点,且AE=DF,CF所在直线与对角线BD所在直线交于点G,连接AG,直线AG交BE 于点H.(1)如图1,当点E、F在线段AD上时,求证:∠DAG=∠DCG;(2)如图1,猜想AG与BE的位置关系,并加以证明;(3)如图2,在(2)条件下,连接HO,试说明HO平分∠BHG.2017-2018学年广东省潮州市湘桥区八年级(下)期末数学试卷参考答案一、选择题1.B ;2.D ;3.A ;4.C ;5.A ;6.D ;7.C ;8.C ;9.C ;10.B ; 二、填空题 11.﹣; 12.乙; 13.18; 14.m >; 15.x ≤2;16.89.6分; 17.22.5°; 18.4;三、解答题(3小题,共32分)19.(1)4(2)35 (3)23 (4)49-20.21.;四、解答题(2小题,共16分) 22.23、五、解答题(2小题,共18分)24、25、2017-2018学年下学期期末考试八年级数学试卷一、选择题(本大题共12小题,每小题3分,共36分在每小题给出的A、B、C、D四个选项中,只有一项符合题目要求.)1.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)【专题】常规题型.【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数解答.【解答】解:点M(1,2)关于y轴对称点的坐标为(-1,2).故选:A.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.2.如图所示是一些常用图形的标志,其中是轴对称图形但不是中心对称图形的是()【专题】常规题型.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项错误.故选:B.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.关于函数y=﹣x+3,下列结论正确的是()A.它的图象必经过点(1,1)B.它的图象经过第一、二、三象限C.它的图象与y轴的交点坐标为(0,3)D.y随x的增大而增大【专题】函数及其图象.【分析】根据一次函数的性质对各选项进行逐一判断即可.【解答】解:A、∵当x=1时,y=2,∴图象不经过点(1,1),故本选项错误;B、∵k=-1<0,b=3>0,∴图象经过第一、二、四象限,故本选项错误C、∵当x=0时,y=3,∴图象与y轴的交点坐标为(0,3),故本选项正确;D、∵k=-1<0,∴y随x的增大而减小,故本选项错误;故选:C.【点评】本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0),当k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降是解答此题的关键.4.如图,在▱ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF等于()A.2 B.3 C.4 D.5【分析】由四边形ABCD是平行四边形,根据平行四边形的对边相等,可得BC=AD=8,又由点E、F分别是BD、CD的中点,利用三角形中位线的性质,即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=8,∵点E、F分别是BD、CD的中点,故选:C.【点评】此题考查了平行四边形的性质与三角形中位线的性质.此题比较简单,注意掌握数形结合思想的应用.5.如图所示的是一扇高为2m,宽为1.5m的长方形门框,光头强有一些薄木板要通过门框搬进屋内,在不能破坏门框,也不能锯短木板的情况下,能通过门框的木板最大的宽度为()A.1.5m B.2m C.2.5m D.3m【专题】计算题.【分析】利用勾股定理求出门框对角线的长度,由此即可得出结论.【解答】故选:C.【点评】本题考查了勾股定理的应用,利用勾股定理求出长方形门框对角线的长度是解题的关键.6.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.6【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后利用△ABD的面积列式计算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,解得DE=3.故选:A.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质是解题的关键.7.如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP长不可能是()A.3.5 B.4.2 C.5.8 D.7【分析】利用垂线段最短分析AP最小不能小于3;利用含30度角的直角三角形的性质得出AB=6,可知AP最大不能大于6.此题可解.【解答】解:根据垂线段最短,可知AP的长不可小于3;∵△ABC中,∠C=90°,AC=3,∠B=30°,∴AB=6,∴AP的长不能大于6.故选:D.【点评】本题主要考查了垂线段最短的性质和含30度角的直角三角形的理解和掌握,解答此题的关键是利用含30度角的直角三角形的性质得出AB=6.8.如图,四边形ABCD是长方形,AB=3,AD=4.已知A(﹣,﹣1),则点C的坐标是()A.(﹣3,)B.(,﹣3)C.(3,) D.(,3)【分析】由矩形的性质可知AB=CD=3,AD=BC=4,【解答】解:∵四边形ABCD是长方形,∴AB=CD=3,AD=BC=4,故选:D.【点评】本题主要考查了矩形的性质和坐标的平移,根据平移的性质解决问题是解答此题的关键.9.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A.OA=OC,OB=OD B.∠BAD=∠BCD,AB∥CDC.AD∥BC,AD=BC D.AB=CD,AO=CO【分析】根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形,对每个选项进行筛选可得答案.【解答】解:A、根据对角线互相平分,可得四边形是平行四边形,故此选项可以证明四边形ABCD是平行四边形;B、根据AB∥CD可得:∠ABC+∠BCD=180°,∠BAD+∠ADC=180°,又由∠BAD=∠BCD可得:∠ABC=∠ADC,根据两组对角对应相等的四边形是平行四边形可以判定;C、根据一组对边平行且相等的四边形是平行四边形可以证明四边形ABCD是平行四边形;D、AB=CD,AO=CO不能证明四边形ABCD是平行四边形.故选:D.【点评】本题主要考查平行四边形的判定问题,熟练掌握平行四边形的性质,能够熟练判定一个四边形是否为平行四边形.10.如图,一艘巡逻船由A港沿北偏西60°方向航行5海里至B岛,然后再沿北偏东30°方向航行4海里至C岛,则A、C两港相距()A.4海里B.海里 C.3海里D.5海里【专题】计算题.【分析】连接AC,根据方向角的概念得到∠CBA=90°,根据勾股定理计算即可.【解答】解:连接AC,由题意得,∠CBA=90°,故选:B.【点评】本题考查的是勾股定理的应用和方向角,掌握勾股定理、正确标注方向角是解题的关键.11.如图,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买5千克这种苹果比分五次购买1千克这种苹果可节省()元.A.4 B.5 C.6 D.7【分析】观察函数图象找出点的坐标,利用待定系数法求出线段OA和设AB的函数关系式,再分别求出当x=1和x=5时,y值,用10×5-44即可求出一次购买5千克这种苹果比分五次购买1千克这种苹果节省的钱数.【解答】解:设y关于x的函数关系式为y=kx+b,当0≤x≤2时,将(0,0)、(2,20)代入y=kx+b中,∴y=8x+4(x≥2).当x=1时,y=10x=10;当x=5时,y=44.10×5-44=6(元).故选:C.【点评】本题考查了一次函数的应用、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象找出点的坐标,利用待定系数法求出线段OA和设AB的函数关系式是解题的关键.12.已知:如图,在矩形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点F从点B 出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点F的运动时间为y秒,当y的值为()秒时,△ABF和△DCE全等.A.1 B.1或3 C.1或7 D.3或7【分析】分点F在BC上和点F在AD上两种情况进行讨论,根据题意得出BF=2t=2和AF=16-2t=2即可求得.【解答】解:当点F在BC上时,∵在△ABF与△DCE中,∴△ABF≌△DCE,由题意得:BF=2t=2,所以t=1,点F在AD上时,∵在△ABF与△DCE中,∴△ABF≌△DCE,由题意得:AF=16-2t=2,解得t=7.所以,当t的值为1或7秒时.△ABF和△DCE全等.故选:C.【点评】本题考查了全等三角形的判定,关键是根据三角形全等的判定方法有:ASA,SAS,AAS,SSS,HL解答.二、填空题(本大题共6小题,每小题3分,共18分13.将直线y=2x+4向下平移3个单位,则得到的新直线的解析式为.【专题】一次函数及其应用.【分析】根据函数的平移规律,可得答案.【解答】解:将直线y=2x+4向下平移3个单位,得y=2x+4-3,化简,得y=2x+1,故答案为:y=2x+1.【点评】本题考查了一次函数图象与几何变换,利用函数图象的平移规律:上加下减,左加右减是解题关键.14.在平面直角坐标系中,点A(x,y)在第三象限,则点B(x,﹣y)在第象限.【专题】平面直角坐标系.【分析】根据各象限内点的坐标特征,可得答案.【解答】解:由点A(x,y)在第三象限,得x<0,y<0,∴x<0,-y>0,点B(x,-y)在第二象限,故答案为:二.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).15.若三角形三边分别为6,8,10,那么它最长边上的中线长是.【专题】计算题.【分析】根据勾股定理的逆定理可得三角形是直角三角形,再根据直角三角形斜边上的中线等于斜边的一半即可求解.【解答】解:∵三角形三边分别为6,8,10,62+82=102∴该三角形为直角三角形.∵最长边即斜边为10,∴斜边上的中线长为:5.故答案为:5.【点评】此题主要考查学生对勾股定理的逆定理及直角三角形斜边上的中线的性质的理解及运用.16.如图,在▱ABCD中,BE、CE分别平分∠ABC、∠BCD,E在AD上,BE=12cm,CE=5cm.则▱ABCD的周长为,面积为.【分析】根据角平分线的定义和平行线的性质得到等腰三角形ABE和等腰三角形CDE和直角三角形BCE.根据直角三角形的勾股定理得到BC=13.根据从而求得该平行四边形的周长;根据直角三角形的面积可以求得平行四边形BC边上的高.【解答】解:∵BE、CE分别平分∠ABC、∠BCD,∵AD∥BC,AB∥CD,∴∠2=∠3,∠BCE=∠CED,∠ABC+∠BCD=180°,∴∠1=∠2,∠DCE=∠CED,∠3+∠BCE=90°,∴AB=AE,CD=DE,∠BEC=90°,在直角三角形BCE中,根据勾股定理得:BC=13cm,根据平行四边形的对边相等,得到:AB=CD,AD=BC,∴平行四边形的周长等于:AB+BC+CD+AD=6.5+13+6.5+13=39cm.故答案为:39cm,60cm2.【点评】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.17.如图,直线AB的解析式为y=x+4,与y轴交于点A,与x轴交于点B,点P为线段AB上的一个动点,作PE⊥y轴于点E,PF⊥x轴于点F,连接EF,则线段EF的最小值为.【专题】函数及其图象.【分析】由矩形的性质可知EF=OP,可知当OP最小时,则EF有最小值,由垂线段最短可知当OP ⊥AB时,满足条件,由条件可证明△AOB∽△OPB,利用相似三角形的性质可求得OP的长,即可求得EF的最小值.【解答】∴A(0,4),B(-3,0).∵PE⊥y轴于点E,PF⊥x轴于点F,∴四边形PEOF是矩形,且EF=OP,∵O为定点,P在线段上AB运动,∴当OP⊥AB时,OP取得最小值,此时EF最小,∵A(0,4),点B坐标为(-3,0),∴OA=4,O B=3,故答案为125【点评】本题考查的是一次函数图象上点的坐标特点,熟知坐标轴上点的坐标特点是解答此题的关键.18.如图,某小区有一块直角三角形绿地,量得直角边AC=4m,BC=3m,考虑到这块绿地周围还有足够多的空余部分,于是打算将这块绿地扩充成等腰三角形,且扩充部分是以AC为一条直角边的直角三角形,则扩充的方案共有种.【专题】分类讨论.【分析】由于扩充所得的等腰三角形腰和底不确定,若设扩充所得的三角形是△ABD,则应分为①AB=AD,②AB=BD,③AD=BD,3种情况进行讨论.【解答】解:如图所示:故答案是:3.【点评】此题主要考查了等腰三角形的性质以及勾股定理的应用,关键是正确进行分类讨论.三、解答题(本大题共8小题,满分66分.解答应写出文字说明、证明过程或演算步骤.)19.(7分)如图,点E、F在线段BD上,AF⊥BD,CE⊥BD,AD=CB,DE=BF,求证:AF=CE.【专题】常规题型.【分析】首先证明BE=DF,然后依据HL可证明Rt△ADF≌Rt△CBE,从而可得到AF=CE.【解答】证明:∵DE=BF,∴DE+EF=BF+EF,即DF=BE.∴Rt△ADF≌Rt△CBE.∴AF=CE.【点评】本题主要考查的是全等三角形的性质和判定,熟练掌握全等三角形的性质和判定定理是解题的关键.20.(8分)直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的表达式.(2)若直线AB上有一动点C,且S△BOC=2,求点C的坐标.【专题】常规题型.【分析】(1)根据待定系数法得出解析式即可;(2)设C点坐标,根据三角形面积公式解答即可.【解答】解:(1)设直线解析式为y=kx+b,∵直线AB与x轴交于点A(1,0),与y轴交于点B(0,-2).【点评】本题考查了一次函数图象上点的坐标特征:一次函数图象上点的坐标满足其解析式.21.(8分)如图,在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度,(1)请在所给的网格内画出以线段AB、BC为边的菱形,并写出点D的坐标.(2)线段BC的长为,菱形ABCD的面积等于【专题】作图题;网格型.【分析】(1)菱形要求四边相等,根据AB,BC的位置及长度可确定D点位置及坐标,如图所示;(2)在网格中,运用勾股定理求BC、对角线AC,BD的长度,再计算面积.【解答】(1)解:正确画出图(4分)D(-2,1)(5分)【点评】本题考查了菱形的性质,图形画法,菱形面积的求法及勾股定理的运用,需要形数结合,培养学生动手能力.22.(8分)为了庆祝即将到来的2018年国庆节,某校举行了书法比赛,赛后整理了参赛同学的成绩,并制作了如下两幅不完整的统计图表请根据以上图表提供的信息,解答下列问题:(1)这次共调查了名学生;表中的数m= ,n= .(2)请补全频数直方图;(3)若绘制扇形统计图,则分数段60≤x<70所对应的扇形的圆心角的度数是.【专题】统计的应用.【分析】(2)求出70~80的人数,画出直方图即可;(3)根据圆心角=360°×百分比即可解决问题;【解答】解:(1)30÷0.15=200,m=200×0.45=90,故答案为200,90,0.30.(2)频数直方图如图所示,故答案为54°【点评】本题考查了数据的分析,以及读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.(8分)某产品每件的成本为10元,在试销阶段每件产品的日销售价x(元)与产品的日销售量y(件)之间的关系如下表:(1)观察与猜想y与x的函数关系,并说明理由.(2)求日销售价定为30元时每日的销售利润.【专题】常规题型.【分析】(1)设y与x的函数关系式为y=kx+b,任取两对,利用待定系数法求函数解析式;(2)将x=30代入求得y的值,然后依据销售利润=每件的利润×销售件数即可.【解答】解:(1)设经过点(15,25)(20,20)的函数关系式为y=kx+b.∴y=-x+40.∴y与x的函数关系式是y=-x+40;(2)当x=30时,y=-30+40=10,每日的销售利润=(30-10)×10=200元.【点评】本题主要考查待定系数法求一次函数解析式,熟练掌握待定系数法求一次函数解析式的步骤和方法是解题的关键.24.(8分)如图,点B、C分别在直线y=2x和y=kx上,点A、D是x轴上的两点,且四边形ABCD是正方形.(1)若正方形ABCD的边长为2,则点B、C的坐标分别为.(2)若正方形ABCD的边长为a,求k的值.【专题】一次函数及其应用.【分析】(1)根据正方形的边长,运用正方形的性质表示出点B、C的坐标;(2)根据正方形的边长,运用正方形的性质表示出C点的坐标,再将C的坐标代入函数中,从而可求得k的值.【解答】解:(1)∵正方形边长为2,∴AB=2,在直线y=2x中,当y=2时,x=1,∴B(1,2),∵OA=1,OD=1+2=3,∴C(3,2)故答案为:(1,2),(3,2);【点评】本题主要考查正方形的性质与正比例函数的综合运用,灵活运用正方形的性质是解题的关键.25.(9分)如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.【分析】(1)由三角形中位线定理得出DE∥AC,AC=2DE,求出EF∥AC,EF=AC,得出四边形ACEF是平行四边形,即可得出AF=CE;(2)由直角三角形的性质得出证出△AEC是等边三角形,得出AC=CE,即可得出结论.【解答】(1)证明:∵点D,E分别是边BC,AB上的中点,∴DE∥AC,AC=2DE,∵EF=2DE,∴EF∥AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE;(2)解:当∠B=30°时,四边形ACEF是菱形;理由如下:∵∠ACB=90°,∠B=30°,∴△AEC是等边三角形,∴AC=CE,又∵四边形ACEF是平行四边形,∴四边形ACEF是菱形.【点评】本题考查了平行四边形的判定与性质、菱形的判定、三角形中位线定理、直角三角形斜边上的中线性质、等边三角形的判定与性质;熟练掌握平行四边形的判定与性质,证明三角形是等边三角形是解决问题的关键.26.(10分)如图1,在正方形ABCD中,点E是AB上一点,点F是AD延长线上一点,且DF=BE,连接CE、CF.(1)求证:CE=CF.(2)在图1中,若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?(3)根据你所学的知识,运用(1)、(2)解答中积累的经验,完成下列各题,如图2,在四边形ABCD。

