郝思曼交换机及EthernetIP白皮书

郝思曼交换机及EthernetIP白皮书
郝思曼交换机及EthernetIP白皮书

Hirschmann. Simply a good Connection.
EtherNet/IP Control Systems with Hirschmann Network Devices
White Paper
Rev. 1.0

Contents
EtherNet/IP Control Systems with Hirschmann Network Devices
1 2 2.1
Introduction Basics Switch Functionality Criteria IGMP Snooping Auto negotiation Virtual Local Area Networks (VLANs) EtherNet/IP Network Design Criteria Network Topology Switches versus Hubs and Media Converters Twisted Pair Wiring Fiber-optic Solutions
4 4 4 4 5 5 5 5 5 6 6 6 6 7
2.1.1 2.1.2 2.1.3 2.2 2.2.1 2.2.2 2.2.3 2.2.4 3 3.1 3.2
EtherNet/IP Networks Isolated Network Connected and Integrated Network
EtherNet/IP Control Systems with Hirschmann Network Devices White Paper Rev. 1.0 2 / 24

4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9
EtherNet/IP with Hirschmann Network Devices Isolated Network High Reliability - Single Ring High Reliability - Multiple Rings Security - Remote Maintenance via Service Port Security - Remote Maintenance via Phone Line Security - Remote Maintenance via Internet Security - Separation of Production Cells Security - Coupling of Locations Identical Network Segments Wireless – Single Remote Location Wireless – Multiple Remote Locations Wireless - Mobile Devices Wireless - Connection without Radio Line of Sight
8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 21 21 21 22
4.10 4.11 4.12 4.13 5 5.1 5.2 5.3 6
Managing Hirschmann Switches EtherNet/IP Network Management Software Web-based Management Product Description
EtherNet/IP Control Systems with Hirschmann Network Devices White Paper Rev. 1.0 3 / 24

EtherNet/IP Control Systems with Hirschmann Network Devices
1 Introduction
Rockwell Automation has a strategic 3 party alliance with Hirschmann for network devices. This white paper describes the use of Hirschmann equipment in an EtherNet/IP network. EtherNet/IP is Rockwell Automation’s industrial plant floor network and part of the NetLinx architecture. EtherNet/IP utilizes standard Ethernet TCP/IP including media, protocols, etc. and the Common Industrial Protocol (CIP) on top. Controllers, personal computers, operator interfaces, drives, remote I/Os and other devices can be interconnected via this network to exchange control and configuration data.
rd
2 Basics
2.1 Switch Functionality Criteria
Rockwell Automation requires and/or recommends several features available in switches for EtherNet/IP networks. The most important features are explained in the following chapters.
2.1.1
IGMP Snooping
The EtherNet/IP communication differentiates between explicit and implicit messages. While explicit messages are used for device configuration and diagnostics, implicit messages are used for I/O control data. Much of EtherNet/IP implicit messaging uses IP multicasts to distribute I/O control data. By default, an unmanaged layer 2 switch treats multicast packets in the same way as broadcast packets. In this case multicast packets are re-transmitted to all ports except the port they were received on. Therefore network traffic increases significantly. Switches that support IGMP snooping learn which ports have devices connected that are part of a particular multicast group and only forward the multicast packets to the ports that are part of the multicast group. Consequently IGMP snooping reduces network traffic. Some layer 2 switches that support IGMP snooping require a router in the network. The router sends out IGMP polls in order to learn what devices are participating in which multicast groups. If the control system is a stand-alone network without the presence of a router, the switches deployed in those networks need to EtherNet/IP Control Systems with Hirschmann Network Devices White Paper Rev. 1.0 4 / 24

support IGMP snooping and IGMP polls. Hirschmann managed layer 2 switches support IGMP polls by activating the "Querier" function on the switch. Therefore Hirschmann switches can be used in any network without a router present.
2.1.2
Auto negotiation
The recommended speed for EtherNet/IP is 100 Mbps. Auto negotiation and auto sensing let devices select the most optimal way to communicate without configuring the duplex operation and speed of the individual ports. If a manually configured device, or a device not supporting auto negotiation and auto sensing, is connected to an auto negotiation device, a mismatch can occur that results in serious communication problems. Most 10 Mbps devices do not support auto negotiation and not all 100 Mbps devices support auto negotiation either. Full duplex operation is recommended on switch-to-switch connections. Half-duplex operation is required on some controller-to-switch and field device-to-switch connections.
2.1.3
Virtual Local Area Networks (VLANs)
VLANs can be used to split a local area network into two or more isolated networks without the traffic from one network burdening another. If a network design supports two VLANs for instance, broadcast traffic and IP multicast traffic from VLAN 1 will not reach VLAN 2 and vice versa.
2.2
EtherNet/IP Network Design Criteria
2.2.1
Network Topology
An EtherNet/IP control system can be based on a star, ring, tree or line topology or any combination of these topologies. The most common architecture of an EtherNet/IP network is a star topology.
2.2.2
Switches versus Hubs and Media Converters
Hubs and media converters usually support a single baud rate and half duplex operation only. Operating with these parameters places limitations on network length. When designing a network with these devices, a detailed calculation has to be made because all design criteria of a half duplex system apply to this network. In contrast to hubs and media converters, a switch supports multiple baud rates and duplex operation. A switch can transmit incoming data packets out of several ports simultaneously in full duplex operation and with different speeds if necessary. This makes designing a network much easier and considerably increases the data throughput. EtherNet/IP Control Systems with Hirschmann Network Devices White Paper Rev. 1.0 5 / 24

