数学试卷10个导数题(极值(1)

合集下载

2022届高中数学导数通关练习专题16 极值点偏移问题(解析版)

2022届高中数学导数通关练习专题16 极值点偏移问题(解析版)

x)
8(x 2)2 x2 (4 x)2
0,
所以函数 h(x) 在 (0, 2) 为减函数,所以 h(x) h(2) 0 ,
所以 f (x1) f (4 x1) 0 ,即 f (x1) f (4 x1) ,所以 f (x2 ) f (4 x2 ) ,所以 x1 x2 4 .
2
2
设 a 0 ,由 f '(x) 0 得 x 1 或 x ln(2a) .
若 a e ,则 ln(2a) 1 ,故当 x (1, ) 时,f '(x) 0 ,因此 f (x) 在 (1, ) 单调递增.又当 x 1时 f (x) 0 , 2
所以 f (x) 不存在两个零点.
若 a e ,则 ln(2a) 1 ,故当 x (1, ln(2a)) 时, f '(x) 0 ;当 x (ln(2a), ) 时, f '(x) 0 .因此 f (x) 在 2
学科 网(北 京)股 份有限 公司
14.已知函数 f (x) ax ln x x2 ax 1(a R) 在定义域内有两个不同的极值点. (1)求 a 的取值范围;
(2)设两个极值点分别为: x1 , x2 ,证: f x1 f x2 2 x12 x22 .
15.已知函数 f (x) 1 x2 2x ln x 4x 5 .
2
(1)求函数 y f x 的单调区间; (2)若函数 y f x 有两个极值点 x1 , x2 ,求证: f x1 f x2 6 ln a .
17.已知 f (x) 1 x 2 a ln x(a R) 有两个零点 2
(1)求 a 的取值范围 (2)设 x1, x2 是 f (x) 的两个零点,求证: x1 x 2 a
2

导数1

导数1

《导数及其应用》达标检测试卷第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知32()32f x ax x =++且(1)4f '-=,则实数a 的值等于( )A .193B .163C .133D .1032.设x x f 1)(=则a x a f x f a x --→)()(lim 等于( ) 221211. . . .A B C D a a a a --3. 已知曲线x x y ln 342-=的一条切线的斜率为21,则切点的横坐标为 ( ) A . 3或-2 B .3C .-2D .21 4. 函数f (x )=(x -3)e x的单调递增区间是 ( ) A .(-∞,2) B .(0,3) C .(2,+∞) D .(1,4) 5. 函数f (x )=3x 2+ln x -2x 的极值点的个数是( )A . 无数个B .2C . 1D .06. 函数y=2x 3-3x 2-12x+5在区间[0,3]上最大值与最小值分别是( )A .5,-15B .5,-4C .-4,-15D .5,-167. 设函数2()()f x g x x =+,曲线()y g x =在点(1,(1))g 处的切线方程为21y x =+,则曲线()y f x =在点(1,(1))f 处切线的斜率为( )A . 14-B . 4C .2D .12- 8. 若函数f (x )=12f ′(-1) x 2-2x +3,则f ′(1)的值为 ( )A .0B .1C .-3D .-19.如果函数y=f (x )的图象如右图,那么导函数y=f (x )的图象可能是( )10. 函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)·f ′(x )<0,设a =f (0),b =)21(f c =f (3),则( )A .a <b <cB .c <b <aC .c <a <bD .b <c <a11.设a ∈R ,若函数x y e ax =+,x ∈R 有大于零的极值点,则( )A .1a >-B .1a <-C .1a e<-D .1a e>-12已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有()0f x ≥,则(1)'(0)f f 的最小值为( )A .3B .52 C .2 D .32第Ⅱ卷(非选择题 共90分)二、填空题:(本大题共4小题,每小题4分,共16分) 13. 函数f(x)=x excos 的导数是__________ 14. 已知函数f(x)=-12x2+4x -3ln x 在[t ,t +1]上不单调,则t 的取值范围是____________.15.已知函数f (x )=12mx 2+ln x -2x 在定义域内是增函数,则实数m 的取值范围为____________.16. 若曲线()2f x ax Inx =+存在垂直于y 轴的切线,则实数a 的取值范围是 .三、解答题:(本大题共6小题,共74分。

(必考题)高中数学高中数学选修2-2第三章《导数应用》测试题(答案解析)(2)

(必考题)高中数学高中数学选修2-2第三章《导数应用》测试题(答案解析)(2)