浙教版2021-2022学年八年级数学下册期末复习卷(5)及答案

浙教版2021-2022学年八年级数学下册期末复习卷(5)及答案

浙教版2021-2022学年八年级数学下册期末复习卷(5)一.选择题1.下列四个生活安全警示图标,其中是中心对称图形的是()A.B.C.D.2.某多边形的内角和是其外角和的3倍,则此多边形的边数是()A.5B.6C.7D.83.一组数据1,1,1,3,4,7,12,若加入一个整数a,一定不会发生变化的统计量是()A.众数B.平均数C.中位数D.方差4.用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中()A.每一个内角都大于60°B.每一个内角都小于60°C.有一个内角大于60°D.有一个内角小于60°5.用配方法解一元二次方程x2﹣4x﹣9=0,可变形为()A.(x﹣2)2=9B.(x﹣2)2=13C.(x+2)2=9D.(x+2)2=13 6.如图,矩形内两个相邻正方形的面积分别为9和3,则阴影部分的面积为()A.8﹣3B.9﹣3C.3﹣3D.3﹣27.已知菱形的周长为4,两条对角线的和为6,则菱形的面积为()A.2B.C.3D.48.如果关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,那么k的取值范围是()A.k<B.k<且k≠0C.﹣≤k<D.﹣≤k<且k≠09.如图,在矩形ABCD中,E是BC上一点,且AE=AD,DF⊥AE于点F,AF=4,AB=3,则CE的长为()A.B.2C.D.110.某气球内充满一定质量的气体,当温度不变时,气球内气体的压强p(kPa)与气体的体积V(m3)成反比例(如图),则下列说法正确的是()A.气球内气体的压强随气体体积增大而增大B.气球内气体的压强p关于体积V的函数表达式为p=(V>0)C.当气体体积为1m3时,它的压强为90kPaD.气体的压强大于150kPa时,气球会爆炸,则气体的体积应不小于0.8m311.如图,正方形ABCD中,对角线AC,BD相交于点O,点E为OB的中点,连结CE并延长交AB于点F.过点B作BH⊥CF,分别交CF,CA于点H,点P.若OE=1,则BP的长为()A.B.2C.D.2.512.如图,在平面直角坐标系xOy中,△AOB的顶点B在x轴正半轴上,顶点A在第一象限内,AO=AB,P,Q分别是OA,AB的中点,函数y=(k>0,x>0)的图象过点P,连接OQ,若S△OPQ=3,则k的值为()A.1.5B.2C.3D.6二.填空题13.某班在一次数学考试中,“乘风组”的平均成绩为80分,“破浪组”的平均成绩为86分.若“乘风组”人数是“破浪组”的2倍,则该班此次数学考试的平均成绩是.14.在▱ABCD中,对角线AC,BD交于点O,已知AD=8,BD=14,AC=6,则△OBC 的周长为.15.已知a,b都是实数,,则a b的值为.16.已知m是方程x2﹣2x﹣3=0的一个根,则2m2﹣4m﹣1=.17.如图,在平行四边形ABCD中,AB=5,AD=7,∠ABC的平分线交AD于点E,∠BCD 的平分线交AD于点F,则线段EF的长为.18.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC到点F,使CF=BC.若AB=10,则EF的长是.19.如图,▱ABCD中,AB=2,BC=4,∠B=60°,点P是四边形上的一个动点,则当△PBC为直角三角形时,BP的长为.20.如图,以正方形ABCD的一边AB为边向外作等边三角形ABE,连结AC,CE,过点A 作AF⊥CE于点F,若AB=4,则AF=.21.如图,正方形ABCD的边长为4,点E为CD边上的一个动点,以CE为边向外作正方形ECFG,连结BG,点H为BG中点,连结EH,则EH的最小值为.22.如图,在平面直角坐标系中,菱形OABC的边OA在x轴的正半轴上,反比例函数的图象经过对角线OB的中点D和顶点C.若菱形OABC的面积为,则k=.三.解答题23.计算:(1)×+;(2)(﹣1)2+(+2)(﹣2).24.已知关于x的方程kx2+(k+1)x+=0有实根.(1)当k=4时,求解上述方程;(2)求k的取值范围;(3)是否存在实数k,使方程两根的倒数和为1?若存在,请求出k的值;若不存在,请说明理由.25.如图,在平行四边形ABCD中,AC是对角线,BE⊥AC,DF⊥AC,垂足分别为点E,F,连结BF,DE.(1)求证:四边形BFDE是平行四边形;(2)连结BD,若BE=3,BF=5,求BD的长.26.小明和小聪最近5次数学测试的成绩如下:小聪:76 84 80 87 73小明:78 82 79 80 81(1)分别求出小明和小聪的平均成绩;(2)分别求出小明和小聪的成绩的方差,并指出哪位同学的数学成绩比较稳定.27.如图,一次函数y=kx+2的图象与反比例函数y=的图象交于A,B两点,且A(1,3).(1)分别求出一次函数和反比例函数的表达式;(2)求点B的坐标;(3)观察图象,直接写出kx+2≥时,x的取值范围.28.甲、乙两名学生参加数学素质测试(有四项),每项测试成绩(单位:分)采用百分制,成绩如表:学生数与代数空间与图形统计与概率综合与实践平均成绩众数中位数方差甲9590a85x b9012.5乙90c8095x95d37.5(1)根据表中信息判断哪个学生数学素质测试成绩更稳定?请说明理由.(2)表格中的数据a=;b=;c=;d=;(3)若数学素质测试的四个项目的重要程度有所不同,而给予“数与代数”、“空间与图形”、“统计与概率”、“综合与实践”四个项目在综合成绩中所占的比例分别为40%,30%,10%,20%.计算得到乙的综合成绩为91.5分,请你计算甲的综合成绩,并说明谁的综合成绩更好?29.随着宁波轨道交通4号线的开通,充满魅力的千年古城﹣﹣慈城,吸引了越来越多的游客前来.说到慈城,不得不提软糯香甜的年糕,《舌尖上的中国》专门介绍了宁波的这一特色美食.慈城某商店于今年三月初以每件40元的进价购进一批水磨年糕,当年糕售价为每件60元时,三月份共销售192件.四、五月该批年糕销售量持续走高,在售价不变的基础上,五月份的销售量达到300件.(1)求四、五两个月销售量的月平均增长率;(2)从六月份起,在五月份的基础上,商店决定采用降价促销的方式回馈顾客,经市场调查发现,该年糕每件降价1元,月销售量增加20件.在顾客获得最大实惠的前提下,当年糕每件降价多少元时,商场六月仍可获利为6080元?30.如图1,四边形ABCD和四边形CEFG都是菱形,其中点E在BC的延长线上,点G 在DC的延长线上,点H在BC边上,连结AC,AH,HF.已知AB=2,∠ABC=60°,CE=BH.(1)求证:△ABH≌△HEF;(2)如图2,当H为BC中点时,连结DF,求DF的长;(3)如图3,将菱形CEFG绕点C逆时针旋转120°,使点E在AC上,点F在CD上,点G在BC的延长线上,连结EH,BF.若EH⊥BC,请求出BF的长.参考答案一.选择题1.解:A.是中心对称图形,故本选项符合题意;B.不是中心对称图形,故本选项不合题意;C.不是中心对称图形,故本选项不合题意;D.不是中心对称图形,故本选项不合题意.故选:A.2.解:根据题意,得:(n﹣2)×180=360×3,解得n=8.故选:D.3.解:A、原来数据的众数是1,加入一个整数a后众数仍为1,符合题意;B、原来数据的平均数是,加入一个整数a,平均数一定变化,不符合题意;C、原来数据的中位数是3,加入一个整数a后,如果a≠3中位数一定变化,不符合题意;D、原来数据的方差加入一个整数a后的方差一定发生了变化,不符合题意;故选:A.4.解:用反证法证明“三角形中必有一个内角小于或等于60°”时,应先假设三角形中每一个内角都不小于或等于60°,即都大于60°.故选:A.5.解:∵x2﹣4x﹣9=0,∴x2﹣4x=9,则x2﹣4x+4=9+4,即(x﹣2)2=13,故选:B.6.解:∵两个相邻的正方形,面积分别为3和9,∴两个正方形的边长分别为,3,∴阴影部分的面积=×(3﹣)=3﹣3.故选:C.7.解:如图四边形ABCD是菱形,AC+BD=6,∴AB=,AC⊥BD,AO=AC,BO=BD,∴AO+BO=3,∴AO2+BO2=AB2,(AO+BO)2=9,即AO2+BO2=5,AO2+2AO•BO+BO2=9,∴2AO•BO=4,∴菱形的面积=AC•BD=2AO•BO=4;故选:D.8.解:由题意知:2k+1≥0,k≠0,Δ=2k+1﹣4k>0,∴≤k<,且k≠0.故选:D.9.解:连接DE,∵AE=AD,∴∠ADE=∠AED,∵四边形ABCD是矩形,AB=3,∴AD∥BC,AB=DC=3,∴∠ADE=∠DEC,∴∠AED=∠DEC,∵DF⊥AE,DC⊥BC,∴DF=DC,∵AF=4,DC=3,∴DF=3,∴AD===5,∴AE=5,∴EF=AE﹣AF=5﹣4=1,在Rt△DEF和Rt△DEC中,,∴Rt△DEF≌Rt△DEC(HL),∴EF=EC,∴EC=1,故选:D.10.解:根据图象的变化趋势可知气体的压强随体积的增大而减小,故A错误;由点(0.5,180)得函数解析式为,故B错误;当v=1m3时,代入得p=90,故C正确;由可知,当p>150时,v<0.6m3,故D错误.故选:C.11.解:∵四边形ABCD是正方形,∴∠BOC=90°,OB=OC,∵OE=1,E为OB的中点,∴OE=BE=1,∴OB=OC=2,∴EC===,∵BH⊥CF,∴∠BHE=90°,∵∠BEH=∠CEO,∴∠HBE=∠EOC,∵∠POB=∠EOC=90°,∴△PBO≌△ECO(ASA),∴BP=CE=,故选:C.12.解:作AD⊥x轴于D,PE⊥x轴于E,∵AO=AB,∴OD=BD,∵P,Q分别是OA,AB的中点,∴S△AOB=2S△AOQ,S△AOQ=2S△POQ=6,∴S△AOB=12,∴S△AOD=S△AOB=6,∴S△POE=S△AOD=,∵函数y=(k>0,x>0)的图象过点P,∴S△POE=|k|,∴|k|=3,∵k>0,∴k=3,故选:C.二.填空题13.解:设“破浪组”人数是a,则“乘风组”人数是2a,根据题意可得:(2a×80+86a)÷(a+2a)=246a÷3a=82(分).故答案为:82分.14.解:∵四边形ABCD是平行四边形,∴OA=OC=3,OB=OD=7,BC=AD=8,∴△OBC的周长=OB+OC+AD=3+7+8=18.故答案为:18.15.解:根据题意得,解得a=,当a=时,b=﹣2,所以ab=()﹣2=4.故答案为4.16.解:根据题意,将x=m代入方程,得:m2﹣2m﹣3=0,则m2﹣2m=3,∴2m2﹣4m﹣1=2(m2﹣2m)﹣1=2×3﹣1=5,故答案是:5.17.解:∵平行四边形ABCD,∴∠DFC=∠FCB,又CF平分∠BCD,∴∠DCF=∠FCB,∴∠DFC=∠DCF,∴DF=DC,同理可证:AE=AB,∵AB=5,AD=BC=7,∴2AB﹣BC=AE+FD﹣BC=EF=3.故答案为3.18.解:如图,连接DC.DE是△ABC的中位线,∴DE∥BC,DE=,∵CF=BC,∴DE∥CF,DE=CF,∴CDEF是平行四边形,∴EF=DC.∵DC是Rt△ABC斜边上的中线,∴DC==5,∴EF=DC=5,解法二:△ADE和△ECF全等即可.故答案为:5.19.解:分两种情况:(1)当∠BPC=90°时,①点P在AB边上时,∵∠B=60°,∴∠BCP=30°,∴BP=BC=2;②点P在边AD上,AP=DP=2时,如图2所示:∵四边形ABCD是平行四边形,∴CD=AB=2,∠D=∠B=60°,∴DP=CD,∴△PCD是等边三角形,PC=CD=2,∴BP===2;(2)当∠BCP=90°时,如图3所示:则CPD=90°,∵CD=AB=2,∠D=∠ABC=60°,∴∠PCD=30°,∴PD=CD=1,CP=PD=,∴BP==;综上所述:当△PBC为直角三角形时,BP的长为2或2或.故答案为:2或2或.20.解:∵ABE是等边三角形,∴∠AEB=∠ABE=60°,AE=BE=AB=BC,∴∠EBC=∠EBA+∠ABC=60°+90°=150°,∴∠BEC=∠BCE==15°,∴∠AEF=∠AEB﹣∠BEC=60°﹣15°=45°,∵AF⊥CE,∴△AEF是等腰直角三角形,∴AF=AE=AB=×4=2.故答案为:2.21.解:如图,延长GE至K,使得EG=EK,连KC,∵E、H分别是KG、BG的中点,∴EH=KB,∵KE=EC,∴∠KCE=45°,连AC,∵四边形ABCD是正方形,∴∠ACE=45°,∴K必在AC上,∴KB⊥AC时,KB取最小,过B作BK'⊥AC交AC于K',∵∠ACB=45°,∴K'B=K'C,∵BC==4,∴K'B=2,∴EH的最小值为K'B=.故答案为:.22.解:设D(t,),∵D为OB的中点,∴B(2t,),∵四边形ABCO为菱形,∴BC∥OA,∴C(t,)∴BC=2t﹣t=t,∵菱形OABC的面积为,∴t•=6,解得k=2.故答案为2.三.解答题23.解:(1)原式=+=3+=;(2)原式=5﹣2+1+5﹣4=7﹣2.24.解:(1)k=4,方程化为:4x2+5x+1=0,(4x+1)(x+1)=0,4x+1=0或x+1=0,所以x1=﹣,x2=﹣1;(2)当k=0时,方程化为x=0,方程有实数解;当k≠0时,根据题意得Δ=(k+1)2﹣4k×≥0,解得k≥﹣且k≠0,综上所述,k的取值范围为k≥﹣;(3)不存在.理由如下:设方程的两根分别为a、b,根据根与系数的关系得a+b=﹣,ab=,∵+=1,即=1,∴a+b=ab,∴﹣=,解得k=﹣,∵k≥﹣且k≠0,∴不存在实数k,使方程两根的倒数和为1.25.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠BAE=∠DCF,∵BE⊥AC,DF⊥AC,∴∠AEB=∠CFD=90°,BE∥DF,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴BE=DF,∴四边形BFDE是平行四边形;(2)连结BD交AC于点O,∴OE=OF,OB=OD.∴BE⊥AC,BE=3,BF=5,∴EF=4,∴OE=2.在Rt△OBE中,.∴.26.解:(1)=(76+84+80+87+73)=80(分),=×(78+82+79+80+81)=80(分).(2)s小聪2=×[(76−80)2+(84−80)2+…+(73−80)2]=26,s小明2=×[(78−80)2+(82−80)2+…+(81−80)2]=2,∵s小聪2>s小明2,∴小明成绩稳定.27.解:(1)因为A点是一次函数与反比例函数交点,分别代入到两个函数解析式中得,m=3,k+2=3,∴k=1,∴一次函数表示式为y=x+2,反比例函数表达式为;(2)联立,化简得,x2+2x﹣3=0,∴x=1或﹣3,当x=﹣3时,y=﹣1,因为A,B两点是一次函数与反比例函数交点,∴点B的坐标为(﹣3,﹣1);(3)∵A,B两点是一次函数与反比例函数交点坐标,故根据图象,如图1,当﹣3≤x<0或x≥1时,kx+2≥,即x的取值范围为:﹣3≤x<0或x≥1.28.解:(1)甲的数学素质测试成绩更稳定,因为甲成绩的方差小于乙成绩的方差;(2)由表可知,乙的众数为95,∴c=95,乙的中位数为d==92.5,乙的平均数为x=(90+95+80+95)=90,∴a=90×4﹣95﹣90﹣85=90,∴甲的众数为b=90,故答案为:90,90,95,92.5;(3)甲的平均成绩为95×40%+90×30%+90×10%+85×20%=91(分),91<91.5,所以,乙的综合成绩更好.29.解:(1)设四、五两个月销售量的月平均增长率为x,由题意,得:192(1+x)2=300,解得:x1=25%,x2=﹣2.25(不合题意,舍去),∴四、五两个月销售量的月平均增长率为25%;(2)设年糕每件降价m元时,商场六月仍可获利为6080元,由题意,得:(60﹣40﹣m)(300+20m)=6080,化简,得:m²﹣5m+4=0,解得:m=1或m=4,顾客获得最大实惠的前提下,m=4,∴在顾客获得最大实惠的前提下,当年糕每件降价4元时,商场六月仍可获利为6080元.30.(1)证明:如图1,∵四边形ABCD和四边形CEFG都是菱形,∴AB=BC,CE=EF,∵CE=BH,∴BH=EF,∵BH+CH=CE+CH,∴BC=HE,∴AB=HE;∵点E在BC的延长线上,点G在DC的延长线上,∴AB∥DG∥EF,∴∠B=∠E,在△ABH和△HEF中,,∴△ABH≌△HEF(SAS).(2)如图2,设FH交CG于点P,连结CF,∵AB=BC,∠ABC=60°,∴△ABC是等边三角形,∵BH=CH,∴AH⊥BC,∴∠AHB=90°,由(1)得,△ABH≌△HEF,∴∠HFE=∠AHB=90°,∵DG∥EF,∴∠DPF=180°﹣∠HFE=90°,∴PF⊥CG,∵CG=FG,∠G=∠E=∠B=60°,∴△GFC是等边三角形,∴PC=PG=CG;∵BC=AB=2,∴CG=EF=BH=BC=1,∴PC=;∵CD=AB=2,∴PD=+2=,∵CF=CG=1,∴PF2=CF2﹣PC2=12﹣()2=,∴DF===.(3)如图3,作FM⊥BG于点M,则∠BMF=90°,∵EH⊥BC,即EH⊥BG,∴EH∥FM,∵∠CEF=∠ACB=60°,∴EF∥MH,∴四边形EHMF是平行四边形,∵∠EHM=90°,∴四边形EHMF是矩形,∴EH=FM;∵EF=EC,∠CEF=60°,∴△CEF是等边三角形,∴CE=CF,∵∠EHC=∠FMC=90°,∴Rt△EHC≌Rt△FMC(HL),∴CH=CM=CG;∵CG=CE=BH,∴CH=BH,∴CM=CH=BC=×2=,∴CF=CG=2CM=2×=,∴FM2=()2﹣()2=,∵BM=2+=,∴BF====.。

