层次分析法

合集下载

层次分析法

层次分析法

(一)层次分析法1、层次分析法的概念“层次分析法的基本原理是将复杂系统中的各种因素,依据相互关联及隶属关系划分为一个递阶层次结构;依赖专家经验及直觉评判同一层次内因素的相对重要性,并用一致性准则检验评判的准确性;然后在递阶层次结构内进行合成;以得到决策因素相对于目标的重要性的总排序。

”12、层次分析法的主要步骤(1)构建层次分析的结构模型首先将复杂的问题进行条理化和层次化改造,构造出一个层次分析的结构模型,在该模型中,复杂问题被分解为目标层、准则层和方案层三类不同层次.其中目标层中只有一个元素,一般是分析问题的预定目标,其余每一层因素受上一层次因素支配。

准则层包括了实现目标的中间环节,它包括下一层次的子准则,即方案层,方案层为系统层次分析的最直接表现形式。

层次分析法的结构模型在上图所示模型中,A层次为目标层元素,B 层次为准则层元素,一般也称为一级指1张宏华、《AHP在公路BOT项目风险评价中的应用》、科技资讯、2009年标,C层次为方案层元素,也可称为二级指标。

(2)专家评分建立层次分析法判断矩阵为了建立指标权重评判标准和构造判断矩阵,Saaty提出相对重要性比例标度,即1~9 层次比例标度,相对重要性比例标度的含义如表2—3所示。

假设有n个元素C1、C2,。

,C n给定一个准则,利用上表所给的相对重要性比例标度方,对元素C i和C j做两两比较判断,获得相对重要度的值a ij,构成矩阵。

专家根据评判准则对各个因素的权重两两比较并进行了打分之后,经过整理,可以得到因素权重的判断矩阵A:矩阵 A 中的各元素a ij 表示行指标A i 对列指标A j 相对重要性的比例标度,则判断矩阵A 中指标两两比较的特点有a ij >0,a ij =1,a ij =1/a ji (i ,j=1,2,。

..。

..n )。

如果a ij <1,表示A j 比A i 重要; 如果a ij >1,表示A i 比A j 重要; 如果a ij =1,表示A j 与A i 同样重要.根据判断矩阵A 在选择上的一致性要求,理想情况下,a ik*a jk =a ij (代表相对重要性所具有的传递性原理,满足该性质的矩阵A 称为一致矩阵),虽然在构造判断矩阵A 时并不要求判断具有一致性,但判断偏离一致性过大也是不允许的。

什么是层次分析法

什么是层次分析法

什么是层次分析法?层次分析法(AHP)是将决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。

该方法是美国运筹学家匹茨堡大学教授萨蒂于本世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。

这种方法的特点是在对复杂的决策问题的本质、影响因素及其内在关系等进行深入分析的基础上,利用较少的定量信息使决策的思维过程数学化,从而为多目标、多准则或无结构特性的复杂决策问题提供简便的决策方法。

尤其适合于对决策结果难于直接准确计量的场合。

层次分析法的步骤如下:(1)通过对系统的深刻认识,确定该系统的总目标,弄清规划决策所涉及的范围、所要采取的措施方案和政策、实现目标的准则、策略和各种约束条件等,广泛地收集信息。

(2)建立一个多层次的递阶结构,按目标的不同、实现功能的差异,将系统分为几个等级层次。

例如:图16-7就是以递阶层次表示的国家富强的一般结构。

(3)确定以上递阶结构中相邻层次元素间相关程度。

通过构造两比较判断矩阵及矩阵运算的数学方法,确定对于上一层次的某个元素而言,本层次中与其相关元素的重要性排序--相对权值。

(4)计算各层元素对系统目标的合成权重,进行总排序,以确定递阶结构图中最底层各个元素的总目标中的重要程度。

(5)根据分析计算结果,考虑相应的决策。

层次分析法的整个过程体现了人的决策思维的基本特征,即分解、判断与综合,易学易用,而且定性与定量相结合,便于决策者之间彼此沟通,是一种十分有效的系统分析方法,广泛地应用在经济管理规划、能源开发利用与资源分析、城市产业规划、人才预测、交通运输、水资源分析利用等方面首先悼念下我的腾讯笔试,挂了。