2.2.3
Twisted Pair Wiring
EtherNet/IP recommends the use of Cat. 5e cables for the 10/100Base-T(X) connections. In these applications the maximum cable length is 100m (330ft). For longer distances the use of fiber-optic solutions is required. 2.2.4 Fiber-optic Solutions
Fiber-optic cables have to be used where the distances are longer than 100m (330ft). Fiber-optic cables should also be used where electromagnetic interference is expected and between buildings for ground isolation and noise immunity. When designing a fiber-optic link, it is important to choose devices that all operate with the same fiber-optic standard (wave length, multi/single mode fiber, etc.).
3 EtherNet/IP Networks
An EtherNet/IP control system can be based on an isolated network, a connected network or an integrated network consisting of hundreds of nodes with connectivity to an enterprise network and the Internet. The most common design of an EtherNet/IP network is a simplex, non redundant network. To increase the communication reliability, the network can be designed as a ring topology.
3.1
Isolated Network
An isolated network is a local area network (LAN) that provides communication between a controller, remote I/Os and other field devices with no connectivity to an office environment or the Internet.
Controller
Operator Inteface
PC
Switch
I/O‘s
Drives
Figure 3-1: Example of an EtherNet/IP control system as a stand-alone network
EtherNet/IP Control Systems with Hirschmann Network Devices White Paper Rev. 1.0 6 / 24

3.2
Connected and Integrated Network
An EtherNet/IP connected network is a local area network (LAN) that provides communication between controllers, drives, remote I/Os and other devices such as servers and workstations. If the EtherNet/IP control system is part of the plant-wide LAN with connectivity to the enterprise network and/or Internet, it is called an integrated network. In this case, a router should be used to minimize network traffic between the EtherNet/IP control network and the office environment. For security reasons the EtherNet/IP control network must be protected from the office environment and the Internet through the use of firewalls, gateways, routers and/or security software. Depending on the size of the control network firewalls can also be used to isolate production cells to increase the network security.
Switch
Router
Switch
Figure 3-2: Example of an EtherNet/IP network as a part of a plant-wide LAN
EtherNet/IP Control Systems with Hirschmann Network Devices White Paper Rev. 1.0 7 / 24

4 EtherNet/IP with Hirschmann Network Devices
4.1
Isolated Network
An example of an EtherNet/IP control system as an isolated network is shown in the following figure.
3
3
3
1
Hirschmann Switches - MICE - Rail - OCTOPUS
2 3
Hirschmann Switches - SPIDER 3TX
4
3
4
3
4
3
Figure 4-1: EtherNet/IP control system as an isolated network
Notes for figure 4-1 1 2 3 4 Switch with IGMP snooping and Querier function enabled Switch with 3 ports to build a secure line topology 100 m (max.) Cat. 5e twisted pair straight through cable 100 m (max.) Cat. 5e twisted pair crossover cable (recommended for switch-to-switch connections)
To prevent duplex mismatch, check each port's speed and mode settings and configure the interconnected ports correctly.
EtherNet/IP Control Systems with Hirschmann Network Devices White Paper Rev. 1.0 8 / 24

4.2
High Reliability - Single Ring
The following figure shows how easy it is to increase the reliability of an isolated network. Using switches which support self-healing ring technology such as HiPER-Ring; one additional cable is added to the network (stand-by link).
4
4
4
1 5,6 3,5,6
2 5,6
Hirschmann Switches - MICE - Rail - OCTOPUS
2
4 4 4 4 4
Figure 4-2: Ring topology Notes for figure 4-2 1 2 3 4 5 6 Switch acting as a redundancy manager (RM) monitoring the ring Switch supporting HiPER-Ring technology but not acting as an RM Stand-by link, becomes active whenever a link between the switches fails 100 m (max.) Cat. 5e twisted pair straight-through cable 100 m (max.) Cat. 5e twisted pair crossover cable (recommended for switch-to-switch connections). Up to 4 km full duplex multimode fiber or up to 30 km full duplex single mode fiber. The connector type on both ends of the fiber is determined by the choice of switch and media module.
To prevent duplex mismatch, check each port's speed and mode settings and configure the interconnected ports correctly.
EtherNet/IP Control Systems with Hirschmann Network Devices White Paper Rev. 1.0 9 / 24

4.3
High Reliability - Multiple Rings
The following figure shows how easy it is to increase the reliability of a more complex network. Rings built using switches which support self-healing ring technology such as HiPER-Ring are redundantly connected for maximum availability.
5
5
2 6,7
Switch Series - MACH - MICE - Rail
6,7 1
6,7 3
5
6,7
Switch Series - MICE - Rail - OCTOPUS
4,6,7 4,6,7 2
2
4,6,7 1
6,7 3
6,7 3
4,6,7 1
6,7 5 5 5 5
6,7 5 5
Figure 4-3: Multiple rings
Notes for figure 4-3 1 2 3 4 5 6 7 Switch supporting HiPER-Ring technology and acting as a redundancy manager (RM) Switch supporting HiPER-Ring technology Switch supporting HiPER-Ring technology with redundant coupling enabled Stand-by link, becomes active whenever a link between the switches fails 100 m (max.) Cat. 5e twisted pair straight-through cable 100 m (max.) Cat. 5e twisted pair crossover cable (recommended for switch-to-switch connections). Up to 4 km full duplex multimode fiber or up to 30 km full duplex single mode fiber. The connector type on both ends of the fiber is determined by the choice of switch and media module.
EtherNet/IP Control Systems with Hirschmann Network Devices White Paper Rev. 1.0 10 / 24