特训07 几何证明解答压轴题 2024-2025学年上海八年级数学上期末复习(原卷版)

特训07 几何证明解答压轴题   2024-2025学年上海八年级数学上期末复习(原卷版)

特训07几何证明压轴题(上海精选,八大题型,含四大热点+二大新方向)目录:题型1:传统解答证明题题型2:热点1-几何中的分类讨论题型3:热点2-动态几何-翻折问题题型4:热点3-动态几何-旋转问题题型5:热点4-新定义题题型6:热点5-几何证明与列函数解析式题型7:新方向-数学活动题题型8:新方向延伸-情景探究题题型1:传统解答证明题1.(22-23八年级上·上海长宁·期末)在Rt ABC △中,已知90BAC ∠=︒,AB AC >,点D 在射线BC 上,连接AD ,2ADB B ∠=∠.(1)如图1,若AD 的垂直平分线经过点B ,求C ∠的度数;(2)如图2,当点D 在边BC 上时,求证:2BC AD =;(3)若2AC =,5BD CD =,请直接写出CD 的长.2.(23-24八年级上·上海徐汇·阶段练习)在ABC V 中,CAB ∠和CBA ∠的平分线AD BE 、交于点P ,连接CP .(1)求证:CP 平分ACB ∠;(2)当ABC V 为等边三角形时,求证:EP PD =;(3)当ABC V 不是等边三角形,且60ACB ∠=︒时,(2)中的结论是否还成立?若成立,请加以证明,若不成立,说明理由.3.(24-25八年级上·上海闵行·期中)在ABC V 中,90ACB ∠=︒,AC BC =,点D 为边BC 上一点,连结AD ,过点C 作CE AD ⊥于点F ,交AB 于点E ,点G 是线段AD 上一点.(1)如图1,连结CG ,如果ACG B ∠=∠,求证:AG CE =;(2)如图2,连结BG 交CE 于点P ,如果点P 恰为BG 的中点,求证:2AG FP =;(3)已知等腰直角三角形的腰长和底边长之比为1)的基础上,连结DE 、EG ,当1CD DE ==时,求四边形CDEG 的面积题型2:热点1-几何中的分类讨论4.(23-24八年级上·上海长宁·期末)已知在Rt ABC 中,90ABC ∠=︒,点P 在边AC 上,连接BP .(1)如图1,如果点P 在线段的垂直平分线上,求证:AP PC =;(2)过点P 作PD BP ⊥,交边BC 于点D ,①如图2,如果点P 是线段AC 的中点,且2BD CD =,求C ∠的度数;,且 线上一点,以AD 为腰作等腰直角DAF △,使90DAF ∠=︒,连接CF .(1)请判断CF 与BC 的位置关系,并说明理由;(2)若8BC =,4CD BC =,求线段AD 的长;(3)如图2,在(2)的条件下,将DAF △沿线段DF 翻折,使点A 与点E 重合,连接CE ,求线段CE 的长.题型4:热点3-动态几何-旋转问题6.(21-22八年级上·上海·期末)已知△ABC 和△ADE 都是等腰直角三角形,其中∠ABC =∠ADE =90°,连接BD 、EC ,点M 为EC 的中点,连接BM 、DM .(1)如图1,当点D 、E 分别在AC 、AB 上时,求证:△BMD 为等腰直角三角形;(2)如图2,将图1中的△ADE 绕点A 逆时针旋转45°,使点D 落在AB 上,此时(1)中的结论“△BMD 为等腰直角三角形”还成立吗?请对你的结论加以证明;(3)如图3,将图2中的△ADE 绕点A 逆时针旋转90°时,△BMD 为等腰直角三角形的结论是否仍成立?若成立,请证明;若不成立,请说明理由.题型5:热点4-新定义题7.(23-24八年级下·上海金山·期末)(1)性质证明:已知:如图1,BP CP 、分别是ABC V 的外角平分线,求证:AP 平分BAC ∠;根据上述证明可以得到这样一条性质:三角形一个内角的平分线和其他两个内角的外角平分线交于一点,我们把这个交点叫做这个三角形的旁心.图1中点P 就是ABC V 的一个旁心.(2)性质应用:①如图2,已知点O 是ABC V 的一个旁心,求证:1902O ABC ∠=︒-∠;②已知点1O 、2O 、3O 是ABC V 的三个旁心,2AB =,在123O O O 中,130O ∠=︒,1213O O O O =,且23O O 经过点B ,求123O O O 的面积.题型6:热点5-几何证明与列函数解析式8.(23-24八年级上·上海虹口·期末)如图,ABC V 中,90,60,6ACB B BC ∠=︒∠=︒=,点D 、E 分别是边AB BC、上的一个动点,且BD BE =,过点D 作DG AB ⊥交射线BC 于点G ,交线段AC 于点F ,设BD x =.(1)如图1,当点G 与点C 重合时,求DCE △的面积;(2)如图2,设当点G 在BC 的延长线上时,FC y =,并写出定义域;(3)若DEF 为直角三角形,求x 的值.9.(23-24八年级上·上海浦东新·期末)如图,在Rt ABC △中,90BAC ∠=︒,6AB =,60C ∠=︒,AD 是BC 边上的中线,动点P 从点AAD 向终点D 运动,动点M 从点D 出发以每秒DB 上运动,点M 与点P 同时出发,设动点运动时间为x.(1)求AD 的长;(2)若动点M 在线段DB 上运动,设PMB ABCS y S =△△,求y 关于x 的函数解析式,并写出定义域;(3)若动点M 在射线DB 上运动,当点P 运动到终点D 时,点M 也停止运动,直接写出当116PMB ABC S S =△△时,x 的值.10.(21-22八年级上·上海·期末)已知:在Rt△ABC中,∠C=90°,∠B=30°,BC=6,左右作平行移动的等边三角形DEF的两个顶点E、F始终在边BC上,DE、DF分别与AB相交于点G、H.(1)如图1,当点F与点C重合时,点D恰好在斜边AB上,求△DEF的周长;(2)如图2,在△DEF作平行移动的过程中,图中是否存在与线段CF始终相等的线段?如果存在,请指出这条线段,并加以证明;如果不存在,请说明理由;(3)假设C点与F点的距离为x,△DEF与△ABC的重叠部分的面积为y,求y与x的函数关系式,并写出定义域.11.(21-22八年级上·上海·期末)如图,已知在Rt△ABC中,∠C=90°,∠CAB=60°,AB=10,点F是AB 中点,点D是射线CB上的一个动点,△ADE是等边三角形,联结EF.(1)当点D在线段CB上时,①求证:△AEF≌△ADC;②联结BE,设C、D间距离为x,BE yBF ,求y关于x的函数解析式及定义域;(2)当∠DAB=15°时,求△ADE的面积(直接写出答案).12.(21-22八年级上·上海·期末)如图,在ABC V 中,90ACB ∠=︒,4B C =,30A ∠=︒,D 是边AC 上不与点A 、C 重合的任意一点,DE AB ⊥,垂足为点E ,M 是BD 的中点.(1)求证:CM EM =;(2)如果设AD x =,CM y =,求y 与x 的函数解析式,并写出函数的定义域;(3)当CME △的面积为时,求x的值.13.(21-22八年级上·上海·期末)如图,在Rt △ABC 中,∠C =90°,AB =BC =D 是边AB 的中点,点E 是边AC 上一个动点,作线段DE 的垂直平分线分别交边AC 、BC 于点M 、N ,设AM =x ,ME =y .(1)当点E 与点C 重合时,求ME 的长;(2)求y 关于x 的函数解析式,并写出函数的定义域;(3)当MN 经过△ABC 一边中点时,请直接写出ME 的长.14.(22-23八年级上·上海青浦·期末)如图,在ABC V 中,D 是AB 的中点,E 是边AC 上一动点,连接DE ,过点D 作⊥DF DE 交边BC 于点F (点F 与点B 、C 不重合),延长FD 到点G ,使DG DF =,连接EF AG 、,已知1068AB BC AC ===,,.(1)求证:AC AG ⊥;(2)设AE x CF y ==,,求y 与x 的函数解析式,并写出自变量x 的取值范围;(3)当BDF V 是以BF 为腰的等腰三角形时,求AE 的长.15.(19-20八年级上·上海徐汇·阶段练习)如图,在△ABC 中,∠ACB=90°,AC=BC=4点D 是边AB 上的动点(点D 与点A 、B 不重合),过点D 作DE ⊥AB 交射线BC 于点E ,联结AE,点F 是AE 的中点,过点D 、F 作直线,交AC 于点G,联结CF 、CD .(1)当点E 在边BC 上,设DB=x ,CE=y①写出y 关于x 的函数关系式及定义域;②判断△CDF 的形状,并给出证明;(2)如果AE=3,求DG 的长.题型7:新方向-数学活动题16.(23-24八年级上·上海徐汇·阶段练习)某同学在一次课外活动中用硬纸片做了两个直角三角形,Rt ABC △中,∠B=90°,30A ∠=︒,6cm BC =.Rt DEF △中,∠D=90°,45E ∠=︒,4cm DE =.该同学将DEF 的直角边DE 与ABC V 的斜边AC 重合在一起,并将DEF 沿AC 方向移动,在移动过程中,D 、E 两点始终在AC 边上.(1)当DEF 移动至什么位置,即AD 的长为多少时,F 、C 的连线与AB 平行?(2)当DEF 移动至什么位置,即AD 的长为多少时,以线段AD 、FC 、BC 的长为三边长的三角形是直角三角形?(3)在DEF 的移动过程中,是否存在某个位置,使得15FCD ∠=︒?如果存在,求出AD 的长;如果不存在,说明理由.17.(24-25九年级上·上海浦东新·期中)图①中的板凳又叫“四脚八叉凳”,是中国传统象具,图②是四脚八叉凳的几何示意图.四脚八叉凳的榫卯结构体现了古人含蓄内敛的审美观.榫眼的设计很有讲究,木工一般用铅笔画出凳面的对称轴,以对称轴为基准向两边各取相同的长度,确定榫眼的位置,如图③所示.板凳的结构设计体现了数学的对称美.现在老师给同学们准备了凳面的木板和凳腿的木棒,请同学们根据要求准确找到榫眼的位置,安装板凳.【驱动任务一】根据“四脚八叉凳”的几何示意图画出它的主视图,如图④【驱动任务二】若A 、B 、C 在同一条直线上,且AB 与地面垂直,如图⑤,小组同学选取25cm 的木棒作为凳脚进行制作,成品凳面与地面距离为7cm ,但是同学们发现此高度缺乏舒适感,所以决定重新调整打孔位置,经过计算发现,将榫眼外移__________cm 时可将凳高调整为20cm .【驱动任务三】根据做板凳的经验和对剩余材料的整理,同学们打算制作如图⑥所示的简易桌子,桌子的主视图如图⑦所示,正方形桌面AC 的边长为45cm ,135cm长的木棒恰好能截成和BC ,则成品桌子的高度为.面还有一个有趣的结论:(1)【问题发现】如图1所示,若AD 是BAC ∠的角平分线,可得到结论:AB BD AC DC=.小李的解法如下:过点D 作DE AB ⊥于点E ,DF AC ⊥于点F ,过点A 作AG BC ⊥于点G ,∵AD 是BAC ∠的角平分线,且DE AB ⊥,DF AC ⊥,∴.∵1212ABD ADC AB DE S AB S AC AC DF ⨯==⨯△△,1212ABD ADC B AG D S BD S CD CD AG ⨯=⨯=△△,∴AB BD AC DC =;(2)【类比探究】如图2所示,若AD 是BAC ∠的外角平分线,AD 与BC 的延长线交于点D .求证:AB BD AC DC=;(3)【直接应用】如图3所示,在Rt ABC △中,90C ∠=︒,AD 是BAC ∠的平分线,且交BC 于D ,若15BD =,9CD =,请利用小李的方法在不添加辅助线的情况下求出AB ;(4)【拓展应用】如图4所示,在ABC V 中,90ABC ∠=︒,9AB =,12BC =,将ABC V 先沿BAC ∠的平分线AD 折叠,B 点刚好落在AC 上的E 点,剪掉重叠部分(即四边形ABDE ),再将余下部分(ABC V )沿DEC ∠的平分线EF 折叠,再剪掉重叠部分(即四边形DEGF ),直接写出剩余部分的面积为.19.(22-23八年级上·上海·阶段练习)已知ABC V ,AD是一条角平分线.(1)【探究发现】如图1所示,若AD 是BAC ∠的角平分线,可得到结论:AB BD AC DC=.小红的解法如下:过点D 作DE AB ⊥于点E ,DF AC ⊥于点F ,过点A 作AG BC ⊥于点G ,AD 是BAC ∠的角平分线,且DE AB ⊥,DF AC ⊥,∴_________________,(_________________________________________)1212ABD ADC AB DE S S AC DF ⨯==⨯△△______________, 1212ABD ADC BD AG S BD S CD CD AG ⨯==⨯ △△,AB BD AC DC ∴=(2)【类比探究】如图2所示,若AD 是BAC ∠的外角平分线,AD 与BC 的延长线交于点D .求证:AB BD AC CD=(3)【拓展应用】如图3所示,在ABC V 中,60BAC ∠=︒,BF 、CE 分别是ABC ∠、ACB ∠的角平分线且相交于点D,若2ED CD =,直接写出FC BC 的值是__________.。

