动量与能量重难点整理

合集下载

新教材-人教版高中物理选择性必修第一册 第一章 动量守恒定律 知识点考点重点难点提炼汇总

新教材-人教版高中物理选择性必修第一册 第一章 动量守恒定律 知识点考点重点难点提炼汇总

第一章 动量守恒定律1、2 动量 动量定理 .................................................................................................. - 1 - 3 动量守恒定律............................................................................................................ - 9 - 4 实验:验证动量守恒定律 ...................................................................................... - 17 - 5 弹性碰撞和非弹性碰撞 .......................................................................................... - 24 -1、2 动量 动量定理一、动量1.动量(1)定义:物理学中把物体的质量m 跟运动速度v 的乘积m v 叫作动量.(2)定义式:p =m v .(3)单位:在国际单位制中,动量的单位是千克米每秒,符号为kg·m/s.(4)矢量:由于速度是矢量,所以动量是矢量,它的方向与速度的方向相同.2.用动量概念表示牛顿第二定律(1)公式表示:F =Δp Δt .(2)意义:物体所受到的合外力等于它动量的变化率.二、动量定理 1.冲量(1)定义:物理学中把力与力的作用时间的乘积叫作力的冲量.(2)公式:I =F Δt =F (t ′-t ).(3)矢量:冲量是矢量,它的方向跟力的方向相同.(4)物理意义:冲量是反映力的作用对时间的累积效应的物理量,力越大,作用时间越长,冲量就越大. 2.动量定理(1)内容:物体在一个过程中所受力的冲量等于它在这个过程始末的动量变化量.(2)公式表示⎩⎨⎧I =p ′-p F (t ′-t )=m v ′-m v (3)意义:冲量是物体动量变化的量度,合外力的冲量等于物体动量的变化量.考点一 动量1.(1)定义:物体的质量m和其运动速度v的乘积称为物体的动量,记作p=m v.①动量是动力学中反映物体运动状态的物理量,是状态量.②在谈及动量时,必须明确是哪个物体在哪个时刻或哪个状态所具有的动量.(2)单位:动量的单位由质量和速度的单位共同决定.在国际单位制中,动量的单位是千克米每秒,符号为kg·m/s.(3)矢量性:动量是矢量,它的方向与物体的速度方向相同,遵循矢量运算法则.2.动量与动能的区别与联系3.动量的变化量(1)p′,初动量为p,则Δp=p′-p=m v′-m v=mΔv.(2)动量的变化量Δp也是矢量,其方向与速度的改变量Δv的方向相同.(3)动量变化量Δp的计算方法①若物体做直线运动,只需选定正方向,与正方向相同的动量取正,反之取负.Δp=p′-p,若Δp是正值,就说明Δp的方向与所选正方向相同;若Δp是负值,则说明Δp的方向与所选正方向相反.②若初、末状态动量不在一条直线上,可按平行四边形定则求得Δp的大小和方向,这时Δp、p为邻边,p′为平行四边形的对角线.如图所示.动量为矢量,动量变化遵守矢量运算法则.【例1】质量为m=0.1 kg的橡皮泥,从高h=5 m处自由落下(g取10 m/s2),橡皮泥落到地面上静止,求:(1)橡皮泥从开始下落到与地面接触前这段时间内动量的变化;(2)橡皮泥与地面作用的这段时间内动量的变化;(3)橡皮泥从静止开始下落到停止在地面上这段时间内动量的变化.【审题指导】【解析】取竖直向下的方向为正方向.(1)橡皮泥从静止开始下落时的动量p1=0;下落5 m与地面接触前的瞬时速度v=2gh=10 m/s,方向向下,这时动量p2=m v=0.1×10 kg·m/s=1 kg·m/s,为正.则这段时间内动量的变化Δp=p2-p1=(1-0) kg·m/s=1 kg·m/s,是正值,说明动量变化的方向向下.(2)橡皮泥与地面接触前瞬时动量p1′=1 kg·m/s,方向向下,为正,当与地面作用后静止时的动量p2′=0.则这段时间内动量的变化Δp′=p2′-p1′=(0-1) kg·m/s=-1 kg·m/s,是负值,说明动量变化的方向向上.(3)橡皮泥从静止开始下落时的动量p1=0,落到地面后的动量p2′=0.则这段时间内动量的变化Δp″=p2′-p1=0,即这段时间内橡皮泥的动量变化为零.【答案】(1)大小为1 kg·m/s,方向向下(2)大小为1 kg·m/s,方向向上(3)0考点二冲量1.冲量(1)定义:物理学中把力与力的作用时间的乘积叫作力的冲量.(2)公式:通常用符号I表示冲量,即I=FΔt.(3)单位:在国际单位制中,冲量的单位是N·s.动量与冲量的单位关系是:1 N·s=1 kg·m/s.(4)对冲量的理解①时间性:冲量不仅与力有关,还与力的作用时间有关,恒力的冲量等于力与力作用时间的乘积,此公式I=Ft只适用于恒力.向变化的力来说,冲量的方向与相应时间内动量的变化量的方向一致,冲量的运算应遵循平行四边形定则.③绝对性:由于力和时间都跟参考系的选择无关,所以力的冲量也跟参考系的选择无关.④过程性:冲量是描述力F对时间t的累积效果的物理量,是过程量,必须明确是哪个力在哪段时间内对哪个物体的冲量.2.冲量与功的区别(1)冲量是矢量,功是标量.(2)由I=Ft可知,有力作用,这个力一定会有冲量,因为时间t不可能为零.但是由功的定义式W=F·s cosθ可知,有力作用,这个力却不一定做功.例如:在斜面上下滑的物体,斜面对物体的支持力有冲量的作用,但支持力对物体不做功;做匀速圆周运动的物体,向心力对物体有冲量的作用,但向心力对物体不做功;处于水平面上静止的物体,重力不做功,但在一段时间内重力的冲量不为零.(3)冲量是力在时间上的积累,而功是力在空间上的积累.这两种积累作用可以在“F-t”图像和“F-s”图像上用面积表示.如图所示.图甲中的曲线是作用在某一物体上的力F随时间t变化的曲线,图中阴影部分的面积就表示力F在时间Δt=t2-t1内的冲量.图乙中阴影部分的面积表示力F做的功.