4.4
Security - Remote Maintenance via Service Port
Some applications require a secure service port for initial configuration or access by third party employees. These applications can be realized with the Hirschmann EAGLE firewall. An example of an EtherNet/IP control system with a secured service port within a factory network is shown in the following figure.
a), b), c) 3 3 Hirschmann Switch - MICE - Rail - OCTOPUS 4 2 1
3, 5 3 3 3 3 3
Hirschmann Firewall - EAGLE
Shop Floor
Service Department
Figure 4-4: Secure remote maintenance via service port Notes for figure 4-4 a) b) c) 1. 2. 3. 4. 5. Select a transparency mode of the EAGLE. Configure the EAGLE as a DHCP server, to provide an IP address to a device connected to the non trusted port. Establish firewall rules for controlled access based on the IP addresses provided by the DHCP server. Non trusted port of the EAGLE Trusted port of the EAGLE 100 m (max.) Cat. 5e twisted pair straight-through cable 100 m (max.) Cat. 5e twisted pair crossover cable (recommended) Up to 4 km full duplex multimode fiber or up to 30 km full duplex single mode fiber
EtherNet/IP Control Systems with Hirschmann Network Devices White Paper Rev. 1.0 11 / 24

4.5
Security - Remote Maintenance via Phone Line
An example of an EtherNet/IP control system with a secure remote access over a phone line is shown in the following figure.
3
3
Hirschmann Switch - MICE - Rail - OCTOPUS 2
a), b), c)
1
3, 4 3 3
Hirschmann Firewall - EAGLE
Modem Phone Line
3 3 3
Figure 4-5: Secure remote maintenance access via phone line Notes for figure 4-5 a) Select the network mode PPPoE or PPTP. b) Configure the EAGLE as a DHCP server, to provide an IP address to a device connected to the non trusted port. c) Establish firewall rules for controlled access based on the IP addresses provided by the DHCP server. 1. 2. 3. 4. Serial port of the EAGLE (non trusted) Trusted port of the EAGLE 100 m (max.) Cat. 5e twisted pair straight-through cable Up to 4 km full duplex multimode fiber or up to 30 km full duplex single mode fiber
EtherNet/IP Control Systems with Hirschmann Network Devices White Paper Rev. 1.0 12 / 24

4.6
Security - Remote Maintenance via Internet
An example of EtherNet/IP control system with a secure remote access is shown in the following figure. In this example the data transmission over the non secure network is encrypted, and authentication at both ends of the tunnel is required.
3
3
a) Hirschmann Switch - MICE - Rail - OCTOPUS
Unsecure Network 2 1
Internet
3, 4 3 3 Hirschmann Firewall - EAGLE 3
3 3
Figure 4-6: Secure remote maintenance access via Internet and VPN tunnel Notes for figure 4-6 a) Use the EAGLE as a VPN Router. 1. Non trusted port of the EAGLE 2. Trusted port of the EAGLE 3. 100 m (max.) Cat. 5e twisted pair straight-through cable 4. Up to 4 km full duplex multimode fiber or up to 30 km full duplex single mode fiber
EtherNet/IP Control Systems with Hirschmann Network Devices White Paper Rev. 1.0 13 / 24

4.7
Security - Separation of Production Cells
An example of a secure separation of production cells with EtherNet/IP control systems is shown in the following figure.
Hirschmann Switch - MACH - MICE - LION
1 2
a)
1 a) 2 Hirschmann Switch - MICE - Rail - OCTOPUS
Hirschmann Firewall - EAGLE
Production Cell 1
Production Cell 2
Figure 4-7: Secure separation of production cells Notes for figure 4-7 a) If the EAGLE firewall will be used in a layer 2 network select the mode "Multi Client Transparency". Establish firewall rules for controlled access between the industrial backbone and production cells or between production cells.
1. Non trusted port of the EAGLE 2. Trusted port of the EAGLE
EtherNet/IP Control Systems with Hirschmann Network Devices White Paper Rev. 1.0 14 / 24

4.8
Security - Coupling of Locations
An example of a secure connection between EtherNet/IP control systems via a non secure network is shown in the following figure. A non secure network could be the Internet or a wireless connection. In this example the data transmission over the non secure network is encrypted, and authentication at both ends of the tunnel is required.
3
3
Hirschmann Switch - MICE - Rail 2 - OCTOPUS
a) 1 Unsecure Network 1
a) 2
3, 4 3 3 3 3
3, 4 Hirschmann Firewall - EAGLE 3
3
Figure 4-8: Secure coupling of remote locations via a non secure network and VPN tunnel
Notes for figure 4-8 a) Firewall in "Router Mode" The EAGLE needs to be configured as the default gateway on the secured port of the connected devices. Establish firewall rules for controlled access between the two locations. 1. Non trusted port of the EAGLE 2. Trusted port of the EAGLE 3. 100 m (max.) Cat. 5e twisted pair straight-through cable 4. Up to 4 km full duplex multimode fiber or up to 30 km full duplex single mode fiber
EtherNet/IP Control Systems with Hirschmann Network Devices White Paper Rev. 1.0 15 / 24