一、选择题1.函数()[)(](),00,sin xf x x x xππ=∈--的图象大致是( )A .B .C .D .2.已知函数()x f x e ex a =-+与1()ln g x x x=+的图象上存在关于x 轴对称的点,则a 的取值范围是( ) A .(,]e -∞-B .(,1] -∞-C .[1,) -+∞D .[,)e3.已知函数()3f x x ax =-在(1,1)-上单调递减,则实数a 的取值范围为( ) A .()1,+∞ B .[)3,+∞C .(],1-∞D .(],3-∞4.已知函数322()f x =x ax bx a +++在1x =处的极值为10,则a b -=( ). A .6-B .15-C .15D .6-或155.若函数()22ln 45f x x x bx =+++的图象上的任意一点的切线斜率都大于0,则b 的取值范围是( ) A .(),8-∞- B .()8,-+∞ C .(),8-∞ D .()8,+∞6.若函数()()sin xf x e x a =+在区间,22ππ⎛⎫- ⎪⎝⎭上单调递增,则实数a 的取值范围是()A .)+∞ B .[)1,+∞C .()1,+∞D .()+∞7.已知函数2()ln(1)22x x f x x -=-++,则使不等式(1)(2)f x f x +<成立的x 的取值范围是( )A .(1)(1,)-∞-⋃+∞,B .(1,+)∞C .1(,)(1,+)3-∞-⋃∞D .(,2)(1,)-∞-+∞8.已知定义在R 上的可导函数()f x 的导函数为'()f x ,满足()'()f x f x >,且(0)1f =,则不等式()x e f x >(e 为自然对数的底数)的解集为( )A .(1,)-+∞B .(0,)+∞C .(1,)+∞D .(,0)-∞9.设函数()f x 在R 上存在导数()f x ',对任意的x ∈R ,有()()2f x f x x +-=,且在[)0,+∞上有()f x x '>.若()()222f k f k k --≥-,则k 的取值范围是( )A .(],0-∞B .(],1-∞C .1,22⎡⎤⎢⎥⎣⎦D .50,2⎡⎤⎢⎥⎣⎦10.内接于半径为R 的球且体积最大的圆柱体的高为( )A .3R B .3R C .2R D .2R 11.设函数()'f x 是函数()()f x x R ∈的导函数,当0x ≠时,3()()0f x f x x'+<,则函数31()()g x f x x =-的零点个数为( ) A .3 B .2 C .1D .012.若对于任意的120x x a <<<,都有211212ln ln 1x x x x x x ->-,则a 的最大值为( ) A .2eB .eC .1D .12二、填空题13.函数()f x 定义在0,2π⎛⎫⎪⎝⎭上,26f π⎛⎫=⎪⎝⎭,其导函数是()f x ',且()()cos sinx f x x f x '⋅<⋅恒成立,则不等式()22sinx f x >的解集为_____________.14.如图,有一块半径为2的半圆形钢板,计划裁剪成等腰梯形ABCD 的形状,它的下底AB 是圆O 的直径,上底C 、D 的端点在圆周上,则所裁剪出的等腰梯形面积最大值为_______________.15.已知函数()ln 1f x x x =--,()ln g x x =,()()F x f g x =⎡⎤⎣⎦,()()G x g f x =⎡⎤⎣⎦,给出以下四个命题:(1)()y F x =是偶函数;(2)()y G x =是偶函数;(3)()y F x =的最小值为0;(4)()y G x =有两个零点;其中真命题的是______.16.已知函数()2xe f x ax x=-,()0,x ∈+∞,当21x x >时,不等式()()12210f x f x x x -<恒成立,则实数a 的取值范围为________. 17.已知函数()321213f x x x ax =+-+,若函数()f x 在()2,2-上有极值,则实数a 的取值范围为______. 18.函数()ln xf x x=在(),1a a +上单调递增,则实数a 的取值范围为______. 19.已知在正四棱锥P ABCD -中,4PA =,则当该正四棱锥的体积最大时,它的高h 等于______.20.已知()2sin cos f x x x x x =++,则不等式()()1lg lg 22f x f x f ⎛⎫+ ⎪⎝⎭>的解集为______.三、解答题21.已知函数()cos x f x e x x =-,()(sin 1)g x x x =-. (1)讨论()f x 在区间(,0)2π-上的单调性;(2)判断()()f x g x -在区间[,]22ππ-上零点的个数,并给出证明. 22.已知函数()()3exf x xx a =-+,a R ∈.(1)当2a =-时,求()f x 在[]1,2-上的最大值和最小值; (2)若()f x 在()1,+∞上单调,求a 的取值范围.23.已知函数432()f x ax x bx =++(),a b ∈R ,()()()g x f x f x '=+是偶函数. (1)求函数()g x 的极值以及对应的极值点. (2)若函数43221()()(1)4h x f x x c x x cx c =++--++,且()h x 在[]2,5上单调递增,求实数c 的取值范围. 24.设函数()()21xf x ea x =-+.(1)讨论()f x 的单调性;(2)若()0f x >对x ∈R 恒成立,求a 的取值范围.25.已知函数21(),()ln 2f x xg x a x ==. (1)若曲线()()y f x g x =-在2x =处的切线与直线370x y +-=垂直,求实数a 的值;(2)若[]1,e 上存在一点x ,使得()()()()00001f xg x g x f x ''+<-'成立,求实数a 的取值范围.26.某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚I 内的地块形状为矩形ABCD ,大棚II 内的地块形状为CDP ,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP 的面积,并确定sin θ的取值范围;(2)若大棚I 内种植甲种蔬菜,大棚II 内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】首先判断函数的奇偶性,再利用导数研究函数的单调性即可得解; 【详解】 解:因为()[)(](),00,sin xf x x x xππ=∈--,定义域关于原点对称,又()()()sin sin x x f x f x x x x x --===----,所以()[)(](),00,sin x f x x x xππ=∈--为偶函数,函数图象关于y 轴对称,所以排除A 、D ; ()()()()()22sin sin cos sin sin sin x x x x x xx x xf x x x x x ''----'==--令()cos sin g x x x x =-,则()sin g x x x '=-,所以当(]0,x π∈时()0g x '≤,所以()cos sin g x x x x =-在(]0,x π∈上单调递减,又()00g =,所以()0g x <在(]0,x π∈上恒成立,所以()0f x '<在(]0,x π∈上恒成立,即函数()sin xf x x x=-在(]0,π上单调递减,故排除C ,故选:B 【点睛】函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.2.B解析:B 【分析】根据题中条件,得到方程1ln xa e ex x x ⎛⎫=--++⎪⎝⎭有解,令1()ln x h x e ex x x ⎛⎫=--++ ⎪⎝⎭,则a 的取值范围是()(0)y h x x =>的值域,对函数()h x 求导,判定其单调性,研究其值域,即可得出结果. 【详解】函数()x f x e ex a =-+与1()ln g x x x=+的图象上存在关于x 轴对称的点, 即方程1ln 0xe ex a x x -+++=有解,即方程1ln x a e ex x x ⎛⎫=--++ ⎪⎝⎭有解,令1()ln xh x e ex x x ⎛⎫=--++ ⎪⎝⎭,则a 的取值范围是()(0)y h x x =>的值域, 因为()22111()xx x h x e e e e x x x -⎛⎫⎡⎤'=--+-=--+ ⎪⎢⎥⎝⎭⎣⎦, 所以当1x =时,()0h x '=; 当01x <<时,0x e e -<,210x x -<,所以()21()0xx h x e e x -⎡⎤'=--+>⎢⎥⎣⎦,则函数1()ln x h x e ex x x ⎛⎫=--++ ⎪⎝⎭单调递增;当1x >时,0x e e ->,210x x ->,所以()21()0xx h x e e x -⎡⎤'=--+<⎢⎥⎣⎦,则函数1()ln x h x e ex x x ⎛⎫=--++ ⎪⎝⎭单调递减;所以max ()(1)1h x h ==-, 画出函数()h x 的大致图像如下,由图像可得,()(],1h x ∈-∞-, 所以a 的取值范围(],1-∞-. 故选:B. 【点睛】本题主要考查导数的方法研究方程根的问题,考查函数与方程的应用,将问题转化为两函数交点的问题是解题的关键,属于常考题型.3.B解析:B 【分析】根据'()0f x ≤在(1,1)-上恒成立求解. 【详解】∵3()f x x ax =-,∴2'()3f x x a =-.又函数()f x 在()1,1-上单调递减,∴2'()30f x x a =-≤在(1,1)-上恒成立,即23a x ≥在(1,1)-上恒成立.∵当(1,1)x ∈-时,3033x ≤<,∴3a ≥. 所以实数a 的取值范围是[3,)+∞. 故选:B . 【点睛】本题考查根据导函数研究函数的单调性,以及不等式的恒成立问题,注意当'()0()f x x D <∈时,则函数()f x 在区间D 上单调递减;而当函数()f x 在区间D 上单调递减时,则有'()0f x ≤在区间D 上恒成立.解题时要注意不等式是否含有等号,属于中档题.4.C解析:C 【分析】由题,可得(1)0(1)10f f '=⎧⎨=⎩,通过求方程组的解,即可得到本题答案,记得要检验.【详解】因为322()f x =x ax bx a +++,所以2()32f x x ax b '=++,由题,得(1)0(1)10f f '=⎧⎨=⎩,即2320110a b a b a ++=⎧⎨+++=⎩,解得411a b =⎧⎨=-⎩或33a b =-⎧⎨=⎩,因为当3,3a b =-=时,2()3(1)0f x x '=-≥恒成立,()f x 在R 上递增,无极值,故舍去,所以4(11)15a b -=--=.故选:C 【点睛】本题主要考查含参函数的极值问题,得到两组解后检验,是解决此题的关键.5.B解析:B 【分析】对函数()f x 求导,得到()f x ',然后根据题意得到()0f x '>恒成立,得到 【详解】因为函数()22ln 45f x x x bx =+++,定义域()0,∞+所以()28f x x b x'=++, 因为()f x 图象上的任意一点的切线斜率都大于0, 所以()280f x x b x'=++>对任意的()0,x ∈+∞恒成立, 所以28b x x>--, 设()28g x x x=--,则()max b g x > ()228g x x'=- 令()0g x '=,得到12x =,舍去负根, 所以当10,2x ⎛⎫∈ ⎪⎝⎭时,()0g x '>,()g x 单调递增, 当1,2x ⎛⎫∈+∞⎪⎝⎭时,()0g x '<,()g x 单调递减, 所以12x =时,()g x 取最大值,为()max 182g x g ⎛⎫==- ⎪⎝⎭,所以8b >-,故选B. 【点睛】本题考查利用导数求函数图像切线的斜率,不等式恒成立,利用导数研究函数的单调性、极值、最值,属于中档题.6.B解析:B 【分析】将问题转化为()0f x '≥在,22ππ⎛⎫- ⎪⎝⎭上恒成立;根据导函数解析式可知问题可进一步转化04x a π⎛⎫++≥ ⎪⎝⎭在,22ππ⎛⎫-⎪⎝⎭上恒成立;利用正弦型函数值域求法可求得(14x a a a π⎛⎫⎤++∈-+ ⎪⎦⎝⎭,则只需10a -+≥即可,解不等式求得结果. 【详解】由题意得:()()sin cos 4xx x f x ex a e x e x a π⎫⎛⎫'=++=++ ⎪⎪⎝⎭⎭()f x 在,22ππ⎛⎫- ⎪⎝⎭上单调递增 ()0f x '∴≥在,22ππ⎛⎫- ⎪⎝⎭上恒成立又0x e >04x a π⎛⎫++≥ ⎪⎝⎭在,22ππ⎛⎫- ⎪⎝⎭上恒成立 当,22x ππ⎛⎫∈- ⎪⎝⎭时,3,444πππ⎛⎫+∈- ⎪⎝⎭xsin 4x π⎛⎤⎛⎫∴+∈ ⎥ ⎪ ⎝⎭⎝⎦(14x a a a π⎛⎫⎤++∈-+ ⎪⎦⎝⎭10a ∴-+≥,解得:[)1,a ∈+∞ 本题正确选项:B 【点睛】本题考查根据函数在一段区间内的单调性求解参数范围问题,涉及到正弦型函数值域的求解问题;本题解题关键是能够将问题转化为导函数在区间内恒大于等于零的问题,从而利用三角函数的最值来求得结果.7.D解析:D 【分析】先判断函数的奇偶性和单调性,由此列不等式组,解不等式组求得x 的取值范围. 【详解】由210x ->解得1x <-或1x >,故函数的定义域为{|1x x <-或}1x >,且()()f x f x -=,所以函数()f x 为偶函数,且当1x >时,令22x x y -=+,'1412ln 2ln 2022x x x x y -⎛⎫=-=⨯> ⎪⎝⎭,所以22x x y -=+在1x >时递增,根据复合函数单调性可知()2ln 1y x =-在1x >时递增,所以函数()f x 在1x >时递增,故在1x <-时递减.由(1)(2)f x f x +<可知121121x x x x ⎧+<⎪+>⎨⎪>⎩,解得(,2)(1,)x -∞-∈+∞.故选D. 【点睛】本小题主要考查函数的单调性和奇偶性,考查利用导数判断函数的单调性,考查函数不等式的解法,属于中档题.8.B解析:B 【解析】令()()()()()0,(0)1x xf x f x f xg x g x g e e-=∴=<'=' 所以()xe f x >()1(0)0g x g x ⇒=⇒ ,选B.点睛:利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如()()f x f x '<构造()()xf xg x e =,()()0f x f x '+<构造()()x g x e f x =,()()xf x f x '<构造()()f x g x x=,()()0xf x f x '+<构造()()g x xf x =等9.B解析:B 【分析】构造函数()()212g x f x x =-,可得()g x 在[)0,+∞上单调递增,利用奇偶性的定义知()g x 是奇函数,进而求解不等式即可.【详解】由题意当0x ≥时,()f x x '>,构造函数()()212g x f x x =-, 则()()'0g x f x x '=->,得()g x 在[)0,+∞上单调递增, 又由条件()()2f x f x x +-=得()()0g x g x +-=.所以()g x 是奇函数,又()g x 在[)0,+∞上单调递增且()00g =,所以()g x 在R 上单调递增,由()()222f k f k k --≥-,得()()20k g k g --≥,即()()2g k g k -≥, 根据函数()g x 在R 上单调递增,可得2k k -≥,解得1k ≤. 故选:B 【点睛】本题考查导数在函数单调性中的应用,考查函数的奇偶性,属于中档题.10.A解析:A 【分析】根据圆柱的高,底面半径以及球半径之间的关系,建立圆柱的高与圆柱体积之间的函数关系,利用导数求体积取得最大值时对应的自变量即可. 【详解】根据题意,设圆柱底面半径为r ,圆柱的高为h ,作出示意图如下所示:显然满足2224h r R =-, 故圆柱的体积()23214h r h h R h πππ=⨯=-+, 故可得()223,(02)4V h h R h R ππ<'=-+<, 令()0V h '>,解得230h <<,故此时()V h 单调递增, 令()0V h '<232h R <<,故此时()V h 单调递减. 故()23max V h V ⎫=⎪⎪⎝⎭. 即当23h =时,圆柱的体积最大. 故选:A .【点睛】 本题考查圆柱的外接球以及利用导数求体积的最大值,属综合中档题.11.D解析:D【分析】构造函数3()()1F x x f x =-,可得出3()()F x g x x=,利用导数研究函数()y F x =的单调性,得出该函数的最大值为负数,从而可判断出函数()y F x =无零点,从而得出函数3()()F x g x x =的零点个数. 【详解】设3()()1F x x f x =-,则3233()()()3()()f x F x x f x x f x x f x x '''⎡⎤=+=+⎢⎥⎣⎦. 当0x ≠时,3()()0f x f x x'+<, 当0x >时,30x >,故()0F x '<,所以,函数()y F x =在(0,)+∞上单调递减; 当0x <时,30x <,故()0F x '>,所以,函数()y F x =在(,0)-∞上单调递增. 所以max ()(0)10F x F ==-<,所以,函数()y F x =没有零点, 故331()()()F x g x f x x x=-=也没有零点. 故选:D .【点睛】本题考查函数零点个数的判断, 解题的关键就是要结合导数不等式构造新函数,并利用导数分析函数的单调性与最值,必要时借助零点存在定理进行判断,考查分析问题和解决问题的能力,属于中档题. 12.C解析:C【分析】整理所给的不等式,构造新函数,结合导函数研究函数的单调性,即可求得结果.【详解】解:由已知可得,211212ln ln x x x x x x -<-,两边同时除以12x x , 则121221ln ln 11x x x x x x -<-,化简有1212ln 1ln 1x x x x ++<, 而120x x <<,构造函数()ln 1x f x x+=,()2ln x f x x -'=, 令()0f x '>,则01x <<;令()0f x '<,则1x > ,所以函数()f x 在()0,1上为增函数,在()1,+∞上为减函数, 由1212ln 1ln 1x x x x ++<对于120x x a <<<恒成立, 即()f x 在()0,a 为增函数,则01a <≤,故a 的最大值为1.故选:C.【点睛】本题考查导数研究函数的单调性,考查分析问题能力,属于中档题.二、填空题13.【分析】构造函数再利用函数的单调性解不等式即可【详解】解:构造函数则当时在单调递增不等式即即故不等式的解集为故答案为:【点睛】关键点点睛:本题解题的关键是根据题目的特点构造一个适当的函数利用它的单调 解析:,62ππ⎛⎫ ⎪⎝⎭【分析】构造函数()()sin f x g x x =,再利用函数的单调性解不等式即可. 【详解】解:()()cos sin f x x f x x '<()()sin cos 0f x x x f x '∴->,构造函数()()sin f x g x x =, 则()()()2sin cos f x x f x x g x sin x '-'=, 当0,2x π⎛⎫∈ ⎪⎝⎭时,()0g x '>, ()g x ∴在0,2π⎛⎫ ⎪⎝⎭单调递增, ∴不等式()f x x >,即()61sin sin 26f f x x ππ⎛⎫ ⎪⎝⎭>== 即()6xg g π⎛>⎫ ⎪⎝⎭, 26x ππ∴<< 故不等式的解集为,62ππ⎛⎫⎪⎝⎭. 故答案为:,62ππ⎛⎫⎪⎝⎭. 【点睛】 关键点点睛:本题解题的关键是根据题目的特点,构造一个适当的函数,利用它的单调性进行解题.14.【分析】连过作垂足为设则则等腰梯形的面积令利用导数求其最值【详解】连过作垂足为如图:设则所以等腰梯形的面积令单调递增单调递减所以时取得极大值也是最大值即的最大值故答案为:【点睛】本题考查了函数的实际 解析:33 【分析】连OC ,过C 作CE OB ⊥,垂足为E ,设(02),OE x x CE y =<<=,则224x y +=,则等腰梯形ABCD 的面积1(24)(2)2S x y x y =+=+3(2)(2)x x =+-,令3()(2)(2),02h x x x x =+-<<,利用导数求其最值.【详解】连OC ,过C 作CE OB ⊥,垂足为E ,如图:设,OE x CE y ==,则224x y +=,所以等腰梯形ABCD 的面积1(24)(2)2S x y x y =+=+2(2)4x x =+-3(2)(2),02x x x =+-<<令3()(2)(2),02h x x x x =+-<<232()3(2)(2)(2)4(1)(2)h x x x x x x '=+--+=-+,(0,1),()0,()x h x h x ∈'>单调递增,(1,2),()0,()x h x h x ∈'<单调递减,所以1x =时,()h x 取得极大值,也是最大值,max ()(1)27h x h ==,即S 的最大值33故答案为:33【点睛】本题考查了函数的实际应用,运用导数求最值时解题的关键,属于中档题.15.(1)(3)(4)【分析】利用函数奇偶性的定义可判断(1)(2)的正误;利用导数与复合函数法求得函数的最小值可判断(3)的正误;利用复合函数法与导数求得函数的零点个数可判断(4)的正误综合可得出结论 解析:(1)(3)(4)【分析】利用函数奇偶性的定义可判断(1)、(2)的正误;利用导数与复合函数法求得函数()y F x =的最小值,可判断(3)的正误;利用复合函数法与导数求得函数()y G x =的零点个数,可判断(4)的正误.综合可得出结论.【详解】对于命题(1),对于函数()()F x f g x ⎡⎤=⎣⎦,()ln 0g x x =>,即1x >,解得1x <-或1x >,所以,函数()y F x =的定义域为()(),11,-∞-⋃+∞,定义域关于原点对称,()()ln ln g x x x g x -=-==,则()()()()F x f g x f g x F x ⎡⎤⎡⎤-=-==⎣⎦⎣⎦, 所以,函数()y F x =为偶函数,命题(1)正确;对于命题(2),对于函数()()G x g f x ⎡⎤=⎣⎦,()ln 10f x x x =--≠,()111x f x x x'-=-=,令()0f x '=,得1x =,且函数()y f x =的定义域为()0,+∞,当01x <<时,()0f x '<,此时函数()y f x =单调递减;当1x >时,()0f x '>,此时函数()y f x =单调递增.