天然气发动机缸内燃烧及热功转换过程的规律研究

燃气涡轮发动机复习题

1涡轮喷气发动机作为飞机的动力装置,在工作时连续不断地吸入空气,空气在发动机中经过压缩,燃烧和膨胀过程产生高温从尾喷口喷出,流过发动机的气体动量增加,使发动机产生反推力。发动机作为一个热机,它将燃料的热能转变为机械能。涡轮喷气发动机同时又作为一个推进器,它利用产生的机械能使发动机获得推力。 2燃气涡轮发动机的主要类型有:涡轮喷气发动机(用于军机),涡轮风扇发动机(用于干线飞机和军机),涡轮螺旋桨发动机(用于支线飞机),涡轮轴发动机(用于直升机),桨扇发动机。 3单转子涡轮喷气发动机由进气道,压气机,燃烧室,涡轮,喷管组成。 4发动机的压力比:在发动机上两个不同地点之间的压力关系。压气机的增压比指压气机出口与进口空气总压之比,说明压气机增加进来的空气压力的能力。发动机压力比用EPR 表示。 5涵道比为1左右是低涵道比,2~3左右是中涵道比,4以上是高涵道比。 6绝热压缩过程,在进气道,压气机中进行(0~1~2) 等压加热过程,在燃烧室中进行(2~3) 绝热膨胀过程,在涡轮,喷管中进行(3~4~5) 定压放热过程,在大气中进行(5~0) 7净推力还包括喷管出口的静压超过周围空气的静压产生的推力。实际上,当计算净推力时,燃油流量通常是忽略的,Fn 表示净推力, 8发动机总效率表示加入发动机的燃料完全燃烧所放出的热量有多少转变为发动机的推进功。发动机总效率等于发动机热效率和发动机推进效率的乘积。 9进气道分为亚音进气道,超音进气道。超音进气道分为,内压式,外压式,混合式。我国民航主要使用的扩张形的亚音进气道。 10进气道的冲压比是进气道出口处的总压与远方气流静压的比值。 11压气机功用 :对流过它的空气进行压缩,提高空气的压力,为燃气膨胀做功创造条件,以改善发动机的经济性能,增大发动机的推力。现在压气机必须增加进来空气压力高于环境压力20~30倍以上和空气速度每秒在400~500英尺。 12离心式压气机组成 :进气系统, 叶轮,扩压器,导气管(集气管)。 13失速:转速一定 空气流量减少攻角过大。堵塞:转速一定进口绝对速度轴向分量上升,攻角过小。 14防喘的原理是压气机在非设计状态下通过一些措施也能保持与压气机几何形状相适应的速度三角形,从而使攻角不要过大或过小。防止压气机失速和喘振的常用方法放气活门,压气机静子叶片可调和采用多转子。 15转子的基本类型有鼓式,盘式和鼓盘式。 16典型的涡轮发动机的高压压气机机匣分成前机匣和后机匣。前机匣通常做成两半,由螺栓在中心线连接。它支持前面的静子叶片。后压气机机匣有做成两半的,也有做成一件的。 17油气比是进入燃烧室燃油流量与空气流量的比值, 18余气系数的物理意义是表示贫油和富油的程度,a<1 时为富油,a>1时为贫油。 19容热强度:在单位压力和单位燃烧室容积中,一小时之内,进入燃烧室的燃油燃烧实际所放出的热量。用来衡量燃烧室容积利用的程度。 20在径向上靠近涡轮叶片叶尖和叶根处的温度应低一些,而距叶尖大约三分之一处温度最高。 21燃气涡轮发动机燃烧室的类型:多个单管燃烧室,环管形燃烧室和环形燃烧室。 22旋流器是由若干旋流片按一定角度沿周向排列成的,安装在火焰筒的前部。当空气流过旋流器时,由轴向运动变成旋转运动,气流被惯性离心力甩向四周,使燃烧室中心部分空0 *1P P I =π

大学毕业设计论文 - 燃气涡轮发动机高温燃气温度测量技术

燃气涡轮发动机高温燃气温度测量技术 一、引言 现代军用飞机对发动机提高推重比的要求持续增加。提高压气机压比以提高循环效率、增加涡轮进口温度以提高单位推力是提高推重比最直接和最有效的方法。因此,燃烧室部件设计将向高温升高热容方向发展,燃烧室进出口平均温度不断提高,在研和新研制的第四代涡扇发动机推重比为10.O一级,燃烧室进口平均温度为850K,出口平均温度为1850K,按热点系数O.3计算,热点温度可达2150K,正在预研的第五代发动机以涡扇发动机为主,交循环及组合,推重比12.0一级燃烧室出口平均温度为2000K,推重比15.0一级燃烧室出口平均出口温度为2150K,热点温度当然更高。 现代航空发动机测试是航空推进技术的支撑性技术,是整个发动机预研试验研究和工程发展阶段的重要技术环节。发动机高温燃气测量是最重要的测试技术之一,温度是确定热端部件性能和寿命的最关键参数。将有助于燃气涡轮设计师和工艺师正确了解在燃烧室中所发生的燃烧过程。这使得高温燃气温度测量成为发动机测试中特别重要、难度较大的关键技术。 传统的燃烧室出口温度场测试手段是铂铑系列热电偶。新型燃烧室燃气的高温、高速、高压条件已经超过常规铂铑系列热电偶的应用范围。为了获得燃烧室出口温度场的关键数据,必须寻求新的适用于

燃烧室部件性能试验的高温燃气温度测试手段与方法。 气体温度测量,尤其是动态气体温度测量技术经历了一个发展过程。从20世纪50年代到70年代,主要工作是集中于采用热电偶在测量气流温度时所遇到的几个误差的确定,如辐射误差、导热误差、速度恢复误差以及在气流温度发生阶跃变化时,热电偶时间响应的研究。为了解决脉动气体温度的测试问题,曾经力图将热电偶做得很细,80年代以后,各种新技术、新的探针和手段应用于气流温度测量,主要有先进的探针技术、燃气分析技术、光纤温度传感器、光谱技术以及采用数字信号处理技术的动态气体温度测量系统。目前,提高高温应变能力的研究也在进行之中。 二、燃气分析 鉴于在发动机燃烧室压力和温升越来越高的情况下,用热电偶法测量出口温度,计算燃烧效率和温度分布系数越来越困难。由于贵金属偶丝对未燃烧成份的催化作用和高温下的传热误差,使得测得的结点温度TJ与T。之间的差别越来越大,不能准确地测出燃烧效率和温度分布系数。因此一种用于燃气温度测量的燃气分析技术(TBGA,Temperature By Gas Analysis)应运而生。燃气分析测温法就是通过分析燃气中各种组分的含量来推算燃气温度的方法,具有工程实用性强、测温范围宽、测温精度高,在1800K以上优于热电偶等优点,尤其适合在燃烧室部件试验中测取出口温度场分布。此方法在国外已得到广泛的研究与应用。 20世纪70年代初,GE公司就开始探索用燃气分析方法测量燃烧室

燃气锅炉燃烧控制系统.docx.