研发的基础知识真是变态啊,得静心看书啊!!今天是我阿里数据分析师的面试,通知的时间时下午4点50到5点40。

层次分析法

层次分析法

bn1
bn2 ……
bnn
bij是对于Ak而言,Bi对Bj的相对重要性的数值表示。
Bij通常取1、3、5、7、9及其他们的倒数,其含义为:
尺度
1 3 5 7 9
含义
第i个因素与第j个因素的影响相同 第i个因素比第j个因素的影响稍强 第i个因素比第j个因素的影响强 第i个因素比第j个因素的影响明强 第i个因素比第j个因素的影响绝对地强
层次分析法
一 问题的提出
例1 购物 买钢笔,一般要依据质量、颜色、实用性、价格、
外形等方面的因素选择某一支钢笔。 下馆子,则要依据馆子的饭菜质量、区位条件、档
次、饭菜价格、服务质量等方面因素来选择。
例2 旅游 假期旅游,是去风光秀丽的苏州,还是去迷人的
北戴河,或者是去山水甲天下的桂林,一般会依据景 色、费用、食宿条件、旅途等因素选择去哪个地方。
课题D2
课题可行性B3

研财

究政

周支

期持
c3
c4
c5
课题D3
层次分解时注意事项:
如果所选的要素不合理,其含义混淆不清,或 要素间的关系不正确,都会降低AHP法的结果质量, 甚至导致AHP法决策失败。 为保证递阶层次结构的合理性,需注意以下问题: 1、要对问题的影响因素有充分的理解,必要的时 候可以咨询相关的专家; 2、分解简化问题时把握主要因素,不漏不多 3、注意相比较元素之间的强度关系,相差太悬殊 的要素不能在同一层次比较。 4、以上均为完全层次
层次总排序的一致性检验
(1)
(2)
(3)
在(1)式中,CI为层次总排序的一致性指标,CIj为与aj对应 的B层次中判断矩阵的一致性指标;在(2)式中,RI为层次总排 序的随机一致性指标,RIj为与aj对应的B层次中判断矩阵的随 机一致性指标;在(3)式中,CR为层次总排序的随机一致性比例。

层次分析法

层次分析法

《运筹学》
例1
大学毕业生就业选择问题 获得大学毕业学位的毕业生,在“双向选择” 时,用人单位与毕业生都有各自的选择标准和要求。 就毕业生来说选择单位的标准和要求是多方面的, 例如: ①能发挥自己才干作出较好贡献(即工作岗位适 合发挥自己的专长); ②工作收入较好(待遇好); ③生活环境好(大城市、气候等工作条件等); ④单位名声好(声誉等); ⑤工作环境好(人际关系和谐等) ⑥发展晋升机会多(如新单位或前景好)等。
允许不一致,但要确定不一致的允许范围
2010年6月
管理工程学院
《运筹学》
w1 考察完全一致的情况 w 1 W ( 1) w1 , w2 ,wn 可作为一个排序向量 w2 w A 成对比较 1 令aij wi / w j 满足 aij a jk aik , i, j, k 1,2,, n wn 的正互反阵A称一致阵。 w1
它是用一定标度把人的主观判断进行客观量化,是将决策有关的元素分解 成目标、准则、方案等层次,在此基础之上进行定性和定量分析的分析方法。
2010年6月
管理工程学院
《运筹学》
层次分析法的特点: 在对复杂的决策问题的本质、影响因素及其内在关系等进行深入分析的基 础上,利用较少的定量信息使决策的思维过程数学化,从而为多目标、多准则
1 A (aij ) nn , aij 0, a ji aij
C2 C3 C4 C5
C3
C4 C5
1/ 2 4 3 3 1 2 1 7 5 5 A 1/ 4 1/ 7 1 1 / 2 1 / 3 1 / 3 1 / 5 2 1 1 3 1 1 1/ 3 1/ 5 要由A确定C1,… , Cn对O的权向量