所以,()()min 10f x f ==,则函数()()G x g f x ⎡⎤=⎣⎦的定义域为()()0,11,⋃+∞,定义域不关于原点对称,所以,函数()y G x =是非奇非偶函数,命题(2)错误;对于命题(3),对于函数()()F x f g x ⎡⎤=⎣⎦,()ln 0g x x =>,由(2)知,函数()y f x =的最小值为0,则函数()y F x =的最小值为0,命题(3)正确;对于命题(4),令()()0G x g f x ⎡⎤==⎣⎦,可得()1f x =,则()1f x =或()1f x =-, 由(2)知,()()10f x f ≥=,所以方程()1f x =-无解;令()()1ln 2h x f x x x =-=--,由(2)可知,函数()y h x =在()0,1上单调递减,在()1,+∞上单调递增, 22110h e e⎛⎫=> ⎪⎝⎭,()110h =-<,()42ln422ln20h =-=->, 由零点存在定理可知,函数()y h x =在区间21,1e ⎛⎫ ⎪⎝⎭和()1,4上各有一个零点, 所以,方程()1f x =有两个实根,即函数()y G x =有两个零点,命题(4)正确. 故答案为:(1)(3)(4).【点睛】本题考查函数奇偶性的判断,复合函数最值以及零点个数的判断,考查分析问题和解决问题的能力,属于中等题.16.【分析】由当时不等式恒成立变形得到当时不等式恒成立即在上是增函数然后由在上是恒成立求解【详解】因为当时不等式恒成立即当时不等式恒成立所以在上是增函数所以在上是恒成立即在上是恒成立令所以当时当时所以当 解析:2,12e ⎛⎤-∞ ⎥⎝⎦ 【分析】由当21x x >时,不等式()()12210f x f x x x -<恒成立,变形得到当21x x >时,不等式()()1122x f x x f x <恒成立,即()()g x xf x =,在()0,x ∈+∞上是增函数,然后由()0g x '≥,在()0,x ∈+∞上是恒成立求解.【详解】因为当21x x >时,不等式()()12210f x f x x x -<恒成立,即当21x x >时,不等式()()1122x f x x f x <恒成立,所以()()g x xf x =,在()0,x ∈+∞上是增函数,所以()230x g x e ax '=-≥,在()0,x ∈+∞上是恒成立, 即23xe a x≤,在()0,x ∈+∞上是恒成立, 令2()3xe h x x=, 所以()32()3x e x h x x-'=, 当02x <<时,()0h x '<,当2x >时,()0h x '>,所以当2x =时,()h x 取得最小值,最小值为212e , 所以实数a 的取值范围为2,12e ⎛⎤-∞ ⎥⎝⎦. 故答案为:2,12e ⎛⎤-∞ ⎥⎝⎦. 【点睛】本题主要考查导数与函数的单调性,还考查了转化化归的思想和运算求解的能力,属于中档题.17.【分析】求出函数的导数利用函数的极值点转化列出不等式求解即可【详解】解:可得导函数的对称轴为x =﹣1f (x )在(﹣22)上有极值可得或可得或解得故答案为:【点睛】本题考查函数的导数的应用函数的极值的 解析:1,42⎛⎫- ⎪⎝⎭【分析】求出函数的导数,利用函数的极值点,转化列出不等式求解即可.【详解】解:()321213f x x x ax =+-+, 可得()'222f x x x a =+-,导函数的对称轴为x =﹣1,f (x )在(﹣2,2)上有极值,可得(2)0(1)0f f >⎧⎨-<''⎩或(2)0(1)0f f ->⎧⎨-<''⎩, 可得44201220a a +->⎧⎨--<⎩或44201220a a -->⎧⎨--<⎩, 解得1,42a ⎛⎫∈- ⎪⎝⎭. 故答案为:1,42⎛⎫-⎪⎝⎭. 【点睛】本题考查函数的导数的应用,函数的极值的求法,考查转化思想以及计算能力. 18.【分析】先求出得到在上单调递增要使得在上单调递增则从而得到答案【详解】由函数有由得得所以在上单调递增在上单调递减又函数在上单调递增则则解得:故答案为:【点睛】本题考查函数在某区间上的单调性求参数的范 解析:[]0,1e -【分析】先求出()21ln x f x x-'=,得到()f x 在()0e ,上单调递增,要使得在(),1a a +上单调递增,则()(),10a a e +⊆,,从而得到答案.【详解】由函数()ln x f x x =有()()2ln 1ln 0x x f x x x x -'==> 由()0f x '>得0x e <<,()0f x '<得x e >.所以()f x 在()0e ,上单调递增,在(),e +∞上单调递减,又函数()ln x f x x =在(),1a a +上单调递增,则()(),10a a e +⊆, 则01a a e≥⎧⎨+≤⎩ ,解得:01a e ≤≤-.故答案为:[]0,1e -【点睛】本题考查函数在某区间上的单调性,求参数的范围,属于基础题.19.【分析】设正四棱锥的底面边长为即可由表示出和的等量关系进而表示出正四棱锥的体积利用导函数判断单调性由单调性即可求得最值并求得取最值时的高的值【详解】设正四棱锥的底面边长为因为所以即所以正四棱锥的体积【分析】设正四棱锥P ABCD -的底面边长为a ,即可由4PA =表示出a 和h 的等量关系,进而表示出正四棱锥P ABCD -的体积.利用导函数,判断单调性,由单调性即可求得最值,并求得取最值时的高h 的值.【详解】设正四棱锥P ABCD -的底面边长为a ,因为4PA =,所以22162a h +=, 即22322a h =-,所以正四棱锥P ABCD -的体积()2313220333V a h h h h ==->, 可得232'23V h =-,令'0V =,解得h =当03h <<,可得'0V >,可知V 在03h <<内单调递增,当h >'0V <,可知V 在h >所以当h =P ABCD -的体积取得最大值,即16322313V ⎛⎫-⨯ =⎪⎝⎭=【点睛】本题考查了正四棱锥的性质与应用,四棱锥的体积公式,利用导数求函数的最值及取最值时的自变量,属于中档题.20.【分析】先判断函数为偶函数再利用导数判断函数在递增从而将不等式转化为进一步可得不等式解对数不等式即可得答案【详解】的定义域为且即有即为偶函数;又时则在递增不等式即为即有可得即有即或解得或则解集为故答 解析:()10,100,100⎛⎫+∞ ⎪⎝⎭【分析】先判断函数为偶函数,再利用导数判断函数在0x >递增,从而将不等式转化为()()lg 2f x f >,进一步可得不等式lg 2x >,解对数不等式即可得答案.【详解】()2sin cos f x x x x x =++的定义域为R ,且()()()()()22sin cos sin cos f x x x x x x x x x -=--+-+-=++, 即有()()f x f x -=,即()f x 为偶函数;又0x >时,()()sin cos sin 22cos 0f x x x x x x x x '=+-+=+>,则()f x 在0x >递增,不等式()()1lg lg 22f x f x f ⎛⎫+ ⎪⎝⎭>, 即为()()()lg lg 22f x f x f +->, 即有()()lg 2f x f >, 可得()()lg 2f x f >, 即有lg 2x >,即lg 2x >或lg 2x <-,解得100x >或10100x <<, 则解集为()10,100,100⎛⎫+∞ ⎪⎝⎭. 故答案为:()10,100,100⎛⎫+∞ ⎪⎝⎭.【点睛】 本题考查函数奇偶性、单调性的综合运用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意偶函数(||)()f x f x =这一性质的应用.三、解答题21.(1)()f x 在(,0)2π-上单调递减;(2)有且仅有2个零点. 证明见解析.【分析】(1)求出函数的导数,根据导函数的单调性判断即可;(2)令()()()cos sin x F x f x g x e x x x =-=-,求出函数的导数,通过讨论x 的范围,求出函数的单调区间,从而求出函数的零点个数即可证明结论成立.【详解】(1)()cos sin 1cos()14x x x f x e x e x x π⎛⎫=--=+- ⎪⎝⎭',()cos sin 44x x f x x x ππ⎛⎫⎛⎫⎛⎫⎛⎫=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭'⎭⎝'⎝⎭ 2cos()2sin 2x x e x e x π=+=-.(,0)2x π∈-,sin 0x ∴<,()0f x ''∴>,所以()'f x 在(,0)2π-上单调递增,()(0)0f x f ''<=, ()f x ∴在(,0)2π-上单调递减.(2)()()f x g x -在区间[,]22ππ-上有且仅有2个零点. 证明:令()()()cos sin x F x f x g x e x x x =-=-,所以()()()cos sin cos sin x F x ex x x x x '=--+, ①当,02x ⎡⎤∈-⎢⎥⎣⎦π时, 因为()()cos sin 0,cos sin 0x x x x x ->-+>,()()0,F x F x '∴>在02π⎡⎤-⎢⎥⎣⎦,单调递增, 又()010,022F F ππ⎛⎫=>-=-< ⎪⎝⎭. ()F x ∴在02π⎡⎤-⎢⎥⎣⎦,上有一个零点; ②当0,4x π⎛⎤∈ ⎥⎝⎦时,cos sin 0,0x x x e x ≥>>>,()cos sin sin sin sin ()0x x x F x e x x x e x x x x e x ∴=-≥-=->恒成立.()F x ∴在04π⎛⎤ ⎥⎝⎦,上无零点;③当,42x ππ⎛⎤∈ ⎥⎝⎦时, 0cos sin x x <<, ()()()cos sin cos sin 0x F x e x x x x x '∴=--+<,()F x ∴在42ππ⎛⎤ ⎥⎝⎦,上单调递减;又40,022424F F e πππππ⎫⎛⎫⎛⎫=-<=->⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ()F x ∴在42ππ⎛⎤ ⎥⎝⎦,上必存在一个零点; 综上,()()f x g x -在区间[,]22ππ-上有且仅有2个零点. 【点睛】方法点睛:利用导数研究函数单调性的方法:(1)确定函数()f x 的定义域;求导函数()'f x ,由()0f x '>(或()0f x '<)解出相应的x 的范围,对应的区间为()f x 的增区间(或减区间);(2)确定函数()f x 的定义域;求导函数()'f x ,解方程()0f x '=,利用()0f x '=的根将函数的定义域分为若干个子区间,在这些子区间上讨论()'f x 的正负,由符号确定()f x 在子区间上的单调性.22.(1)最大值为24e ,最小值为2e -;(2)[)2,-+∞.【分析】(1)2a =-代入()f x ,对函数求导,利用导数正负确定单调性即可;(2)先利用极限思想进行估值x →+∞时()0f x '>,来确定()f x 在()1,+∞上单增,()0f x '≥,再对32310x x a x -++-≥分离参数,研究值得分布即得结果.【详解】(1)()()3231x f x e x x a x '=-++-当2a =-时,()()()()()3233311x x f x e x x x e x x x '=+--=+-+∴()f x '在()3,1--和()1,+∞上为正,在(),3-∞-和()1,1-上为负,∴()f x 在()3,1--和()1,+∞上单增,在(),3-∞-和()1,1-上单减,有()21f e-=-,()224f e =,()12f e =-,故()f x 在[]1,2-上的最大值为24e ,最小值为2e -;(2)由()()3231x f x e x x x a '=+-+-知,当x →+∞时,()0f x '>,若()f x 在()1,+∞上单调则只能是单增,∴()0f x '≥在()1,+∞恒成立,即32310x x a x -++-≥∴3231a x x x ≥--++,令()3231g x x x x =--++,1x >,则()23610g x x x '=--+<,∴()g x 在()1,+∞递减,()()12g x g <=-,∴[)2,a ∈-+∞.【点睛】(1)利用导数研究函数()f x 的最值的步骤:①写定义域,对函数()f x 求导()'f x ;②在定义域内,解不等式()0f x '>和()0f x '<得到单调性;③利用单调性判断极值点,比较极值和端点值得到最值即可.(2)函数()f x 在区间I 上递增,则()0f x '≥恒成立;函数()f x 在区间I 上递减,则()0f x '≤恒成立.(3)解决恒成立问题的常用方法:①数形结合法;②分离参数法;③构造函数法.23.(1)函数()g x的一个极大值点为,对应的极大值为9,另一个极大值点为9;函数()g x 极小值点为0,对应的极小值为0;(2)4,13⎡⎫+∞⎪⎢⎣⎭. 【分析】(1)求出()g x 的表达式,结合函数的奇偶性即可求出140a b ⎧=-⎪⎨⎪=⎩,从而可确定()g x 的解析式,求出导数即可求出函数的极值点和极值.(2)结合第一问可得()h x 的解析式,从而可求出2()32h x cx x c '=-+,由()h x 的单调性可得213c x x ≥+在[]2,5上恒成立,设()13m x x x =+,利用导数求出()m x 在[]2,5上的最小值,从而可求出实数c 的取值范围.【详解】解:(1)∵432()f x ax x bx =++,∴32()432f x ax x bx '=++,∴432()()()(41)(3)2g x f x f x ax a x b x bx '=+=+++++,因为()g x 为偶函数,∴41020a b +=⎧⎨=⎩,解得140a b ⎧=-⎪⎨⎪=⎩,∴431()4f x x x =-+,则421()34g x x x =-+,∴3()6(g x x x x x x '=-+=-,由()0g x '>,解得x <或0x <<()0g x '<,解得>x0x <<; ∴()g x在(,-∞,(单调递增;在(),)+∞单调递减.∴函数()g x的一个极大值点为(9g =,9g =; 函数()g x 极小值点为0,对应的极小值为()00g =.(2)由(1)知431()4f x x x =-+,∴43221()()(1)4h x f x x c x x cx c =++--++322cx x cx c =-++,∴2()32h x cx x c '=-+,因为函数()h x 在[]2,5上单调递增,∴2320cx x c -+≥在[]2,5上恒成立,即 2221313x c x x x≥=++在[]2,5上恒成立,设()13m x x x =+,令()22213130x m x x x -'=-==,解得[]2,5x =, 当[]2,5x ∈时,()0m x '>,所以()13m x x x=+在[]2,5上单调递增, 则()()1322m x m ≥=,所以24=13132c ≥. 【点睛】方法点睛:已知奇偶性求函数解析式时,常用方法有:一、结合奇偶性的定义,若已知偶函数,则()()f x f x -=,若已知奇函数,则()()f x f x -=-,从而可求出函数解析式;二、由奇偶性的性质,即偶函数加偶函数结果也是偶函数,奇函数加奇函数结果也是奇函数. 24.(1)当0a ≤时,()f x 在R 上单调递增;当0a >时,在1ln ,22a ⎛⎫+∞⎪⎝⎭上单调递增,在1,ln22a ⎛⎫-∞ ⎪⎝⎭上单调递减;(2)20,e ⎡⎫⎪⎢⎣⎭. 【分析】(1)分别在0a ≤和0a >两种情况下,根据()f x '的正负可确定()f x 的单调性;(2)根据(1)的结论可确定0a <不合题意;当0a =时,根据指数函数值域可知满足题意;当0a >时,令()min 0f x >,由此构造不等式求得结果.【详解】(1)由题意得:()22xf x e a '=-, 当0a ≤时,()0f x '>,()f x ∴在R 上单调递增;当0a >时,令()0f x '=得:1ln 22a x =. 当1ln 22a x <时,()0f x '<,()f x ∴在1,ln 22a ⎛⎫-∞ ⎪⎝⎭上单调递减; 当1ln 22a x >时,()0f x '>,()f x ∴在1ln ,22a ⎛⎫+∞ ⎪⎝⎭上单调递增. 综上所述:当0a ≤时,()f x 在R 上单调递增;当0a >时,在1ln ,22a ⎛⎫+∞ ⎪⎝⎭上单调递增,在1,ln 22a ⎛⎫-∞ ⎪⎝⎭上单调递减. (2)由(1)可知:当0a <时,()f x 在R 上单调递增,当x →-∞时,20x e →,()1a x +→+∞,此时()0f x <,不合题意;当0a =时,2()0x f x e =>恒成立,满足题意.当0a >时,()f x 在1ln 22a x =处取最小值,且1ln ln 22222a a a a f ⎛⎫=-- ⎪⎝⎭, 令ln 0222a a a -->,解得:20a e <<,此时()0f x >恒成立. 综上所述:a 的取值范围为20,e ⎡⎫⎪⎢⎣⎭. 【点睛】本题考查导数在研究函数中的应用,涉及到利用导数讨论含参数函数的单调性、恒成立问题的求解;求解恒成立问题的关键是能够通过分类讨论,将问题转化为函数最小值大于零的问题,由此构造不等式求得结果.25.(1)2a =-(2)21(,2),1e e ⎛⎫+-∞-+∞ ⎪-⎝⎭【分析】(1)将(),()f x g x 的解析式代入曲线()()y f x g x =-,根据导数几何意义及垂直直线的斜率关系即可求得a 的值;(2)将0x 代入导函数(),()f x g x '',并代入不等式中化简变形,构造函数1()ln a m x x a x x+=-+,求得()m x '并令()0m x '=,对a 分类讨论即可确定满足题意的a 的取值范围.【详解】(1)由21()()ln 2y f x g x x a x =-=-, 得()a y x x x'=-.在2x =处的切线斜率为22a -, 直线370x y +-=的斜率为13-, 由垂直直线的斜率关系可知232a -=, 解得2a =-.(2)21(),()ln 2f x xg x a x ==, 则(),()a f x x g x x '='=, 不等式()()()()00001f x g x g x f x ''+<-'等价于00001ln a x a x x x +<-. 整理得0001ln 0a x a x x +-+<. 构造函数1()ln a m x x a x x +=-+, 由题意知,在[]1,e 上存在一点0x ,使得()00m x <.22221(1)(1)(1)()1a a x ax a x a x m x x x x x+--+--+'=--==. 因为0x >,所以10x +>,令0mx '=(),得1x a =+. ①当11a +≤,即0a ≤时,()m x 在[]1,e 上单调递增.只需()120m a =+<,解得2a <-.②当11a e <+≤即01a e <≤-时,()m x 在1x a =+处取最小值.令(1)1ln(1)10m a a a a +=+-++<即11ln(1)a a a ++<+, 可得11ln(1)(*)a a a++<+. 令1t a =+,即1t e <≤,不等式(*)可化为1ln 1t t t +<-: 因为1t e <≤,所以不等式左端大于1,右端小于等于1,所以不等式不能成立. ③当1a e +>,即1a e >-时,()m x 在[]1,e 上单调递减, 只需1()0a m e e a e +=-+<,解得211e a >e +-.综上所述,实数的取值范围是21(,2),1e e ⎛⎫+-∞-+∞ ⎪-⎝⎭. 【点睛】本题考查了导数的几何意义及由垂直关系求参数,导函数在解不等式中的应用,构造函数法分析函数的单调性、最值的综合应用,属于中档题.26.(1)()8004cos cos sin θθθ+, ()1600cos cos ,sin θθθ- 1,14⎡⎫⎪⎢⎣⎭;(2)6π. 【解析】分析:(1)先根据条件求矩形长与宽,三角形的底与高,再根据矩形面积公式以及三角形面积公式得结果,最后根据实际意义确定sin θ的取值范围;(2)根据条件列函数关系式,利用导数求极值点,再根据单调性确定函数最值取法.详解:解:(1)连结PO 并延长交MN 于H ,则PH ⊥MN ,所以OH =10.过O 作OE ⊥BC 于E ,则OE ∥MN ,所以∠COE =θ,故OE =40cos θ,EC =40sin θ,则矩形ABCD 的面积为2×40cos θ(40sin θ+10)=800(4sin θcos θ+cos θ),△CDP 的面积为12×2×40cos θ(40–40sin θ)=1600(cos θ–sin θcos θ). 过N 作GN ⊥MN ,分别交圆弧和OE 的延长线于G 和K ,则GK =KN =10. 令∠GOK =θ0,则sin θ0=14,θ0∈(0,π6). 当θ∈[θ0,π2)时,才能作出满足条件的矩形ABCD , 所以sin θ的取值范围是[14,1). 答:矩形ABCD 的面积为800(4sin θcos θ+cos θ)平方米,△CDP 的面积为1600(cos θ–sin θcos θ),sin θ的取值范围是[14,1). (2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为3k (k >0),则年总产值为4k ×800(4sin θcos θ+cos θ)+3k ×1600(cos θ–sin θcos θ)=8000k (sin θcos θ+cos θ),θ∈[θ0,π2). 设f (θ)= sin θcos θ+cos θ,θ∈[θ0,π2),则()()()()222'sin sin 2sin 1211f cos sin sin sin θθθθθθθθ=--=-+-=--+. 令()'=0f θ,得θ=π6, 当θ∈(θ0,π6)时,()'>0f θ,所以f (θ)为增函数; 当θ∈(π6,π2)时,()'<0f θ,所以f (θ)为减函数, 因此,当θ=π6时,f (θ)取到最大值. 答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大. 点睛:解决实际应用题的步骤一般有两步:一是将实际问题转化为数学问题;二是利用数学内部的知识解决问题.。