4.9
Identical Network Segments
In some applications it is appropriate to configure machines identically, to facilitate device replacement. This technique requires the use of duplicate IP addresses. In order to allow machines with duplicate IP addresses to co-exist on one network, the device connecting these machines needs to support a mechanism of masquerading IP addresses. The Hirschmann EAGLE is capable of performing this function as it supports 1:1 NAT (Network Address Translation). An example of identical network segments is shown in the following figure.
IP 149.218.3.10/24
Hirschmann Switch - MACH - MICE - LION
Plant Network
149.218.1.10/24 1 2 a)
149.218.2.10/24 1 a) Hirschmann Firewall - EAGLE 2 Hirschmann Switch - MICE - Rai - OCTOPUS
192.166.1.10/24
192.166.1.10/24
Machine 1
Machine 2
Figure 4-9: Network segments using identical IP addresses Notes for figure 4-9 a. Firewall in Router Mode supporting 1:1 NAT In this case, the trusted port of the EAGLE needs to be configured as the default gateway on the connected devices. 1. Non trusted port of the EAGLE 2. Trusted port of the EAGLE EtherNet/IP Control Systems with Hirschmann Network Devices White Paper Rev. 1.0 16 / 24

4.10 Wireless – Single Remote Location
An example of an EtherNet/IP control system with a single remote location connected via a wireless link is shown in the following figure.
3
3 Hirschmann Switch - MICE - Rail - OCTOPUS
1
2
3 3 Hirschmann - BAT 3 3 3 3 3 Hirschmann - BAT
Figure 4-10: Wireless – single remote location Notes for figure 4-10 1 2 Or 1 2 3 Access Point configured as a Bridge (master unit) Access Point configured as a Bridge (slave unit) 100 m (max.) Cat. 5e twisted pair straight-through cable Access Point configured as an Access Point Access Point configured as an Access Client
EtherNet/IP Control Systems with Hirschmann Network Devices White Paper Rev. 1.0 17 / 24

4.11 Wireless – Multiple Remote Locations
An example of an EtherNet/IP control system with multiple remote locations connected via wireless links is shown in the following figure.
3
3
Hirschmann Switch - MICE - Rail - OCTOPUS 1 3
2 3
3
Hirschmann - BAT 3 3 3 3 3
2
3
3
Figure 4-11: Wireless – multiple remote locations
Notes for figure 4-11 1 2 3 Access Point configured as a Bridge (master unit) Access Point configured as a Bridge (slave unit) 100 m (max.) Cat. 5e twisted pair straight-through cable
EtherNet/IP Control Systems with Hirschmann Network Devices White Paper Rev. 1.0 18 / 24

4.12 Wireless - Mobile Devices
An example of an EtherNet/IP control system including a mobile device and two wireless zones is shown in the following figure.
Zone 1
Zone 2
Mobile device
1
Hirschmann access point - BAT series 2 Hirschmann switch - MICE series - Rail series 3,4
1
2
2
2
2
2
2
2
2
Figure 4-12: Wireless - mobile devices Notes for figure 4-12 1 2 3 4 Access Point configured as an Access Point 100 m (max.) Cat. 5e twisted pair straight-through cable 100 m (max.) Cat. 5e twisted pair crossover cable (recommended) Full duplex multimode fiber or single mode fiber, cable length depends on size of wireless zones
EtherNet/IP Control Systems with Hirschmann Network Devices White Paper Rev. 1.0 19 / 24

4.13 Wireless - Connection without Radio Line of Sight
An example of a wireless connection of two EtherNet/IP systems without direct radio line of sight is shown in the following figure.
2
1
4
3
3
Hirschmann Switch - MICE - Rail - OCTOPUS
Hirschmann - BAT
3 3 3 3 3 3 3 1 2
Figure 4-13: Wireless - connection without radio line of sight Notes for figure 4-13 1 2 3 4 Access Point configured as a Bridge (master unit) Access Point configured as a Bridge (slave unit) 100 m (max.) Cat. 5e twisted pair straight-through cable 100 m (max.) Cat. 5e twisted pair crossover cable (recommended)
EtherNet/IP Control Systems with Hirschmann Network Devices White Paper Rev. 1.0 20 / 24

第三层交换机技术白皮书

第三层交换机技术白皮书 字体: 小 中 大 | 上 一篇 | 下一篇 发布: 03-27 21:13 作者: 网络转载 来 源: 网络转载 1.1 共享技术 所谓共享技术即在一个逻辑网络上的每一个工作站都处于一个相同的网段上。 以太网采用CSMA/CD 机制,这种冲突检测方法保 证了只能有一个站点在总线上传输。如果有两个站点试图同时访问总线并传输数据,这就意味着“冲突”发生了,两站点都将被告知出错。然后它们都被拒发,并等待一段时间以备重发。 这种机制就如同许多汽车抢过一座窄桥,当两辆车同时试图上桥时,就发生了“冲突”,两辆车都必须退出,然后再重新开始抢行。当汽车较多时,这种无序的争抢会极大地降低效率,造成交通拥堵。 网络也是一样,当网络上的用户量较少时,网络上的交通流量较轻,冲突也就较少发生,在这种情况下冲突检测法效果较好。当网络上的交通流量增大时,冲突也增多,同进网络的吞吐量也将显著下降。在交通流量很大时,工作站可能会被一而再再而三地拒发。 1.2 交换技术 局域网交换技术是作为对共享式局域网提供有效的网段划分的解决方案而出现的,它可以使每个用户尽可能地分享到最大带宽。交换技术是在OSI 七层网络模型中的第二层,即数据链路层进行操作的,因此交换机对数据包的转发是建立在MAC (Media Access Control )地址--物理地址基础之上的,对于IP 网络协议来说,它是透明的,即交换机在转发数据包时,不知道也无须知道信源机和信宿机的IP 地址,只需知其物理地址即MAC 地址。交换机在操作过程当中会不断的收集资料去建立它本身的一个地址表,这个表相当简单,它说明了某个MAC 地址是在哪个端口上被发现的,所以当交换机收到一个TCP /IP 封包时,它便会看一下该数据包的目的MAC 地址,核对一下自己的地址表以确认应该从哪个端口把数据包发出去。由于这个过程比较简单,加上这功能由一崭新硬件进行 --ASIC(Application Specific Integrated Circuit),因此速度相当快,一般只需几十微秒,交 手机挂QQ ,快速升太阳 开通QQ 黄钻,享受更多特权 QQ 千里眼:联络永不断线 密招:用QQ 发手机短信