【例2】质量为2 kg的物体静止在足够大的水平面上,物体与地面间的动摩擦因数为0.2,最大静摩擦力和滑动摩擦力大小视为相等.从t=0时刻开始,物体受到方向不变、大小呈周期性变化的水平拉力F的作用,F随时间t的变化规律如图所示.重力加速度g取10 m/s2,则物体在t=0到t=12 s这段时间内合外力的冲量是多少?【审题指导】关键词信息物体与地面间的动摩擦因数为0.2物体受摩擦力物体受到方向不变、大小呈周期性变化的水平拉力F,F随时间t的变化规律如图所示图线的面积等于力F的冲量大小f=μmg=0.2×2×10 N=4 N则摩擦力的冲量为I f=-ft=-4×12 N·s=-48 N·s 力F的冲量等于F-t图线的面积则I F=(F1t1+F2t2)×2=(4×3+8×3)×2 N·s=72 N·s 则合外力的冲量I=I f+I F=(-48+72) N·s=24 N·s. 【答案】24 N·s冲量计算注意问题(1)冲量是矢量,在计算过程中要注意正方向的选取,在同一直线上的矢量合成转化为代数运算,较为简单.(2)不在同一直线上的冲量计算要应用平行四边形定则或三角形定则.(3)要明确F-t图像面积的意义,且要知道t轴以上与以下的面积意义不同,两者表示方向相反.考点三动量定理1.对动量定理的理解(1)动量定理反映了合外力的冲量与动量变化量之间的因果关系,即合外力的冲量是原因,物体的动量变化量是结果.力的冲量,可以是各力冲量的矢量和,也可以是外力在不同阶段冲量的矢量和.(3)动量定理表达式I=p′-p是个矢量式,式中的“=”表示合外力的冲量与动量的变化量等大、同向,但某时刻的合外力的冲量可以与动量的方向同向,也可以反向,还可以成某一角度.(4)动量定理具有普遍性,其研究对象可以是单个物体,也可以是物体系统,不论物体的运动轨迹是直线还是曲线,作用力不论是恒力还是变力,几个力作用的时间不论是相同还是不同,动量定理都适用.2.动量定理的应用(1)定性分析有关现象①物体的动量变化量一定时,力的作用时间越短,力就越大;力的作用时间越长,力就越小.例如:车床冲压工件时,缩短力的作用时间,产生很大的作用力;而在搬运玻璃等易碎物品时,包装箱内放些碎纸、刨花、塑料等,是为了延长作用时间,减小作用力.因为越坚固,发生碰撞时,作用时间将会越短,由I=FΔt可知,碰撞时的相互作用力会很大,损坏会更严重.②作用力一定时,力的作用时间越长,动量变化量越大;力的作用时间越短,动量变化量越小.例如:自由下落的物体,下落时间越长,速度变化越大,动量变化越大,反之,动量变化越小.(2)定量计算有关物理量①两种类型a .已知动量或动量的变化量求合外力的冲量,即 p 、p ′或Δp ――→I =ΔpIb .已知合外力的冲量求动量或动量的变化量,即I ――→Δp =p ′-p =IΔp 或p 、p ′应用I =Δp 求平均力,可以先求该力作用下物体的动量变化,Δp 等效代换变力冲量I ,进而求平均力F =Δp Δt .a .选定研究对象,明确运动过程.b .进行受力分析和运动的初、末状态分析.c .选定正方向,根据动量定理列方程求解.【例3】 杂技表演时,常可看见有人用铁锤猛击放在“大力士”身上的条石,石裂而人不伤,试分析其中道理.【审题指导】【解析】 设条石的质量为M ,铁锤的质量为m .取铁锤为研究对象,设铁锤打击条石前速度大小为v ,反弹速度大小为v ′,根据动量定理得(F -mg )Δt =m v ′-m (-v ),F =m (v +v ′)Δt+mg .Δt 极短,条石受到的铁锤对它的打击力F ′=F 很大,铁锤可以击断条石.对条石下的人而言,原来受到的压力为Mg ,铁锤打击条石时将对人产生一附加压力,根据牛顿第三定律,条石受到的冲量F ′Δt =F Δt =m (v +v ′)+mg Δt ,条石因此产生的动量变化量Δp =m (v +v ′)+mg Δt ,因人体腹部柔软,缓冲时间t较长,人体受到的附加压力大小为F 1=Δp t =m (v +v ′)t+mg Δt t ,可知附加压力并不大.【答案】 见解析应用动量定理的四点注意事项(1)明确物体受到冲量作用的结果是导致物体动量的变化.冲量和动量都是矢量,它们的加、减运算都遵循平行四边形定则.(2)列方程前首先要选取正方向,与规定的正方向一致的力或动量取正值,反之取负值,而不能只关注力或动量数值的大小.(3)分析速度时一定要选取同一个参考系,未加说明时一般是选地面为参考系,同一道题目中一般不要选取不同的参考系.(4)公式中的冲量应是合外力的冲量,求动量的变化量时要严格按公式,且要注意是末动量减去初动量.动量定理与牛顿定律的综合应用1.动量定理与牛顿定律(1)力F的大小等于动量对时间的变化率.在质量一定的问题中,反映的是力越大,运动状态改变越快,即产生的加速度越大.(2)动量定理与牛顿第二定律在实质上虽然是一致的,但是牛顿第二定律适用于解决恒力问题,而动量定理不但适用于恒力还适用于变力,所以动量定理在解决变力作用问题上更方便.但是要注意,通过动量定理得到的力,是作用过程的平均作用力.2.综合应用动量定理与牛顿定律解题该类问题除要明确研究对象的初、末状态外,还要对合理选取的研究对象进行受力分析,应用动量定理和牛顿第二定律列式求解.【典例】一枚竖直向上发射的火箭,除燃料外火箭的质量m火箭=6 000 kg,火箭喷气的速度为1 000 m/s,在开始时每秒大约要喷出多少质量的气体才能托起火箭?如果要使火箭开始时有19.6 m/s2向上的加速度,则每秒要喷出多少气体?【解析】火箭向下喷出的气体对火箭有一个向上的反作用力,正是这个力支持着火箭,根据牛顿第三定律,也就知道喷出气体的受力,再根据动量定理就可求得结果.设火箭每秒喷出的气体质量为m,根据动量定理可得Ft=m v2-m v1=m(v2-v1),其中F=m火箭g,v2-v1=1 000 m/s,得m=Ftv2-v1=m火箭gtv2-v1=58.8 kg.当火箭以19.6 m/s2的加速度向上运动时,由牛顿第二定律得F′-m火箭g=m 火箭a,设此时每秒喷出的气体质量为m′,根据动量定理有F′t=m′v2-m′v1,得m′=F′tv2-v1=m火箭(g+a)tv2-v1=176.4 kg.【答案】58.8 kg176.4 kg应用动量定理解题时所选研究对象一般是动量发生变化的物体,此题中是“喷出的气体”,再结合牛顿运动定律求解.3动量守恒定律一、动量守恒定律1.系统、内力和外力(1)系统:两个或两个以上的物体组成的研究对象称为一个力学系统,简称系统.(2)内力:系统中物体间的作用力称为内力.