高中数学难题100道教师版(1-10题)

高中数学难题100道教师版(1-10题)

高中数学难题100道(1-10题)第1题(函数与求导题)【湘南中学2019届高三试题】已知函数.(Ⅰ)求函数的单调区间;(Ⅱ)若a>1,存在,使得(是自然对数的底数),求实数的取值范围。

第2题(椭圆题)1. 已知椭圆x 2a2+y 2b 2=1(a >b >0)的右焦点为F ,直线l经过F 且与椭圆交于A ,B 两点. (1)给定椭圆的离心率为√22.①若椭圆的右准线方程为x =2,求椭圆方程; ②若A 点为椭圆的下顶点,求AFBF ;(2)若椭圆上存在点P ,使得△ABP 的重心是坐标原点O ,求椭圆离心率e 的取值范围.()2()ln 0,1x f x a x x a a a =+->≠()f x []12,1,1x x ∈-12()()1f x f x e -≥-e a第3题(函数与求导题)已知函数2211()()ln (1)124f x x x x x a x =---++,a R ∈.(1)试讨论函数()f x 极值点个数;(2)当2ln 22a -<<-时,函数()f x 在[1+∞,)上最小值记为()g a ,求()g a 的取值范围.第4题(函数与求导题)已知()ln ,f x x ax a a R =-+∈ (1)讨论()f x 的单调性;(2)若21()()(1)2g x f x x =+-有三个不同的零点,求a 的取值范围.第5题(函数与求导题)已知函数2()()ln f x a x x x b =-++的图象在点(1,(1))f 处的切线方程为330x y --= (1)求,a b 的值;(2)如果对任何0x >,都有()['()3]f x kx f x ≤⋅-,求所有k 的值;第6题(函数与求导题)(2018浙江)已知函数()ln f x x =.(1)若()f x 在1x x =,2x (12x x ≠)处导数相等,证明:12()()88ln 2f x f x +>-; (2)若34ln 2a -≤,证明:对于任意0k >,直线y kx a =+与曲线()y f x =有唯一公共点.设a为实数,函数f(x)=(x﹣a)2+|x﹣a|﹣a(a﹣1).(1)若f(0)≤1,求a的取值范围;(2)讨论f(x)的单调性;(3)当a≥2 时,讨论f(x)+在区间(0,+∞)内的零点个数.第8题(函数与求导题)已知函数f(x)=2x+lnx−a(x2+x).(1)若函数f(x)在x=1处的切线与直线y=−3x平行,求实数a的值;(2)若存在x∈(0,+∞),使得不等式f(x)≥0成立,求实数a的取值范围;(3)当a=0时,设函数p(x)=2x+1−f(x),q(x)=x3−mx+e(其中e为自然,试确定函数h(x)的零点对数底数,m为参数).记函数h(x)=p(x)+q(x)+|p(x)−q(x)|2个数.已知函数1()ln f x x a x x=-+. (1)讨论()f x 的单调性;(2)若()f x 存在两个极值点12,x x ,证明:1212()()2-<--f x f x a x x .第10题(函数与求导题) 已知函数2()e =-xf x ax .(1)若1=a ,证明:当0≥x 时,()1≥f x ; (2)若()f x 在(0,)+∞只有一个零点,求a .高中数学难题100道(参考答案)第1题(函数与求导题)解:(Ⅰ). 1分因为当时,,在上是增函数, 因为当时,,在上也是增函数,所以当或,总有在上是增函数, 3分 又,所以的解集为,的解集为, 故函数的单调增区间为,单调减区间为. 6分 (Ⅱ)因为存在,使得成立,而当时,所以只要即可.又因为,,的变化情况如下表所示:所以在上是减函数,在上是增函数,所以当时,的最小值,的最大值为和中的最大值. 8分因为, 令,因为,所以在上是增函数.而,故当时,,即;所以,当时,,即,函数在上是增函数,解得; 12分()ln 2ln 2(1)ln x xf x a a x a x a a '=-=-++1a >ln 0a >()1ln xa a -R 01a <<ln 0a <()1ln xa a -R 1a >01a <<()f x 'R (0)0f '=()0f x '>(0,)∞+()'0f x <(),0-∞()f x (0,)∞+(),0-∞12,[1,1]x x ∈-12()()e 1f x f x --≥[1,1]x ∈-12max min ()()()()f x f x f x f x --≤max min ()()e 1f x f x --≥x ()f x '()f x ()f x [1,0]-[0,1][1,1]x ∈-()f x ()()min 01f x f ==()f x ()max f x ()1f -()1f 11(1)(1)(1ln )(1ln )2ln f f a a a a a aa--=--=--+++1()2ln (0)g a a a a a=-->22121()1(1)0g a a a a '=-=->+1()2ln g a a a a=--()0,a ∈+∞(1)0g =1a >()0g a >(1)(1)f f >-1a >(1)(0)e 1f f --≥ln e 1a a --≥ln y a a =-(1,)a ∈+∞e a ≥第2题(椭圆题)解:(1)①由题意可得{ ca =√22a 2c=2a 2=b 2+c 2,解得a =√2,b =1,∴椭圆方程为x 22+y 2=1.②F(c,0),A(0,−b),∴直线AB 的方程为y =bc x −b , ∵e =c a=√22,∴b =c ,a =√2b ,∴即直线AB 方程为y =x −b ,联立方程组{x 2a 2+y 2b 2=1y =x −b ,消元得x 2−2bx =0, ∴x =0或x =2b ,∴B 点横坐标为2b ,∴AFBF =c2b−c =1.(2)设A(x 1,y 1),B(x 2,y 2),P(x 0,y 0).,依题意直线l 的斜率不能为0,故设直线l 的方程为:x =my +c , 由{b 2x 2+a 2y 2=a 2b 2x=my+c,得(b 2m 2+a 2)y 2+2mcb 2y −b 4=0. y 1+y 2=−2mcb 2b 2m 2+a 2,x 1+x 2=my 1+c +my 2+c =2a 2cb 2m 2+a 2要使△ABP 的重心是坐标原点O ,则有{x 1+x 2+x 03=0y 1+y2+y 03=0∴{x 0=−2a 2cb 2m 2+a 2y 0=2mcb 2b 2m 2+a 2P(x 0,y 0)在b 2x 2+a 2y 2=a 2b 2上,得b 2⋅4a 4c 2(b 2m 2+a 2)2+a 2⋅4m 2c 2b 4(b 2m 2+a 2)2=a 2b 2,⇒b 4m 4+(2b 2a 2−4c 2b 2)m 2+a 4−4a 2c 2=0, ⇒(b 2m 2+a 2)(b 2m 2+a 2−4c 2)=0, ∵⇒b 2m 2+a 2>0,∴椭圆上存在点P ,使得△ABP 的重心是坐标原点O ,则方程b 2m 2+a 2−4c 2=0必成立. ∴a 2−4c 2≤0,⇒c 2a 2≥14⇒e =c a ≥12,椭圆离心率e 的取值范围为[12,1).第3题(函数与求导题) 解:(1)∵()1)ln 2f x x x a '=---(,记()(1)ln 2h x x x =--,则1()ln 1h x x x '=+-,211()0(0)h x x x x''=+>>时∴()h x '在0+∞(,)上递增且(1)0h '=. ∴当01x <<时,()0h x '<,当1x >时,()0h x '>. ∴()h x 在0,1()上递减,在1+∞(,)上递增, 又0x →时,()h x →+∞,x →+∞时,()h x →+∞,min ()(1)2h x h ==-, ∴当2a ≤-时,()0f x '≥,()f x 在定义域上递增,∴无极值点, 当2a >-时,()y f x '=有两变号零点,∴有两极值点.(2)由(1)知,()f x '在[)1+∞,上递增, 又∵(1)20f a '=--<,(2)ln 220f a '=-->.∴存在唯一实数(1,2)t ∈使()0f t '=,(1)ln 2a t t ∴=--,()f x ∴在]1t (,上递减,在[),t +∞上递增, 22min 11()()()ln (1)124f x g a t t t t a t ∴==---++2211ln 124t t t t =--++ 又明显(1)ln 2a t t =--在[)1+∞,上递增, ∴对任意一个()2,ln 22a ∈--,都存在唯一()1,2t ∈与之对应,反之亦然.设()u t =2211ln 124t t t t --++,()1,2t ∈u (t)t(lnt 1)10'=-++<()u t ∴在1,2()上递减,(2)()(1)u u t u ∴<<, 即722ln 2()4u t -<<()g a ∴的取值范围为722ln 24-(,).第4题(函数与求导题)解:(1)由已知()f x 的定义域为(0,)+∞,又1'()axf x x-=, 当0a ≤时,'()0f x >恒成立,10,'()0,()x f x f x a<<>单调递增; 当0a >时,10,'()0,()x f x f x a <<>单调递增;1,'()0,()x f x f x a><单调递减; (2)由题21()ln (1)2g x x ax a x =-++-,1'()1g x x a x =+--①当1a ≤时,'()10g x a ≥-≥,此时()g x 单调递增,最多存在一个零点,不符合题意②当1a >时,2(1)1'()x a x g x x-++=,令2()(1)1h x x a x =-++,此时(3)(1)0a a ∆=+->,令()0h x =两根分别为1212,()x x x x <,由121210,1x x a x x +=+>=,可以知道1201x x <<<10,()0,'()0,()x x h x g x g x <<>>单调递增;当12,()0,'()0,()x x x h x g x g x <<<<单调递减; 2,()0,'()0,()x x h x g x g x >>>单调递增;其中(1)0g =,1212()0,()0,()0a g x g x g e--><<, (2(1))0g a +>,因此有121(,1)a x e--∃∈使得1()0g x =,21x ∃=使得2()0g x =;3(1,2(1))x a ∃∈+使得3()0g x =综上:(1,)a ∈+∞ 注1:当01x <<时,211(1)22x -<,因此有11()ln ln 22g x x ax a x a <-++<++,令1ln 02x a ++=,解得12a x e --= 注2:当1x >时,22111()ln (1)222g x x ax a x x x a x =-++-+>-+,令21(1)02x a x -+=,解得2(1)x a =+第5题(函数与求导题)解:(1)1'()(21)f x a x x=-+,由题知'(1)3,(1)0f f ==,解得2,0a b == (2)令21()()['()3]2()ln [45]g x f x kx f x x x x kx x x=-⋅-=-+--+,1'()2(21)(85)g x x k x x=-+--,其中(1)0g =,又因()0g x ≤,则必有'(1)0g =,解得1k =当1k =时,(1)(41)'()x x g x x-+=,01,'()0,()x g x g x <<>单调递增;1,'()0,()x g x g x ><单调递减,()(1)0g x g ≤=,符合题意综上:1k =第6题(函数与求导题)【解析】(1)函数()f x的导函数1()f x x'=, 由12()()f x f x ''=1211x x -=-, 因为12x x ≠12=.= 因为12x x ≠,所以12256x x >.由题意得121212()()ln ln ln()f x f x x x x x +=+=.设()ln g x x =,则1()4)4g x x'=,所以所以()g x 在[256,)+∞上单调递增, 故12()(256)88ln 2g x x g >=-, 即12()()88ln 2f x f x +>-. (2)令(||)a k m e-+=,2||1()1a n k+=+,则 ()||0f m km a a k k a -->+--≥, ()))0a f n kn a n k n k n --<---<≤ 所以,存在0(,)x m n ∈使00()f x kx a =+,所以,对于任意的a ∈R 及(0,)k ∈+∞,直线y kx a =+与曲线()y f x =有公共点.由()f x kx a =+得ln x a k x-=.设ln ()x a h x x-=,则22ln 1()12()x a g x a h x x x --+--+'==,其中()ln 2g x x =-. 由(1)可知()(16)g x g ≥,又34ln 2a -≤,故()1(16)134ln 2g x a g a a --+--+=-++≤,所以()0h x '≤,即函数()h x 在(0,)+∞上单调递减,因此方程()0f x kx a --=至多1个实根.综上,当34ln 2a -≤时,对于任意0k >,直线y kx a =+与曲线()y f x =有唯一公共点.第7题(函数与求导题)解:(1)若f (0)≤1,即:a 2+|a|﹣a (a ﹣1)≤1.可得|a|+a ﹣1≤0,当a≥0时,a ,可得a ∈[0,].当a <0时,|a|+a ﹣1≤0,恒成立.综上a .∴a 的取值范围:; (2)函数 f (x )==,当x <a 时,函数f (x )的对称轴为:x==a+>a , y=f (x )在(﹣∞,a )时是减函数,当x≥a时,函数f(x)的对称轴为:x==a﹣<a,y=f(x)在(a,+∞)时是增函数,(3)F(x)=f(x)+=,,当x<a时,=,所以,函数F(x)在(0,a)上是减函数.当x≥a时,因为a≥2,所以,F′(x)=∴,所以,函数F(x)在(a,+∞)上是增函数.F(a)=a﹣a2+.当a=2时,F(2)=0,此时F(x)有一个零点,当a>2时,F(a)=a﹣a2+,F′(a)=1﹣2a==.所以F(ah)在(2,+∞)上是减函数,所以F(a)<,即F(a)<0,当x>0且x→0时,F(x)→+∞;当x→+∞时,F(x)→+∞,所以函数F(x)有两个零点.综上所述,当a=2时,F(x)有一个零点,a>2时F(x)有两个零点.第8题(函数与求导题)−a(2x+1),解:(1)函数f(x)=2x+lnx−a(x2+x)的导数为f′(x)=2+1x可得函数f(x)在x=1处的切线斜率为3−3a,由切线与直线y=−3x平行,可得3−3a=−3,解得a=2;(2)存在x ∈(0,+∞),使得不等式f(x)≥0成立,即为a ≤2x+lnx x 2+x 的最大值, 令m(x)=2x+lnx x 2+x ,(x >0),m′(x)=(2x+1)(1−x−lnx)(x 2+x)2,由1−x −lnx =0,即x +lnx =1,由于x +lnx −1的导数为1+1x >0,即x +ln −1在x >0递增,且x =1时,x +lnx −1=0,则x =1为m(x)的极值点,当x >1时,m(x)递减,当0<x <1时,m(x)递增,则x =1时,m(x)取得极大值,且为最大值1,则a ≤1;(3)当a =0时,设函数p(x)=2x +1−f(x)=1−lnx ,q(x)=x 3−mx +e ,则当1−lnx ≥x 3−mx +e ,h(x)=1−lnx ;当1−lnx <x 3−mx +e ,h(x)=x 3−mx +e .①当x ∈(0,e)时,p(x)>0,依题意,h(x)≥p(x)>0,h(x)无零点;②当x =e 时,p(e)=0,q(e)=e 3−me +e ,若q(e)=e 3−me +e ≤0,即m ≥e 2+1,则e 是h(x)的一个零点;若q(e)=e 3−me +e >0,即m <e 2+1,则e 不是h(x)的零点;③当x ∈(e,+∞)时,p(x)<0,所以此时只需考虑函数q(x)在(e,+∞)上零点的情况.因为 3e^{2}-m'/>,所以 当m ≤3e 2时,0'/>,q(x)在(e,+∞)上单调递增. 又q(e)=e 3−me +e ,所以(i)当m ≤e 2+1时,q(e)≥0,q(x)在(e,+∞)上无零点;(ii)3e 2≥m >e 2+1时,q(e)<0,又q(2e)=8e 3−2me +e ≥6e 3−e >0,所以此时q(x)在(e,+∞)上恰有一个零点;当m >3e 2时,令,得x =±√m 3. 由,得e <x <√m 3; 由 0'/>,得x >√m 3. 所以q(x)在(e,√m 3)上单调递减,在(√m 3,+∞)上单调递增. 因为q(e)=e 3−me +e <e 3−3e 3+e <0,q(m)=m 3−m 2+e >m 2−m 2+e =e >0,所以此时q(x)在(e,+∞)上恰有一个零点;综上,m <e 2+1时,h(x)没有零点;m =e 2+1时,h(x)有一个零点;m >e 2+1时,h(x)有两个零点.第9题(函数与求导题)【解析】(1)()f x 的定义域为(0,)+∞,22211()1a x ax f x x x x-+'=--+=-. (i )若2≤a ,则()0'≤f x ,当且仅当2a =,1x =时()0f x '=,所以()f x 在(0,)+∞单调递减.(ii )若2a >,令()0f x '=得,x =或x =.当2()2a a x+∈+∞时,()0f x '<; 当(,22a a x+∈时,()0f x '>.所以()fx 在(0,2a,(,)2++∞a 单调递减,在(22a a -+单调递增. (2)由(1)知,()f x 存在两个极值点当且仅当2a >.由于()f x 的两个极值点1x ,2x 满足210x ax -+=,所以121x x =,不妨设12x x <,则21x >.由于12121221212121222()()ln ln ln ln 2ln 11221f x f x x x x x x a a a x x x x x x x x x x ----=--+=-+=-+----, 所以1212()()2f x f x a x x -<--等价于22212ln 0x x x -+<. 设函数1()2ln g x x x x=-+,由(1)知,()g x 在(0,)+∞单调递减,又(1)0g =,从而当(1,)x ∈+∞时,()0g x <.所以22212ln 0x x x -+<,即1212()()2f x f x a x x -<--.第10题(函数与求导题)【解析】(1)当1=a 时,()1≥f x 等价于2(1)e10-+-≤x x . 设函数2()(1)1-=+-x g x x e ,则22()(21)(1)--=--+=--x x g'x x x e x e . 当1≠x 时,()0<g'x ,所以()g x 在(0,)+∞单调递减.而(0)0=g ,故当0≥x 时,()0≤g x ,即()1≥f x .(2)设函数2()1e -=-xh x ax . ()f x 在(0,)+∞只有一个零点当且仅当()h x 在(0,)+∞只有一个零点. (i )当0≤a 时,()0>h x ,()h x 没有零点;(ii )当0a >时,()(2)e x h'x ax x -=-.当(0,2)∈x 时,()0<h'x ;当(2,)∈+∞x 时,()0>h'x .所以()h x 在(0,2)单调递减,在(2,)+∞单调递增. 故24(2)1e=-a h 是()h x 在[0,)+∞的最小值. ①若(2)0>h ,即2e 4<a ,()h x 在(0,)+∞没有零点; ②若(2)0=h ,即2e 4=a ,()h x 在(0,)+∞只有一个零点; ③若(2)0<h ,即2e 4>a ,由于(0)1=h ,所以()h x 在(0,2)有一个零点, 由(1)知,当0>x 时,2e >x x , 所以33342241616161(4)11110e (e )(2)=-=->-=->a a a a a h a a a. 故()h x 在(2,4)a 有一个零点,因此()h x 在(0,)+∞有两个零点.综上,()f x 在(0,)+∞只有一个零点时,2e 4=a .。

2023数学高考真题知识题型突破42 导数中的极值点偏移问题(学生版)

2023数学高考真题知识题型突破42 导数中的极值点偏移问题(学生版)