数据中心交换机buffer需求分析白皮书

数据中心交换机 buffer 需求分析白皮书

目录 1引言 (3) 1.1DC 的网络性能要求 (3) 1.2国内OTT 厂商对设备Buffer 的困惑 (4) 1.3白皮书的目标 (4) 2Buffer 需求的经典理论 (5) 2.11BDP 理论 (5) 2.2Nick Mckeown 理论 (6) 2.3经典理论的适用性 (6) 3基于尾丢弃的buffer 需求 (9) 3.1丢包的影响 (9) 3.1.2丢包对带宽利用率的影响 (9) 3.1.3丢包对FCT 的影响 (12) 3.2大buffer 的作用 (13) 3.2.1吸收突发,减少丢包,保护吞吐 (13) 3.2.2带宽分配均匀 (14) 3.2.3优化FCT (15) 3.3DC 内哪需要大buffer (15) 3.4需要多大buffer (17) 3.5带宽升级后,buffer 需求的变化 (19) 3.6 小结 (19) 4基于ECN 的buffer 需求 (21) 4.1ECN 的作用 (21) 4.2ECN 水线设置 (23) 4.3基于ECN 的buffer 需要多大 (24) 5基于大小流区分调度的buffer 需求 (27) 5.1大小流差异化调度 (27) 5.2大小流差异化调度如何实现大buffer 相当甚至更优的性能 (27) 5.3基于大小流差异化调度的buffer 需要多大 (28) 6 总结 (28) 7 缩略语 (29)

1 引言 1.1DC 的网络性能要求 近几年,大数据、云计算、社交网络、物联网等应用和服务高速发展,DC 已经成为承 载这些服务的重要基础设施。 随着信息化水平的提高,移动互联网产业快速发展,尤其是视频、网络直播、游戏等行业的爆 发式增长,用户对访问体验提出了更高的要求;云计算技术的广泛应用带动数据存储规模、 计算能力以及网络流量的大幅增加;此外,物联网、智慧城市以及人工智能的发展也都对DC 提出了更多的诉求。 为了满足不断增长的网络需求,DC 内的网络性能要求主要体现在: ?低时延。随着深度学习、分布式计算等技术的兴起和发展,人工智能、高性能计算等时延敏感型业务增长迅速。计算机硬件的快速发展,使得这些应用的瓶颈已经逐渐由计 算能力转移到网络,低时延已经成为影响集群计算性能的关键指标。因此,时延敏感型 应用对DC 网络时延提出了更高的要求。目前DC 内,端到端5-10 微秒时延已经成为 主流的目标要求。 ?高带宽高吞吐。数据时代的到来,产生了海量的数据,如图1-1。基于数据的应用(如图像识别)的推广,使得网络数据呈爆发式增长,小带宽已经无法满足应用对传输 速率的需求。部分应用场景下,带宽成为制约用户体验的瓶颈。高带宽高吞吐对于提升大 数据量传输的应用性能有着至关重要的影响。为了应对大数据量传输的 应用需求,目前,百度、腾讯、阿里巴巴等互联网企业的DC 都已经全面部署100GE 网络,阿里巴巴更是规划2020 年部署400GE 网络。 图1-1 数据中心内存储的实际数据 数据来源:中国IDC 圈

华为交换机基本配置命令详细讲解

华为交换机基本配置命令详解 1、配置文件相关命令 [Quidway]display current-configuration 显示当前生效的配置 [Quidway]display saved-configuration 显示flash中配置文件,即下次上电启动时所用的配置文件 reset saved-configuration 檫除旧的配置文件reboot 交换机重启 display version 显示系统版本信息 2、基本配置 [Quidway]super password 修改特权用户密码 [Quidway]sysname 交换机命名 [Quidway]interface ethernet 1/0/1 进入接口视图 [Quidway]interface vlan 1 进入接口视图 [Quidway-Vlan-interfacex]ip address 10.1.1.11 255.255.0.0 配置VLAN的IP地址 [Quidway]ip route-static 0.0.0.0 0.0.0.0 10.1.1.1 静态路由=网关 3、telnet配置 [Quidway]user-interface vty 0 4 进入虚拟终端 [S3026-ui-vty0-4]authentication-mode password 设置口令模式 [S3026-ui-vty0-4]set authentication-mode password simple xmws123设置口令 [S3026-ui-vty0-4]user privilege level 3 用户级别 4、端口配置 [Quidway-Ethernet1/0/1]duplex {half|full|auto} 配置端口工作状态 [Quidway-Ethernet1/0/1]speed {10|100|auto} 配置端口工作速率 [Quidway-Ethernet1/0/1]flow-control 配置端口流控 [Quidway-Ethernet1/0/1]mdi {across|auto|normal} 配置端口平接扭接

cisco交换机配置实例(自己制作)