层次分析法

层次分析法

4.层次总排序 为了得到层次结构中某层元素对于总体目标组合权重 和它们与上层元素的相互影响,需要利用该层所有层次单 排序的结果,计算出该层元素的组合权重,这个过程称为 层次总排序。 层次总排序这一步,需要从上到下逐层排序进行,最 终计算结果得到最低层次元素,即要决策方案优先次序的 相对权重。 一般来说,对于最高层之下的第二层次单排序即为总 排序。假设上一层所有元素A1,A2 ,…Ak的层次单排序已 完成,得到的权重为a1, a2,…ak,与Ai(1≤i≤k)对应的本层次元 素为B1,B2,…Bm单排序结果为
五、应用实例
某工厂有一笔企业留成利润,要由厂领导和职代会 决定如何利用,可供选择的方案有:发奖金、扩建福利设 施、引用新设备,为进一步促进企业发展,如何合理利用 这笔利润? 第一步 对于这个问题采用层次分析法进行分析,所 有措施的目的都是为了更好地调动职工生产积极性,提高 企业技术水平和改善职工生活,当然最终目的是为了促进 企业的发展,因此,建立的递阶层次结构如图所示。
5.进行一致性检验。
七、应用层次分析法的注意事项 如果所选的要素不合理,其含义混淆不清,或要素 间的关系不正确,都会降低AHP法的结果质量,甚至导 致AHP法决策失败。 为保证递阶层次结构的合理性,需把握以下原则: 1.分解简化问题时把握主要因素,不漏不多; 2.注意相比较元素之间强度关系,相差太悬殊的要 素不能在同一层次比较。
A
A , A ,, A 1 2 n
w1 / w1 A2 w2 / w1 A An wn / w1
A 1

w1 / w2 w1 / wn w2 / w2 w2 / wn wn / w2 wn / wn
A 称为判断矩阵。若取重量向量 W (w1, w2 ,, wn )T ,则有 AW n W 于是 W 是判断矩阵 A 的特征向量, n是 A 的一个特征值。

层次分析法简介

层次分析法简介
– 如果所选的要素不合理,其含义混淆不清, 或要素间的关系不正确,都会降低AHP法的 结果质量,甚至导致AHP法决策失败。
– 为保证递阶层次结构的合理性,需把握以下 原则:
– 1、分解简化问题时把握主要因素,不漏不 多;
– 2、注意相比较元素之间的强度关系,相差 太悬殊的要素不能在同一层次比较。
六、层次分析法应用实例
四、层次分析法应用的程序
• 运用AHP法进行决策时,需要经历以下4 个步骤:
• 1、建立系统的递阶层次结构;
• 2、构造两两比较判断矩阵;(正互反矩阵) • 3、针对某一个标准,计算各备选元素的权重; • 4、计算当前一层元素关于总目标的排序权重。 • 5、进行一致性检验。
五、应用层次分析法的注意事项
• RI为平均随机一致性指标,是足够多个 根据随机发生的判断矩阵计算的一致性 指标的平均值。 n为判断矩阵的阶数。
• 1—10阶矩阵的RI取值见下表:
• 矩阵阶数n 1 2 3 4 5
• RI
0 0 0.58 0.90 1.12
• 矩阵阶数n 6 7 8 9 10
• RI
1.24 1.32 1.41 1.45 1.49
• 一般而言CR愈小,判断矩阵的 一致性愈好,通常认为CR0.1时, 判断矩阵具有满意的一致性。
二、层次分析法的基本思路:
• ------先分解后综合的系统思想 • 整理和综合人们的主观判断,使定性分析与定
量分析有机结合,实现定量化决策。 • 首先将所要分析的问题层次化,根据问题的性
质和要达到的总目标,将问题分解成不同的组 成因素,按照因素间的相互关系及隶属关系, 将因素按不同层次聚集组合,形成一个多层分 析结构模型,最终归结为最低层(方案、措施、 指标等)相对于最高层(总目标)相对重要程 度的权值或相对优劣次序的问题。

层次分析法

1. 层次分析法(The analytic hierarchy process, 简称AHP)用于解决评价类问题,例如:选择那种方案最好、哪位运动员或者员工表现的更优秀。