专题42 导数中的极值点偏移问题【高考真题】1.(2022·全国甲理) 已知函数()ln x f x x x a e x=-+-. (1)若()0f x ≥,求a 的取值范围;(2)证明:若()f x 有两个零点12, x x ,则121x x <.【知识总结】一、极值点偏移的含义函数f (x )满足内任意自变量x 都有f (x )=f (2m -x ),则函数f (x )关于直线x =m 对称.可以理解为函数f (x )在对称轴两侧,函数值变化快慢相同,且若f (x )为单峰函数,则x =m 必为f (x )的极值点x 0,如图(1)所示,函数f (x )图象的顶点的横坐标就是极值点x 0,若f (x )=c 的两根的中点则刚好满足x 1+x 22=x 0,则极值点在两根的正中间,也就是极值点没有偏移.图(1) 图(2) 图(3)若x 1+x 22≠x 0,则极值点偏移.若单峰函数f (x )的极值点为x 0,且函数f (x )满足定义域内x =m 左侧的任意自变量x 都有f (x )>f (2m -x )或f (x )<f (2m -x ),则函数f (x )极值点x 0左右侧变化快慢不同.如图(2)(3)所示.故单峰函数f (x )定义域内任意不同的实数x 1,x 2,满足f (x 1)=f (x 2),则x 1+x 22与极值点x 0必有确定的大小关系:若x 0<x 1+x 22,则称为极值点左偏;若x 0>x 1+x 22,则称为极值点右偏. 【方法总结】1.对称化构造法主要用来解决与两个极值点之和,积相关的不等式的证明问题.其解题要点如下:(1)定函数(极值点为x 0),即利用导函数符号的变化判断函数的单调性,进而确定函数的极值点x 0.(2)构造函数,即对结论x 1+x 2>2x 0型,构造函数F (x )=f (x )-f (2x 0-x )或F (x )=f (x 0+x )-f (x 0-x );对结论x 1x 2>x 20型,构造函数F (x )=f (x )-f ⎝⎛⎭⎫x 20x ,通过研究F (x )的单调性获得不等式. (3)判断单调性,即利用导数讨论F (x )的单调性.(4)比较大小,即判断函数F (x )在某段区间上的正负,并得出f (x )与f (2x 0-x )的大小关系.(5)转化,即利用函数f (x )的单调性,将f (x )与f (2x 0-x )的大小关系转化为x 与2x 0-x 之间的关系,进而得到所证或所求.若要证明f ′⎝⎛⎭⎫x 1+x 22的符号问题,还需进一步讨论x 1+x 22与x 0的大小,得出x 1+x 22所在的单调区间,从而得出该处导数值的正负.2.比(差)值代换法比(差)值换元的目的也是消参、减元,就是根据已知条件首先建立极值点之间的关系,然后利用两个极值点之比(差)作为变量,从而实现消参、减元的目的.设法用比值或差值(一般用t 表示)表示两个极值点,即t =x 1x 2,化为单变量的函数不等式,继而将所求解问题转化为关于t 的函数问题求解. 3.对数均值不等式法两个正数a 和b 的对数平均定义:(),(, )ln ln ().a b a b L a b a b a a b -⎧≠⎪=-⎨⎪=⎩(, )2a b L a b +≤(此式记为对数平均不等式) 取等条件:当且仅当a b =时,等号成立.只证:当a b ≠(, )2a b L a b +<.不失一般性,可设a b >.证明如下: (1)(, )L a b < ①不等式①1ln ln ln 2ln (1)a a b x x x b x ⇔-<⇔<<-=>其中 构造函数1()2ln (), (1)f x x x x x =-->,则22211()1(1)f x x x x'=--=--. 因为1x >时,()0f x '<,所以函数()f x 在(1, )+∞上单调递减,故()(1)0f x f <=,从而不等式①成立;(2)再证:(, )2a b L a b +< ② 不等式②2(1)2()2(1)ln ln ln ln (1)(1)(1)a a b a x a b a b x x a a b b x bb---⇔->⇔>⇔>=>+++其中 构造函数2(1)()ln , (1)(1)x g x x x x -=->+,则22214(1)()(1)(1)x g x x x x x -'=-=++. 因为1x >时,()0g x '>,所以函数()g x 在(1, )+∞上单调递增,故()(1)0g x g >=,从而不等式②成立;综合(1)(2)知,对, a b +∀∈R(, )2a b L a b +≤成立,当且仅当a b =时,等号成立.【题型突破】1.已知函数f (x )=e x -ax -1(a 为常数),曲线y =f (x )在与y 轴的交点A 处的切线斜率为-1.(1)求a 的值及函数y =f (x )的单调区间;(3)若x 1<ln2,x 2>ln2,且f (x 1)=f (x 2),试证明:x 1+x 2<2ln2.2.已知函数f (x )=ln x -ax 2,其中a ∈R .(1)若函数f (x )有两个零点,求a 的取值范围;(2)若函数f (x )有极大值为-12,且方程f (x )=m 的两个根为x 1,x 2,且x 1<x 2,求证:x 1+x 2>4a . 3.已知函数f (x )=ln x +t x-s (s ,t ∈R ). (1)讨论f (x )的单调性及最值;(2)当t =2时,若函数f (x )恰有两个零点x 1,x 2(0<x 1<x 2),求证:x 1+x 2>4.4.已知f (x )=12x 2-a 2ln x ,a >0. (1)若f (x )≥0,求a 的取值范围;(2)若f (x 1)=f (x 2),且x 1≠x 2,证明:x 1+x 2>2a .5.已知函数f (x )=a ln x -x 2+(2a -1)x (a ∈R )有两个不同的零点.(1)求a 的取值范围;(2)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2>2a .6.已知函数f (x )=x -a e x +b (a >0,b ∈R ).(1)求f (x )的最大值;(2)若函数f (x )有两个不同的零点x 1,x 2,证明:x 1+x 2<-2ln a .7.设函数2()(1)()2x x a f x e x e a =-+-∈R . (1)当1ea =时,求1()()x g x f x e -='⋅的单调区间(()f x '是()f x 的导数); (2)若()f x 有两个极值点1x 、212()x x x <,证明:1223x x +>.8.(2021·新高考全国Ⅰ)已知函数f (x )=x (1-ln x ).(1)讨论f (x )的单调性;(2)设a ,b 为两个不相等的正数,且b ln a -a ln b =a -b ,证明:2<1a +1b<e . 9.已知函数f (x )=x ln x 的图象与直线y =m 交于不同的两点A (x 1,y 1),B (x 2,y 2).求证:x 1x 2<1e 2. 10.已知函数()ln f x x ax =-.(1)讨论()f x 的单调性;(2)若函数()f x 有两个零点1x ,212()x x x <.①求a 的取值范围;②证明:212e x x ⋅>.11.已知函数2()ln ()f x x x ax x a a =+-+∈R 在其定义域内有两个不同的极值点.(1)求a 的取值范围.(2)设()f x 的两个极值点为1x ,2x ,证明212e x x >.12.已知函数f (x )=ln x x +a(a ∈R ),曲线y =f (x )在点(1,f (1))处的切线与直线x +y +1=0垂直.(1)试比较2 0182 019与2 0192 018的大小,并说明理由;(2)若函数g (x )=f (x )-k 有两个不同的零点x 1,x 2,证明:x 1x 2>e 2.13.已知函数f (x )=ln x +b x-a (a ∈R ,b ∈R )有最小值M ,且M ≥0. (1)求e a -1-b +1的最大值;(2)当e a -1-b +1取得最大值时,设F (b )=a -1b-m (m ∈R ),F (x )有两个零点为x 1,x 2(x 1<x 2),证明:2312e x x >.14.已知函数f (x )=(ln x -k -1)x (k ∈R ).(1)当x >1时,求f (x )的单调区间和极值;(2)若对任意x ∈[e ,e 2],都有f (x )<4ln x 成立,求k 的取值范围;(3)若x 1≠x 2,且f (x 1)=f (x 2),证明x 1x 2<e 2k .15.设函数f (x )=x 2-(a -2)x -a ln x .(1)求函数f (x )的单调区间;(2)若方程f (x )=c 有两个不相等的实数根x 1,x 2,求证:12()02x x f +'>. 16.(2011辽宁)已知函数f (x )=ln x -ax 2+(2-a )x .(1)讨论f (x )的单调性;(2)设a >0,证明:当0<x <1a 时,f (1a +x )>f (1a-x ); (3)若函数y =f (x )的图象与轴交于A ,B 两点,线段AB 中点的横坐标为x 0,证明:f '(x 0)<0.17.设函数f (x )=e x -ax +a ,其图象与轴交于A (x 1,0),B (x 2,0)两点,且x 1<x 2.(1)求a 的取值范围;(2)证明:f '(x 1x 2)<0(f '(x )为函数f (x )的导函数).18.已知函数f (x )=ln x -ax +1有两个零点.(1)求a 的取值范围;(2)设x 1,x 2是f (x )的两个零点,证明:f ′(x 1·x 2)<1-a .19.已知函数f (x )=a x+ln x (a ∈R ). (1)讨论f (x )的单调性;(2)设f (x )的导函数为f ′(x ),若f (x )有两个不相同的零点x 1,x 2.①求实数a 的取值范围;②证明:x 1f ′(x 1)+x 2f ′(x 2)>2ln a +2.20.已知函数f (x )=e x +ax -1(a ∈R ).(1)若对任意的实数x ,函数y =f ′(x )的图象与直线y =x 有且只有两个交点,求a 的取值范围;(2)设g (x )=f (x )-12x 2+1,若函数g (x )有两个极值点x 1,x 2,且x 1<x 2,证明:g (x 1)+g (x 2)>2.。

全国卷高考数学导数、解析几何大题专项训练含答案(二)

全国卷高考数学导数、解析几何大题专项训练含答案(二)

全国卷高考数学导数、解析几何解答题专项训练(二)一、解答题1.设函数32()2f x x a x b x a =+++,2()32gx x x =-+,其中x R ∈,a 、b 为常数,已知曲线()y f x =与()y g x =在点(2,0)处有相同的切线l 。

(I ) 求a 、b 的值,并写出切线l 的方程;(II )若方程()()f x g x m x +=有三个互不相同的实根0、x 、x ,其中12x x <,且对任意的[]12,x x x ∈,()()(1)fxg x m x +<-恒成立,求实数m 的取值范围。

2.(本小题满分12分) 已知函数22()ln axf x x e=-,(a e R,∈为自然对数的底数). (Ⅰ)求函数()f x 的递增区间;(Ⅱ)当1a =时,过点(0, )P t ()t ∈R 作曲线()y f x =的两条切线,设两切点为111(,())P x f x ,222(,())P x f x 12()≠x x ,求证12x x +为定值,并求出该定值。

3.若函数()x f 满足:在定义域内存在实数0x,使()()()k f x f k x f +=+00(k 为常数),则称“f (x )关于k 可线性分解”.(Ⅰ)函数()22x x f x+=是否关于1可线性分解?请说明理由;(Ⅱ)已知函数()1ln +-=ax x x g ()0>a 关于a 可线性分解,求a 的取值范围;(Ⅲ)证明不等式:()()12e 321-≤⨯⨯⨯⨯n n n Λ()*∈N n . 4.已知x=1是()2ln bf x x x x =-+的一个极值点(1)求b 的值; (2)求函数()f x 的单调增区间;(3)设x x f x g 3)()(-=,试问过点(2,5)可作多少条直线与曲线y=g(x)相切?请说明理由。

5.已知函数2()x f x e x ax =--,如果函数()f x 恰有两个不同的极值点1x ,2x ,且12x x <.(Ⅰ)证明:1ln 2x <;(Ⅱ)求1()f x 的最小值,并指出此时a 的值.6.设函数2()ln 4f x a x x =-,2()(0,0,,)g x bx a b a b R =≠≠∈.(Ⅰ)当32b =时,函数()()()h x f x g x =+在1x =处有极小值,求函数()h x 的单调递增区间;(Ⅱ)若函数()f x 和()g x 有相同的极大值,且函数()()()g x p x f x x =+在区间2[1,]e 上的最大值为8e -,求实数b 的值(其中e 是自然对数的底数) 7.(本小题满分12分)已知函数()ln f x x a x =-,1(), (R).ag x a x +=-∈(Ⅰ)若1a =,求函数()f x 的极值;(Ⅱ)设函数()()()h x f x g x =-,求函数()h x 的单调区间; (Ⅲ)若在[]1,e (e 2.718...=)上存在一点0x ,使得0()f x <0()g x 成立,求a 的取值范围.8.已知函数2()(0)f x ax kbx x =+>与函数()ln ,、、g x ax b x a b k =+为常数,它们的导函数分别为()y f x '=与()y g x '=(1)若()g x 图象上一点(2,(2))p g 处的切线方程为:22ln 220x y -+-=,求、a b 的值;(2)对于任意的实数k,且、a b 均不为0,证明:当0ab >时,()y f x '=与()y g x '=的图象有公共点;(3)在(1)的条件下,设112212(,),(,),()A x yB x y x x <是函数()y g x =的图象上两点,21021()y y g x x x -'=-,证明:102x x x <<9.(本小题满分13分)已知函数21()ln (,0).2f x x ax a R a =-∈≠(I )求函数()f x 的单调区间;(II )已知点1111(1,),(,)(1):()2A a x y x C y f x ->=设B 是曲线图角上的点,曲线C上是否存在点00(,)M x y 满足:①1012x x +=;②曲线C 在点M 处的切线平行于直线AB ?请说明理由。

专题1.15 导数-存在性问题(解析版)

专题1.15 导数-存在性问题(解析版)