八年级数学下学期期末测试卷(含答案)

八年级数学下学期期末测试卷(含答案)

八年级数学下学期期末测试卷题号一二三总分得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. 木工师傅想利用木条制作一个直角三角形,那么下列各组数据不符合直角三角形的三边长的是( )A. 3,4,5B. 6,8,10C. 5,12,13D. 7,15,172. 要使二次根式√ 2x−4在实数范围内有意义,则x的取值范围是( )A. x>2B. x≥2C. x<2D. x=23. 下列各式计算正确的是( )A. √ 2+√ 3=√ 5B. 2+√ 2=2√ 2C. 3√ 2−√ 2=2√ 2D. √ 12−√ 10=√ 6−√ 524. 数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b相交于点P,根据图象可知,方程x+5=ax+b的解是( )A. x=20B. x=5C. x=25D. x=155. 甲、乙、丙、丁四位同学3次数学成绩的平均分都是120分,方差分别是S2甲=8.6,S2乙=2.6,S2丙=5.0,S2丁=7.2,则这四位同学3次数学成绩最稳定的是()A. 甲B. 乙C. 丙D. 丁6. 下列不能确定四边形ABCD为平行四边形的是( )A. ∠A=∠C,∠B=∠DB. ∠A=∠B=∠C=90∘C. ∠A+∠B=180∘,∠B+∠C=180∘D. ∠A+∠B=180∘,∠C+∠D=180∘7. 棱形ABCD中,对角线AC=5,BD=12,则棱形的高等于()A. 1513B. 3013C. 6013D. 308. 如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点,若∠ACB=30°,AB=8,则MN的长为()A. 2B. 4C. 8D. 169. 如图,在矩形ABCD中,AB=6,AD=4,DM=2,动点P从点A出发,沿路径A→B→C→M 运动,则△AMP的面积y与点P经过的路径长x之间的函数关系用图像表示大致是()A. B.C. D.10. 如图,在正方形ABCD中,E是BC边上的一点,BE=4,EC=8,将正方形边AB沿AE 折叠到AF,延长EF交DC于G,连接CF,现在有如下4个结论:①∠EAG=45°;②FG=FC;③FC//AG;④S△GFC=14其中正确结论的个数是()A. 1B. 2C. 3D. 4二、填空题(本大题共6小题,共18.0分)11. 在数轴上表示实数a的点如图所示,化简√ (a−5)2+|a−2|的结果为.12. 计算:(√ 3+√ 2)2−√ 24=______.13. 如图,在△ABC中,∠ACB=90°,以它的三边为边分别向外作正方形,面积分别为S1,S2,S3,已知S1=5,S2=12,则S3=________.14. 将直线y=2x+1的图象向下平移3个单位长度后所得直线的解析式是.15. 观察下列等式:①3−2√ 2=(√ 2−1)2,②5−2√ 6=(√ 3−√ 2)2,③7−2√ 12=(√ 4−√ 3)2,…请你根据以上规律,写出第6个等式______.16. 春耕期间,市农资公司连续8天调进一批化肥,并在开始调进化肥的第七天开始销售.若进货期间每天调进化肥的吨数与销售期间每天销售化肥的吨数都保持不变,这个公司的化肥存量s(单位:吨)与时间t(单位:天)之间的函数关系如图所示,则该公司这次化肥销售活动(从开始进货到销售完毕)所用的时间是______ 天.三、解答题(本大题共8小题,共52.0分。

2022-2023学年第一学期八年级数学期末复习冲刺卷(05)