(3)外力:系统以外的物体施加给系统内物体的力称为外力.二、动量守恒定律的普适性1.动量守恒定律与牛顿运动定律用牛顿运动定律解决问题要涉及整个过程中的力.动量守恒定律只涉及过程始末两个状态,与过程中力的细节无关.这样,问题往往能大大简化.动量守恒定律并不是由牛顿运动定律推导出来的,它是自然界普遍适用的自然规律.而牛顿运动定律适用范围有局限性.(1)相互作用的物体无论是低速还是高速运动,无论是宏观物体还是微观粒子,动量守恒定律均适用.(2)高速(接近光速)、微观(小到分子、原子的尺度)领域,牛顿运动定律不再适用,而动量守恒定律仍然正确.考点一应用动量守恒定律解决问题的基本思路和一般方法1.分析题意,明确研究对象在分析相互作用的物体总动量是否守恒时,通常把这些被研究的物体总称为系统.对于比较复杂的物理过程,要采用程序法对全过程进行分段分析,要明确在哪些阶段中,哪些物体发生相互作用,从而确定所研究的系统是由哪些物体组成的.2.要对各阶段所选系统内的物体进行受力分析弄清哪些是系统内部物体之间相互作用的内力,哪些是系统外物体对系统内物体作用的外力.在受力分析的基础上根据动量守恒定律条件,判断能否应用动量守恒.3.明确所研究的相互作用过程,确定过程的始、末状态即系统内各个物体的初动量和末动量的值或表达式.【注意】在研究地面上物体间相互作用的过程时,各物体运动的速度均应取地球为参考系.4.确定好正方向建立动量守恒方程求解【例1】(多选)如图所示,A、B两物体质量之比m A m B=32,原来静止在平板小车C上,A、B间有一根被压缩的弹簧,水平地面光滑.当弹簧突然释放后,则()A.若A、B与平板车上表面间的动摩擦因数相同,A、B组成的系统动量守恒B.若A、B与平板车上表面间的动摩擦因数相同,A、B、C组成的系统动量守恒C.若A、B所受的摩擦力大小相等,A、B组成的系统动量守恒D.若A、B所受的摩擦力大小相等,A、B、C组成的系统动量守恒在多个物体组成的系统中,动量是否守恒与研究对象的选择有关.系统可按解决问题的需要灵活选取.【审题指导】要判断A、B组成的系统是否动量守恒,要先分析A、B组成的系统受到的合外力与A、B之间相互作用的内力;看合外力是否为零,或者内力是否远远大于合外力.【解析】如果物体A、B与平板车上表面间的动摩擦因数相同,弹簧释放后,A、B分别相对小车向左、向右滑动,它们所受的滑动摩擦力F A向右,F B向左,由于m A m B=32,所以F A F B=32,则A、B组成的系统所受的外力之和不为零,故其动量不守恒,选项A错;对A、B、C组成的系统,A、B与C 间的摩擦力为内力,该系统所受的外力的合力为零,故该系统的动量守恒,选项B、D均正确;若A、B所受的摩擦力大小相等,则A、B组成的系统的外力之和为零,故其动量守恒,选项C正确.【答案】BCD考点二多个物体组成的系统动量守恒问题多个物体相互作用时,物理过程往往比较复杂,分析此类问题时应注意:(1)正确进行研究对象的选取,有时需应用整体动量守恒,有时只需应用部分物体动量守恒.研究对象的选取,一是取决于系统是否满足动量守恒的条件,二是根据所研究问题的需要.(2)正确进行过程的选取和分析,通常对全程进行分段分析,并找出联系各阶段的状态量.列式时有时需分过程多次应用动量守恒,有时只需针对初、末状态建立动量守恒的关系式.【例3】质量为M=2 kg的小平板车静止在光滑水平面上,车的一端静止着质量为m A=2 kg的物体A(可视为质点),如图所示.一颗质量为m B=20 g的子弹以600 m/s的水平速度射穿A后,速度变为100 m/s,最后物体A仍静止在车上,求平板车最后的速度是多大.【审题指导】1.子弹与物体A能否组成系统?水平方向动量是否守恒?2.子弹射穿物体A后,物体A与小车是否可以组成系统?水平方向动量是否守恒?3.子弹、物体A和小车能否组成系统?该系统在水平方向动量是否守恒?【解析】解法一:子弹射穿A的过程极短,因此在射穿过程中车对A的摩擦力及子弹的重力作用可忽略,即认为子弹和A组成的系统水平方向动量守恒;同时,由于作用时间极短,可认为A的位置没有发生变化.设子弹击穿A后的速度为v′,由动量守恒定律m B v0=m B v′+m A v A,得v A=m B(v0-v′)m A=0.02×(600-100)2m/s=5 m/s.A获得速度v A后相对车滑动,由于A与车间有摩擦,最后A相对车静止,以共同速度v运动,对于A与车组成的系统,水平方向动量守恒,因此有m A v A=(m A+M)v,故v=m A v Am A+M=2×52+2m/s=2.5 m/s.解法二:因地面光滑,子弹、物体A、车三者组成的系统在水平方向不受外力,水平方向动量守恒,最后A与车速度相同.对于三者组成的系统,由动量守恒定律得m B v0=m B v′+(m A+M)v,得v=m B(v0-v′)m A+M=0.02×(600-100)2+2m/s=2.5 m/s.【答案】 2.5 m/s考点三碰撞、爆炸问题的处理方法碰撞和爆炸现象很多,如交通事故中人被车撞了、两车相撞、球与球之间相撞等,那么它们有什么特点呢?我们可以从以下几个方面分析:(1)过程的特点①相互作用时间很短.②在相互作用过程中,相互作用力先是急剧增大,然后再急剧减小,平均作用力很大,远远大于外力,因此作用过程的动量可看成守恒.(2)位移的特点碰撞、爆炸、打击过程是在一瞬间发生的,时间极短,所以在物体发生碰撞、爆炸、打击的瞬间可忽略物体的位移.可以认为物体在碰撞、爆炸、打击前后在同一位置.(3)能量的特点爆炸过程系统的动能增加,碰撞、打击过程系统的动能不会增加,可能减少,也可能不变.【例4】以初速度v0与水平方向成60°角斜向上抛出的手榴弹,到达最高点时炸成质量分别是m和2m的两块弹片.其中质量较大的一块弹片沿着原来的水平方向以2v0的速度飞行.求:(1)质量较小的另一块弹片速度的大小和方向;(2)爆炸过程中有多少化学能转化为弹片的动能.【审题指导】1.手榴弹在空中受到的合力是否为零?2.手榴弹在爆炸过程中,各弹片组成的系统动量是否守恒,为什么?3.在爆炸时,化学能的减少量与弹片动能的增加量有什么关系?【解析】(1)斜抛的手榴弹在水平方向上做匀速直线运动,在最高点处爆炸前的速度v=v0cos60°=12v0,设v的方向为正方向,如图所示,由动量守恒定律得3m v=2m v1+m v2,其中爆炸后大块弹片速度v1=2v0,小块弹片的速度v2为待求量,解得v2=-2.5v0,“-”号表示v2的方向与爆炸前速度方向相反.