燃气锅炉燃烧控制系统 摘要: 本文主要介绍了锅炉燃烧控制系统的设计过程。在设计过程中介绍了锅炉燃烧控制系统的控制任务和控制特点,对于燃烧控制系统的设计方案,根据不同的控制任务分别设计了蒸汽压力控制和燃料空气比值控制以及防脱火回火选择性控制系统,并在设计中给出了不同的设计方案,以对比各自的优缺点,选择最优的控制。然后,把分别设计的控制系统组合起来,构成完整的锅炉燃烧过程控制系统。最后,对设计好的控制系统进行仪表选型。 关键词:燃气锅炉,燃烧系统,比值控制,脱火回火

目录 1.引言 (3) 2.锅炉燃烧控制系统概述 (4) 2.1 燃烧控制的任务 (5) 2.1.1 维持蒸汽出口压力稳定 (5) 2.1.2 保证燃烧过程的经济性 (5) 2.1.3 保证锅炉安全运行 (6) 2.2 燃烧控制的特点 (6) 3.燃烧控制系统设计方案 (6) 3.1 蒸汽压力控制和燃料空气比值控制 (6) 3.1.1 基本控制方案 (7) 3.1.2 改进控制方案 (8) 3.2 防脱火回火选择性控制系统 (9) 3.2.1 防脱火选择性控制系统 (9) 3.2.2防脱火回火混合型选择性控制系统 (11) 3.3 燃烧控制总体方案 (12) 4. 燃烧控制系统的仪表选型 (13) 5. 总结 (14) 参考文献 (15)

1.引言 大型火力发电机组是典型的过程控制对象,它是由锅炉、汽轮发电机组和辅助设备组成的庞大的设备群。锅炉的燃烧控制过程是一个复杂的物理,化学过程,影响因素众多,并且具有强耦合,非线性等特性。 锅炉的自动化控制经历了三、四十年代的单参数仪表控制,四、五十年代的单元组合仪表,综合参数仪表控制,直到六十年代兴起的计算机过程控制几个阶段。尤其是近一、二十年来,随着先进控制理论和计算机技术的发展,加之计算机各项性能的不断增强及价格的不断下降使锅炉应用计算机控制很快得到了普及和应用。 电厂锅炉利用煤或煤气的燃烧发热,通过传热对水进行加热,产生高压蒸汽,推动汽轮机发电机旋转,从而产生强大的电能。在锅炉燃烧系统中,燃料供给系统,送风系统以及引风系统是燃烧控制系统的重要环节。锅炉生产燃烧系统自动控制的基本任务是使燃料所产生的热量适应蒸汽负荷的需要,同时还要保证经济燃烧和锅炉的安全运行。具体控制任务可分为三个方面:一,稳定蒸汽母管压力。二,维持锅炉燃烧的最佳状态和经济性。三,维持炉膛负压在一定范围(-20~-80Pa)。这三者是相互关联的。另外,在安全保护系统上应该考虑燃烧嘴背压过高时,可能使燃料流速过高而脱火;燃烧嘴背压太低又可能回火。 本次课程设计的题目为燃气锅炉燃烧控制系统的设计。主要内容包括燃烧控制系统的概述;燃烧控制系统的基本方案;以及燃烧控制系统的仪表选型。设计方案为以主蒸汽压力控制系统为主回路,燃料量与空气量比值控制系统为内回路,燃烧嘴防脱火回火选择控制系统为辅助安全保护系统。为节省篇幅,炉膛压力控制系统在这里暂不涉及,但在实际控制系统中炉膛压力控制系统是锅炉燃烧控制系统中必不可少的组成部分之一。

发动机的燃油系统

发动机的燃油系统 汽油机所用的燃料是汽油,在进入气缸之前,汽油和空气已形成可燃混合气。可燃混合气进入气缸内被压缩,在接近压缩终了时点火燃烧而膨胀作功。可见汽油机进入气缸的是可燃混合气,压缩的也是可燃混合气,燃烧作功后将废气排出。因此汽油供给系的任务是根据发动机的不同情况的要求,配制出一定数量和浓度的可燃混合气,供入气缸,最后还要把燃烧后的废气排出气缸。 汽油及其使用性能 汽油是汽油机的燃料。汽油是石油制品,它是多种烃的混合物,其主要化学成分是碳(C)和氢(H)。汽油使用性能的好坏对发动机的动力性、经济性、可靠性和使用寿命都有很大的影响。因此,车用汽油需要满足许多要求。 化油器式发动机燃油系统 一、燃油系统的功用及组成 燃油系统的功用是根据发动机运转工况的需要,向发动机供给一定数量的、清洁的、雾化良好的汽油,以便与一定数量的空气混合形成可燃混合气。同时,燃油系统还需要储存相当数量的汽油,以保证汽车有相当远的续驶里程。化油器式发动机燃油系统中最重要的部件是化油器,它是实现燃油系统功用、完成可燃混合气配制的主要装置。此外,燃油系统还包括汽油箱、汽油滤清器、汽油泵、油气分离器、油管和燃油表等辅助装置。 二、可燃混合气的形成过程 汽车发动机的可燃混合气形成时间很短,从进气过程开始算起到压缩过程结束为止,总共也只有0.01~0.02s的时间。要在这样短的时间内形成均匀的可燃混合气,关键在于汽油的雾化和蒸发。所谓雾化就是将汽油分散成细小的油滴或油雾。良好的雾化可以大大增加汽油的蒸发表面积,从而提高汽油的蒸发速度。另外,混合气中汽油与空气的比例应符合发动机运转工况的需要。因此,混合气形成过程就是汽油雾化、蒸发以及与空气配比和混合的过程。 三、发动机运转工况对可燃混合气成分的要求 (一)可燃混合气成分的表示法可燃混合气中空气与燃油的比例称为可燃混合气成分或可燃混合气浓度,通常用过量空气系数和空燃比表示。 1.过量空气系数燃烧1kg燃油实际供给的空气质量与完全燃烧1kg燃油的化学计量空气质量之比为过量空气系数,记作φa。φa=1的可燃混合气称为理论混合气;φa<1的称为浓混合气;φa>1的则称为稀混合气。2.空燃比可燃混合气中空气质量与燃油质量之比为空燃比,记作σ 。按照化学反应方程式的当量关系,可