2022-2023学年第一学期八年级数学期末复习冲刺卷(05)一、选择题(本题共10小题,每小题3分,共30分)1.以下是清华大学、北京大学、上海交通大学、浙江大学的校徽,其中是轴对称图形的是( )A .B .C .D .2.在实数3.1415926 1.010010001 (2)2 ,223,2.15中,无理数的个数是( ) A .1 B .2 C .3 D .43.以下列各组数为边长能组成直角三角形的是( )A .2、3、4B .13、14、15C .32、42、52D .6、8、104.已知点P (﹣1,y 1),Q (3,y 2)在一次函数y =(m ﹣1)x +3的图象上,且y 1<y 2,则m 的取值范围是( )A .m <1B .m >1C .m >﹣1D .m <﹣15.等腰三角形的两边长分别为4和9,则它的周长( )A .17B .22C .17或22D .216.如图,已知△ABC 的六个元素,则下面甲、乙、丙三个三角形中和△ABC 全等的图形是( )A .甲和乙B .乙和丙C .只有乙D .只有丙7.如图,已知直线y 1=x +m 与y 2=kx ﹣1相交于点P (﹣1,2),则关于x 的不等式x +m <kx ﹣1的解集为( )A.x>2B.x<2C.x>﹣1D.x<﹣18.甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发,他们离出发地的距离s(km)和骑行时间t(h)之间的函数关系如图所示,根据图象信息,以下说法正确的是()A.甲和乙两人同时到达目的地B.甲在途中停留了0.5hC.相遇后,甲的速度小于乙的速度D.他们都骑了20km9.如图,在△ABC中,∠BAC=90°,AD是BC边上的高,BE是AC边的中线,CF是∠ACB的角平分线,CF交AD于点G,交BE于点H,下面说法正确的是()①△ABE的面积=△BCE的面积;②∠F AG=∠FCB;③AF=AG;④BH=CH.A.①②③④B.①②③C.②④D.①③10.如图,在△ABC中,D是AC边上的中点,连接BD,把△BDC沿BD翻折,得到△BDC',DC'与AB交于点E,连接AC',若AD=AC'=2,BD=3,则点D到BC的距离为()A B C D二、填空题(本题共8小题,每小题3分,共24分)11.实数2的平方根是.12.用四舍五入法,对0.12964精确到千分位得到的近似数为.13.在平面直角坐标系中,点A(5,a﹣2)在第四象限,则a满足的条件是.14.等腰三角形的一个外角是110°,则它的顶角的度数是.15.将直线y=﹣x+1向左平移m(m>0)个单位后,经过点(1,﹣4),则m的值为.16.如图,《九章算术》中记载:今有立木,系索其末,委地三尺,引索却行,去本八尺而索尽.问索长几何.译文:今有一竖直着的木柱,在木柱的上端系有绳索,绳索从木柱的上端顺木柱下垂后堆在地面的部分有三尺(绳索比木柱长3尺),牵着绳索退行,在距木柱底部8尺(BC=8)处时而绳索用尽.则木柱长为尺.17.如图,在Rt△ABC中,AC=BC,D是线段AB上一个动点,把△ACD沿直线CD折叠,点A落在同一平面内的A'处,当A'D平行于Rt△ABC的直角边时,∠ADC的大小为.18.如图,△ABC中,AB=10,AC=6,BC=14,D为AC边上一动点(D不与A、C重合),将线段BD绕D点顺时针旋转90°得到线段ED,连接CE,则△CDE面积的最大值为.三、选择题(本题共8小题,共66分)19.(12分)(1)计算:(﹣1)2023(2)计算:﹣(﹣2)2+(π﹣3.14)0(3)求x的值:4x2﹣9=0;(4)求x的值:(2x﹣1)3﹣125=0.20.(6分)如图,在平面直角坐标系中,△ABC各顶点的坐标分别为A(﹣1,1)、B(1,5)、C(4,4).(1)作出△ABC关于y轴对称的图形△A1B1C1,并写出顶点B1的坐标.(2)求△A1B1C1的面积.21.(6分)如图,CD∥AB,△ABC的中线AE的延长线与CD交于点D.(1)若AE=3,求DE的长度;(2)∠DAC的平分线与DC交于点F,连接EF,若AF=DF,AC=DE,求证:AB=AF+EF.22.(8分)已知一次函数y1=k1x+b1和y2=k2x+b2图象如图所示,直线y1与直线y2交于A点(0,3),直线y1、y2分别与x轴交于B、C两点.(1)求函数y1、y2的解析式.(2)求△ABC的面积.(3)已知点P在x轴上,且满足△ACP是等腰三角形,请直接写出P点的坐标.23.(8分)某超市销售10套A品牌运动装和20套B品牌的运动装的利润为4000元,销售20套A品牌和10套B品牌的运动装的利润为3500元.(1)该商店计划一次购进两种品牌的运动装共100套,设超市购进A品牌运动装x套,这100套运动装的销售总利润为y元,求y关于x的函数关系式;(2)在(1)的条件下,若B品牌运动装的进货量不超过A品牌的2倍,该商店购进A、B两种品牌运动服各多少件,才能使销售总利润最大?(3)实际进货时,厂家对A品牌运动装出厂价下调,且限定超市最多购进A品牌运动装70套,A品牌运动装的进价降低了m(0<m<100)元,若商店保持两种运动装的售价不变,请你根据以上信息及(2)中的条件,设计出使这100套运动服销售总利润最大的进货方案.24.(8分)A,B两地相距12千米,甲骑自行车从A地出发前往B地,同时乙步行从B地出发前往A地,如图的折线OPQ和线段EF,分别表示甲、乙两人与A地的距离y甲、y乙与他们所行时间x(h)之间的函数关系,且OP与EF相交于点M.(1)求y乙与x的函数关系式以及两人相遇地点与A地的距离;(2)求线段OP对应的y甲与x的函数关系式;(3)求经过多少小时,甲、乙两人相距3km.25.(8分)如图,直线l1:y=kx+1与x轴交于点D,直线l2:y=﹣x+b与x轴交于点A,且经过定点B(﹣1,5),直线l1与l2交于点C(2,m).(1)填空:k=;b=;m=;(2)在x轴上是否存在一点E,使△BCE的周长最短?若存在,请求出点E的坐标;若不存在,请说明理由.(3)若动点P在射线DC上从点D开始以每秒1个单位的速度运动,连接AP,设点P的运动时间为t秒.是否存在t的值,使△ACP和△ADP的面积比为1:3?若存在,直接写出t的值;若不存在,请说明理由.26.(10分)如图,在平面直角坐标系xOy中,点B、C的坐标分别为(0,0)、(6,0),A是第一象限内的一点,且△ABC是等边三角形.点D的坐标为(2,0),E是边AB上一动点,连接DE,以DE为边在DE 右侧作等边△DEF.(1)求出A点坐标;(2)当点F落在边AC上时,△CDF与△BED全等吗?若全等,请给予证明;若不全等,请说明理由;(3)连接CF,当△CDF是等腰三角形时,直接写出BE的长度.答案与解析一、选择题(本题共10小题,每小题3分,共30分)1.以下是清华大学、北京大学、上海交通大学、浙江大学的校徽,其中是轴对称图形的是( )A .B .C .D .【解析】解:A 、不是轴对称图形,故此选项不合题意;B 、是轴对称图形,故此选项符合题意;C 、不是轴对称图形,故此选项不合题意;D 、不是轴对称图形,故此选项不合题意;故本题选:B .2.在实数3.1415926 1.010010001…,2,2π,223,2.15中,无理数的个数是()A .1B .2C .3D .4【解析】解:3.1415926是有限小数,属于有理数;4,是整数,属于有理数;223是分数,属于有理数; 2.15是循环小数,属于有理数;无理数有:1.010010001…,2,2π,共3个;故本题选:C .3.以下列各组数为边长能组成直角三角形的是( )A .2、3、4B .13、14、15 C .32、42、52 D .6、8、10【解析】解:A 、22+32≠42,故不能组成直角三角形;B 、(13)2+(14)2≠(15)2,故不能组成直角三角形;C 、(32)2+(42)2≠(52)2,故不能组成直角三角形;D 、62+82=102,故能组成直角三角形;故本题选:D.4.已知点P(﹣1,y1),Q(3,y2)在一次函数y=(m﹣1)x+3的图象上,且y1<y2,则m的取值范围是()A.m<1B.m>1C.m>﹣1D.m<﹣1【解析】解:∵点P(﹣1,y1)、点Q(3,y2)在一次函数y=(m﹣1)x+3的图象上,且y1<y2,∴y随x的增大而增大,∴m﹣1>0,解得:m>1,故本题选:B.5.等腰三角形的两边长分别为4和9,则它的周长()A.17B.22C.17或22D.21【解析】解:9为腰长时,三角形的周长为9+9+4=22,9为底边长时,4+4<9,不能组成三角形,故本题选:B.6.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙【解析】解:图甲不符合三角形全等的判定定理,即图甲和△ABC不全等;图乙符合SAS定理,即图乙和△ABC全等;图丙符合AAS定理,即图丙和△ABC全等;故本题选:B.7.如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,2),则关于x的不等式x+m<kx﹣1的解集为()A.x>2B.x<2C.x>﹣1D.x<﹣1【解析】解:根据题意得:当x<﹣1时,y1<y2,∴不等式x+m<kx﹣1的解集为x<﹣1,故本题选:D.8.甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发,他们离出发地的距离s(km)和骑行时间t(h)之间的函数关系如图所示,根据图象信息,以下说法正确的是()A.甲和乙两人同时到达目的地B.甲在途中停留了0.5hC.相遇后,甲的速度小于乙的速度D.他们都骑了20km【解析】解:由函数图象可得:甲比乙先到达目的地,故A错误;甲在中途没有停留,乙在中途停留1﹣0.5=0.5(h),故B错误;相遇后,甲的速度大于乙的速度,故C错误;他们都骑了20km,故D正确;故本题选:D.9.如图,在△ABC中,∠BAC=90°,AD是BC边上的高,BE是AC边的中线,CF是∠ACB的角平分线,CF交AD于点G,交BE于点H,下面说法正确的是()①△ABE的面积=△BCE的面积;②∠F AG=∠FCB;③AF=AG;④BH=CH.A.①②③④B.①②③C.②④D.①③【解析】解:∵BE是AC边的中线,∴AE=CE,∵△ABE的面积=12×AE×AB,△BCE的面积=12×CE×AB,∴△ABE的面积=△BCE的面积,故①正确;∵AD是BC边上的高,∴∠ADC=90°,∴∠DAC+∠ACB=90°,∵∠BAC=90°,∴∠F AG+∠DAC=90°,∴∠F AG=∠ACB,∵CF是∠ACB的角平分线,∴∠ACF=∠FCB,∠ACB=2∠FCB,∴∠F AG=2∠FCB,故②错误;∵在△ACF和△DGC中,∠BAC=∠ADC=90°,∠ACF=∠FCB,∴∠AFG=180°﹣∠BAC﹣∠ACF,∠AGF=∠DGC=180°﹣∠ADC﹣∠FCB,∴∠AFG=∠AGF,∴AF=AG,故③正确;根据已知不能推出∠HBC=∠HCB,即不能推出HB=HC,故④错误;综上,正确的为①③,故本题选:D.10.如图,在△ABC中,D是AC边上的中点,连接BD,把△BDC沿BD翻折,得到△BDC',DC'与AB交于点E,连接AC',若AD=AC'=2,BD=3,则点D到BC的距离为()A B C D【解析】解:如图,连接CC',交BD于点M,过点D作DH⊥BC'于点H,根据题意,点D到BC的距离即点D到BC'的距离,∵AD=AC'=2,D是AC边上的中点,∴DC=AD=2,由翻折知,△BDC≌△BDC',BD垂直平分CC',∴DC=DC'=2,BC=BC',CM=C'M,∴AD=AC'=DC'=2,∴△ADC'为等边三角形,∴∠ADC'=∠AC'D=∠C'AC=60°,∵DC=DC',∴∠DCC'=∠DC'C=12×60°=30°,在Rt△C'DM中,∵∠DC'C=30°,DC'=2,∴DM=1,C'M∴BM=BD﹣DM=3﹣1=2,在Rt△BMC'中,BC'∵S△BDC'=12BC'•DH=14BD•CM,=∴DH,∴点D到BC,故本题选:C.二、填空题(本题共8小题,每小题3分,共24分)11.实数2的平方根是.【解析】解:∵(2=2,∴2的平方根是故本题答案为:12.用四舍五入法,对0.12964精确到千分位得到的近似数为.【解析】解:用四舍五入法,对0.12964精确到千分位得到的近似数为0.130,故本题答案为:0.130.13.在平面直角坐标系中,点A(5,a﹣2)在第四象限,则a满足的条件是.【解析】解:∵在平面直角坐标系中,点A(5,a﹣2)在第四象限,∴a﹣2<0,解得:a<2,故本题答案为:a<2.14.等腰三角形的一个外角是110°,则它的顶角的度数是.【解析】解:∵一个外角是110°,∴与这个外角相邻的内角是180°﹣110°=70°,①当70°角是顶角时,它的顶角度数是70°;②当70°角是底角时,它的顶角度数是180°﹣70°×2=40°;综上,它的顶角度数是70°或40°,故本题答案为:70°或40°.15.将直线y=﹣x+1向左平移m(m>0)个单位后,经过点(1,﹣4),则m的值为.【解析】解:∵直线y=﹣x+1向左平移m(m>0)个单位,∴y=﹣x+m﹣1,将点(1,﹣4)代入y=﹣x+m﹣1,∴﹣1+m﹣1=﹣4,解得:m=﹣2,故本题答案为:﹣2.16.