(2)爆炸过程中转化为动能的化学能等于系统动能的增量.ΔE k=12×2m v21+12m v22-12(3m)v2=6.75m v20.【答案】(1)大小为2.5v0,方向与原来的速度方向相反(2)6.75m v20考点四动量守恒定律和机械能守恒定律的比较和综合应用动量守恒定律和机械能守恒定律的比较定律名称项目动量守恒定律机械能守恒定律相同点研究对象研究对象都是相互作用的物体组成的系统研究过程研究的都是某一运动过程不同点守恒条件系统不受外力或所受外力的矢量和为零系统只有重力或弹力做功表达式p1+p2=p1′+p2′E k1+E p1=E k2+E p2表达式的矢量式标量式矢标性某一方向上应用情况可在某一方向独立使用不能在某一方向独立使用运算法则用矢量法则进行合成或分解代数运算光滑圆槽顶端由静止滑下.在槽被固定和可沿着光滑平面自由滑动两种情况下,木块从槽口滑出时的速度大小之比为多少?【审题指导】槽被固定时,木块的机械能守恒;槽不被固定时,木块和槽组成的系统的机械能守恒,且水平方向上动量守恒.【解析】圆槽固定时,木块下滑过程中只有重力做功,木块的机械能守恒.木块在最高处的势能全部转化为滑出槽口时的动能.设木块滑出槽口时的速度为v1,由mgR=12m v21①木块滑出槽口时的速度:v1=2gR②圆槽可动时,在木块开始下滑到脱离槽口的过程中,木块和槽所组成的系统水平方向不受外力,水平方向动量守恒.设木块滑出槽口时的速度为v2,槽的速度为u,则:m v2-Mu=0③又木块下滑时,只有重力做功,机械能守恒,木块在最高处的重力势能转化为木块滑出槽口时的动能和圆槽的动能,即mgR=12m v22+12Mu2④联立③④两式解得木块滑出槽口的速度:v2=2MgRm+M⑤两种情况下木块滑出槽口的速度之比:v1 v2=2gR2MgR/(m+M)=m+MM.【答案】m+MM多运动过程中的动量守恒包含两个及两个以上物理过程的动量守恒问题,应根据具体情况来划分过程,在每个过程中合理选取研究对象,要注意两个过程之间的衔接条件,如问题不涉及或不需要知道两个过程之间的中间状态,应优先考虑取“大过程”求解.(1)对于由多个物体组成的系统,在不同的过程中往往需要选取不同的物体组成的不同系统.(2)要善于寻找物理过程之间的相互联系,即衔接条件.【典例】如图所示,光滑水平轨道上放置长板A(上表面粗糙)和滑块C,滑块B置于A的左端,三者质量分别为m A=2 kg、m B=1 kg、m C=2 kg.开始时C静止,A、B一起以v0=5 m/s的速度匀速向右运动,A与C发生碰撞(时间极短)后C 向右运动,经过一段时间,A、B再次达到共同速度一起向右运动,且恰好不再与C碰撞.求A与C发生碰撞后瞬间A的速度大小.【解析】因碰撞时间极短,A与C碰撞过程动量守恒,设碰后瞬间A的速度为v A,C的速度为v C,以向右为正方向,由动量守恒定律得m A v0=m A v A+m C v C A与B在摩擦力作用下达到共同速度,设共同速度为v AB,由动量守恒定律得m A v A+m B v0=(m A+m B)v ABA与B达到共同速度后恰好不再与C碰撞,应满足v AB=v C联立以上各式,代入数据得v A=2 m/s.【答案】 2 m/s动量守恒定律的研究对象是系统,为了满足守恒条件,系统的划分非常重要,往往通过适当变换划入系统的物体,可以找到满足守恒条件的系统.在选择研究对象时,应将运动过程的分析与系统的选择统一考虑.类题试解如图所示,质量为m的子弹,以速度v水平射入用轻绳悬挂在空中的木块,木块的质量为m′,绳长为l,子弹停留在木块中,求子弹射入木块后的瞬间绳子张力的大小.【解析】 在子弹射入木块的这一瞬间,系统动量守恒.取向左为正方向,由动量守恒定律有0+m v =(m +m ′)v ′,解得v ′=m v m +m ′. 随着整体以速度v ′向左摆动做圆周运动.在圆周运动的最低点,整体只受重力(m +m ′)g 和绳子的拉力F 作用,由牛顿第二定律有(取向上为正方向)F -(m +m ′)g =(m +m ′)v ′2l .将v ′代入即得F =(m +m ′)g +m 2v 2(m +m ′)l. 【答案】 (m +m ′)g +m 2v 2(m +m ′)l4 实验:验证动量守恒定律一、实验思路两个物体在发生碰撞时,作用时间很短,相互作用力很大,如果把这两个物体看作一个系统,虽然物体还受到重力、支持力、摩擦力、空气阻力等外力的作用,但是有些力的矢量和为0,有些力与系统内两物体的相互作用力相比很小.因此,在可以忽略这些外力的情况下,碰撞满足动量守恒定律的条件.我们研究最简单的情况:两物体碰撞前沿同一直线运动,碰撞后仍沿这条直线运动.应该尽量创设实验条件,使系统所受外力的矢量和近似为0.二、物理量的测量确定研究对象后,还需要明确所需测量的物理量和实验器材.根据动量的定义,很自然地想到,需要测量物体的质量以及两个物体发生碰撞前后各自的速度.物体的质量可用天平直接测量.速度的测量可以有不同的方式,根据所选择的具体实验方案来确定.三、数据分析根据选定的实验方案设计实验数据记录表格.选取质量不同的两个物体进行碰撞,测出物体的质量(m1,m2)和碰撞前后的速度(v1,v′1,v2,v′2),分别计算出两物体碰撞前后的总动量,并检验碰撞前后总动量的关系是否满足动量守恒定律,即m1v′1+m2v′2=m1v1+m2v2四、参考案例参考案例1:研究气垫导轨上滑块碰撞时的动量守恒(1)实验器材:气垫导轨、光电计时器、天平、滑块(两个)、弹簧片、胶布、撞针、橡皮泥等.(2)实验步骤:接通电源,利用光电计时器测出两滑块在各种情况下碰撞前后的速度(例如:①改变滑块的质量;②改变滑块初速度的大小和方向),验证一维碰撞中的不变量.(3)实验方法①质量的测量:用天平测出两滑块的质量.②速度的测量:挡光板的宽度设为Δx,滑块通过光电门所用时间为Δt,则滑块相当于在Δx的位移上运动了时间Δt,所以滑块做匀速直线运动的速度v=Δx Δt.(4)数据处理将实验中测得的物理量填入相应的表格中,注意规定正方向,物体运动的速度方向与正方向相反时为负值.通过研究以上实验数据,找到碰撞前、后的“不变量”.考点一利用气垫导轨验证动量守恒定律[实验器材]气垫导轨、光电计时器、天平、滑块(两个)、重物、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥等.[实验步骤]本方案优点:气垫导轨阻力很小,光电门计时准确,能较准确地验证动量守恒定律.。