专题1.15 导数-存在性问题1.高考对本部分的考查一般有三个层次:(1)主要考查求导公式,求导法则与导数的几何意义; (2)导数的简单应用,包括求函数的单调区间、极值、最值等;(3)综合考查,如零点、证明不等式、恒成立问题、求参数等,包括解决应用问题,将导数内容和传统内容中有关不等式、数列及函数单调性有机结合,设计综合题. 2.存在性问题的解法(1)若()f x 在区间D 上有最值,则能成立:()()max ,00x D f x f x ∃∈>⇔>;()()min ,00x D f x f x ∃∈<⇔<. (2)若能分离常数,即将问题转化为()a f x >(或()a f x <),则 能成立:()()min a f x a f x >⇔>;()()max a f x a f x <⇔<;1.已知函数()()2e 21x f x x a x x =+++,a ∈R . (1)求()f x 的单调区间;(2)若1a =,存在非零实数m ,n ,满足()()0f m f n ==,证明:2m n -<. 【试题来源】“超级全能生”2021届高三全国卷地区1月联考试题(丙卷) 【答案】(1)答案见解析;(2)证明见解析.【分析】(1)利用导数的基本运算可得()()()12x f x x e a '=++,讨论0a ≥、102a e-<<或12a e<-,利用导数与函数单调性之间的关系即可得出结果.(2)根据题意可得m ,n 分别为()f x 的零点,由(1)知()f x 在()1,-+∞上单调递增,在(),1-∞-上单调递减,不妨设m n >,利用零点存在性定理可得10m -<<,21n -<<-,即证【解析】(1)由题意得()()()12xf x x e a '=++,令()()()12xg x x e a =++,当0a ≥时,()10g -=,即当(),1x ∈-∞-时,()()0g x f x ='<;当()1,x ∈-+∞时,()()0g x f x '=>,故()f x 的单调递减区间为(),1-∞-,单调递增区间为()1,-+∞; 当12a e<-时,令()()0g x f x '==,则11x =-,()2ln 2x a =-,12x x <, 故()f x 的单调递减区间为()()1,ln 2a --, 单调递增区间为(),1-∞-,()()ln 2,a -+∞; 当12a e-=时,令()()0g x f x '==,则11x =-,()2ln 2x a =-,12x x =, 满足()()0g x f x '=≥,故()f x 在R 上单调递增; 当102a e-<<时,令()()0g x f x '==, 则11x =-,()2ln 2x a =-,12x x >,故()f x 的单调递减区间为()()ln 2,1a --,单调递增区间为()(),ln 2a -∞-,()1,-+∞. 综上,当0a ≥时,()f x 的单调递减区间为(),1-∞-,单调递增区间为()1,-+∞; 当12a e-<时,()f x 的单调递减区间为()()1,ln 2a --, 单调递增区间为(),1-∞-,()()ln 2,a -+∞; 当12a e-=时,()f x 的单调递增区间为(),-∞+∞; 当102a e-<<时,()f x 的单调递减区间为()()ln 2,1a --, 单调递增区间为()(),ln 2a -∞-,()1,-+∞. (2)证明:当1a =时,()()21x f x xe x =++, 依题意得m ,n 分别为()f x 的零点,由(1)知()f x 在()1,-+∞上单调递增,在(),1-∞-上单调递减. 设m n >,由()010f =>,()110f e-=-<,由零点存在性定理得10m -<<,()22210f e-=->,由零点存在性定理得21n -<<-,利用不等式的性质得12n <-<,则2m n -<, 同理当m n <时也成立.综上,2m n -<.【名师点睛】本题考查了利用导数研究函数的单调性,利用导数证明不等式、零点存在性定理,解题的关键是讨论a 的取值,利用零点存在性定理得出10m -<<,21n -<<-,考查了分类讨论的思想.2.已知函数()ln f x x ax b =-+,()()1xg x x e =-(1)若0b =,()f x 的极大值是1-,求a 的值;(2)若0a =,()()()h x g x f x =-在()0,∞+上存在唯一零点,求b 的值. 【试题来源】安徽省六安市示范高中2020-2021学年高三上学期教学质量检测 【答案】(1)1a =;(2)1b =.【分析】(1)先求得函数的定义域,求得函数的导函数,根据定义域,分析导函数的零点情况,对实数a 进行分类讨论,根据函数的极值的条件,求得a 的值;(2)利用导数研究函数()h x 的单调性,结合唯一零点的条件得到等式,化简即可求得b 的值.【解析】(1)若0b =,则()ln f x x ax =-()f x 的定义域为()0,∞+,()1f x a x'=-. 若0a ≤,()0f x '>,()f x 在定义域内单调递增,无极大值;若0a >,10,x a ⎛⎫∈ ⎪⎝⎭,()f x 单调递增;1,x a ⎛⎫∈+∞ ⎪⎝⎭,()f x 单调递减.1x a∴=时,()f x 取得极大值11 ln 11f a a ⎛⎫=-=- ⎪⎝⎭,1ln 0a ∴=1a .(2)若0a =,则()ln f x x b =+,()()()()1ln xh x g x f x x e x b =-=---()()()1111x x x h x x e x e x x +⎛⎫'=+-=+- ⎪⎝⎭ 令()0h x '=,得1e 0xx -=,当0x >时,1e xx=有唯一解0x ,即001e x x =,当()00,x x ∈时,()0h x '<;当()0,x x ∈+∞时,()0h x '>.所以()h x 在()00,x 单调递减,在()0,x +∞单调递增.因为()h x 有且只有1个零点,所以()00h x =.即0000e ln 0xx x x b ---=.因为00e 1xx =,00ln 0x x +=,整理可得10b -=故1b =.【名师点睛】本题考查利用导数研究函数的极值问题和零点问题,属基础题,难度一般,关键点在于(1)中的分类讨论,(2)中的1e 0xx-=的根的设而不求的思想. 3.已知函数()ln bf x x a x x=-+,a ,b ∈R . (1)若a >0,b >0,且1是函数()f x 的极值点,求12a b+的最小值; (2)若b =a +1,且存在0x ∈[1e,1],使0()0f x <成立,求实数a 的取值范围. 【试题来源】江苏省常州市2021届高三下学期学业水平监测期初联考【答案】(1)最小值3+;(2)()211e a e e +<-+.【分析】(1)由1是函数()f x 的极值点得1a b +=,对12a b+用基本不等式中“1的代换”求最值;(2)把“存在0x ∈[1e ,1],使0()0f x <成立”转化为函数()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的最小值小于0,利用导数讨论单调性,找到最小值,解出a 的范围即可. 【解析】(1)()21,a bf x x x =--'因为1是函数()f x 的极值点,所以 ()110,f a b '=--=即 1.a b +=此时()()()()222222111x b x b x x b a b x ax b f x x x x x x ----+--=--=='=当()01,0;x f x '<<<当()1,0,x f x >'>所以函数()f x 在1x =处取极小值.所以()121223b a a b a b a b a b⎛⎫+=++=++ ⎪⎝⎭因为0,0a b >>,所以2b a a b +≥=(当且仅当21a b ==时等号成立)此时12a b+有最小值3+(2)当1b a =+时,()1ln a f x x a x x+=-+, 存在01,1x e ⎡⎤∈⎢⎥⎣⎦使()00f x <成立,即函数()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的最小值小于0.()()()221111(0)x x a a a f x x x x x⎡⎤+-'++⎣⎦=-==>①当11,a +≥即0a ≥时,() f x 在1,1e ⎡⎤⎢⎥⎣⎦上单调递减,所以()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的最小值为()11120f a a =++=+<, 所以2a <-,不符,舍去; ②当11,a e+≤即11a e 时,() f x 在1,1e ⎡⎤⎢⎥⎣⎦上单调递增, 所以()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的最小值为()()111110,f a e a e a e e e e⎛⎫=+++=+++< ⎪⎝⎭所以()211e a e e +<-+,又11,a e≤-所以()211e a e e +<-+;(3)当111a e <+<时,即110a e-<<时, ()f x 在1,1a e ⎡⎤+⎢⎥⎣⎦上单调递增,在[]1,1a +上单调递减,所以()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的最小值为()()()111ln 11ln 12f a a a a a a ⎡⎤+=++-+=-++⎣⎦因为111,a e<+<所以()1ln 10,a -<+<所以()11ln 12a <-+< 所以()1ln 12a a a a ⎡⎤>-+>⎣⎦,所以()()11ln 12220,f a a a a ⎡⎤+=-++>+>⎣⎦不符,舍去,综上可得,a 的取值范围是()211e a e e +<-+.【名师点睛】(1)导数为零,并且两侧导数一正一负的点为极值点;导数为零,但是两侧导数符号相同的点不是极值点.(2)研究含参数的函数的单调性要注意:①讨论函数的单调性是在函数的定义域内进行,切记不要忽略定义域的限制;②利用导数求函数单调性,大多数情况下归结为对含参数的不等式的解集的讨论;③在能够通过因式分解求出不等式对应方程解时,依据根的大小进行分类讨论;④在不能通过因式分解求出不等式对应方程解时,根据不等式对应方程的判别式进行分类讨4.已知函数()1x f x e ax =--,()()()1xg x f x a xe =+-.(1)若1x ,2x 是()1f x =的两个根,证明:()21212(21)30a x x a x x +-++≥;(2)若存在,0m n >,使()()0g m g n <,求a 的取值范围.【试题来源】浙江省宁波市宁海中学创新班2021届高三下学期2月测试 【答案】(1)证明见解析;(2)1,12⎛⎫⎪⎝⎭.【分析】(1)先证明1x e x ≥+,则()()121222x x e ax ax +=++≥121x x ++,展开即可得到答案;(2)由'()(1)(1)x x g x a x e e a =-++-,''()[(1)21]x g x e a x a =-+-,分1a ≥,112a <<,12a ≤三种情况讨论即可. 【解析】(1)由题1x ,2x 是()1f x =的两个根,则1111112x x a e e x ax -==⇒+-,同理222x eax =+,则()()121222x x e ax ax +=++,易知1x e x ≥+,()()121212221x x e ax ax x x +=++≥++,展开化简得()21212(21)30a x x a x x +-++≥. (2)若存在,0m n >,使()()0g m g n <,因为()(1)(1)x x g x a xe e ax =-+-+,()0,x ∈+∞,所以'()(1)(1)x x g x a x e e a =-++-,''()[(1)21]x g x e a x a =-+-, 当1a ≥时,''()0g x >,'()g x 在()0,∞+上单调递增,()'()'00g x g >=, 所以()g x 在()0,∞+上单调递增,()()00g x g >=,不满足题意.当112a <<时,则在210,1a a -⎛⎫⎪-⎝⎭上''()0g x >,在21,1a a -⎡⎫+∞⎪⎢-⎣⎭上''()0g x <, 所以'()g x 在210,1a a -⎛⎫ ⎪-⎝⎭上单调递增,在21,1a a -⎡⎫+∞⎪⎢-⎣⎭上单调递减, 又()'00g =,在210,1a a -⎛⎫ ⎪-⎝⎭上'()0g x >,从而()g x 在210,1a a -⎛⎫⎪-⎝⎭上单调递增,又()00g =,所以在210,1a a -⎛⎫⎪-⎝⎭上()0>g x . 而当x →+∞时,()0<g x ,所以存在,0m n >,使()()0g m g n <. 当12a ≤时,则''()0g x ≤,'()g x 在()0,∞+上单调递减,()'()'00g x g <=, 所以()g x 在()0,∞+上单调递减,()()00g x g <=,不满足题意. 综上所述:1,12a ⎛⎫∈⎪⎝⎭. 【名师点睛】已知不等式能恒成立求参数值(取值范围)问题常用的方法: (1)函数法:讨论参数范围,借助函数单调性求解;(2)分离参数法:先将参数分离,转化成求函数的值域或最值问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解. 5.已知函数1()ln f x a x x=+(a R ∈且0a ≠). (1)若1a =,求函数()f x 的极值;(2)若存在(]00,x e ∈,使得()00f x <成立,求实数a 的取值范围. 【试题来源】云南省昆明市第一中学2021届高三第六次复习检测 【答案】(1)()1f x =极小值,()f x 无极大值;(2)()1,,e e ⎛⎫-∞-+∞ ⎪⎝⎭.【分析】(1)求出导函数21()x f x x -'=,利用导数与函数单调性之间的关系判断函数的单调性,由单调性求出函数的极值.(2)由题意只需函数()f x 在(]0,e 上的最小值小于0,求出2211()a ax f x x x x-'=-+=,讨论a 的取值范围,利用导数判断函数的单调性,进而求出函数的最小值,即可.【解析】(1)依题意,当1a =时,1()ln f x x x=+,定义域为()0,∞+, 22111()x f x x x x-'=-+=,令()0f x '=,得1x =. 当()0,1x ∈时,()0f x '<,()f x 为减函数; 当()1,x ∈+∞时,()0f x '>,()f x 为增函数, 所以()()11f x f ==极小值,()f x 无极大值. (2)若存在(]00,x e ∈,使得()00f x <成立, 即函数()f x 在(]0,e 上的最小值小于0.2211()a ax f x x x x -'=-+=,且0a ≠.令()0f x '=,得1x a=,当10a<,即0a <时,()0f x '<恒成立, 函数()f x 在(]0,e 单调递减,()min 1()f x f e a e==+, 由10a e +<,得1a e <-,即1,a e ⎛⎫∈-∞- ⎪⎝⎭;当1e a ≥,即10a e<≤时,()0f x '≤恒成立, 函数()f x 在(]0,e 上单调递减,()min 1()0f x f e a e==+>,不合题意; 当10e a<<,即1a e >时,在10,a ⎛⎫⎪⎝⎭上,()0f x '<,()f x 为减函数; 在1,e a ⎛⎫⎪⎝⎭上,()0f x '>,()f x 为增函数, 所以min 11()ln (1ln )f x f a a a a a a ⎛⎫==+=-⎪⎝⎭. 由()1ln 0a a -<,得1ln 0a -<,解得a e >,即(),a e ∈+∞.综上,所以实数a 的取值范围是()1,,e e ⎛⎫-∞-+∞ ⎪⎝⎭.【名师点睛】本题考查了利用导数求函数的极值,利用导数研究不等式能成立,解题的关键是将不等式转化为函数()f x 在(]0,e 上的最小值小于0,考查了运算能力、分析能力,分类讨论的思想.6.已知()ln (0x f x a x a a =->且21),()a g x x ≠= (1)当01a <<时,求()f x 的单调区间;(2)设()()()h x f x g x =+,存在[]12,1,1x x ∈-,使()()121h x h x e -≥-成立.求实数a 的取值范围.【试题来源】2021年东北三校(哈师大附中、东师大附中、辽宁省实验)高三第一次联合模拟考试试卷【答案】(1)增区间(0,)+∞,减区间(),0-∞;(2)1(0,][,)e e+∞.【分析】(1)求导得()ln (1)x f x a a '=-,由于01a <<,ln 0a <,再解不等式()0f x '>和()0f x '<即可得答案;(2)由题知2()ln x h x a x a x =-+,进而将问题转化为()h x 在[1,1]-上的最大值为M 与最小值为m 之差大于等于1e -.再根据导数研究函数的最值即可.【解析】(1)函数的定义域为R .由已知()ln ln ln (1)x x f x a a a a a '=-=-,01a <<,ln 0a ∴<,由()0f x '>得()f x 增区间(0,)+∞,由()0f x '<得()f x 减区间(),0-∞; (2)由已知2()ln x h x a x a x =-+,设()h x 在[1,1]-上的最大值为M ,最小值为m , 依题意:1M m e -≥-,()ln ln 2,(0)0x h x a a a x h ''=-+=,2()(ln )20x h x a a ''∴=+>,()h x '∴为增函数,0x ∴>时,()0,()h x h x '>递增;0x ∴<时,()0,()h x h x '<递减.故(0)1m h ==,{}max (1),(1)M h h =-, 设1()(1)(1)2ln ,(1)0u a h h a a u a=--=--=, 22212(1)()10(0)a u a a a a a-'=+-=≥>()u a ∴在(0,)+∞上递增, 1a ∴>时,()0u a >,此时(1)M h =, 01a ∴<<时,()0u a <,此时(1)M h =-,当1a >时,ln M m a a -=-, 设()ln (1)G a a a a =->,1()10G a a'∴=->,()G a ∴在1(,)+∞上递增, 又()1G e e =-,所以由ln 1a a e -≥-得()()G a G e a e ≥⇔≥,当01a <<时,11ln ,1M m a a a-=+>, 由1ln 1a e a +≥-得111()()0G G e e a a a e≥⇔≥⇔<≤, 综上:a 的取值范围是1(0,][,)e e+∞.【名师点睛】本题考查利用导数研究函数的单调性,不等式成立等问题,考查运算求解能力与分类讨论思想,是难题.本题第二位解题的关键在于将问题转化为2()ln x h x a x a x =-+在[1,1]-上的最大值为M 与最小值为m 之差大于等于1e -,再结合导数研究函数的最值;其中用到作差法比较大小,构造函数研究最值等方法. 7.已知函数()1ln 1=+++f x a x bx x. (1)当0a =时,函数()f x 的极小值为5,求正数b 的值;(2)若1b =,()()3F x f x x=-,且当a ≥-时,不等式()1F x ≥在区间[]1,2上有解,求实数a 的取值范围.【试题来源】云南师范大学附属中学2021届高三下学期第七次月考 【答案】(1)4;(2)1,ln 2⎡⎫-+∞⎪⎢⎣⎭. 【分析】(1)由0a =,得到1()1f x bx x =++,求导21()f x b x'=-+,再利用极值的定义,由函数()f x 的极小值为5求解.(2)由1b =,得到2()ln 1F x a x x x=-++,[12]x ∈,,求导222222224()a a x x ax F x x x ⎛⎫++- ⎪++⎝⎭'==,分2204a -≥,2204a -<讨论求得最大值求解. 【解析】(1)函数()f x 的定义域为(0)+∞,. 当0a =时,1()1f x bx x =++,则21()f x b x'=-+,()00f x x '<⇒<<()0f x x '>⇒> 所以()f x在0⎛ ⎝上单调递减,()f x在⎫+∞⎪⎪⎭上单调递增, 所以函数()f x的极小值为15f ==,所以4b =.(2)当1b =时,2()ln 1F x a x x x=-++,[12]x ∈,, 则22222222224()1a a x a x ax F x x x x x ⎛⎫++-⎪++⎝⎭'=++==. ①当2204a -≥,即a -≤≤时,()0F x '≥,所以()F x 在[12],上单调递增,所以max ()(2)F x F =;②当2204a -<,即a >2220(80)x ax a ++=∆=->的两根分别为1x ,2x , 则12x x a +=-,122x x =,所以10x <,20x <,所以在区间[12],上,222()0x ax F x x++'=>, 所以()F x 在[12],上单调递增,所以max ()(2)F x F =.综上,当a ≥-()F x 在区间[12],上的最大值为(2)ln 221F a =+≥, 所以1ln 2a -≥,所以实数a 的取值范围是1ln 2⎡⎫-+∞⎪⎢⎣⎭,. 【名师点睛】不等式有解问题的解法:若()f x 在区间D 上有最值,则()()max ,00x D f x f x ∀∈>⇔>;()()min ,00x D f x f x ∀∈<⇔<;若能分离常数,即将问题转化为()a f x >(或()a f x <),则()()min a f x a f x >⇔>;()()max a f x a f x <⇔<.8.已知函数()1ln 1=+++f x a x bx x. (1)若24a b +=,当2a >时,讨论()f x 的单调性; (2)若1b =,()()3F x f x x=-,且当a ≥-时,不等式()1F x ≥在区间[]1,2上有解,求实数a 的取值范围.【试题来源】2021年高考数学二轮复习热点题型精选精练(新高考地区专用) 【答案】(1)答案见解析;(2)1,ln 2⎡⎫-+∞⎪⎢⎣⎭. 【分析】(1)首先求出函数的定义域,由24a b +=,消去参数b ,求出导函数,再对参数a 分类讨论,分别求出函数的单调区间;(2)当1b =时,2()ln 1F x a x x x =-++,再求出导函数222224()a a x F x x ⎛⎫++- ⎪⎝⎭'=,对224a -分类讨论,求出函数的最大值,即可求出参数的取值范围; 【解析】(1)因为()1ln 1=+++f x a x bx x所以函数()f x 的定义域为(0)+∞,. 由24a b +=,得1()ln (42)1f x a x a x x =++-+,则2[(2)1](21)()a x x f x x -+-'=, 当4a =时,()0f x '≤,函数()f x 在(0)+∞,上单调递减; 当24a <<时,1()002f x x '<⇒<<或12>-x a ,11()022f x x a '>⇒<<-, 所以()f x 在102⎛⎫ ⎪⎝⎭,,12a ⎛⎫+∞ ⎪-⎝⎭,上单调递减,在1122,⎛⎫ ⎪-⎝⎭a 上单调递增; 当4a >时,1()002f x x a '<⇒<<-或12x >,11()022f x x a '>⇒<<-, 所以()f x 在102a ⎛⎫ ⎪-⎝⎭,,12⎛⎫+∞ ⎪⎝⎭,上单调递减,在1122,⎛⎫ ⎪-⎝⎭a 上单调递增. (2)当1b =时,2()ln 1F x a x x x=-++,[12]x ∈,, 则22222222224()1a a x a x ax F x x x x x ⎛⎫++-⎪++⎝⎭'=++==.①当2204a -≥,即2222a -≤≤时,()0F x '≥,所以()F x 在[12],上单调递增,所以max ()(2)F x F =.②当2204a -<,即22a >时,设2220(80)x ax a ++=∆=->的两根分别为1x ,2x , 则12x x a +=-,122x x =,所以10x <,20x <,所以在区间[12],上,222()0x ax F x x++'=>, 所以()F x 在[12],上单调递增,所以max ()(2)F x F =.综上,当22a ≥-时,()F x 在区间[12],上的最大值为(2)ln 221F a =+≥, 所以1ln 2a -≥,所以实数a 的取值范围是1ln 2⎡⎫-+∞⎪⎢⎣⎭,. 【名师点睛】用导数求函数的单调区间或判断函数的单调性问题时应注意如下几方面: (1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域; (2)不能随意将函数的2个独立的单调递增(或递减)区间写成并集形式;(3)利用导数解决含参函数的单调性问题时,一般将其转化为不等式恒成立问题,解题过程中要注意分类讨论和数形结合思想的应用. 9.已知函数()xf x e =,()lng x x =.(1)若函数()()()hx f x ag x =+存在极小值,求实数a 的取值范围;(2)若0m >,且()()()22110m x f x x g x mx --+-≥对任意0x >恒成立,求实数m 的取值范围.(参考数据:ln 20.69≈, 2.718e ≈)【试题来源】浙江省宁波市2020-2021学年高三上学期期末 【答案】(1)m 1≥.;(2)m 1≥.【分析】(1)首先求出函数的导数,再对参数a 分类讨论,即可得解;(2)依题意可得()2211ln 0x m x ex x mx --+-≥首先,令1x =,得m 1≥;再证明当m 1≥时符合要求,令()()2211ln x t m m x ex x mx -=-+-.