发动机燃料供给系统

第二节发动机燃料供给系统 一、燃料供给系统功能及结构概述 燃料供给系统(供油系统)的功能:对发动机的性能而言,燃料系统主要具有将不含有灰尘、水分和空气等杂质的干净燃料输送给发动机的功用。此系统与发动机的输出功率、排气烟度以及高压油泵、喷油器的正常工作等发动机故障现象也有着密切的关联。柴油机燃料供给系统的任务,是根据柴油机工作的需要,定时、定量、定压地将柴油按一定的供油规律成雾状喷入燃烧室内与空气迅速混合燃烧。 柴油机燃料供给系统由下列组成: 1.燃油系统工作流程图(图1-2-1) 图1-2-1 燃油系统工作流程图

燃油供给装置包括:燃油箱总成、燃油粗滤器、输油泵、进油管、燃油精滤器、高低压油管、喷油器和回油管。燃油供给装置的功能在于贮存、输送、清洁,提高柴油压力,通过喷油嘴呈物状喷入燃烧室与空气混合而成可燃混合气。 二、燃油供给系统的主要零部件 有关输油泵、燃油滤清器、调速器、角度自动提前器、喷油泵、喷油器的结构、原理、修理、保养请参看该发动机的使用维护说明书。1.带锁燃油箱总成(图1-2-2) 该车型的带锁燃油箱总成按容积共分3个系列,容量分别为400L、320L、270L。一般情况燃油箱总成放置在汽车前进方向的右侧,空滤总成的后部。该燃油箱总成采用钢板卷压成型,端盖咬接答焊,内表面防腐密封处理。具有耐腐蚀、防锈和不易泄漏,容积大等优点。 油箱的中上部是加油口,加油口直径为φ100mm,加油口高出燃油箱45mm,为了加油方便,加油管内带有可以拉出的延伸管,延伸管底部装有铜丝滤网。油箱盖由耐油橡胶垫密封,靠三爪弹簧片锁紧,在油箱盖上并设有通气孔,排出油箱内的蒸汽,保持内外气压一致。油箱盖上装有链索扣环,与加油管内的延伸管相连,以免盖子失落。

关于天然气发动机混合热值的研究

关于天然气发动机混合热值的研究 摘要:天然气作为一种气体燃料,与空气混合更均匀,燃烧更加充分,排放的CO 、HC等有害物质更少。(其他一些没有受排放法规控制的有害成分,如对区域环境影响的毒性物质、烟雾、酸性物质等也比汽油、柴油要少)但是其自身存在的混合气热值低的问题严重制约了cng发动机在日常生活中的应。本文点火提前角和进气压力两方面题提出了相关的解决方案方案。 关键词:cng,发动机,混合气热值,点火角,增压 Abstract: As the natural gas is a fuel gas, the more evenly mixed with air , the more fully burning, less CO, HC and other harmful substances. Other harmful ingredients,that laws and regulations control emissions of , such as regional environmental impact of toxic substances, smoke, acidic substances will discharge less than gasoline and diesel. The existence of its own mixture of low calorific value of cng constraints seriouly the engine in daily life. In this paper, the ignition advance angle and inlet pressure on the relevant questions put forward solutions to the program. Keywords:cng,engine firing angle boost 一、绪言:

燃气锅炉燃烧控制系统

燃气锅炉燃烧控制系统 李凯凯 (山东建筑大学热能工程学院山东省济南市 250101) 摘要:此次论文主要目的是以标准燃烧器为基本设备,结合汽包压力控制、炉膛压力控制的特点和需要,设计燃气锅炉燃烧控制系统。主要方法是通过锅炉情况介绍、燃烧器类型选择、燃烧与汽压控制设计、节炉膛压力控制设计、仪表装置选型等步骤,逐一计算所需数据并选择设备类型,然后根据所得参数查阅有关资料按标准设计符合设备的控制系统。由最终设计结果可知此方法可行。 关键词:燃气锅炉、燃气控制、汽包压力、炉膛压力 0 引言 近几年来,我国城市燃气结构有了很大变化,尤其是西气东输工程的加速实施,以及不断签署的燃气协议,为长期受限制的燃气锅炉的应用推广创造了条件。一方面,燃气锅炉的燃料价格相对较高,因此应尽量提高燃料的利用效率;另一方面,气体燃料易燃易爆,燃气锅炉的危险性大,控制系统的生产保证和安全保障要求严格。国外燃气锅炉的研究历史较长,燃气燃烧控制技术比较成熟,但是燃气锅炉的燃烧控制,多为单回路常规控制,远不能适应我国各地区及各部门条件多变的需要。为了提高燃气锅炉的热效率和安全生产水平,有必要对燃所锅炉的燃烧控制技术进行研究。 1 锅炉情况 本次论文采用一台卧式三回程火管式燃气蒸汽锅炉,使用天然气为燃料,额定蒸发量2T/h,额定汽压1.25MPa,额定蒸汽温度194℃;额定耗气量160Nm3/h,排烟温度230℃,热效率90%。 1.1 燃气蒸汽锅炉的组成 结构组成:具体结构由主要部件和辅助设备组成。主要部件有炉膛、省煤器、锅筒、水冷壁、燃烧设备、空气预热器、炉墙构架组成;辅助设备主要有引风设备、除尘设备、燃料供应设备、除尘除渣设备、送风设备、自动控制设备组成。 系统组成:燃气锅炉主要是由燃烧器和控制器两个大的部分组成,其中燃烧器又能分为五个小的系统,分别为送风系统,点火系统,监测系统,燃料系统和电控系统。 1.2 燃气蒸汽锅炉的工作原理 燃气蒸汽锅炉是用天然气、液化气、城市煤气等气体燃料在炉内燃烧放出来的热量加热锅内的水,并使其汽化成蒸汽的热能转换设备。水在锅筒中不断被炉里气体燃料燃烧释放出来的能量加热,温度升高并产生带压蒸汽,由于水的沸点随压力的升高而升高,锅是密封的,水蒸气在里面的膨胀受到限制而产生压力形成热动力作为一种能源广泛使用。 燃气蒸汽锅炉的工作原理见下图。