高三物理知识点整理之动量知识点大全

高三物理知识点整理之动量知识点大全

《高三物理知识点整理之动量知识点大全》高中物理的学习中,动量是一个重要的知识点,它贯穿于力学的各个方面,对于理解物体的运动和相互作用有着至关重要的作用。

在高三的复习阶段,系统地整理动量知识点,有助于同学们更好地掌握这一关键内容,为高考取得优异成绩打下坚实的基础。

一、动量的定义动量是物体的质量和速度的乘积,用符号 p 表示,即 p = mv。

其中,m 是物体的质量,v 是物体的速度。

动量是矢量,它的方向与速度的方向相同。

1. 动量的单位在国际单位制中,动量的单位是千克·米/秒(kg·m/s)。

2. 动量的特性(1)瞬时性:动量是描述物体在某一时刻运动状态的物理量,不同时刻物体的动量可能不同。

(2)相对性:动量的大小和方向与参考系的选择有关。

在不同的参考系中,同一物体的速度不同,所以动量也不同。

二、冲量的定义冲量是力和时间的乘积,用符号 I 表示,即 I = Ft。

冲量也是矢量,它的方向与力的方向相同。

1. 冲量的单位在国际单位制中,冲量的单位是牛顿·秒(N·s)。

2. 冲量的特性(1)过程量:冲量是描述力在一段时间内作用效果的物理量,它与力的作用时间有关。

(2)矢量性:冲量的方向由力的方向决定。

如果力的方向不变,冲量的方向与力的方向相同;如果力的方向变化,冲量的方向可以通过矢量合成来确定。

三、动量定理1. 内容物体所受合外力的冲量等于物体动量的变化,即I = Δp。

2. 表达式Ft = mv₂ - mv₁,其中 F 是物体所受的合外力,t 是力的作用时间,mv₂是物体的末动量,mv₁是物体的初动量。

3. 理解(1)动量定理表明了力对时间的积累效应,即冲量是使物体动量发生变化的原因。

(2)动量定理是矢量式,在应用时要注意各物理量的方向。

如果物体在一条直线上运动,可以规定正方向,将矢量运算转化为代数运算。

四、动量守恒定律1. 内容如果一个系统不受外力或所受外力的矢量和为零,那么这个系统的总动量保持不变。

专题20 动量与能量综合问题(解析版)

专题20  动量与能量综合问题(解析版)

2021届高考物理一轮复习热点题型归纳与变式演练专题20动量与能量综合问题【专题导航】目录热点题型一应用动量能量观点解决“子弹打木块”模型 (1)热点题型二应用动量能量观点解决“弹簧碰撞”模型 (4)热点题型三应用动量能量观点解决“板块”模型 (9)热点题型四应用动量能量观点解决斜劈碰撞现象 (13)【题型演练】 (16)【题型归纳】热点题型一应用动量能量观点解决“子弹打木块”模型s 2d s 1v 0子弹打木块实际上是一种完全非弹性碰撞。

作为一个典型,它的特点是:子弹以水平速度射向原来静止的木块,并留在木块中跟木块共同运动。

下面从动量、能量和牛顿运动定律等多个角度来分析这一过程。

设质量为m 的子弹以初速度0v 射向静止在光滑水平面上的质量为M 的木块,并留在木块中不再射出,子弹钻入木块深度为d 。

求木块对子弹的平均阻力的大小和该过程中木块前进的距离。

要点诠释:子弹和木块最后共同运动,相当于完全非弹性碰撞。

从动量的角度看,子弹射入木块过程中系统动量守恒:()v m M mv +=0……①从能量的角度看,该过程系统损失的动能全部转化为系统的内能。

设平均阻力大小为f ,设子弹、木块的位移大小分别为1s 、2s ,如图所示,显然有ds s =-21对子弹用动能定理:20212121mv mv s f -=⋅-……②对木块用动能定理:2221Mv s f =⋅……③②相减得:()()2022022121v m M Mm v m M mv d f +=+-=⋅……④对子弹用动量定理:0-mv mv t f -=⋅……⑤对木块用动量定理:Mv t f =⋅……⑥【例1】(2020·江苏苏北三市模拟)光滑水平地面上有一静止的木块,子弹水平射入木块后未穿出,子弹和木块的v -t 图象如图所示.已知木块质量大于子弹质量,从子弹射入木块到达稳定状态,木块动能增加了50J ,则此过程产生的内能可能是()A .10JB .50JC .70JD .120J【答案】D.【解】析:设子弹的初速度为v 0,射入木块后子弹与木块共同的速度为v ,木块的质量为M ,子弹的质量为m ,根据动量守恒定律得:mv 0=(M +m )v ,解得v =mv 0m +M .木块获得的动能为E k =122=Mm 2v 202(M +m )2=Mmv 202(M +m )·m M +m .系统产生的内能为Q =12mv 20-12(M +m )v 2=Mmv 202(M +m ),可得Q =M +m mE k >50J ,当Q =70J 时,可得M ∶m =2∶5,因已知木块质量大于子弹质量,选项A 、B 、C 错误;当Q =120J 时,可得M ∶m =7∶5,木块质量大于子弹质量,选项D 正确.【变式1】(2020·陕西咸阳模拟)如图所示,相距足够远完全相同的质量均为3m 的两个木块静止放置在光滑水平面上,质量为m 的子弹(可视为质点)以初速度v 0水平向右射入木块,穿出第一块木块时的速度为25v 0,已知木块的长为L ,设子弹在木块中所受的阻力恒定。

相对论的动量和能量要点

相对论的动量和能量要点
静质量亏损
2
四、相对论动力学
5. 狭义相对论力学的基本方程 牛顿定律
dp F dt
dv dm Βιβλιοθήκη v dt dt相对论动量守恒 相对论能量守恒 结论:用加速度表示的牛顿第二定律公式在相对论 力学中不再成立。
四、相对论动力学
练习:
在某惯性系中,两个静止质量都是 m0 的粒子以 相同的速率 沿同一直线相对运动,碰撞后合成 一个新的粒子,则新生粒子的静质量( )。
m0 c
2
1 v2 c2
938 MeV 1563 MeV 2 12 (1 0.8 )
Ek E m0 c 2 625MeV m0 v 19 1 p mv 6.68 10 kg m s 2 2 1 v c
也可如此计算
cp E (m0c ) 1250MeV
懒惰性
活泼性
惯性 ( inertia )
能量 ( energy )
物体的懒惰性就 是物体活泼性的度量 .
质量守恒=能量守恒
四、相对论动力学
质能关系预言:物质的质量就是能量的一种储藏 . 相对论的质能关系为开创原子能时代提供了理
论基础 , 这是一个具有划时代的意义的理论公式 .
E mc
2
E (m)c
A. 等于 2m0
B. 大于 2m0
D. 无法确定
C.小于 2m0
四、相对论动力学
6 动量与能量的关系
E mc
2
m0c
2 2
1 v c
2
p mv
m0 v 1 v c
2 2
( mc ) (m0 c ) m v c
2 2
2 2

2020年高考物理二轮专题复习四:力学中的动量和能量问题(解析附后)

2020年高考物理二轮专题复习四:力学中的动量和能量问题(解析附后)
C.5mgRD.6mgR
2.某电影里两名枪手在房间对决,他们各自背靠墙壁,一左一右。假设他们之间的地面光滑随机放着一均匀木块,木块到左右两边的距离不一样。两人拿着相同的步枪和相同的子弹同时朝木块射击一发子弹,听天由命。但是子弹都没有射穿木块,两人都活了下来反而成为了好朋友。假设你是侦探,仔细观察木块发现右边的射孔(弹痕)更深。设子弹与木块的作用力大小一样,请你分析一下,哪个结论是正确的( )
2020年高考物理二轮专题复习四:力学中的动量和能量问题(解析附后)
考纲指导
能量观点是高中物理解决问题的三大方法之一,既在选择题中出现,也在综合性的计算题中应用,常将动量与能量等基础知识融入其他问题考查,也常将动能定理、机械能守恒、功能关系、动量定理和动量守恒定律作为解题工具在综合题中应用。考查的重点有以下几方面:(1)动量定理和动量守恒定律的应用;(2)“碰撞模型”问题;(3)“爆炸模型”和“反冲模型”问题;(4)“板块模型”问题。
A.小车上表面长度
B.物体A与小车B的质量之比
C.A与小车B上表面的动摩擦因数
D.小车B获得的动能
2.某兴趣小组设计了一个玩具轨道模型如图甲所示,将一质量为m=0.5 kg的玩具小车(可以视为质点)放在P点,用弹簧装置将其从静止弹出(弹性势能完全转化为小车初始动能),使其沿着半径为r=1.0 m的光滑圆形竖直轨道OAO′运动,玩具小车受水平面PB的阻力为其自身重力的0.5倍(g取10 m/s2),PB=16.0 m,O为PB中点。B点右侧是一个高h=1.25 m,宽L=2.0 m的壕沟。求:
【答案】BC
2.【解析】(1)在最高点mg= ,得vA= m/s
O→A:-mg2r= mv - mv ,得vO=5 m/s
FNO-mg= ,得FNO=6mg=30 N。