如图,《九章算术》中记载:今有立木,系索其末,委地三尺,引索却行,去本八尺而索尽.问索长几何.译文:今有一竖直着的木柱,在木柱的上端系有绳索,绳索从木柱的上端顺木柱下垂后堆在地面的部分有三尺(绳索比木柱长3尺),牵着绳索退行,在距木柱底部8尺(BC=8)处时而绳索用尽.则木柱长为尺.【解答】解:设木柱长为x尺,根据题意得:AB2+BC2=AC2,则x2+82=(x+3)2,解得:x=556,故本题答案为:556.17.如图,在Rt△ABC中,AC=BC,D是线段AB上一个动点,把△ACD沿直线CD折叠,点A落在同一平面内的A'处,当A'D平行于Rt△ABC的直角边时,∠ADC的大小为.【解析】解:∵Rt△ABC中,AC=BC,∴∠A=∠B=45°,∠ACB=90°,∵把△ACD沿直线CD折叠,∴∠ACD=∠A'CD,∠A=∠A'=45°,若A'D∥BC,∴∠A'=∠BCA'=45°,∴∠ACA'=45°,∴∠ACD=22.5°,∴∠ADC=180°﹣45°﹣22.5°=112.5°;若A'D∥AC,∴∠A+∠A′DA=180°,∴∠ADA'=135°,∴∠ADC=67.5°;综上,∠ADC=112.5°或∠ADC=67.5°,故本题答案为:112.5°或67.5°.18.如图,△ABC中,AB=10,AC=6,BC=14,D为AC边上一动点(D不与A、C重合),将线段BD绕D点顺时针旋转90°得到线段ED,连接CE,则△CDE面积的最大值为.【解析】解:如图,过点E作EF⊥AC于F,作BH⊥AC于点H,∴∠EFD=∠BHD=90°,∵BH2=BC2﹣CH2,BH2=AB2﹣AH2,∴BC2﹣CH2=AB2﹣AH2,∴196﹣(6+AH)2=100﹣AH2,解得:AH=5,∵将线段BD绕D点顺时针旋转90°得到线段ED,∴BD=DE,∠BDE=90°,∴∠BDH+∠EDF=90°,又∠EDF+∠DEF=90°,∴∠BDH=∠DEF,又∠BHD=∠DFE=90°,BD=DE,∴△BDH≌△DEF(AAS)∴EF=DH,∵△CDE面积=12CD×EF=12(6﹣AD)×(5+AD)=﹣12(AD﹣12)2+1518∴△CDE面积的最大值为1518,故本题答案为:1518.三、选择题(本题共8小题,共66分)19.(12分)(1)计算:(﹣1)2023(2)计算:﹣(﹣2)2+(π﹣3.14)0(3)求x的值:4x2﹣9=0;(4)求x的值:(2x﹣1)3﹣125=0.【解析】解:(1)原式=﹣1+2+2=4;(2)原式=﹣4+1+(﹣3)=﹣6;(3)方程整理得:x2=94,开方得:x=±32;(4)方程整理得:(2x﹣1)3=125,开立方得:2x﹣1=5,解得:x=3.20.(6分)如图,在平面直角坐标系中,△ABC各顶点的坐标分别为A(﹣1,1)、B(1,5)、C(4,4).(1)作出△ABC关于y轴对称的图形△A1B1C1,并写出顶点B1的坐标.(2)求△A1B1C1的面积.【解析】解:(1)如图,△A1B1C1即为所求,点B1(﹣1,5);(2)111A B C S ∆=4×5﹣12×2×4﹣12×1×3﹣12×3×5=7. 21.(6分)如图,CD ∥AB ,△ABC 的中线AE 的延长线与CD 交于点D .(1)若AE =3,求DE 的长度;(2)∠DAC 的平分线与DC 交于点F ,连接EF ,若AF =DF ,AC =DE ,求证:AB =AF +EF .【解析】解:(1)∵CD ∥AB ,∴∠B =∠DCE ,∵AE 是△ABC 的中线,∴CE =BE ,在△ABE 和△DCE 中,B DCE BE CEAEB DEC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABE ≌△DCE (ASA ),∴AE =DE =3,∴DE 的长为3;(2)∵△ABE ≌△DCE ,∴AB =DC ,∵AF 平分∠DAC ,∴∠CAF =∠DAF ,∵AC =DE ,AE =DE ,∴AC =AE ,在△CAF 和△EAF 中,AC AE CAF EAF AF AF =⎧⎪∠=∠⎨⎪=⎩,∴△CAF ≌△EAF (SAS ),∴CF =EF ,∴AB =CD =CF +DF =EF +AF .22.(8分)已知一次函数y 1=k 1x +b 1和y 2=k 2x +b 2图象如图所示,直线y 1与直线y 2交于A 点(0,3),直线y 1、y 2分别与x 轴交于B 、C 两点.(1)求函数y 1、y 2的解析式.(2)求△ABC 的面积.(3)已知点P 在x 轴上,且满足△ACP 是等腰三角形,请直接写出P 点的坐标.【解析】解:(1)由图象得:B (1,0),C (3,0),把A (0,3),C (3,0)代入y 2=k 2x +b 2,得:222330b k b =⎧⎨+=⎩,解得:2213k b =-⎧⎨=⎩, ∴函数y 2的函数关系式y 2=﹣x +3,把A (0,3),B (1,0)代入y 1=k 1x +b 1,得:11133k b b +=⎧⎨=⎩,解得:1133k b =-⎧⎨=⎩, ∴y 1的函数关系式为:y 1=﹣3x +3;(2)S △ABC =12BC •AO =12×2×3=3; (3)∵OA =OC =3,∴AC =①当AP =AC =∴OP =OC =3,∴P (﹣3,0);②当AC =CP =OP =CP ﹣OC =3或OP =OC +CP =,∴P (3﹣,0)或(0);③当AP=CP时,P在AC的垂直平分线上,∵OA=OC,∴P与O重合,∴P(0,0);综上,P点坐标为:(﹣3,0)或(3﹣,0)或(0,0)或(0).23.(8分)某超市销售10套A品牌运动装和20套B品牌的运动装的利润为4000元,销售20套A品牌和10套B品牌的运动装的利润为3500元.(1)该商店计划一次购进两种品牌的运动装共100套,设超市购进A品牌运动装x套,这100套运动装的销售总利润为y元,求y关于x的函数关系式;(2)在(1)的条件下,若B品牌运动装的进货量不超过A品牌的2倍,该商店购进A、B两种品牌运动服各多少件,才能使销售总利润最大?(3)实际进货时,厂家对A品牌运动装出厂价下调,且限定超市最多购进A品牌运动装70套,A品牌运动装的进价降低了m(0<m<100)元,若商店保持两种运动装的售价不变,请你根据以上信息及(2)中的条件,设计出使这100套运动服销售总利润最大的进货方案.【解析】解:(1)设每套A种品牌的运动装的销售利润为a,每套B品牌的运动装的销售利润为b元,得:1020400020103500a ba b+=⎧⎨+=⎩,解得:100150ab=⎧⎨=⎩,∴y=100x+150(100﹣x),即y=﹣50x+15000;(2)根据题意得:100﹣x≤2x,解得:x≥1003,∵y=﹣50x+15000,﹣50<0,∴y随x的增大而减小.∵x为正整数,∴当x=34时,y取得最大值,此时100﹣x=66,即超市购进34套A品牌运动装和66套B品牌运动装才能获得最大利润;(3)根据题意得:y=(100+m)x+150(100﹣x),即y=(m﹣50)x+15000,(1003≤x≤70).①当0<m<50时,m﹣50<0,y随x的增大而减小,∴当x=34时,y取得最大值,超市购进34套A品牌运动装和66套B品牌运动装才能获得最大利润;②当m=50时,m﹣50=0,y=15000,即超市购进A品牌的运动装数量满足1003≤x≤70的整数时,均获得最大利润;③当50<m<100时,m﹣50>0,y随x的增大而增大,∴x=70时,y取得最大值,即超市购进70套A品牌运动装和30套B品牌运动装才能获得最大利润.24.(8分)A,B两地相距12千米,甲骑自行车从A地出发前往B地,同时乙步行从B地出发前往A地,如图的折线OPQ和线段EF,分别表示甲、乙两人与A地的距离y甲、y乙与他们所行时间x(h)之间的函数关系,且OP与EF相交于点M.(1)求y乙与x的函数关系式以及两人相遇地点与A地的距离;(2)求线段OP对应的y甲与x的函数关系式;(3)求经过多少小时,甲、乙两人相距3km.【解析】解:(1)设y乙与x的函数关系式是y乙=kx+b,∵点(0,12),(2,0)在函数y乙=kx+b的图象上,∴1220bk b=⎧⎨+=⎩,解得:612kb=-⎧⎨=⎩,∴y乙=﹣6x+12,当x=0.5时,y乙=﹣6×0.5+12=9,∴两人相遇地点与A地的距离是9km;(2)设线段OP对应的y甲与x的函数关系式是y甲=ax,∵点(0.5,9)在函数y甲=ax的图象上,∴9=0.5a,解得:a=18,∴线段OP对应的y甲=18x;(3)令|18x﹣(﹣6x+12)|=3,解得:x1=38,x2=58,∴经过38小时或58小时,甲、乙两人相距3km.25.(8分)如图,直线l1:y=kx+1与x轴交于点D,直线l2:y=﹣x+b与x轴交于点A,且经过定点B(﹣1,5),直线l1与l2交于点C(2,m).(1)填空:k=;b=;m=;(2)在x轴上是否存在一点E,使△BCE的周长最短?若存在,请求出点E的坐标;若不存在,请说明理由.(3)若动点P在射线DC上从点D开始以每秒1个单位的速度运动,连接AP,设点P的运动时间为t秒.是否存在t的值,使△ACP和△ADP的面积比为1:3?若存在,直接写出t的值;若不存在,请说明理由.【解析】解:(1)∵直线l2:y=﹣x+b与x轴交于点A,且经过定点B(﹣1,5),∴5=1+b,解得:b=4,∴直线l2:y=﹣x+4,∵直线l2:y=﹣x+4经过点C(2,m),∴m=﹣2+4=2,∴C(2,2),把C(2,2)代入y=kx+1,解得:k=12,故本题答案为:12,4,2;(2)如图,作点C关于x轴的对称点C′,连接BC′交x轴于E,连接EC,则△BCE的周长最小.∵B(﹣1,5),C′(2,﹣2),∴直线BC′的解析式为y=﹣73x+83,令y=0,解得:x=87,∴E(87,0),∴存在一点E,使△BCE的周长最短,E(87,0);(3)∵直线l1:y=12x+1,∴D(﹣2,0),∵C(2,2),∴CD=,∵点P在射线DC上从点D开始以每秒1个单位的速度运动,运动时间为t秒.∴DP=t,分两种情况:①如图,点P在线段DC上,∵△ACP和△ADP的面积比为1:3,∴13 CPDP=,∴34 DPCD=,∴DP=34,∴t;②如图,点P在线段DC的延长线上,∵△ACP和△ADP的面积比为1:3,∴13 CPDP=,∴32 DPCD=,∴DP=32=,∴t=;综上,存在t的值,使△ACP和△ADP的面积比为1:3,t或.26.(10分)如图,在平面直角坐标系xOy中,点B、C的坐标分别为(0,0)、(6,0),A是第一象限内的一点,且△ABC是等边三角形.点D的坐标为(2,0),E是边AB上一动点,连接DE,以DE为边在DE 右侧作等边△DEF.(1)求出A点坐标;(2)当点F落在边AC上时,△CDF与△BED全等吗?若全等,请给予证明;若不全等,请说明理由;(3)连接CF,当△CDF是等腰三角形时,直接写出BE的长度.【解答】解:(1)如图1中,过点A作AH⊥OC交OC于点H,∵C(6,0),∴OC=6,∵△AOC是等边三角形,AH⊥OC,∴∠AOH=60°,OH=HC=3,∴AH=∴A(3,;(2)△CDF≌△BED,证明:如图2,∵△ABC是等边三角形,△DEF是等边三角形,∴∠ACB=∠ABC=∠EDF=60°,DE=DF,即∠DCF=∠EBD,∵∠EDC=∠EDF+∠CDF=∠ABC+∠EBD,∴∠CDF=∠BED,在△CDF 和△BED 中,DCF EBD CDF BED DF ED ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CDF ≌△BED (AAS );(3)如图3﹣1中,当CD =CF 时,过点C 作CJ ⊥DF 交DF 于点J ,过点D 作DK ⊥BE 交BE 于点K ,过点F 作FP ⊥CD 交CD 于点P ,设DE =DF =x ,∵D (2,0),∴OD =2,∵∠DKO =90°,∠DOK =60°,∴∠ODK =30°,∴OK =12OD =1,DK∵CD =CF ,CJ ⊥DF ,∴DJ =FJ =12x , ∵∠EDC =∠ABC +∠DEK =∠EDF +∠FDP ,∴∠DEK =∠FDP ,∵∠DKE =∠FPD =90°,∠DEK =∠FDP ,DE =FD ,∴△DKE ≌△FPD (AAS ),∴DK =FP∵S △CDF =12•CD •FP =12•DF •CJ , ∴12×412×x解得:x 2=32﹣x 2=,∴EK 2=DF 2﹣FP 2=x 2﹣32=29﹣42∴EK=4∴BE=BK+EK=5如图3﹣2中,当FD=FC时,过点F作FT⊥CD交CD于点T.∵FD=FC,FT⊥CD,∴DT=CT=2,∵∠EDC=∠ABC+∠DEK=∠EDF+∠FDT,∴∠DEK=∠FDT,∵∠DKE=∠FTD=90°,∠DEK=∠FDT,ED=DF,∴△EKD≌△DTF(AAS),∴EK=DT=2,∴BE=BK+EK=1+2=3;如图3﹣3中,当DF=DC=4时,DE=DF=4,∴EK∴BE=BK+EK=综上,满足条件的BE的值为53或。