燃气涡轮发动机

燃气涡轮发动机 1.压气机、燃烧室、涡轮称为燃气发生器,燃气发生器又称为核心机。 2.发动机压力比EPR:低压涡轮出口总压与低压压气机进口总压之比,同气流通过发动机的 加速成比例。表征推力。 发动机涵道比:指涡扇发动机通过外涵的空气质量流量与通过内涵的空气质量流量之比。 涵道比为1左右是低涵道比,2~3左右是中涵道比,4以上的高涵道比。低涵道比发动机产生推力是热排气高温高压。高涵道产生推力是风扇。 风扇转速n1:对于高涵道比涡扇发动机,由于风扇产生的推力占绝大部分,风扇转速也是推力表征参数。 3.总推力是指当飞机静止时发动机产生的推力,包括由排气动量产生的推力和喷口静压和环 境空气静压之差产生的附加推力。 4.当量轴功率ESHP:计算总的功率输出时,轴功率加上喷气推力的影响。 5.进气道的流量损失用进气道的总压恢复系数σi表示:σi = p1*/ p0* (进气道出口截面 总压 / 进气道前方来流总压) <1 6.喘振:压气机喘振是气流沿压气机轴线方向发生的低频率、高振幅的振荡现象。喘振的根 本原因是由于气流攻角过大,使气流在叶背处发生分离,而且这种气流分离严重扩展至整个叶栅通道。 7.VSV偏开导致高压压气机流量系数变大,气流在压气机叶盆会发生偏离,形成涡流状态; 高压压气机会变轻,高压压气机转速上升,由于高压压气机出现涡轮状态,导致压气机进气量下降,此时风扇的流量系数下降,会在风扇和低压压气机叶片背处出现分离,发生喘振现象,之后风扇和低压压气机所需的功率上升,低压转子呈减速降低趋势。为保证发动机风扇的转速不变,发动机控制系统就会增加燃油流量,t3*与EGT上升,涡轮做功能力上升,保证风扇转速n1不变,n2上升。 8.防喘措施:防止压气机失速和喘振的方法常用:放气活门、压气机静止叶片可调和采用多 转子。 9.压气机结构的核心是转子组件和机匣。

天然气发动机结构及工作原理

潍柴天然气发动机之发动机结构及工作原理 1 / 51

天然气的成分 主要成分是甲烷,易于完全燃烧,比空气轻,泄露后迅速飘散大气中,安全性好。作为车载能源,主要有以下两种贮存形态: 1、CNG-Compressed natural gas 压缩天然气: 气瓶内充满气时一般为20Mpa, 2、LNG-Liquefied natural gas 液化天然气: 在常压下、温度为-162度的天然气变为液态。 2 / 51

燃料种类 常态下密度kgm 沸点℃天然气(CH4) LPG 580 柴油(C16H34为代表) 汽油(C8H18为代表) -3 0.75~0.8(气态) 830 170~350 14.3:1 42.50 720~750 30~190 14.8:1 43.90 -161.5 17.2:1 49.81 130 -100 理论空燃比(kg/kg) 低热值 MJ(kg) -1 45.9 辛烷值(RON) 十六烷值 100~110 23~30 40~60 1.58~8.2 250 80~99 27 0 燃烧极限(体积) % 自然温度(常压下)T ℃ 闪点℃5~15 650 1.5~9.5 450 1.3~7.6 390~420 60 -43 -187 其中:辛烷值:指与汽油抗爆性相同的标准燃料所含异辛烷的体积分数. 低热值:指1立方米燃气完全燃烧后其烟气被冷却至原始温度,但烟气中的水蒸气仍为蒸汽状态时所放出的热量. 3 / 51

天然气的安全性: 1)天然气在压缩(液化)、储运、减压、燃烧过程中,都是在严格密封的状态进行,不易泄漏; 2)天然气比空气轻(密度为空气密度的55%),如有泄漏,在高压下很快散失,不易着火; 3)天然气的着火点为650~750℃,比汽油高约260℃, 4)爆炸极限5~15%,比汽油的1~6%高2.5~4.7倍,与汽油相比不易发生燃烧和爆炸。 4 / 51