评价类问题可以用打分解决。

层次分析法 (The Analytic Hierarchy Process即 AHP)是由美国运筹学家、匹兹堡大学教授T. L. Saaty于20世纪70年代创立的一种系统分析与决策的综合评价方法, 是在充分研究了人类思维过程的基础上提出来的, 它较合理地解决了定性问题定量化的处理过程。

AHP的主要特点是通过建立递阶层次结构, 把人类的判断转化到若干因素两两之间重要度的比较上, 从而把难于量化的定性判断转化为可操作的重要度的比较上面。

在许多情况下, 决策者可以直接使用AHP进行决策, 极大地提高了决策的有效性、可靠性和可行性, 但其本质是一种思维方式, 它把复杂问题分解成多个组成因素, 又将这些因素按支配关系分别形成递阶层次结构, 通过两两比较的方法确定决策方案相对重要度的总排序。

整个过程体现了人类决策思维的基本特征,即分解、判断、综合,克服了其他方法回避决策者主观判断的缺点。

1.1模型介绍1.1.1引例高考结束了,小明该选择华科还是五武大?小明最关心四个方面:学习氛围0.4、就业前景0.3、男女比例0.2、校园景色0.19(权重和为1)(1)学习氛围:经查阅资料查到“学在华工,玩在武大,爱在华师”一句话,因此在学习氛围方面给华科0.7,给武汉大学0.3.(2)就业前景:搜索两所学校就业率差不多,因此在就业前景方面对两所学校均赋予0.5的权重。

(3)男女比例:经查询,华科男女比例2:1,武大1.35:1,因此武大0.7分,华科0.3分(4)校园景色:华科0.25分,武大0.75分整理权重表格:指标权重华科武大学习氛围0.40.70.3就业前景0.30.50.5男女比例0.20.30.7校园景色0.10.250.75华科最终的得分:0.7*0.4+0.5*0.3+0.3*0.2+0.25+*0.1=0.515分武大最终得分:0.3*0.4+0.5*0.3+0.7*0.2+0.75*0.1=0.485分1.1.2 模型1、关键词:打分法、确定评价指标、形成评价体系2、解决评价类问题,首先确定以下三个问题:(1)评价的目标是什么(2)为了达到这个目标有哪几种可选的方案(3)评价的准则或者说指标是什么(我们根据什么东西来评价好坏)。

层次分析法

2.简洁实用的决策方法
这种方法既不单纯追求高深数学,又不片面地注重行为、逻辑、推理,而是把定性方法与定量方法有机地结 合起来,使复杂的系统分解,能将人们的思维过程数学化、系统化,便于人们接受,且能把多目标、多准则又难 以全部量化处理的决策问题化为多层次单目标问题,通过两两比较确定同一层次元素相对上一层次元素的数量关 系后,最后进行简单的数学运算。计算简便,并且所得结果简单明确,容易为决策者了解和掌握。
2.定量数据较少,定性成分多,不易令人信服
在如今对科学的方法的评价中,一般都认为一门科学需要比较严格的数学论证和完善的定量方法。但现实世 界的问题和人脑考虑问题的过程很多时候并不是能简单地用数字来说明一切的。层次分析法是一种带有模拟人脑 的决策方式的方法,因此必然带有较多的定性色彩。
3.指标过多时,数据统计量大,且权重难以确定
谢谢观看
计算步骤
ห้องสมุดไป่ตู้
计算步骤
1.建立层次结构模型
将决策的目标、考虑的因素(决策准则)和决策对象按它们之间的相互关系分为最高层、中间层和最低层, 绘出层次结构图。最高层是指决策的目的、要解决的问题。最低层是指决策时的备选方案。中间层是指考虑的因 素、决策的准则。对于相邻的两层,称高层为目标层,低层为因素层。
2.构造判断(成对比较)矩阵
在确定各层次各因素之间的权重时,如果只是定性的结果,则常常不容易被别人接受,因而Saaty等人提出 一致矩阵法,即不把所有因素放在一起比较,而是两两相互比较,对此时采用相对尺度,以尽可能减少性质不同 的诸因素相互比较的困难,以提高准确度。如对某一准则,对其下的各方案进行两两对比,并按其重要性程度评 定等级。为要素与要素重要性比较结果,表1列出Saaty给出的9个重要性等级及其赋值。按两两比较结果构成的 矩阵称作判断矩阵。判断矩阵具有如下性质:

层次分析法

层次分析法1. 简介层次分析法(Analytic Hierarchy Process,AHP)是一种常用的定性与定量相结合的多标准决策分析方法。

它由美国学者托马斯·L·萨亨于1970年提出,被广泛应用于各种决策问题中。

2. 原理层次分析法的基本思想是将复杂的决策问题分解为一系列具有层次结构的子问题,然后通过对这些子问题的比较与权重评估,最终得出整体问题的决策结果。

2.1 层次结构在层次分析法中,决策问题被组织成一个层次结构。

层次结构通常包括三个层次:目标层、准则层和方案层。

•目标层:表示决策问题的最终目标,通常只有一个。

•准则层:用于评价方案的一组准则,通常包括两个或更多的准则。

•方案层:表示可选择的方案,每个方案都和准则层有关联。

每个层次下面还可以有更多的子层次,形成一个完整的层次结构。

2.2 权重评估层次分析法通过对准则层的权重评估,来确定各个准则的重要性。

权重评估通常采用两两比较的方式,即对准则层中的两个准则进行比较,判断它们的相对重要性。

对两个准则的比较通常使用1至9的九分比较法,其中1表示相同重要性,3表示轻微重要性差异,5表示中等重要性差异,7表示强烈重要性差异,9表示极端重要性差异。

通过两两比较得到的比较矩阵可以利用特征向量法计算权重向量,从而确定准则层的权重。

2.3 方案评估在确定了准则层的权重后,可以利用这些权重对方案进行评估和排序。

通常使用两两比较法将方案与准则进行比较,得到方案层的比较矩阵。

然后,利用准则层的权重和方案层的比较矩阵计算加权矩阵,最终得到方案层的权重。

3. 应用场景层次分析法在各个领域中都有广泛的应用,尤其适用于以下情况:•多准则决策问题:当决策问题涉及到多个准则时,层次分析法可以帮助决策者合理权衡各个准则的重要性,从而做出最佳决策。

•项目评估与选择:当需要评估和选择多个候选项目时,层次分析法可以通过对项目的多个准则进行比较和权重评估,为项目选择提供科学依据。

层次分析法


e1
1 4.511
0.778
0.172
,
3 0.665
0.4 6 7 e2 Ae1 0.565, e2 3.014,
1.9 9 1
01.55 0.471 e2 0.184, e3 0.559, e3 3.018,
0.661 1.988
0.156 0.473 e3 0.185, e4 0.561,
(4)定义未知参数 在这种问题中,运用层次分析法建立表达式 来表达未曾定义过的量。典型的例子是价值 工程,产品的价值V被定义为
VF C
其中F,C分别为产品的功能系数与成本系数, 它们可以用层次分析来定义。下面是一个 经济学例子。
例5 弹性系数的确定 经济学中有名的Cobb-Douglas生产函 数是
e (1,2,,n )T ,则权系数可取: wi i ,i 1,2,, n
在具体计算中,当
ek 与ek 1
接近到一定程度时,就取 e ek
例1 评价影视作品的水平, 用以下三个变量作评价指标 :
x1 教育性,x2 艺术性,x3 娱乐性
设有一名专家赋值:
x2 1, x3 5, x3 3
w1, w2 ,, wn
这 n 个常数便是权系数, 层次分析法给出了确定它们 的量化方法,其过程如下:
1.成对比较
从x1, x2,, xn中任取xi , xj ,比较它们
对y贡献的大小,给xi xj 赋值如下:
xi
xj
1,当认为“xi与x
贡献程度相同”时
j
xi
xj
3,当认为“xi比x
的贡献略大”时
x1
的概率估值为0.134+0.219+0.026=0.379,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

层次分析法
层次分析法(AHP)为一种决策思维,是把复杂问题分解为各个因素,将这些因素按照支配关系组成有序递进层次结构,通过两两比较的方式确定层次中诸要素的相对重要性的方法。