初中物理知识点的难点整理

初中物理知识点的难点整理

初中物理知识点的难点整理初中物理是培养学生科学素养的重要课程之一,它不仅对学生的思维能力和逻辑思维能力的培养起着重要的作用,更重要的是为学生将来学习高中物理和理解世界中的物理现象打下了坚实的基础。

在初中物理学习过程中,有一些知识点是学生普遍感到困惑和难以理解的。

本文将对初中物理知识点中的一些难点进行整理和解析。

1. 动量守恒定律动量守恒定律是研究物体运动的基本定律之一,但初中生对其理解常常存在困难。

很多学生倾向于将动量守恒定律与能量守恒定律混淆。

动量守恒定律指出,在没有外力作用下,系统的总动量守恒,即质点或质点系的总动量不变。

学生常常在应用动量守恒定律解题时,没有清晰地理解系统的范围和应用的条件。

解决这一难点的方法是,引导学生仔细审题,明确哪些物体属于系统,有哪些外力作用等。

并通过例题的讲解,帮助学生理解和掌握动量守恒定律的应用。

2. 镜面反射和折射定律光的反射和折射是初中物理学习的重要内容,但是对于镜面反射和折射定律的理解和应用,学生常常存在困惑。

镜面反射定律指出,入射角等于反射角,而折射定律则从介质的折射率与入射角、折射角之间建立了关系。

学生在学习这一部分内容时,经常难以理解入射角和反射角之间的关系,并且很难准确地应用折射定律。

因此,教师可以通过实验演示、示意图等形象化的方式,帮助学生更好地理解镜面反射和折射的基本规律。

3. 电路图的理解与分析电路图是初中电学中的重要内容,但对于初中生来说,理解和分析电路图常常是一项复杂而困难的任务。

学生往往不能准确地分析电路中的电流和电势差的流动情况,导致解题困难。

解决这一难点的方法是,引导学生建立正确的电流的流向和电势差的正负极性的理解,帮助他们运用欧姆定律、基尔霍夫定律等电路分析工具,逐步掌握电路图的理解和分析。

4. 简单机械原理与机械能守恒定律学习机械原理和机械能守恒定律是初中物理学习中的一项重要内容。

但是,学生常常难以理解杠杆原理和滑轮的作用原理,并且很难准确地应用机械能守恒定律解决与机械运动相关的问题。

专题11 动量与能量观点在电磁感应中的应用(解析版)

《2020高考物理力学难点解析之动量与能量》 专题11 动量与能量观点在电磁感应中的应用【方法总结】解决电磁感应问题往往需要力电综合分析,在电磁感应问题中需要动量与能量分析求解时,学生往往无从下手,属于压轴考查,需要学生平时吃透典型物理模型和积累解题经验,现将动量与能量观点求解电磁感应综合问题时常出现典型模型和思路总结如下:1. “双轨+双杆”模型以“2019全国3卷第19题”物理情景为例:如图,方向竖直向下的匀强磁场中有两根位于同一水 平面内的足够长的平行金属导轨,两相同的光滑导体棒ab 、cd 静止在导轨上。

t =0时,棒ab 以初速度v 0向右滑动。

运动过程中,ab 、cd 始终与导轨垂直并接触良好:模型分析:双轨和两导体棒组成闭合回路,通过两导体棒的感应电流相等,所受安培力大小也相等,ab 棒受到水平向左安培力,向右减速;cd 棒受到水平向右安培力,向右加速,最终导体棒ab 、cd 系统共速,感应电流消失,一起向右做匀速直线运动,该过程由导体棒ab 、cd 组成的系统合外力为零,动量守恒:共v m m v m cd ab ab )(0+=2. 巧用“动量定理”求通过导体电荷量q思路:动量定理得:p t BIL p t F ∆=∆⋅⇒∆=∆⋅安,由于t I q ∆⋅=,所以p BLq ∆=, 即:BLp q ∆=【精选试题解析】1. (2019全国Ⅲ卷)如图,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的 平行金属导轨,两相同的光滑导体棒ab 、cd 静止在导轨上。

t =0时,棒ab 以初速度v 0向右滑动。

运动过程中,ab 、cd 始终与导轨垂直并接触良好,两者速度分别用v 1、v 2表示,回路中的电流用I 表示。

下列图像中可能正确的是( )【答案】AC【解析】ab 棒向右运动,切割磁感线产生感应电流,则受到向左的安培力,从而向左做减速运动,;金属棒cd 受向右的安培力作用而做加速运动,随着两棒的速度差的减小安培力减小,加速度减小,当两棒速度相等时,感应电流为零,最终两棒共速,一起做匀速运动,故最终电路中电流为0,故AC 正确,BD 错误。

大学物理第二章 力 动量 能量


一、功
1. 恒力的功 等于恒力在位移上的投影与位移的乘积 .
W Fs cos W F r
r s

F

F
2. 变力功的计 r 算 (1) 无限分割轨道;取位移 dr, dr ds ;
(2) 位移元上的力F 在ds上可视为恒力; r b O (3) 利用恒力功计算式计算 F r F 在 dr 上的功(元功); r a dW F dr F cosds
t
F1
F21 F12
m1
F2
m2


t
t0
( F1 F2 )dt (m1v1 m2 v2 ) (m1v01 m2 v02 )
推广到由多个质点组成的系统

t
t0
n n Fdt pi p0i n i 1 i 1 i 1
<Ek0, W <0 , 外力对物体作负功,或物体克服阻力作功.
四、质点组的动能定理
受外力 ,内力 、 ,初 F1 F、 F12 F21 2
两个质点质量为 m1、m2 ,
质点系
v10 v 速度为 、 , 末速度v1 v 2 20 为 、 位移为 、 . r2 r1,
冲量是矢量,其方向为合外力的方向.
冲量的单位: N· s,(牛顿 · 秒).
明确几点: 1. 动量是状态量;冲量是过程量. 2. 动量方向为物体运动速度方向;冲量方向为合外力
方向,即加速度方向或速度变化方向.
3. 平均冲力 由于力是随时间变化的,当变化较快时,力的瞬 时值很难确定,用一平均的力 F 代替该过程中的变力.