再对112x xe -≥与112x xe -<分类讨论,利用导数研究函数的单调性与极值即可;【解析】(1)由题得()ln xh x e a x =+,()x xa xe ah x e x x='+=+ 又()xx xe ϕ=在()0,∞+上为单调递增函数,()00ϕ=,故当0a ≥时,()h x 无极值.当0a <时,存在00x >,()h x 在()00,x 上单调递增,()0,x +∞上单调递增,存在极小值故0a <. (2)由()()()22110mx f x x g x mx --+-≥即()2211ln 0x m x e x x mx --+-≥首先,令1x =,得m 1≥; 下面证明当m 1≥时符合要求: 令()()2211ln x t m m x e x x mx -=-+-.(1)若2111122x x x x e xe --=≤,即112x xe -≥时,()()()2111ln x t m t x e x x x -≥=-+-.令()()211ln x k x x ex x x -=-+-.得()()2112ln 2x k x x x e x x---'=+-. ()()()2142221111114242222x x k x x x e x x x x x x x x-=+++-≥++⋅+-=+'+'.显然当0x >时,()00k '>,从而()k x '递增,又()10k '= 则01x <<时,()0k x '<,()k x 在()0,1上单调递减,1x >时,()0k x '>,()k x 在()1,+∞上单调递增,所以()()min 10k x k ==得证; (2)若2111122x x x x e xe --=>,即112x xe -<时, ()()11141ln 1124x x x e x x t m t xe e ---++⎛⎫≥=- ⎪⎝⎭.下面,只要证()()141ln 10x n x e x x -=++≤,其中112x xe -<.由112x xe-<,且1x y xe -=在()0,∞+上单调递增,记01012x x e -=,得()00,x x ∈又()()1ln 2111ln 22e ---<,所以01ln 2x >- 又()()()121114111441241x x x x n x ex x x e e x e ----≤+-+=-+<-+.令()1241x p x x e-=-+,则()124x p x e -=-'.所以当()00,x x ∈时,()p x 在()0,1ln 2-上单调递增,()01ln 2,x -上单调递减,()()1ln212ln20p x p ≤-=-<,得证.故所求实数m 的取值范围为m 1≥.【名师点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理. 10.已知函数()ln f x a x x =-. (1)讨论函数()f x 的单调性;(2)设01a <<,若函数2()4()2=+-x g x f x x a在[1,)x ∈+∞上有零点,求a 的取值范围. 【试题来源】河南省驻马店市2020-2021学年高三上学期期末考试【答案】(1)当0a ≤时,函数()f x 在(0,)+∞上单调递减;当0a >时,函数()f x 在(0,)a 上单调递增,在(,)a +∞单调递减;(2)1,110⎡⎫⎪⎢⎣⎭. 【分析】(1)求出导函数()'f x ,然后根据a 的正负分类讨论确定()'f x 的正负,得单调区间;(2)求出()'g x ,确定()g x 的单调性,结合零点存在定理列不等式求得a 的范围. 【解析】(1)由题意知,()(0)-'=>a xf x x x, 当0a ≤时,()0f x '<,则()f x 在(0,)+∞上单调递减;当0a >时,令()0f x '<,得x a >,令()0f x '>,得0x a <<, 则()f x 在(0,)a 上单调递增,在(,)a +∞上单调递减. 综上可知,当0a ≤时,函数()f x 在(0,)+∞上单调递减; 当0a >时,函数()f x 在(0,)a 上单调递增,在(,)a +∞单调递减.(2)因为2()4ln 52=-+x g x a x x a ,所以2254(4)()()-+--'==x ax a x a x a g x ax ax.因为01a <<,且1≥x ,所以0x a ->,0ax >. 当41a ≤,即104a <≤时,()0g x '≥,则()g x 在[1,)+∞上单调递增,因为函数()g x 在[1,)x ∈+∞上有零点,且()84444e e 165e 5e 02=+-->≥g a a,所以min 1()(1)502==-+≤g x g a ,解得11104≤≤a ; 当41a >,即114a <<时,令()0g x '<,解得14<<x a ,令()0g x '>,解得4x a >, 所以()g x 在(1,4)a 上单调递减,在(4,)+∞a 上单调递增,因为()g x 在[1,)x ∈+∞上有零点,且()4e 0>g ,所以min ()(4)4ln(4)120==-≤g x g a a a a ,又114a <<,则114a <<. 综上,a 的取值范围是1,110⎡⎫⎪⎢⎣⎭. 【名师点睛】本题考查用导数求函数的单调性,研究函数零点问题.解题关键是掌握导数与单调性的关系与零点存在定理.如函数()g x 在区间[1,)+∞上有零点,在存在函数值4()0g e >的情况下,只要min ()0g x ≤即可得.11.已知函数()x f x e ax =-,其中a R ∈. (1)讨论函数()f x 在[0,1]上的单调性;(2)若函数()()ln(1)cos g x f x x x =++-,则是否存在实数a ,使得函数()g x 在0x =处取得极小值?若存在,求出a 值;若不存在,说明理由. 【试题来源】广东省广州市天河区2021届高考二模【答案】(1)答案见详解;(2)存在2a =,使得()g x 在0x =处取得极小值【分析】(1)求出导函数,讨论1a ≤、1a e <<或a e ≥,结合函数的单调性与导数之间的关系进行求解即可.(2)求出()1sin 1xg x e a x x '=-+++,根据极值的定义可得()020g a '=-=,得出2a =,再证明充分性,利用导数证明当0,2x π⎛⎫∈ ⎪⎝⎭时,函数()g x单调递增;再构造函数令()212x x m x x e -⎛⎫=++ ⎪⎝⎭,证明当1,04x ⎛⎫∈- ⎪⎝⎭时,函数()g x 单调递减.【解析】(1)由()x f x e ax =-,则()x f x e a '=-, 因为[0,1]x ∈,则[]1,xe e ∈,当1a ≤时,()0x f x e a '=-≥,函数在[0,1]上单调递增; 当1a e <<时,令()0x f x e a '=-≥,解得ln ≥x a , 令()0x f x e a '=-<,解得ln x a <,即函数在[]ln ,1a 上单调递增,在[)0,ln a 上单调递减; 当a e ≥时,()0x f x e a '=-≤,函数在[0,1]上单调递减; (2)()()()ln(1)cos cos ln 1xg x f x x x e ax x x =++-=--++,()1sin 1x g x e a x x '=-+++, 显然0x =是函数()g x 的极小值点的必要条件为()020g a '=-=,即2a =,此时()1sin 21x g x e x x '=++-+, 显然当0,2x π⎛⎫∈ ⎪⎝⎭时, ()11sin 21sin 2sin 011x g x e x x x x x x '=++->+++->>++, 当1,04x ⎛⎫∈- ⎪⎝⎭时,()()22311131122x x x x x ⎛⎫+-+=++> ⎪⎝⎭,故213112x x x <-++, 令()212x x m x x e -⎛⎫=++ ⎪⎝⎭,则()202x x m x e -'=-≤,故()m x 是减函数,故当0x <时,()()01m x m >=,即212xx e x <++,令()1sin 2h x x x =-,则()1cos 2h x x '=-,当10x -<<时,()1cos102h x '>->, 故()h x 在()1,0-上单调递增,故当10x -<<时,()()00h x h <=,即1sin 2x x <, 故当1,04x ⎛⎫∈-⎪⎝⎭时,()1sin 21x g x e x x '=++-+ 2223112202222x x x x x x x ⎛⎫⎛⎫≤+++-+-+=+< ⎪ ⎪⎝⎭⎝⎭, 因此,当2a =时,0x =是()g x 的极小值点,即充分性也成立, 综上,存在2a =,使得()g x 在0x =处取得极小值.【名师点睛】本题主要考查了利用导数研究函数的极值,解题的关键是结合函数的单调性、极值和导数之间的关系进行构造函数,考查了逻辑推理能力以及运算求解能力,考查了化归与转化思想,综合性比较强.12.已知函数()2()2ln 1f x x x =--,()()21g x k x =-.(1)当1k =时,求函数()()()F x f x g x =-的极值;(2)若存在01x >,使得当()01,x x ∈时,()()f x g x >恒成立,求实数k 的取值范围. 【试题来源】云南省昆明市第一中学2021届高三第六次复习检测 【答案】(1)()0F x =极大值,()F x 无极小值;(2)(),1-∞.【分析】(1)2()2ln 1F x x x =-+,求导得22(1)(1)()2x x F x x x x-+-'=-=,显然()0,1x ∈时,()F x 为增函数,()1,x ∈+∞时,()F x 为减函数,所以()F x 在1x =处取得极大值,无极小值,然后计算()1F 即可;(2)()()f x g x >恒成立即()()0f x g x ->恒成立,也即()0F x >恒成立,结合(1)的结论对k 分类讨论,当1k时,不存在01x >,使得当()01,x x ∈时,()()f x g x >恒成立;当1k <时,22(1)1()x k x F x x⎡⎤-+--⎣⎦'=,令()0F x '=,得10x =<,21x =>,可证得函数()F x 在()21,x 上是增函数,所以存在021x x <≤,使得当()01,x x ∈时,()()10F x F >=.【解析】(1)当1k =时,22()2ln (1)2(1)2ln 1F x x x x x x =----=-+,()F x 的定义域为()0,∞+,22(1)(1)()2x x F x x x x-+-'=-=, 当()0,1x ∈时,()0F x '>,()F x 为增函数, 当()1,x ∈+∞时,()0F x '<,()F x 为减函数, 所以()()10F x F ==极大值,()F x 无极小值;(2)由(1)可知,若1k =,则当1x >时,()()10F x F <=,即()()f x g x <, 所以不存在01x >,使得当()01,x x ∈时,()()f x g x >恒成立,若1k >,则当1x >时,22()2ln (1)2(1)2ln (1)2(1)0F x x x k x x x x =----<----<, 即不存在01x >,使得当()01,x x ∈时,()()f x g x >恒成立; 若1k <,2()2ln (1)2(1)F x x x k x =----,22(1)12()222x k x F x x k x x⎡⎤-+--⎣⎦'=-+-=,令()0F x '=,得10x =<,21x =>, 所以当()20,x x ∈时,()0F x '>,()F x 为增函数, 即函数()F x 在()21,x 上是增函数,所以存在021x x <≤,使得当()01,x x ∈时,()()10F x F >=, 即()()f x g x >成立,综上,所以实数k 的取值范围是(),1-∞. 【名师点睛】利用导数求函数极值的步骤: (1)求导数()f x '; (2)求方程()0f x '=的根;(3)检查()f x '在方程的左右的值的符号,如果左正右负,那么()f x 在这个根处取得极大值;如果左负右正那么()f x 在这个根处取得极小值.特别注意:()f x '无意义的点也要讨论,即可先求出()0f x '=的根和()f x '无意义的点,再按定义去判别. 13.已知函数()ln a ef x x x-=+,其中e 是自然对数的底数. (1)设直线22y x e=-是曲线()()1y f x x =>的一条切线,求a 的值;(2)若a R ∃∈,使得()0f x ma +≥对()0x ∀∈+∞,恒成立,求实数m 的取值范围. 【试题来源】备战2021年高考数学全真模拟卷(山东高考专用) 【答案】(1)0a =;(2)1m e≥-. 【分析】(1)设切点坐标为()()00,x f x ,根据题意只需满足()02f x e'=,()00002ln 2a e f x x x x e-=+=-,然后求解方程组得出a 的值及0x 的值;(2)记()()ln a eg x f x ma x ma x-=+=++,求导讨论函数()g x 的单调性,确定最值,使()min 0g x ≥成立,得到关于参数m 的不等式,然后利用参数分离法求解参数m 的取值范围.【解析】(1)设切点为()()00,x f x ,其中01x >, 有()020012a e f x x x e -'=-=,且()00002ln 2a e f x x x x e-=+=- 得0021x a e x e -=-,所以004ln 30x x e+-=,易解得0x e =,则0a =; (2)记()()ln a e g x f x ma x ma x -=+=++,有()2x a eg x x-+'=, 当a e ≤,()20x a eg x x -+'=>恒成立,则函数()g x 在()0,∞+上递增,无最小值,不符合题意;当a e >时,当(),x a e ∈-+∞时,()0g x '>,当()0,x a e ∈-时,()0g x '<, 所以函数()g x 在()0,a e -上递减,在(),a e -+∞上递增,所以()g x 在x a e =-处取得最小值,()()()min ln 10g x g a e a e ma =-=-++≥, 则有()1ln a e m a +--≤,记()()()1ln a e h a a e a+-=>,有()()2ln ea e a e h a a ---'=, 易知()h a 在(),2e e 单调递增,在()2,e +∞单调递减, 则()()max 12h a h e e ==,所以1m e-≤,得1m e ≥-.【名师点睛】本题考查导数的几何意义,考查根据不等式恒成立问题求参数的取值范围,求解的一般方法如下:(1)直接构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;(2)采用参数分离法,然后构造函数,直接将问题转化为函数最值的求解即可. 14.已知函数()e ln xf x x a x =-,定义域为()0,∞+.(1)当2e a =时,求()f x 的单调区间;(2)记()()min g a f x =,当()0,a ∈+∞,求()g a 的最大值;(3)在(2)的条件下,是否存在0c >,d R ∈,使得()()()2max f x g a c x d -≥-.若存在,求c 的取值范围;若不存在,请说明理由. 【试题来源】浙江省名校协作体2021届高三下学期联考【答案】(1)()f x 在区间()0,1上单调递减;在区间()1,+∞上单调递增;(2)e ;(3)存在,50e 2c <≤【分析】(1)将2a e =代入,利用导数与函数单调性的关系即可求得()f x 的单调区间; (2)利用导数与函数单调性的关系即可求出()min f x ,表示出()g a ,再令()()1e e ln x x x x h x x x +=-,利用函数的单调性求出max ()h x 即可;(3)由(2)知2e a =,根据题意可求得1d =,假设存在0c >,使()2e 2ln e 1x x e x c x --≥-成立,令()2e 2eln e (1)x m x x x c x =----,多次求导并对c进行讨论即可求解.【解析】(1)解:当2e a =时,因为()e ln xf x x a x =-,即()e 2ln xf x x e x =-,所以()22e (1)e x x x e e xe x x x xf =+-=-'+, ()()()2222120x x xe ef x e x e x e x x ''=+++=++>, ()f x '∴在区间()0,∞+上单调递增,且()1220f e e '=-=,令()2e(1)e 0xf x x x =+->',解得1x >, 令()2e (1)e 0xf x x x=+-<',解得01x <<, ()f x ∴在区间()0,1上单调递减;在区间()1,+∞上单调递增;(2)因为()e ln xf x x a x =-,所以()(1)e x xx a a e xe x x x x f =+-=+-', ()()22(1)e 2x x x a ae x x e xf x x=++=++''+,()()0,,0,a x ∴∈+∞∈+∞,()()220x ax e f x x '=++'>∴, 故()(1)e xf x a x x'=+-在()0,∞+上单调递增,又()0,x f x →→-∞,(),x f x →+∞→+∞,故对每个0a >存在唯一的正数0x ,满足()()00010xaf x x e x '=+-=, 即()0001e xx x a +=,()f x ∴在区间()00,x 上单调递减;在区间()0,x +∞上单调递增; ()f x ∴最小值在0x 处取到,即()()()0000000000e ln e 1e ln xxxg a f x x a x x x x x ==-=-+,令()()1e e ln xxx x h x x x +=-,所以()()2e 1ln xh x x x x ⎡⎤'=-++⎣⎦,令()()2e 1ln 0xh x x x x ⎡⎤'=-++>⎣⎦,解得01x <<,令()()2e 1ln 0xh x x x x ⎡⎤'=-++<⎣⎦,解得1x >,故()h x 在区间()0,1上单调递增,在区间()1,+∞上单调递减;max max ()()(1)e g a h x h ∴===,此时2e a =;(3)由(2)知2e a =,()()()2max f x g a c x d -≥-,即()2e 2ln xx e x e c x d --≥-,当1x =时不等号左边0,1d ∴=.设存在0c >,使()2e 2ln e 1xx e x c x --≥-成立,令()2e 2eln e (1)xm x x x c x =----,且()10 m =,()()()2e1e 21x m x x c x x '=+---,且()10 m '=, ()()22e2e 2x m x x c x''=++-,且()15e 2m c ''=-,∴当5e 20c -≥,即50e 2c <≤时,()0m x ''≥,即()m x '单调递增,当()0,1x ∈时,()0m x '<,即()m x 单调递减,当()1,x ∈+∞,()0m x '≥,即()m x 单调递增,()()10m x m ∴≥=,即()2e 2e ln e 1x x x c x --≥-成立;当5e 2c >时,()10m ''<,又x →+∞时,()m x ''→+∞,∴存在01x >使()00m x ''=;∴当()01,x x ∈时,有()0m x ''<,即()m x '单调递减,()()10m x m ''<=,即()m x 单调递减,()()10m x m <=,即()2e 2e ln e 1x x x c x --<-,故不符合题意.综上所述:50e 2c <≤. 【名师点睛】由不等式恒成立(或能成立)求参数时,一般可对不等式变形,分离参数,根据分离参数后的结果,构造函数,由导数的方法求出函数的最值,进而可求出结果;有时也可根据不等式,直接构造函数,根据导数的方法,利用分类讨论求函数的最值,即可得出结果.15.已知函数()()()11xxf x ae ea x a -=--+>.(1)若a e =,讨论函数()f x 的单调性;(2)若函数()f x 的极大值点和极小值点分别为12,x x ,试判断方程()()124f x f x -=是否有解?若有解,求出相应的实数a ;若无解,请说明理由. 【试题来源】河南省2021届普通高中毕业班高考适应性测试【答案】(1)函数()f x 在(),1-∞-和()0,∞+上单调递增,在()1,0-上单调递减;(2)有解,2a e =【分析】(1)由已知()()11x x f x ee e x +-=--+,求导()f x ',利用()0f x '>求函数的单增区间,利用()0f x '<求函数的单减区间;(2)由题意()1()e e 1e x x x f x a a -⎛⎫'=--⎪⎝⎭,分析函数的单调性,得到()21f x a =-,()11(1)ln f x a a a =-++,构造函数()22(1)ln (1)g x x x x x =-++>,利用导函数分析知()g x 在()1,+∞为增函数,从而得解.【解析】(1)a e =,()()11x x f x e e e x +-=--+()()11x x f x e e e +-'∴=+-+,令()0f x '=得,10x =或21x =-,当1x <-或0x >时,()0f x '>,函数单调递增; 当10x -<<时,()0f x '<,函数单调递减;∴函数()f x 在()1-∞-,和()0+∞,上单调递增,在()1,0-上单调递减.(2)有解,由题意()()()()1()e e1e 1e e e 1e xxx x x x x f x a a a a a ---⎛⎫'=+-+=--=-- ⎪⎝⎭,令()0f x '=得,1ln x a =-或20x =,1a >,ln 0a ∴-<,当ln x a <-或0x >时,()0f x '>,函数单调递增;当ln 0a x -<<时,()0f x '<,函数单调递减;所以当1ln x a =-时,函数取得极大值,且()()1ln 1(1)ln f x f a a a a =-=-++; 当20x =时,函数取得极小值,且()()201f x f a ==- 注意到()()1222(1)ln f x f x a a a -=-++, 令()22(1)ln (1)g x x x x x =-++>,则1()ln 1g x x x'=+-, 令()()u x g x '=,则21()0x u x x-'=>,∴函数()u x 在()1,+∞为增函数, 即()()(1)0g x u x u '=>=,()g x ∴在()1,+∞为增函数, 方程()4g x =在()1,+∞上至多有一个实数解, 又()()22222214g e e e =-++=,即方程()()124f x f x -=有解所以相应的实数2a e =.【名师点睛】本题考查利用研究函数的单调性,及函数方程有解问题,利用导数解决等式成立问题的:(1)首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围.(2)也可分离变量,构造函数,直接把问题转化为函数的最值问题. 16.已知函数()ln 1f x x ax =--(a R ∈),21()()22g x xf x x x =++. (1)求()f x 的单调区间;(2)当1a =时,若函数()g x 在区间(,1)()m mmZ 内存在唯一的极值点,求m 的值.【试题来源】备战2021年高考数学全真模拟卷(北京专用) 【答案】(1)答案见解析;(2)0m =或3m =.【分析】(1)求出函数的导数,通过讨论a 的范围求出函数的单调区间即可;(2)求出()g x 的导数,根据函数的单调性得到导函数的零点,求出函数的极值点,求出m 的值即可.【解析】(1)由已知得0x >,11()'-=-=axf x a x x. (ⅰ)当0a ≤时,()0f x '>恒成立,则函数()f x 在(0,)+∞为增函数; (ⅰ)当0a >时,由()0f x '>,得10x a<<; 由()0f x '<,得1x a>; 所以函数()f x 的单调递增区间为1(0,)a,单调递减区间为1(,)a+∞.(2)因为()222111()()2ln 12ln 222g x xf x x x x x x x x x x x x =++=--++=-+, 则()()ln 11ln 23g x x x x x f x '=+-+=-+=+.由(1)可知,函数()'g x 在(0,1)上单调递增,在(1,)+∞上单调递减. 因为222111()220g e e e'=--+=-<,(1)10g '=>, 所以()'g x 在(0,1)上有且只有一个零点1x .又在1(0,)x 上()0g x '<,()g x 在1(0,)x 上单调递减; 在1(,1)x 上()0g x '>,()g x 在1(,1)x 上单调递增. 所以1x 为极值点,此时0m =.又(3)ln310g '=->,(4)2ln 220g '=-<, 所以()'g x 在(3,4)上有且只有一个零点2x .又在2(3,)x 上()0g x '>,()g x 在2(3,)x 上单调递增; 在2(,4)x 上()0g x '<,()g x 在2(,4)x 上单调递减. 所以2x 为极值点,此时3m =. 综上所述,0m =或3m =.【名师点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.。