发动机燃烧技术

一、概述 内燃机的发展已经有一百多年的历史,自从1876年奥托发明的第一台火花点火式发动机和1892年迪塞尔发明第一台压燃式发动机以来,由于具有较高的热效率、比功率和可靠性,内燃机成为了最主要、最理想的船用、工程机械以及车用动力。美国机械协会认为汽车是20世纪唯一的也是最重要的工程界的成就。在可以预见的未来,发动机仍然是汽车、机车、轮船、农用机械和工程机械等移动装置的动力源。 然而随着世界经济的高速发展,促使内燃机的保有量迅速增加,这样能源消耗以及环境污染问题就日益严重,相应地对内燃机提出了新的技术要求。其中提高内燃机燃油经济性一直是该领域研究工作者所追求的。 同时保护环境的呼声日益提高,如何降低内燃机的有害排放物,是大家共同关心重视的课题。一方面,通过机内净化技术,如柴油机采用电控高压共轨喷射技术,并结合燃烧系统、进排气系统的优化改进,使得整机的排放性能得到极大的改善;另一方面,机外净化技术,将各种污染物的排放量控制在非常低的水平。而内燃机的燃烧技术是改善内燃机动力特性、经济性和排放性的本质和关键技术,当很多研究者对内燃机的燃烧技术进行了研究,为提供内燃机动力特性,降低排放量提供了技术支持。 二、内燃机燃烧技术介绍 首先是压燃式柴油机燃烧技术,柴油机是典型的压燃式发动机,通过缸内压缩混合气体到一定压力与温度,使得混合气体自燃,其中预混燃烧量越多,初始放热率峰值越高,相应地燃烧最高温度就越高,氮氧化物的排放量就增加,其后接着进行扩散燃烧,燃油与空气边混合边燃烧。因此,传统柴油机需要较高的喷射压力,以及适当的空气涡流强度,保证扩散燃烧充分完成,以便降低排气烟度。这种燃烧方式的有点是很明显的,首先是热效率高、燃油经济性好,由于可以采用较高的压缩比,因此热效率比较高,经济性好。但是其缺点也是很明确的,首先是其振动噪声大,由于在上止点前的第一阶段非均质预混合燃烧会引起较高的压力升高率,因此该种燃烧方式的振动噪音比汽油机的要大,其次,其氮氧化物的排放量变高,预混合燃烧会引起较高的燃烧温度,且燃烧室的空气比较富裕,因此,氮氧化物的排放会较高,而且由于扩散燃烧的存在可能使得混合气燃烧不完全,从而使得引起的颗粒物排放比汽油机要高。 其次,是点燃式发动机,这种形式的发动机主要应用于汽油机上,这种燃烧方式与柴油机相比,汽油机属于典型的预混燃烧,这种燃烧方式有很多的优点,比如说,工作运转平稳,其在进气行程中燃油就喷入进气管,遮掩燃油与空气有足够的时间在着火前进行充分地混合,形成基本均匀的可燃混合气,因此汽油机工作比柴油机要来的平稳,并且其振动噪声也要比柴油机小很多。更值得一提的是,在如今环境保护的大趋势与政策下,汽油机的燃烧方式中氮氧化物与颗粒物的排放比柴油机低很多,因为基本均匀的预混燃烧,颗粒物的排放比较低。由于较低的燃烧温度,使得氮氧化物的排放也是比柴油机要低很多的。 三、内燃机燃烧技术的发展

天然气内燃机燃烧问题的基础分析

天然气内燃机燃烧问题的基础分析 摘要:天然气被认为是内燃机较为理想的替代燃料,但是天然气内燃机存在燃烧放热,燃烧循环变动,燃料特性等方面的问题。对此,本文主要介绍了天然气发动机的燃烧和排放的特点、降低天然气发动机NOx排放的措施,以及对天然气发动机功率下降问题的应对措施。 关键词:天然气;发动机;内燃机 1.天然气汽车的发展及发动机燃烧过程的研究 汽车工业的迅猛发展,对石油的需求量越来越大,而汽油和柴油都是不可再生资源。现在天然气发动机越来越受到汽车公司和各高校的青睐,我国20世纪50年代就已开展对天然气汽车的研究,五六十年代在我国四川省开始局部推广使用常压天然气汽车,特别是压缩天然气汽车已在全国各地推广应用。正是因为天然气汽车具有很好的经济、环保和社会效益,所以近几年在我国发展非常迅速,从1999年初的不足1万辆发展到2006年底,全国已拥有天然气汽车近15万辆,而到了2014年是中国天然气汽车爆发式发展的一年,数量虽未可统计,以北京市为例,部分公交车已使用燃用液化石油气(LPG)等代用燃料,并且这种应用将会更加普及。 如今随着汽车运行的经济性的要求和排放限值的提高,对发动机的燃烧系统的设计提出了越来越高的要求,近几十年来,各个国家的汽车公司,高等院校都投入了大量的人力物力进行火化点火发动机燃烧的基础研究工作,涉及到燃烧室内的气体流动,燃烧过程的传质传热,化学反应动力学,火焰传播和火焰结构,有害排放的生成机理与控制,燃烧过程的数值模拟,稀薄混合气和分层燃烧的实现等等。由于实际发动机的燃烧、传热、蒸发与扩散等过程十分复杂,加之伴随有循环变动,要控制每个循环的燃烧条件不变化非常困难,试验结果的可比性不强,因此内燃机的燃烧研究大都在模拟装置中进行,尤其在定容燃烧弹中进行的居多。 2.天然气的理化特性 天然气是一种复杂的碳氢化合物,其主要成分是甲烷(CH4),体积分数占80~95%(因其产地而异),另外还含有少量的乙烷(C2H6)、丙烷(C3H8)、正丁烷(C4H8)、异丁烷(C4H8)、戊烷(C5H10)、氮气(N2)、二氧化碳(CO2)等,它们各自所占的体积分数因产地而异。车用天然气必须经脱水、脱烃、脱硫等净化处理,才能成为一种优质、高效、清洁的代用燃料。天然气与汽油、柴油理化特性的比较如表l所示: 3.天然气内燃机燃烧问题基础分析 3.1增压中冷技术

燃气热水器之燃烧系统5-浓淡燃烧(万和新电气股份有限公司)

之燃烧系统5-浓淡燃烧 编制:热水器研发 代先锋 dai_money@https://www.360docs.net/doc/c9596037.html, 燃烧是物质因剧烈氧化而发光、发热的现象,也称之为火。 燃气热水器研发

NO X 来源、特性与危害 NO X 生成机理 案例 低氮氧化物技术现状 浓淡燃烧法

NO X来源、特性与危害 氮氧化物是矿物燃料(如石油、煤、天然气等)与氧在高温燃烧时产生的。 其包括一氧化二(N2O)、一氧化氮(NO)、三氧化二氮(N2O3)、二氧化氮(NO2)、四氧化二氮(N2O4)、五氧化(N2O5 ),一般来说,NOX是指NO2和NO。NO是无色无臭的气体,它在空气中极易氧化为NO2。NO2是一种红棕色有害的恶臭气体。 其含量为0.1ppm时可嗅到,1-4 ppm时,有恶臭,而达到25ppm时,则恶臭难闻。 空气中NO2含量为3.5ppm 持续1小时,开始对人有影响; 含量为20—50ppm时,对人眼睛有刺激作用; 当含量达到150ppm时。对人的呼吸器官则有强烈的刺激。特别危险的是,器官经过刺激暂时恢复以后,只要3—8小时会发生肺气肿,引起致命的危险。 二氧化氮在阳光作用下,经过系列连锁反应可生成臭氧。 臭氧是一种有毒的、危险的刺激物。