二层交换机配置案例(配置2层交换机可远程管理): Switch> Switch>en 进入特权模式 Switch#config 进入全局配置模式 Switch(config)#hostname 2ceng 更改主机名为2ceng 2ceng(config)#interface vlan 1 进入VLAN 1

2ceng(config-if)#no shut 激活VLAN1 2ceng(config-if)#exit 退出到全局配置模式 2ceng(config)#interface vlan 2 创建VLAN 2 2ceng(config-if)#no shut 激活VLAN2 2ceng(config-if)#exit 退出到全局配置模式 2ceng(config)#interface vlan 3 创建VLAN 3 2ceng(config-if)#no shut 激活VLAN3 2ceng(config-if)# ip address 192.168.3.254 255.255.255.0 配置192.168.3.254为2ceng管理IP 2ceng(config-if)#exit 退出到全局配置模式 2ceng(config)#interface range fa0/1-12 进入到端口1-12 2ceng(config-if-range)#switchport mode access 将1-12口设置为交换口 2ceng(config-if-range)#switch access vlan 1 将1-12口划分到VLAN 1 2ceng(config-if-range)#exit 退出到全局配置模式 2ceng(config)#interface range fa0/13-23 进入到端口13-23 2ceng(config-if-range)#switch access vlan 2 将13-23口划分到VLAN2 2ceng(config-if-range)#exit 退出到全局配置模式 2ceng(config)#interface fastEthernet 0/24 进入到24口 2ceng(config-if)#switch mode trunk 将24口设置为干线 2ceng(config-if)#exit 退出到全局配置模式 2ceng(config)#enable secret cisco 设置加密的特权密码cisco 2ceng(config)#line vty 0 4 2ceng(config-line)#password telnet 设置远程登陆密码为telnet

智简园区交换机1588技术白皮书

华为智简园区交换机 1588v2 技术白皮书

摘要 1588v2 时钟是一种采用IEEE 1588V2 协议的高精度时钟,可以实现纳秒级精度的时间同步,精度与当前的GPS 实现方案类似,但是在成本、维护、安全等方面有一定的优势,成为业界最热门的时间传递协议。

目录 摘要 (i) 1概述 (3) 1.1技术背景 (3) 1.2技术优势 (5) 2技术原理 (6) 2.1同步概念 (6) 2.1.1频率同步 (6) 2.1.2相位同步 (7) 2.1.3时间同步 (7) 2.2 1588v2 的设备模型 (8) 2.3 1588v2 报文 (10) 2.3.1 1588v2 报文类型 (10) 2.3.2 1588v2 报文封装 (11) 2.4 1588v2 同步原理 (11) 2.4.1 1588v2 频率同步 (11) 2.4.2 1588v2 时间同步 (12) 2.5 1588v2 时戳产生 (15) 2.6建立主从关系 (16) 2.6.1BMC 算法原理 (16) 2.6.2主从建立过程 (17) 2.7园区交换机能力 (17) 3典型组网应用 (19) 3.11588v2 频率+时间同步(BC 模式) (20) 3.21588v2 频率+时间同步(TC 模式) (21) 3.3SyncE 频率同步+1588v2 时间同步(BC 模式) (22) A 缩略语 (23)

1 概述 1.1技术背景 为了满足无线接入网络用户正常接入的需要,不同基站之间的频率必须同步在一定精度之 内,否则手机在进行基站切换时容易掉线,严重时会导致手机无法使用。而某些无线制式, 除了频率同步,还需要求时间同步。表1-1 为一些常见的不同制式的无线系统对频率同 步和时间同步的要求: 表1-1 不同制式基站对频率/时间同步的要求 总的来看,以WCDMA/LTE FDD 为代表的标准采用的是FDD 制式,只需要频率同步,精 度要求0.05ppm。而以TD-SCDMA/LTE TDD 代表的TDD 制式,同时需要频率同步和时 间同步。 传统的无线网络系统通常采用每基站安装GPS,利用GPS 系统来解决频率同步和时间 同步的需求,如图1-1 为GPS 同步方案示意图。

华为-VLAN技术白皮书

VLAN技术白皮书 华为技术有限公司 北京市上地信息产业基地信息中路3号华为大厦 100085 二OO三年三月

摘要 本文基于华为技术有限公司Quidway 系列以太网交换产品详细介绍了目前以太网平台上的主流VLAN技术以及华为公司在VLAN技术方面的扩展,其中包括基于端口的VLAN划分、PVLAN,动态VLAN注册协议,如GVRP和VTP等等。本文全面地总结了当前的VLAN技术发展,并逐步探讨了Quidway 系列以太网交换产品在VLAN技术方面的通用特性和部分独有特性,并结合每个主题,简要的介绍了系列VLAN技术在实际组网中的应用方式。 关键词 VLAN,PVLAN, GVRP,VTP