AHP结合定量于定性的分析将人的主观判断用数量形式处理。

层次分析法的原理及基本步骤:
层次分析法其基本思想,是根据问题的性质和要达到的目标,将问题按层次分析成各个组成因素,再按支配关系分组成有序的递阶层次结构。

对同一层次内的因素,通过两两比较的方式确定诸因素之间的相对重要性权重。

下一层次的因素的重要性,既要考虑本层次,又要考虑到上一层次的权重因子逐层计算,直至最后一层一般是要比较的各个方案权重大小。

基本步骤:
运用进行决策时,大体上应分为四个步骤进行:
(1)分析系统中各因素之间的关系,建立系统的递阶层次结构;
(2)对同一层次的各元素关于上一层中某一准则的重要性进行两两比较,构造两两比较判断矩阵;
(3)由判断矩阵计算被比较元素对于该准则的相对权重;
(4)计算各层元素对系统目标的合成权重,并进行排序。

下面分别说明这四个步骤的实现方法
(1)层次结构的建立
首先要把问题条理化、层次化,构造出一个层次分析的结构模型。

在这个结构模型下,复杂问题被分解成人们称之为元素的组成部分。

这些元素又按照其属性分成若千组,形成不同层次。

同一层次的元素作为准则对下一层次的某些元素起支配作用,同时它又受上一层次元素的支配。

这些层次大体上可以分为三类:1、最高层这一层次中只有一个元素,一般它是分析问题的预定目标或者理想结果,因此也称目标层。

2、中间层这一层次包括了为实现目标所涉及的中间环节,它可以由若干个层次组成,包括所需要考虑的准则、子准则,因此也称为准则层
3、最低层表示为实现目标可供选择的各种措施、决策方案等,因此也称为措施层或者方案层。

上述各个层次之间的支配关系不一定是完全的,即可以存在这样的元素,它并不支持下一层次的所有元素而仅仅支持其中部分元素。

这种自上而下的支配关系所形成的层次结构,我们称为递阶层次结构
递阶层次结构中的层次数与问题的复杂程度及需分析的详尽程度有关,一般它可以不受限制。

每一层次中的各个元素所支配的元素一般不要超过九个。

这是因为支配的元素过多会给两两比较判断带来困难。

一个好的层次结构对于解决问题是极为重要的,因而层次结构必须建立在决策者对所面对的问题有全面深入的认识的基础上。

如果在层次的划分和确定层次元素间的支配关系上举棋不定,那么最
好重新分析问题,弄清各元素的相互关系,以确保建立一个合理的层次结构。

递阶层次结构是层次分析法中一种最简单的层次结构形式。

有时一个复杂的问题仅仅用递阶层次结构难以表示,这时就要采用更复杂的形式,例如循环层析结构、反馈层次结构等等,它们都是递阶层次结构的扩展形式。

(2)两两比较矩阵的建立
在层次结构建立以后,就需要确定元素u1, u2….un 相对于其隶属于上一层准则C 的权重。

如果u1, u2….un 相对于准则C (比如检修成本、备件消耗量)的重要性能够直接定量表示,则他们相应的权重可以直接确定。

但是对于复杂的问题,就需要用两两比较法来确认。

在两两比较法中,决策者要反复地回答问题:针对准则两个元素u1, u2哪一个更重要,重要多少
层次分析法软件举例:
张建华教授开发的层次分析法软件(yaahp0.5.2版本)和结合两轮专家问卷的数据在AHP 软件中建立层次结构模型、输入判断矩阵、确定计算结果来得到。

以下为在确定各指标权重时在层次分析法软件中生成的相关图表及数据。

其中判断矩阵的数据是根据两轮专家问卷的结果和软件中对两两判断矩阵的重要性进行调节得到,即:
如:两两指标权重的确定,应用层次分析法软件:
重要性标度 定义描述
1 表示两个元素比较,具有同等的重要性
3 表示两个元素比较,前者比后者稍微重要
5 表示两个元素比较,前者比后者明显重要
7 表示两个元素比较,前者比后者强烈重要
9 表示两个元素比较,前者比后者极端重要
2、4、6、8 表示上述相邻判断的中间值。

相关文档
最新文档