NO、NO2都是毒性很强的气体,与CO一样,NO与血液中的血色素(Hb)的结合能力远大于氧原子与血色素(Hb)的结合能力,因而当空气中NO含量达到一定浓度时,人体将因血液中缺氧而引起中枢神经麻痹。由于NO比CO更易于血色素(Hb)结合,因而其引起人体不良反应的最大允许值比CO更低(表1)。NO在空气中极易形成NO2,NO2对呼吸器官有极强的刺激作用,NO2对心脏、肝脏、肾脏都有不同程度的影响。

天然气发动机技术及产品开发

天然气发动机技术 天然气发动机技术 及产品开发 施崇槐 广西玉柴机器股份有限公司 2007年9月14日

天然气发动机分类 主要以燃料使用的方式来划分 天然气单燃料发动机 使用天然气单一燃料的发动机 双燃料发动机 主要指柴油/CNG双燃料发动机,可以同时燃烧柴油和天然气两种燃料,俗称掺烧发动机。 两用燃料发动机 主要指汽油/CNG两用燃料发动机,可以切换使用汽油和天然气两种燃料。 由于各种燃料特性的不同,为了满足两种燃料的使用,发动机的性能无法做到最佳,适应于天然气燃料特性的全新开发的单燃料发动机是未来发展的趋势。 本文仅探讨单一燃料天然气发动机技术及产品开发。

天然气发动机燃烧方式 z天然气由于其燃料特性决定了天然气发动机采用的是与汽油机一样的点燃方式,而不同于柴油机的压燃方式; z以燃烧时天然气与空气的混合浓度来划分,可以分为以下两种类型: z当量燃烧单燃料天然气发动机 z特点:采用过量空气系数λ=1的当量燃烧方式,当量氧传感器闭环控制、三元催化转化器,系统相对简单,容易实现高排放水平;缺点是:燃料经济性差、排温高导致的可靠性差; z稀薄燃烧单燃料天然气发动机 z特点:采用过量空气系数λ>1的稀薄燃烧方式,稀燃氧传感器闭环控制、氧化型催化转化器,优点是NOx排放值低、燃料经济性好、排温低、可靠性好;缺点是:系统相对复杂、成本高。

两种天然气发动机技术路线 ?当量燃烧+闭环控制+三元催化器 z可实现国Ⅲ以上排放水平 z经济性较稀燃差 z排温高影响可靠性 z可采用多点喷射系统,系统相对简单 ?稀薄燃烧+闭环控制+氧化型催化器 z可实现国Ⅲ以上排放水平 z经济性好 z排温低、可靠性好 z可采用电控调压系统,系统相对复杂

各种燃气燃烧器工作原理及简介

各种燃气燃烧器工作原理及简介 气体燃烧器 气体燃烧器种类较多 , 以下按空气供给方式介绍几种工业锅炉上应用较多的燃烧器。 1. 自然供风燃烧器 如图 3-45 所示 , 按炉膛形状可以选择圆形或矩形燃烧 器 , 低压燃气通过管子上的火孔流出 , 与空气事先元预混合 , 是一次空气系数α l=0 的扩散燃烧方式 , 因 而也称为扩散文燃烧器。 这种燃烧器燃烧稳定 , 运行方便 , 而且结构简单 , 可以利用 300~400Pa 的低压燃气。但炉膛过量空气系数较大 , α= 、 1.2~1.6; 排烟热损失 q2 和气体不完全燃烧热损失 q3 偏大 ; 火焰较长 , 要求炉膛容积大 ; 燃烧速度低 , 只用于很小容量的锅炉。 2. 引射式燃烧器

它的种类繁多。按燃烧方式分 , 它有部分空气预混合的本生燃烧方式和空气预混合的无焰燃烧方式两种。 所用的引射介质可以是空气 , 也可以是一定压力的燃气 , 前者需要鼓风装置。 (1) 大气式引射燃烧器 如图 3-46 所示。燃气以一定流速自喷嘴进入引射器 , 在引射器的缩口处将一次空气 ( α1=0.45~0.65) 引入 , 两者经混合后流向燃烧器头部 , 由直径为 2~10mm 的火孔流出 , 以本生火焰形式燃烧。这种燃烧器也只用于小型锅炉 , 它适用于各种低压燃气 , 而且不需要鼓风装置。但热负荷太大 , 结构笨重。 (2) 空气引射式燃烧器

如图 3-47 所示。压头为 5000~600OPa 的空气经喷嘴通过引射器的缩口处时 , 形成负压 , 把低压的燃气从四个管孔吸人 , 两种气体在混合管中混合形成均匀的气体混合物 , 它流向火孔出口 , 并在与出口处相连接的稳焰火道中燃烧。图中所示的燃烧器是与全部燃烧空气预混合的无焰燃烧器 , 炉膛出口过量空气系数小 , 燃烧强度高 , 但需要鼓风装置 , 耗电大 , 适用于带有空气预热器的阻力较大的正压锅炉。 3. 鼓风式燃烧器鼓风式燃烧器一般由分配器、燃气分流器和火道组成。种类较多 , 常用的有旋流式和平流式两 种。 这两类燃烧器的配风器与燃油燃烧器基本相似 , 燃气分流器的基本形式为单管式和多管式。其结构简单。燃烧形成的火焰特征与通常旋流式和直流式燃油燃烧器也相似 , 这里不再一一叙述。以下列举一种常用的燃气燃烧 器的例子。图 3-48 是周边供气蜗壳式燃烧器。