1 VLAN概述 VLAN(Virtual Local Area Network)即虚拟局域网,是一种通过将局域网内的设备逻辑地而不是物理地划分成一个个网段从而实现虚拟工作组的新兴技术。IEEE于1999年颁布了用以标准化VLAN实现方案的802.1Q协议标准草案。 VLAN技术允许网络管理者将一个物理的LAN逻辑地划分成不同的广播域(或称虚拟LAN,即VLAN),每一个VLAN都包含一组有着相同需求的计算机工作站,与物理上形成的LAN有着相同的属性。但由于它是逻辑地而不是物理地划分,所以同一个VLAN内的各个工作站无须被放置在同一个物理空间里,即这些工作站不一定属于同一个物理LAN网段。一个VLAN内部的广播和单播流量都不会转发到其他VLAN中,从而有助于控制流量、减少设备投资、简化网络管理、提高网络的安全性。 VLAN是为解决以太网的广播问题和安全性而提出的一种协议,它在以太网帧的基础上增加了VLAN头,用VLAN ID把用户划分为更小的工作组,限制不同工作组间的用户二层互访,每个工作组就是一个虚拟局域网。虚拟局域网的好处是可以限制广播范围,并能够形成虚拟工作组,动态管理网络。 VLAN在交换机上的实现方法,可以大致划分为4类: 1、基于端口划分的VLAN 这种划分VLAN的方法是根据以太网交换机的端口来划分,比如Quidway S3526的1~4端口为VLAN 10,5~17为VLAN 20,18~24为VLAN 30,当然,这些属于同一VLAN的端口可以不连续,如何配置,由管理员决定,如果有多个交换机,例如,可以指定交换机 1 的1~6端口和交换机 2 的1~4端口为同一VLAN,即同一VLAN可以跨越数个以太网交换机,根据端口划分是目前定义VLAN的最广泛的方法,IEEE 802.1Q规定了依据以太网交换机的端口来划分VLAN的国际标准。 这种划分的方法的优点是定义VLAN成员时非常简单,只要将所有的端口都指定义一下就可以了。它的缺点是如果VLAN A的用户离开了原来的端口,到了一个新的交换机的某个端口,那么就必须重新定义。 2、基于MAC地址划分VLAN 这种划分VLAN的方法是根据每个主机的MAC地址来划分,即对每个MAC地址的主机都配置他属于哪个组。这种划分VLAN的方法的最大优点就是当用户物理位置移动时,即从一个交换机换到其他的交换机时,VLAN不用重新配置,所以,可以认为这种根据MAC地址的划分方法是基于用户的VLAN,这种方法的缺点是初始化时,所有的用户都必须进行配置,如果有几百个甚至上千个用户的话,配置是非常累的。尤其是用户的MAC地址用变换的时候就要重新配置。基于MAC地址划分VLAN所付出的管理成本比较高。 3、基于网络层划分VLAN

华为交换机各种配置方法

端口限速基本配置1 端口绑定基本配置 ACL基本配置 密码恢复 三层交换配置 端口镜像配置 DHCP配置 配置文件管理 远程管理配置 STP配置 私有VLAN配置 端口trunk、hybrid应用配置 交换机配置(一)端口限速基本配置 华为3Com 2000_EI、S2000-SI、S3000-SI、S3026E、S3526E、S3528、S3552、S3900、S3050、S5012、S5024、S5600系列: 华为交换机端口限速 2000_EI系列以上的交换机都可以限速! 限速不同的交换机限速的方式不一样! 2000_EI直接在端口视图下面输入LINE-RATE 端口限速配置 1功能需求及组网说明 端口限速配置 『配置环境参数』 1. PC1和PC2的IP地址分别为 『组网需求』 1. 在SwitchA上配置端口限速,将PC1的下载速率限制在3Mbps,同时将PC1的上传速率限制在1Mbps 2数据配置步骤 『S2000EI系列交换机端口限速配置流程』 使用以太网物理端口下面的line-rate命令,来对该端口的出、入报文进行流量限速。【SwitchA相关配置】 1. 进入端口E0/1的配置视图 [SwitchA]interface Ethernet 0/1 2. 对端口E0/1的出方向报文进行流量限速,限制到3Mbps [SwitchA- Ethernet0/1]line-rate outbound 30 3. 对端口E0/1的入方向报文进行流量限速,限制到1Mbps [SwitchA- Ethernet0/1]line-rate inbound 16 【补充说明】 报文速率限制级别取值为1~127。如果速率限制级别取值在1~28范围内,则速率限制的粒度为64Kbps,这种情况下,当设置的级别为N,则端口上限制的速率大小为N*64K;如果速率限制级别取值在29~127范围内,则速率限制的粒度为1Mbps,这种情况下,当设置的级别为N,则端口上限制的速率大小为(N-27)*1Mbps。 此系列交换机的具体型号包括:S2008-EI、S2016-EI和S2403H-EI。 『S2000-SI和S3000-SI系列交换机端口限速配置流程』

Cisco+3750交换机配置

3750交换机(EMI) 简明配置维护手册 目录 说明 (2) 产品特性 (2) 配置端口 (3) 配置一组端口 (3) 配置二层端口 (5) 配置端口速率及双工模式 (5) 端口描述 (6) 配置三层口 (7) 监控及维护端口 (9) 监控端口和控制器的状态 (9) 刷新、重置端口及计数器 (11) 关闭和打开端口 (12) 配置VLAN (13) 理解VLAN (13) 可支持的VLAN (14) 配置正常范围的VLAN (14) 生成、修改以太网VLAN (14) 删除VLAN (16) 将端口分配给一个VLAN (17) 配置VLAN Trunks (18) 使用STP实现负载均衡 (21)