新人教版八年级数学下册期末考试卷及答案【可打印】

新人教版八年级数学下册期末考试卷及答案【可打印】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.若32a 3a +=﹣a 3a +,则a 的取值范围是( )A .﹣3≤a ≤0B .a ≤0C .a <0D .a ≥﹣32.下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有( )A .1个B .2个C .3个D .4个3.对于函数y =2x ﹣1,下列说法正确的是( )A .它的图象过点(1,0)B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当x >1时,y >0 4.若关于x 的方程333x m m x x++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m ≠32C .m >﹣94D .m >﹣94且m ≠﹣345.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .7086480x y x y +=⎧⎨+=⎩B .7068480x y x y +=⎧⎨+=⎩C .4806870x y x y +=⎧⎨+=⎩D .4808670x y x y +=⎧⎨+=⎩6.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°7.如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,且∠ADC=110°,则∠MAB=( )A .30°B .35°C .45°D .60°8.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .809.如图,菱形ABCD 的周长为28,对角线AC ,BD 交于点O ,E 为AD 的中点,则OE 的长等于( )A .2B .3.5C .7D .1410.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP+PN 的最小值是( )A .12B .1C 2D .2二、填空题(本大题共6小题,每小题3分,共18分)1.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.2.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.3.如果不等式组841x x x m+<-⎧⎨>⎩ 的解集是3x >,那么m 的取值范围是________.4.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.5.如图,正方形纸片ABCD 的边长为12,E 是边CD 上一点,连接AE .折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上.若5DE =,则GE 的长为__________.6.如图,在矩形ABCD 中,BC =20cm ,点P 和点Q 分别从点B 和点D 出发,按逆时针方向沿矩形ABCD 的边运动,点P 和点Q 的速度分别为3cm /s 和2cm /s ,则最快_________s 后,四边形ABPQ 成为矩形.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)257320x y x y -=⎧⎨-=⎩ (2)134342x y x y ⎧-=⎪⎨⎪-=⎩2.先化简,再求值:822224x x x x x +⎛⎫-+÷ ⎪--⎝⎭,其中12x =-.3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.如图,直线y=kx+6分别与x 轴、y 轴交于点E ,F ,已知点E 的坐标为(﹣8,0),点A 的坐标为(﹣6,0).(1)求k 的值;(2)若点P (x ,y )是该直线上的一个动点,且在第二象限内运动,试写出△OPA 的面积S 关于x 的函数解析式,并写出自变量x 的取值范围.(3)探究:当点P 运动到什么位置时,△OPA 的面积为,并说明理由.5.如图,有一个直角三角形纸片,两直角边6AC =cm ,8BC = cm ,现将直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?6.2017年5月,某县突降暴雨,造成山体滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1 000件帐篷与乙种货车装运800件帐篷所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐篷;(2)如果这批帐篷有1 490件,用甲、乙两种汽车共16辆装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其余装满,求甲、乙两种货车各有多少辆.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、D4、B5、A6、A7、B8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、82、22()1y x =-+3、3m ≤.4、20°.5、49136、4三、解答题(本大题共6小题,共72分)1、(1)55x y =⎧⎨=⎩;(2)64x y =⎧⎨=⎩.2、3.3、(1)102b -≤≤;(2)2 4、(1)k=;(2)△OPA 的面积S=x+18 (﹣8<x <0);(3)点P 坐标为(,)或(,)时,三角形OPA 的面积为.5、CD 的长为3cm.6、(1)甲种货车每辆车可装100件帐篷,乙种货车每辆车可装80件帐篷;(2)甲种货车有12辆,乙种货车有4辆.。