高中物理-专题六第2课时 电学中的动量和能量问题

第2课时电学中的动量和能量问题专题复习定位解决问题本专题主要培养学生应用动量定理、动量守恒定律、动能定理、机械能守恒定律和能量守恒定律分析与解决电学综合问题。

高考重点动量定理和动量守恒定律在电学中的理解及应用;应用动量和能量观点解决电场和磁场问题;电磁感应中的动量和能量问题。

题型难度本专题针对综合性计算题的考查,一般过程复杂,要综合利用电学知识、动量和能量观点分析问题,综合性较强,难度较大。

高考题型1电磁感应中的动量和能量问题类型1动量定理和能量观点的应用【例1】(2021·江苏省普通高等学校全国统一考试模拟)如图1所示,CD、EF是两条水平放置的阻值可忽略的平行金属导轨,其左右端都与接有阻值为R的倾斜光滑轨道平滑连接,导轨间距都为d,在水平导轨的右侧存在磁感应强度方向垂直于导轨平面向下的匀强磁场,磁感应强度大小为B,磁场区域的宽度为L1。

现将一阻值为r、质量为m的导体棒从右侧倾斜轨道上高h处由静止释放,导体棒最终停在距离磁场的左边界为L2处。

已知右侧倾斜轨道与竖直方向夹角为θ,导体棒始终与导轨垂直且接触良好,且导体棒与水平导轨动摩擦因数为μ,重力加速度为g。

求:图1(1)通过导体棒的最大电流;(2)左侧电阻R上产生的焦耳热;(3)导体棒在水平导轨上运动的时间。

答案 (1)2Bd 2gh R +2r (2)R 2(R +2r )mg (h -μL 1-μL 2) (3)1μ2h g -2B 2d 2L 1μmg (R +2r )解析 (1)质量为m 的导体棒从倾斜轨道上h 高处由静止释放,刚进入磁场时速度最大,由机械能守恒定律得mgh =12m v 2解得最大速度v =2gh产生的最大感应电动势E m =Bd v =Bd 2gh由闭合电路欧姆定律可得通过导体棒的最大电流I m =E m R 2+r =2Bd 2gh R +2r 。

(2)由能量守恒定律可知整个电路中产生的焦耳热Q =mgh -μmg (L 1+L 2)电阻R 中产生的焦耳热 Q R =R 2(R +2r )mg (h -μL 1-μL 2)。

动量和能量综合题解题攻略

动量和能量综合题解题攻略作者:孙会刚来源:《求学·理科版》2011年第04期动量和能量是高中物理的重点和难点知识,也是每年高考必考的热点内容,而旦常常以大题的形式出现,很多考生不知从何下手,导致失分.本文分析动量和能量的一般解题思路和解题策略,以帮助大家解决动量和能量的问题.一、命题规律和解题策略1.命题规律动量和能量是近几年高考命题的重点、热点和难点,是联络各部分知识的主线,常作为压轴题出现在物理试卷中.纵观近几年的高考命题,动量和能量考査的特点仍然是以两个守恒规律为主线,其特点是:①灵活性强,难度大,能力要求高,内容丰富,多次出现在两个守恒定律交汇的综合计算题中;②题型全’ 平均每年有3~6道题,是区分考生能力的重要内容;③动量和能量无论是从内容上看还是从方法上看都极易满足理科综合试题的要求,经常与牛顿运动定律、圆周运动、电磁学和近代物理知识综合运用,在高考中所占分值相当大.从考题逐渐趋于稳定的特点来看,今后对动量和能量的综合考査重点仍将放在对两个守恒定律的分析和解决问题的能力上。

2.解题策略(1) 仔细审题,把握题意在读题的过程中,必须认真、仔细,要收集题中的有用信息,弄清物理过程,建立清晰的物理图景,充分挖掘题中的隐含条件,不放过每一个细节.进行物理过程分析时〈理论分析和联想类比、,注意把握过程中的变量、不变量、关联量之间的关系.(2)确定对象,进行分析有的题目可能会有多个研究对象,选择时应注意:研究对象要充分涉及巳知量和未知量,研究对象确定后,必须对它进行受力分析和运动分析,明确其运动的可能性.(3)深入分析,选择规律根据物体的受力情况和运动情况,选择与它相适应的物理规律及题中给予的某种等量关系列方程求解,若合力为零或内力远大于外力,则列动量守恒的方程;若只有重力或弹簧弹力做功,则列机械能守恒方程;若题中有涉及内力的问题,如恰好分离等,则运用整体法或隔离法列牛顿第二定律等(4)检查过程,检验结果检査思维过程,并检验结果是否符合题意以及是否符合实际。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动量与能量重难点整理 一、基本的物理概念 1.冲量与功的比较

(1)定义式

 冲量的定义式:I=Ft(作用力在时间上的积累效果)

功的定义式:W=Fscos θ(作用力在空间上的积累效果)

(2)属性 冲量是矢量,既有大小又有方向(求合冲量应按矢,量合成法则来计算)功是标量,只有大小没有方向(求物体所受外力的,总功只需按代数和计算) 2.动量与动能的比较

(1)定义式 动量的定义式:p=mv动能的定义式:Ek=12mv2 (2)属性 动量是矢量(动量的变化也是矢量,求动量的变化,应按矢量运算法则来计算)动能是标量(动能的变化也是标量,求动能的变化,只需按代数运算法则来计算)

(3)动量与动能量值间的关系 p=2mEkEk=p22m=12pv (4)动量和动能都是描述物体状态的量,都有相对性(相对所选择的参考系),都与物体的受力情况无关.动量的变化和动能的变化都是过程量,都是针对某段时间而言的. 二、动量观点的基本物理规律 1.动量定理的基本形式与表达式:I=Δp. 分方向的表达式:Ix合=Δpx,Iy合=Δpy.

2.动量定理推论:动量的变化率等于物体所受的合外力,即ΔpΔt=F合. 3.动量守恒定律 (1)动量守恒定律的研究对象是一个系统(含两个或两个以上相互作用的物体). (2)动量守恒定律的适用条件 ①标准条件:系统不受外力或系统所受外力之和为零. ②近似条件:系统所受外力之和虽不为零,但比系统的内力小得多(如碰撞问题中的摩擦力、爆炸问题中的重力等外力与相互作用的内力相比小得多),可以忽略不计. ③分量条件:系统所受外力之和虽不为零,但在某个方向上的分量为零,则在该方向上系统总动量的分量保持不变. (3)使用动量守恒定律时应注意: ①速度的瞬时性; ②动量的矢量性; ③时间的同一性. (4)应用动量守恒定律解决问题的基本思路和方法 ①分析题意,明确研究对象.在分析相互作用的物体总动量是否守恒时,通常把这些被研究的物体统称为系统.对于比较复杂的物理过程,要采用程序法对全过程进行分段分析,要明确在哪些阶段中,哪些物体发生相互作用,从而确定所研究的系统是由哪些物体组成的. ②对各阶段所选系统内的物体进行受力分析,弄清哪些是系统内部物体之间相互作用的内力,哪些是作用于系统的外力.在受力分析的基础上根据动量守恒定律的条件,判断能否应用动量守恒定律. ③明确所研究的相互作用过程,确定过程的始末状态,即系统内各个物体的初动量和末动量的值或表达式.(注意:在研究地面上物体间相互作用的过程时,各物体运动的速度均应取地球为参考系) ④确定正方向,建立动量守恒方程求解. 三、功和能 1.中学物理中常见的能量