燃气燃烧器安全操作规程

燃气燃烧器安全操作规程 一、试机前的准备工作: 1.检查燃气管路外观是否良好无损伤及干净通畅,按所需使用管线检查相关阀门是否已开启或处于正确状态下;管路及接头法兰等有无松动、泄露现象,现场闻嗅无天然气添加臭味;燃气设施周围无动火作业及明火,如有必须予以隔离或清除。 2.首次或长时间未使用应适当排空,从燃气进气阀前排空阀放气排空1~2分钟,确保管路中无混合空气。排空结束后关闭排空阀。 二、燃烧机操作规程 1.工作前准备 开启燃烧机前必须检查燃气干净通畅,燃气开关打开,压力是否正常,燃烧机的主开关处于开的状态。 2.操作步骤 1).打开控制柜主电源,启动对应编号的燃烧机按钮开关(按一次启动,按第二次停止) 2).几秒钟后,燃烧机开始点火。 3).从小视窗查看点火情况,看到火光表示燃烧机运行正常,燃烧室温度会逐渐上升,温度逐渐上升达到所设置的温度后,大火会关闭,小火开始保温。 4).当温度下降到所设置的温度时,大火自动开始工作。 5).待工作完成后,按对应编号的按钮开关,燃烧机立即关闭,风机延时3分钟后才能停止,保证高温气体排出,保护燃烧室。 3.注意事项 1).燃烧机不能点火,先检查燃气压力是否降低,先尝试复位,让燃烧机运行并自动复位工作,连续三次以上不能正常工作并报警,请通知维修人员。 2).听是否有爆燃声音或异常情况,如有立即停止,切断电源,关闭供气阀门并通知维修人员。 3).必须安装完好的灭火装置。 4).若燃烧机有损坏或故障迹象,不可点燃燃烧机。 5).不可随意调节燃烧机上的各个调节部位,不正确的调节可能会引起火灾或爆炸。 6).查看火焰不正常,很大的火,并有黑烟,通知维修人员进行调节。 7).如有燃气泄露的气味,先关断上面的燃气供给阀,并关闭所有燃烧机,通知维修人员进行处理,原因没查明前不可开机。 8).定期检查供气阀是否开/关正常及法兰面是否有漏气现象。 9).定期检查灭火设备的可靠性,完好性,严禁过期使用。 10).定期检查燃气管道及减压阀的密封性。 11).要求现场禁止烟火,电气件防爆及禁止有电焊、切割等违章作业。

航空燃气涡轮发动机原理期末考试知识点

航空燃气涡轮发动机原理复习知识点 第一章 记住华氏度与摄氏度之间的关系:Tf=32+9/5Tc 记住P21的公式1-72,p23的公式1-79,1-80 ,p29的公式1-85以及p33的公式1-99。 第二章燃气涡轮发动机的的工作原理 1.燃气涡轮发动机是将燃油释放出的热能转变成机械能的装置。它既是热机又是推进器。 2.燃气涡轮发动机分为燃气涡轮喷气发动机,涡轮螺旋桨发动机,涡轮风扇发动机。其中涡轮风扇发动机是由进气道,风扇。低压压气机,高压压气机,燃烧室,高压涡轮,低压涡轮和喷管组成。涡轮风扇发动机是由两个涵道的。 3.外涵流量与内涵流量的比值,称为涵道比,B=Qm1/Qm2. 4.与涡轮喷气发动机相比,涡轮风扇发动机具有推力大,推进效率高,噪音低等特点。 5.单转子涡轮喷气发动机是由进气道,压气机,燃烧室,涡轮和喷管五大部件组成的。 其中压气机,燃烧室,涡轮称为燃气发生器,也叫核心机。

6.涡轮前燃气总温用符号T3*来表示,它是燃气涡轮发动机中最重要的,最关键的一个参数,也是受限制的一个参数。 7.发动机的排气温度T4*,用符号EGT表示。 8.发动机的压力比简称为发动机压比,用符号EPR表示。 9.要会画书本p48页的图2-9的布莱顿循环并且要知道每一个过程表示什么意思。 10.要知道推力的分布并且要掌握推力公式的推导过程。(简答题或者综合题会涉及到。自己看书本p5到P56)。

11.了解几个喷气发动机的性能指标:推力,单位推力,推重比,迎面推力,燃油消耗率。

第三章进气道 1.进气道的作用:在各种状态下,将足够量的空气,以最小的流动损失,顺利的引入压气机;当压气机进口处的气流马赫数小于飞行马赫数时,通过冲压压缩空气,以提高空气的

天然气燃烧器操作规程

全自动燃气燃烧器 一、工作原理 燃烧器电源开关接通电源,进行燃气压力检测及温度控制信号判断,是否允许启动燃烧器。如果满足条件,则启动风机电动机,风门开到最大,进入前吹扫,这段时间内要进行风压检测(以后过程也将持续检测风压),风压不正常,则停机报警;正常,则将风门关到一级火点火位置,点火变压器点火,燃气阀门打开,供燃气燃烧,点火后,将检测火焰情况,如熄火,则停机报警,正常,则根据火力信号,决定是否投入二级火运行。在燃烧器工作的整个过程中,控制系统会判断燃气压力情况、温度控制信号,如不在工作范围,则燃烧器停机,等到条件满足后,会自动重新启动燃烧器,过程同接通控制电源的启动。 二、燃烧器的安装、调试和运行 1、安装 (1)安装前准备 A、检查烟囱(截面积和高度)是否符合设备厂家的要求和当地标准。 B、电源的电压和频率必须符合燃烧器的要求。 C、燃气系统和尺寸必须符合本说明书的要求,气路阀门稳压器及其附件应当严密,应 做气密检查。 D、检查燃烧器的随机附件是否齐备。 E、减压稳压器是否装在过滤器后的水平位置。 F、管道内壁的防锈及杂质的清理。 (2)安装 A、把石棉垫圈装在锅炉安装板上的孔和安装法兰之间,然后拧进螺栓,将燃烧器头部 伸入燃烧室的要求位置后,拧紧安装法兰上的螺栓,将燃烧器固定。锅炉板、石棉密封垫圈、安装法兰之间应密封,不许漏气,防止燃烧器运行期间,高温烟气漏出,烧坏燃烧器。 B、按供气系统图,把气源接到电磁阀。 C、按接线图将电源线接好。 2、启动和运行 (1)启动前准备 A、检查所有的气阀是否打开。 B、检查锅炉及烟囱阀门是否打开,以使燃烧产物能顺畅地排出。 C、燃烧器与燃料气管连接之前,应将阀门后管路的空气置换出来。 D、检查线路及电机旋转方向是否正确,若旋转方向相反,则将电源进线端的两相对换。 E、为点火,设置风门开度,风门开度可由调节风门控制伺服电机来实现。 F、燃烧头伸进燃烧室部分的长度是否符合厂家要求。 G、恒温器和压力开关上的连线是否按控制盒线路图连接。 H、将一级火燃气流量调到需要的位置。 I、装一台适当压力范围的U型水柱压力计,用以测量燃气的压力。 (2)启动和运行 A、主开关闭合,恒温器闭合,供电电压达到电机运转值时,风机电机接通工作。风机 供风,进行前吹扫。 对于装有风门控制伺服电机的燃烧器,伺服电机被接通,风门开到二级火相应位置,已工作的风机向燃烧室供风,实现前吹扫。 B、吹扫结束后,风门回到一级火位置,点火变压器启动三秒钟后,一级火燃烧阀及安