八年级数学下册期末考试卷(含有答案)

八年级数学下册期末考试卷(含有答案)(满分:120分;时间120分钟)一、选择题(本大题共10个小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案A超过一个均记零分。

)1. 若式子√2x−4在实数范围内有意义,则x的取值范围是( )A. x≠2B. x≥2C. x≤2D. x≠−22. 下列方程是一元二次方程的是( )=5 D. x2=0A. x2+2y=1B. x3−2x=3C. x2+1x23. 下列说法中正确的有( ) ①四边相等的四边形一定是菱形; ②顺次连接矩形各边中点形成的四边形定是正方形; ③对角线相等的四边形一定是矩形; ④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分.A. 4个B. 3个C. 2个D. 1个4. 把代数式(a−1)⋅√1中的a−1移到根号内,那么这个代数式等于( )1−aA. −√1−aB. √a−1C. √1−aD. −√a−15. 陈师傅应客户要求加工4个长为4cm、宽为3cm的矩形零件.在交付客户之前,陈师傅需要对4个零件进行检测.根据零件的检测结果,图中有可能不合格的零件是( )A. B. C. D.6. 已知m是一元二次方程x2−3x+1=0的一个根,则2022−m2+3m的值为( )A. 2023B. 2022C. 2021D. −20207. 对角线长分别为6和8的菱形ABCD如图所示,点O为对角线的交点,过点O折叠菱形,使B,B′两点重合,MN是折痕.若B′M=1,则CN的长为( )A. 7B. 6C. 5D. 48. 若最简二次根式√7a+b与√6a−bb+3是同类二次根式,则a+b的值为( )A. 2B. −2C. −1D. 19. 关于x的一元二次方程(m−3)x2+m2x=9x+5化为一般形式后不含一次项,则m的值为( )A. 0B. ±3C. 3D. −3A. 2个B. 3个C. 4个D. 5个二、填空题(本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分只要求填写最后结果。

人教版八年级数学下册`期末提优复习:第16--17章附答案

第16章二次根式1.计算的结果为()A.B.C.2 D.2.下列计算正确的是()A.4﹣3=1 B.+=C.+=3D.3+2=53.下列各式①;②;③;④;⑤,其中二次根式的个数有()A.1个B.2个C.3个D.4个4.在二次根式,,,,,中,最简二次根式的个数是()A.1 B.2 C.3 D.45.函数y=++2,则x y的值为()A.0 B.2 C.4 D.86.已知a=15 -2,b=15 +2,则a2+b2+7 的值为()A、3B、4C、5D、67.如果ab>0,a+b<0,那么下面各式:①=,②×=1,③÷=﹣b,其中正确的是()A.①②B.②③C.①③D.①②③8.下列说法正确的是()A .的倒数B .C .的相反数是D .是分数9.把(2﹣x )的根号外的(2﹣x )移入根号内得( )A .B .C .﹣D .﹣10.已知方程+3=,则此方程的正整数解的组数是( )A .1B .2C .3D .411.化简﹣= .12.下列各式①,②,③,④,⑤,⑥,⑦(其中a <0)中,其中二次根式有________个.13.已知1<x <2,,则的值是 .14.若最简二次根式与的被开方数相同,则a 的值为 .15.计算:+-1+(2+1)(3-)=__________.16.若3)3(-•=-m m m m ,则m 的取值范围是 。

17.已知y=+﹣4,计算x﹣y2的值.18.若x,y都是实数,且y=+1,求+3y的值.19.已知实数x,y满足x2+y2﹣4x﹣2y+5=0,求的值.20.阅读材料,请回答下列问题.材料一:我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积,用现代式子表示即为:S=①(其中a,b,c为三角形的三边长,S为面积),而另一个文明古国古希腊也有求三角形面积的“海伦公式”;S=……②(其中p=)材料二:对于平方差公式:a2﹣b2=(a+b)(a﹣b)公式逆用可得:(a+b)(a﹣b)=a2﹣b2,例:a2﹣(b+c)2=(a+b+c)(a﹣b﹣c):(1)若已知三角形的三边长分别为4,5,7,请分别运用公式①和公式②,计算该三角形的面积;(2)你能否由公式①推导出公式②?请试试,写出推导过程.21.已知x=(+),y=(﹣),求下列各式的值.(1)x2﹣xy+y2;(2)+.22.已知二次根式.(1)当x =3时,求的值.(2)若x 是正数,是整数,求x 的最小值.23.已知长方形的长为a ,宽为b ,且a =,b =.(1)求长方形的周长;(2)当S 长方形=S 正方形时,求正方形的周长.24.已知:的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学期末复习卷

时间:90分钟 满分:100分
一、选择题:每小题3分,共30分
题号 1 2 3 4 5 6 7 8 9 10
答案
1.若代数式 有意义,则实数x的取值范围是 .
A.x>0 B.x≥0 C.x>0且x≠2 D.x≥0且x≠2
2.下列计算正确的是 .
A. B.
C. D.
3. 下列各组数据中,以它们为边长不能构成直角三角形的是 .
A.3,4,5 B.5,12,13 C. D.1,2,3x
4. 已知一次函y=-2x+2,点A-1,a,B-2,b在该函数图像上,则a与b的大小关系是 .
A. a < b B. a>b C.a ≥ b D.a = b
5. 若一个菱形的两条对角线长分别是5cm和10cm,则与该菱形面积相等 的正方形的
边长是 .

A.6cm B.5cm C. cm D.7.5cm
6. 如图,正方形ABCD是由9个 边长为1的小正方形组成,每个小正方形的顶点都
叫格点,连接AE,AF则∠EAF= .

A.30° B.45° C.60° D.35°
7.鞋店卖鞋时,商家主要关注鞋尺码的
A.平均数 B.众数 C.中位数 D.方差
8. 如图,已知菱形ABCD的边长为4,∠ABC=120 °,过B作BE⊥AD,则BE的长
为 。
A. B. C.2 D.1
9. 在四边形ABCD中 ,对角线AC、BD相交于点O,给出下列四组条件:
①AB∥CD AD∥BC ②AB=CD AD=BC ③AO=CO BO=DO
④AB∥CD AD=BC 其中一定能判断这个四边形是平行四边形的共有 .
A.1组 B.2组 C.3组 D.4组
10.已知点Pm,n在第四象限,则直线y=nx+m图象大致是下列的 .
二、填空每小题3分,共24分
11、计算 的结果是_________.
12、若直角三角形三边长分别为6cm,8cm和Xcm,则X=_________.
13、平行四边形ABCD中,AB=3cm,∠ABC的平分线BE交AD于E,DE=1cm,则
BC=_________.

14、顺次连接菱形四边中点所得四边形是_________.
15、如图,直线L过正方形ABCD的顶点B,点A、C到L的距离分别是1和2,则正
方形的面积为_________.

16、如图,在平行四边形ABCD中,AC⊥BC,E为AB的中点,若CE=5,AC=8,则
AD=_________.

17、如图,一次函数的y=kx+b图象经过A2, 4、B0,2两点,与x轴交于点C,则
ΔAOC的面积为_________.

18、如图,一次函数y=k x+b与x轴、y轴分别交于A、B两点 ,则不等式
kx+b>1的解集是_________.
三、解答题共46分,19、 20每题8分,21、22每题9分,23题12分
19.本题8 分
为了学生的终身发展,某中学积极开展第二课堂,下面是该中学一部分学生参加五个
学习小组的统计表和扇形统计图,请根据图表提供的信息回答下列问题:

学习小组 体育 美术 音乐 写作 奥数
人数 75 54 30
1参加课外小组学习的学生共有_________ 名
2在表格中的空格内填上相应的数字.
3表格中的五个数据的中位数是_________,众数是________.
20.本题8分如图, 一次函数y=-x+m与y轴交于点B,与正比例函数y= x的图象交
于点P2,n

1 求m,n的值
2 写出当一次函数的函数值大于正比例函数的函数值时的x的取值范围
21.本题9分已知矩形ABCD中, AB=3cm,AD=4cm,点E、F 分别在边AD、BC上,连接
B、E,D、F.分别把RtΔBAE和RtΔDCF沿 BE,DF折叠成如图所示位置。

1若得到四边形 BFDE是菱形,求AE的长.
2 若折叠后点 和点 恰好落在 对角线BD上,求AE的长.
22.本题9分 为了满足市场需求,某厂家生产A、B两种款式的环保购物袋,每天共
生产5000个,两种购物袋的成本和售价如下表

成本元/个 售价 元/个
A 2 2.4
B 3 3.6
设每天生产A种购物袋x个,每天共获利y元
1 求y与x的函数解析式
2 如果该厂每天最多投入成本12000元,那么每天最多获利多少元?
23本题12分如图,在Rt△ABC中,∠ACB=90,过点C的直线MN∥AB,D为AB边上一
点,过点D作DE⊥BC,交直线MN于E, 垂足为F,连接CD,BE

1 求证:CE=AD
2 当点D在AB中点使,四边形BECD是什么特殊四边形?说明理由
3 若D为AB的中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?说明理
由。

一、1 D,2 C, 3 D,4 A,5 B,6 B,7 B,8 A,9 C,10 D.
二、112,1210cm或 cm,134cm,14矩形,155,166,174,18x<0.
三、19、1300人,275、66,366、75.
20、1m=3,n=1. 5分2x<2.3分
211解:设AE=x,则ED=4-x, ∵四边形EBFD是菱形,∴EB=4-X,由勾股定理建立方程
得到x= ,5分2AE= ,3分

22、1y=-0.2x+3000.5分
2由题意可得:2x+35000-x≤12000,解得x≥3000,在函数y=-0.2x+3000中,k=-0.2,
所以y随 x的增大而减小,所以当x=3000时,最大利润y=-0.2×3000+3000=2400.4分

23、1证明:∵DE⊥BC,∠ACB=90°∴AC∥DE,又∵MN∥AB,
∴四边形CADE是平行四边形,∴CE=AD.5分
2四边形BECD是菱形,理由:D是AB边的中点,所以AD=DB,又AD=CE,所以DB=CE,而
DB∥CE,四边形DBEC是平行四边形,

因为ΔACB是直角三角形,D是斜边AB的中点,所以CD=DB,所以四边形BECD是菱形。
4分

3∠A=45°时,四边形BECD是正方形,理由:∵∠ACB=90°又∠A=45°∴CA=CB,点D
是AB的中点,∴CD⊥AB,即∠CDB=90°,而四边形BECD是菱形,∴四边形BECD是正方形。
3分

感谢您的阅读,祝您生活愉快。

相关文档
最新文档