专题06 导数 6.3导数与函数的极值、最值 题型归纳讲义-2022届高三数学一轮复习(原卷版)

专题06 导数 6.3导数与函数的极值、最值 题型归纳讲义-2022届高三数学一轮复习(原卷版)

专题六《导数》讲义6.3导数与函数的极值、最值知识梳理.极值与最值1.函数的极值(1)函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.2.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.题型一. 极值、最值的概念1.函数y=x sin x+cos x的一个极小值点为()A.x=−π2B.x=π2C.x=πD.x=3π22.(2017·全国2)若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f(x)的极小值为()A.﹣1B.﹣2e﹣3C.5e﹣3D.1 3.(2013·全国2)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是()A.∃x0∈R,f(x0)=0B.函数y=f(x)的图象是中心对称图形C .若x 0是f (x )的极小值点,则f (x )在区间(﹣∞,x 0)上单调递减D .若x 0是f (x )的极值点,则f ′(x 0 )=04.已知函数f (x )=x 3+ax 2﹣4x +5在x =﹣2处取极值(a ∈R ). (1)求f (x )的解析式;(2)求函数f (x )在[﹣3,3]上的最大值.题型二.已知极值、最值求参 考点1.利用二次函数根的分布1.若函数f (x )=x 3﹣3bx +b 在区间(0,1)内有极小值,则b 的取值范围是( ) A .(﹣∞,1)B .(0,1)C .(1,+∞)D .(﹣1,0)2.已知函数f (x )=13x 3−12ax 2+x 在区间(12,3)上既有极大值又有极小值,则实数a 的取值范围是( ) A .(2,+∞) B .[2,+∞)C .(2,52)D .(2,103)考点2.参变分离3.若函数f (x )=x 33−a 2x 2+x +1在区间(12,3)上有极值点,则实数a 的取值范围是( ) A .(2,52)B .[2,52)C .(2,103) D .[2,103)4.已知函数f(x)=e xx 2+2klnx −kx ,若x =2是函数f (x )的唯一极值点,则实数k 的取值范围是( ) A .(−∞,e 24] B .(−∞,e 2]C .(0,2]D .[2,+∞)考点3.分类讨论5.已知函数f (x )=ax −1x −(a +1)lnx +1在(0,1]上的最大值为3,则实数a = . 6.已知函数f(x)=(12x 2−ax)lnx −12x 2+32ax .(1)讨论函数f (x )的极值点;(2)若f (x )极大值大于1,求a 的取值范围.7.已知函数f (x )=lnx −a x(a ∈R ) (1)求函数f (x )的单调增区间;(2)若函数f (x )在[1,e ]上的最小值为32,求a 的值.考点4.初探隐零点——设而不求,虚设零点8.(2013·湖北)已知a为常数,函数f(x)=x(lnx﹣ax)有两个极值点x1,x2(x1<x2)()A.f(x1)>0,f(x2)>−12B.f(x1)<0,f(x2)<−12C.f(x1)>0,f(x2)<−12D.f(x1)<0,f(x2)>−129.已知f(x)=(x﹣1)2+alnx在(14,+∞)上恰有两个极值点x1,x2,且x1<x2,则f(x1)x2的取值范围为()A.(−3,12−ln2)B.(12−ln2,1)C.(−∞,12−ln2)D.(12−ln2,34−ln2)10.(2017·全国2)已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.课后作业.极值、最值1.若函数f (x )=(x 2+ax +3)e x 在(0,+∞)内有且仅有一个极值点,则实数a 的取值范围是( ) A .(﹣∞,﹣2)B .(﹣∞,﹣2]C .(﹣∞,﹣3)D .(﹣∞,﹣3]2.已知函数f(x)=xe x −13ax 3−12ax 2有三个极值点,则a 的取值范围是( ) A .(0,e )B .(0,1e)C .(e ,+∞)D .(1e,+∞)3.已知f (x )=e x ,g (x )=lnx ,若f (t )=g (s ),则当s ﹣t 取得最小值时,f (t )所在区间是( ) A .(ln 2,1)B .(12,ln 2)C .(13,1e)D .(1e,12)4.已知函数f (x )=lnx +x 2﹣ax +a (a >0)有两个极值点x 1、x 2(x 1<x 2),则f (x 1)+f (x 2)的最大值为( ) A .﹣1﹣ln 2B .1﹣ln 2C .2﹣ln 2D .3﹣ln 25.已知函数f(x)=lnx +12ax 2+x ,a ∈R . (1)求函数f (x )的单调区间;(2)是否存在实数a ,使得函数f (x )的极值大于0?若存在,求a 的取值范围;若不存在,请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

极值点偏移的问题 21212

()ln,(1()1121()()3(),,fxxaxafxxxaafmfmfxxxxxe1.已知为常数)()若函数在处的切线与轴平行,求的值;

()当时,试比较与的大小;()有两个零点证明:>

21212()ln(),,.fxxaxfxxxxxe变式:已知函数,a为常数。

(1)讨论的单调性;(2)若有两个零点,试证明:>

2012120()+sin,(0,1);2()()()()(),2.xfxxaxxfxaafxfxfxfxxxx2.已知

(1)若在定义域内单调递增,求的取值范围;(2)当=-2时,记取得极小值为若求证> 2121212121()ln-,()2(1=()()()(1)()51,,0,2fxxaxxaRffxgxfxaxgxaxxfxfxxxxx3.已知

(1)若)0,求函数的最大值;(2)令=-,求函数的单调区间;

(3)若=-2,正实数满足()证明:

21212

2(1)1(1)1,,xxxxxe4.设a>0,函数f(x)=lnx-ax,g(x)=lnx-证明:当时,g(x)>0恒成立;(2)若函数f(x)无零点,求实数a的取值范围;(3)若函数f(x)有两个相异零点x求证:x

1212312

()2ln,1()2(),8fxxaaxaRfxfxxxxxaxxa5.已知常数。()求的单调区间;()有两个零点,且;(i)指出的取值范围,并说明理由;(ii)求证:

6.设函数()e()xfxaxaaR,其图象与x轴交于1(0)Ax,,2(0)Bx,两点,且12xx. (1)求a的取值范围; (2)证明:120fxx(()fx为函数()fx的导函数);

(3)设点C在函数()yfx的图象上,且△ABC为等腰直角三角形,记2111xtx,求(1)(1)at的值. 【解】(1)()exfxa. 若0a≤,则()0fx,则函数()fx是单调增函数,这与题设矛盾.所以0a,令()0fx,则lnxa. 当lnxa时,()0fx,()fx是单调减函数;lnxa时,()0fx,()fx是单调增函数; 于是当lnxa时,()fx取得极小值.

因为函数()e()xfxaxaaR的图象与x轴交于两点1(0)Ax,,2(0)Bx,(x1<x2), 所以(ln)(2ln)0faaa,即2ea.. 此时,存在1ln(1)e0af,; 存在33lnln(3ln)3lnaafaaaaa,3230aaa, 又由()fx在(ln)a,及(ln)a,上的单调性及曲线在R上不间断,可知2ea为所求取值范围.

(2)因为1212e0e0xxaxaaxa,, 两式相减得2121eexxaxx.

记21(0)2xxss,则121221212221eeee2(ee)22xxxxxxssxxfsxxs,设()2(ee)ssgss,则()2(ee)0ssgs,所以()gs是单调减函数, 则有()(0)0gsg,而122e02xxs,所以1202xxf. 又()exfxa是单调增函数,且12122xxxx 所以120fxx. (3)依题意有e0ixiaxa,则(1)e0ixiax112ixi(,). 于是12212e(1)(1)xxaxx,在等腰三角形ABC中,显然C = 90°,所以12012()2xxxxx,,即00()0yfx,

由直角三角形斜边的中线性质,可知2102xxy, 所以21002xxy,即1221212e()022xxxxaxxa, 所以211212(1)(1)()022xxaaxxxxa, 即211212(1)(1)(1)(1)[(1)(1)]022xxaaxxxx.

因为110x,则22211111111101212xxxxaaxx, 又2111xtx,所以221(1)(1)022aattt, 即211at,所以(1)(1)2.at 7.已知函数()()xfxxcxR (Ⅰ)求函数()fx的单调区间和极值; (Ⅱ)已知函数()ygx的图象与函数()yfx的图象关于直线1x对称,证明当1x时,()()fxgx

(Ⅲ)如果12xx,且12()()fxfx,证明122xx (Ⅰ)解:f’'()(1)xxfxe 令f’(x)=0,解得x=1 当x变化时,f’(x),f(x)的变化情况如下表 X (,1) 1 (1,)

f’(x) + 0 - f(x) 极大值

所以f(x)在(,1)内是增函数,在(1,)内是减函数。 函数f(x)在x=1处取得极大值f(1)且f(1)=1e (Ⅱ)证明:由题意可知g(x)=f(2-x),得g(x)=(2-x)2xe 令F(x)=f(x)-g(x),即2()(2)xxFxxexe 于是22'()(1)(1)xxFxxee 当x>1时,2x-2>0,从而2x-2e10,0,Fxe又所以’(x)>0,从而函数F(x)在[1,+∞)是增函数。 又F(1)=-1-1ee0,所以x>1时,有F(x)>F(1)=0,即f(x)>g(x). Ⅲ)证明:(1) 若121212(1)(1)0,)),1.xxxxxx12由()及f(xf(x则与矛盾。 (2)若121212(1)(1)0,)),.xxxxxx12由()及f(xf(x得与矛盾。 根据(1)(2)得1212(1)(1)0,1,1.xxxx不妨设 由(Ⅱ)可知,)2f(x>)2g(x,则)2g(x=)2f(2-x,所以)2f(x>)2f(2-x,从而)1f(x>)2f(2-x.因为21x,所以221x,又由(Ⅰ)可知函数f(x)在区间(-∞,1)

内事增函数,所以1x>22x,即12xx>2. 8. 已知函数xaaxxxf)2(ln)(2 (12分) (I)讨论f(x)的单调性;(II)设a>0,证明:当ax10时,)1()1(xafxaf; (III)若函数y= f(x)的图像与x轴交于A、B两点,线段AB中点的横坐标为x0,证明:f′(x0)<0

9. 已知函数21()1xxfxex. (Ⅰ)求()fx的单调区间; (Ⅱ)证明:当12()()fxfx 12()xx时,120xx

解: (Ⅰ) .)123)12)1()1)11()('222222xxxxexxexxexxfxxx((( ;)(,0)(']0-02422单调递增时,,(当xfyxfx 单调递减)时,,当)(,0)('0[xfyxfx. 所以,()yfx在0]在(,上单调递增;在[0x,)上单调递减. (Ⅱ)由(Ⅰ)知,只需要证明:当x>0时f(x) < f(-x)即可。

]1)1[(11111)()(2222xexxeexxexxxfxfxxxx。

1)21()('0,1)1()(22xxexxgxxexxg令。

,04)21()('1)21()(222xxxxeexxhexxh令 0)0()(0)(hxhxhy)上单调递减,在( 0)0()(0)(gxgxgy)上单调递减,在(

.000]1)1[(122yxxexxeyxx时)上单调递减,但,在( )()(0)()(xfxfxfxf .0)()(212121xxxxxfxf时,且所以,当 10.已知函数2()lnfxaxx. (1)当2a时,求函数()yfx在1[,2]2上的最大值; (2)令()()gxfxax,若()ygx在区间(0,3)上不单调,求a的取值范围; (3)当2a时,函数()()hxfxmx的图象与x轴交于两点12(,0),(,0)AxBx,且120xx,又()hx是()hx的导函数.若正常数,满足条件1,.证明:

12()0hxx

解(1) ,2222)(2'xxxxxf

函数)(xfy在[21,1]是增函数,在[1,2]是减函数,……………3分 所以111ln2)1()(2maxfxf. ……4分 (2)因为axxxaxg2ln)(,所以axxaxg2)(, ……5分 因为)(xg在区间)3,0(上不单调,所以0)(xg在(0,3)上有实数解,且无重根,

相关文档
最新文档