国内天然气发动机产品简介

国内天然气发动机产品简介时间:2007-09-24 17:31:54 08:19:54 来源:carnews 作者:吕玉洁 由于石油资源分布不均及日益短缺的威胁,寻找清洁的代用燃料成为影响社会可持续发展的重要因素之一。在各种汽车代用燃料中,天然气因其清洁、储量大、热值高、排污低、使用经济性好而备受关注。发展天然气汽车对于改善城市空气质量,缓解我国能源压力有着重要的现实意义。 根据燃气汽车使用天然气的不同形态,可分为压缩天然气(CNG)和液化天然气(LNG)两种。这两种形态的燃料发动机在国内均已得到应用。 天然气发动机经历了三代技术发展,第一代产品是机械式,第二代属于简单闭环控制,第三代采用电控喷射CNG技术。目前,国外CNG发动机已在广泛应用第三代技术,比第三代技术更先进的LNG缸内直喷技术也已得到小批试用,其动力性、经济性和排放俱佳,但其开发难度大,费用昂贵,成本也高,国内尚未开始研制。我国已发展到了第三代,即采用高压喷射,通过节气门传感器、气体流量传感器、转速传感器、水温传感器、进气温度传感器、压力传感器和氧传感器等经过中央处理单元来控制点火、空燃比等。 国内大型汽车厂和发动机厂如东风、解放、上柴、潍柴、玉柴不断加大产品开发力度,相继推出了产品并在市场上进行推广应用。以下是目前我国生产天然气发动机的主要厂商及部分产品介绍。 珀金斯雷沃动力(天津)有限公司 珀金斯雷沃动力(天津)有限公司是英国珀金斯在中国的合资公司,公司投资3000余万元用于“欧Ⅳ、欧Ⅴ”天然气发动机的项目研发。该项目包含Phaser 135TiN、 Phaser 160TiN、Phaser 180TiN、Phaser 210TiN四个机型,在Phaser系列柴油机基础上,采用电控闭环多点喷射技术,通过燃油系统到燃气系统的设计转变、性能与排放优化标定试验、可靠性考核、排放认证等工作来实现,功率覆盖100-156kW。 https://www.360docs.net/doc/c9596037.html,/news_end.php?id=105 2006年10月23日,天津珀金斯正式下线“天然气欧Ⅳ发动机”,完成了第一阶段产品的开发,又在继续开发第二阶段欧Ⅴ产品。目前,雷沃动力天然气发动机成功匹配福田欧V客车,泰国客户已与福田欧V签订了1000多台采用雷沃动力天然气发动机动力系统的客车供货协议。美国客户也与雷沃动力签订了天然气发动机的采购合同。 https://www.360docs.net/doc/c9596037.html,/news_end.php?id=107 东风康明斯发动机有限公司 东风康明斯发动机有限公司是由东风汽车股份有限公司和康明斯公司各占50%股份比例合资兴建的发动机制造公司。通过滚动式技术引进和自行开发战略,在产品开发上逐步实现与美国康明斯公司同步发展。 东风康明斯主要生产B系列天然气发动机,采用稀燃闭环电子控制系统和ECM模块和故障诊断系统,能自动设置运行参数并进行发动机自我调节和保护,排放通过美国环保署EPA认证同时满足欧Ⅲ标准。 B系列天然气发动机主要参数:

民用航空燃气涡轮发动机原理,发动机推力,燃油消耗率计算

民用航空燃气涡轮发动机原理课程设计 学院:航空工程学院 班级: 姓名: 学号: 指导老师:

目录 一、序言 (1) 一.热力计算的目的和作用---------------------------------2 二.单轴涡喷发动机热力计算------------------------------3 三.分别排气双轴涡扇发动机设计点热力计算-------7 四.结果分析---------------------------------------------------14 五.我的亮点-----------------------------------------------------18 序言

航空燃气涡轮发动机是现代飞机与直升机的主要动力,为飞机提供推力,为直升机提供转动旋翼的功率。飞机或直升机在飞行中,一旦发动机损坏而停车,就会由于失去推力而丧失速度与高度,如果处理不当就会出现极为严重的事故。因此发动机的正常工作与否,直接影响到飞行的安全,故称发动机为飞机的心脏。在这次课程设计中,为了使结果更加准确,充分利用Matlab 在数值计算上的强 大功能,运用polyfit 函数对a h 2*,a h 3* 进行数值拟合,拟合的结果R=1,相 关性非常的好。其中空气的低压比热容与温度有关,使用与温度有关的经验公式,减小了误差。 热力计算的目的和作用

发动机的设计点热力计算是指在给定的飞行和大气条件(飞行高度、马赫数和大气温度、压力),选定满足单位性能参数要求(单位推力和耗油率)的发动机工作过程参数,根据推力(功率)要求确定发动机的空气流量和特征尺寸(涡轮导向器和尾喷管喉部尺寸)。 设计点热力计算的目的:对选定的发动机工作过程参数和部件效率或损失系数,计算发动机各界面的气流参数以获得发动机的单位性能参数。 发动机设计点热力计算的已知条件: 1)给定飞行条件和大气条件:飞行高度和飞行马赫数,大气温度和压力。 2)在给定的飞行条件和大气条件下,对发动机的性能要求,如推力、单 位推力和耗油率的具体值。 3)根据发动机的类型不同,选择一组工作过程参数:内涵压气机增压比、 外涵风扇增压比、涵道比、燃烧室出口总温等。 4)预计的发动机各部件效率和损失系数等。 一台新发动机的最终设计不可能仅取决设计点的性能,而且还决定于飞行包线内非设计点的性能。但发动机的热力计算有如下重要作用: 1.只有先经过设计点的热力计算,确定发动机特征尺寸后进行非设计点的 热力计算以确定非设计点的性能。 2.设计点的热力计算可初步确定满足飞行任务的发动机设计参数选择的 大致范围。 单轴涡喷发动机热力计算

相关文档
最新文档