动能Ek=12mv2;重力势能Ep=mgh;弹性势能E弹=12kx2;机械能E=Ek+Ep;分子势能;分子动能;内能;电势能E=qφ;电能;磁场能;化学能;光能;原子能(电子的动能和势能之和);原子核能E=mc2;引力势能;太阳能;风能(空气的动能);地热、潮汐能. 2.常见力的功和功率的计算: 恒力做功W=Fscos θ; 重力做功W=mgh; 一对滑动摩擦力做的总功Wf=-fs路; 电场力做功W=qU; 功率恒定时牵引力所做的功W=Pt; 恒定压强下的压力所做的功W=p·ΔV; 电流所做的功W=UIt; 洛伦兹力永不做功; 瞬时功率P=Fvcos_θ;

平均功率P-=Wt=Fv-cos θ. 3.中学物理中重要的功能关系 能量与物体运动的状态相对应.在物体相互作用的过程中,物体的运动状态通常要发生变化,所以物体的能量变化一般要通过做功来实现,这就是常说的“功是能量转化的量度”的物理本质.那么,什么功对应着什么能量的转化呢?在高中物理中主要的功能关系有: (1)外力对物体所做的总功等于物体动能的增量,即W总=ΔEk.(动能定理) (2)重力(或弹簧的弹力)对物体所做的功等于物体重力势能(或弹性势能)的增量的负值,即W重=-ΔEp(或W弹=-ΔEp). (3)电场力对电荷所做的功等于电荷电势能的增量的负值,即W电=-ΔE电. (4)除重力(或弹簧的弹力)以外的力对物体所做的功等于物体机械能的增量,即W其他=ΔE机.(功能原理) (5)当除重力(或弹簧弹力)以外的力对物体所做的功等于零时,则有ΔE机=0,即机械能守恒. (6)一对滑动摩擦力做功与内能变化的关系是:“摩擦所产生的热”等于滑动摩擦力跟物体间相对路程的乘积,即Q=fs相对.一对滑动摩擦力所做的功的代数和总为负值,表示除了有机械能在两个物体间转移外,还有一部分机械能转化为内能,这就是“摩擦生热”的实质. (7)安培力做功对应着电能与其他形式的能相互转化,即W安=ΔE电.安培力做正功,对应着电能转化为其他能(如电动机模型);克服安培力做负功,对应着其他能转化为电能(如发电机模型);安培力做功的绝对值等于电能转化的量值. (8)分子力对分子所做的功等于分子势能的增量的负值,即W分子力=-ΔE分子. (9)外界对一定质量的气体所做的功W与气体从外界所吸收的热量Q之和等于气体内能的变化,即W+Q=ΔU. (10)在电机电路中,电流做功的功率等于电阻发热的功率与输出的机械功率之和. (11)在纯电阻电路中,电流做功的功率等于电阻发热的功率. (12)在电解槽电路中,电流做功的功率等于电阻发热的功率与转化为化学能的功率之和.

(13)在光电效应中,光子的能量hν=W+12mv02. (14)在原子物理中,原子辐射光子的能量hν=E初-E末,原子吸收光子的能量hν=E末-E初. (15)核力对核子所做的功等于核能增量的负值,即W核=-ΔE核,并且Δmc2

=ΔE核. (16)能量转化和守恒定律.对于所有参与相互作用的物体所组成的系统,无论什么力做功,可能每一个物体的能量的数值及形式都发生变化,但系统内所有物体的各种形式能量的总和保持不变. 4.运用能量观点分析、解决问题的基本思路 (1)选定研究对象(单个物体或一个系统),弄清物理过程. (2)分析受力情况,看有什么力在做功,弄清系统内有多少种形式的能在参与转化. (3)仔细分析系统内各种能量的变化情况及变化的数量. (4)列方程ΔE减=ΔE增或E初=E末求解. 四、弹性碰撞 在一光滑水平面上有两个质量分别为m1、m2的刚性小球A和B以初速度v1、v2运动,若它们能发生正碰,碰撞后它们的速度分别为v1′和v2′.v1、v2、v1′、

v2′是以地面为参考系的,将A和B看做系统.

由碰撞过程中系统动量守恒,有: m1v1+m2v2=m1v1′+m2v2′ 由于弹性碰撞中没有机械能损失,故有: 12m1v12+12m2v22=12m1v1′2+12m2v2′2

由以上两式可得: v2′-v1′=-(v2-v1)或v1′-v2′=-(v1-v2)

碰撞后B相对于A的速度与碰撞前B相对于A的速度大小相等、方向相反;碰撞后A相对于B的速度与碰撞前A相对于B的速度大小相等、方向相反. 【结论1】对于一维弹性碰撞,若以其中某物体为参考系,则另一物体碰撞前后速度大小不变、方向相反(即以原速率弹回). 联立以上各式可解得: v1′=2m2v2+(m1-m2)v1m1+m2

v2′=2m1v1+(m2-m1)v2m1+m2

若m1=m2,即两个物体的质量相等,则v1′=v2,v2′=v1,表示碰后A的速度变为v2,B的速度变为v1. 【结论2】对于一维弹性碰撞,若两个物体的质量相等,则碰撞后两个物体互换速度(即碰后A的速度等于碰前B的速度,碰后B的速度等于碰前A的速度). 若A的质量远大于B的质量,则有: v1′=v1,v2′=2v1-v2;

若A的质量远小于B的质量,则有: v2′=v2,v1′=2v2-v1.

【结论3】对于一维弹性碰撞,若其中某物体的质量远大于另一物体的质量,则质量大的物体碰撞前后速度保持不变.至于质量小的物体碰后速度如何,可结合结论1和结论2得出. 在高考复习中,若能引导学生推导出以上二级结论并熟记,对提高学生的解题速度是大有帮助的.

热点、重点、难点 一、动量定理的应用问题 动量定理的应用在高考中主要有以下题型: 1.定性解释周围的一些现象; 2.求打击、碰撞、落地过程中的平均冲力; 3.计算流体问题中的冲力(或反冲力); 4.根据安培力的冲量求电荷量. ●例1 如图2-1所示,一个下面装有轮子的贮气瓶停放在光滑的水平地面上,瓶的底端与竖直墙壁接触.现打开右端阀门,气体向外喷出,设喷口的面积为S,气体的密度为ρ,气体向外喷出的速度为v,则气体刚喷出时贮气瓶底端对竖直墙壁的作用力大小是( )

图2-1 A.ρvS B.ρv2S C.12ρv2S D.ρv2S 【解析】Δt时间内喷出气体的质量Δm=ρSv·Δt 对于贮气瓶、瓶内气体及喷出的气体所组成的系统,由动量定理得: F·Δt=Δm·v-0 解得:F=ρv2S. [答案] D 【点评】动量定理对多个物体组成的系统也成立,而动能定理对于多个物体组成的系统不适用.

相关文档
最新文档