说明 本手册只包括日常使用的有关命令及特性,其它未涉及的命令及特性请参考英文的详细配置手册。 产品特性 3750EMI是支持二层、三层功能(EMI)的交换机 支持VLAN ?到1005 个VLAN ?支持VLAN ID从1到4094(IEEE 802.1Q 标准) ?支持ISL及IEEE 802.1Q封装 安全 ?支持IOS标准的密码保护 ?静态MAC地址映射 ?标准及扩展的访问列表支持,对于路由端口支持入出双向的访问列表,对于二层端口支持入的访问列表 ?支持基于VLAN的访问列表 3层支持(需要多层交换的IOS) ?HSRP ?IP路由协议 o RIP versions 1 and 2 o OSPF o IGRP及EIGRP o BGP Version 4 监视

?交换机LED指示端口状态 ?SPAN及远端SPAN (RSPAN) 可以监视任何端口或VLAN的流量 ?内置支持四组的RMON监控功能(历史、统计、告警及事件) ?Syslog功能 其它功能: 支持以下的GBIC模块: ?1000BASE-T GBIC: 铜线最长100 m ?1000BASE-SX GBIC: 光纤最长1804 feet (550 m) ?1000BASE-LX/LH GBIC: 光纤最长32,808 feet (6 miles or 10 km) ?1000BASE-ZX GBIC: 光纤最长328,084 feet (62 miles or 100 km) 配置端口 配置一组端口

FusionSphere虚拟化套件分布式虚拟交换机技术白皮书

华为FusionSphere 6.5.0 虚拟化套件分布式虚拟交换机技术白皮书

目录 1 分布式虚拟交换机概述 (1) 1.1 产生背景 (1) 1.2 虚拟交换现状 (2) 1.2.1 基于服务器CPU实现虚拟交换 (2) 1.2.2 物理网卡实现虚拟交换 (2) 1.2.3 交换机实现虚拟交换 (3) 2 华为方案简介 (5) 2.1 方案是什么 (5) 2.2 方案架构 (7) 2.3 方案特点 (7) 3 虚拟交换管理 (8) 3.1 主机 (8) 3.2 分布式虚拟交换机 (8) 3.3 端口组 (8) 4 虚拟交换特性 (9) 4.1 物理端口/聚合 (9) 4.2 虚拟交换 (9) 4.2.1 普通交换 (9) 4.2.2 SR-IOV直通 (10) 4.2.3 用户态交换 (10) 4.3 流量整形 (11) 4.3.1 基于端口组的流量整形 (11) 4.4 安全 (11) 4.4.1 二层网络安全策略 (11) 4.4.2 广播报文抑制 (12) 4.4.3 安全组 (12) 4.5 Trunk端口 (12) 4.6 端口管理 (13) 4.7 存储面三层互通 (13) 4.8 配置管理VLAN (13)

4.9 业务管理平面 (13) 5 虚拟交换应用场景 (14) 5.1 集中虚拟网络管理 (14) 5.2 虚拟网络流量统计功能 (14) 5.3 分布式虚拟端口组 (14) 5.4 分布式虚拟上行链路 (14) 5.5 网络隔离 (14) 5.6 网络迁移 (15) 5.7网络安全 (15) 5.8 配置管理VLAN (15) 5.9 业务管理平面 (15) 6 缩略语 (16)

华为交换机配置30例

目录 交换机远程TELNET登录 (2) 交换机远程AUX口登录 (5) 交换机DEBUG信息开关 (6) 交换机SNMP配置 (9) 交换机WEB网管配置 (10) 交换机VLAN配置 (12) 端口的TRUNK属性配置(一) (14) 交换机端口TRUNK属性配置(二) (16) 交换机端口TRUNK属性配置(三) (18) 交换机端口HYBRID属性配置 (21) 交换机IP地址配置 (23) 端口汇聚配置 (25) 交换机端口镜像配置 (27) 交换机堆叠管理配置 (29) 交换机HGMP V1 管理配置 (31) 交换机集群管理(HGMP V2)配置 (33) 交换机STP配置 (34) 路由协议配置 (36) 三层交换机组播配置 (41) 中低端交换机DHCP-RELAY配置 (44) 交换机802.1X配置 (46) 交换机VRRP配置 (51) 单向访问控制 (54) 双向访问控制 (57) IP+MAC+端口绑定 (62) 通过ACL实现的各种绑定的配置 (64) 基于端口限速的配置 (66)

基于流限速的配置 (68) 其它流动作的配置 (70) 8016 交换机DHCP配置 (73)

. 交换机远程T ELNET 登录 1 功能需求及组网说明 2 telnet 配置 『配置环境参数 』 PC 机固定I P 地址10.10.10.10/24 SwitchA 为三层交换机,vlan100 地址10.10.10.1/24 SwitchA 与S witchB 互连v lan10 接口地址192.168.0.1/24 SwitchB 与S witchA 互连接口v lan100 接口地址192.168.0.2/24 交换机S witchA 通过以太网口e thernet 0/1 和S witchB 的e thernet0/24 实现互连。 『组网需求』 1. SwitchA 只能允许10.10.10.0/24 网段的地址的P C telnet 访问 2. SwitchA 只能禁止10.10.10.0/24 网段的地址的P C telnet 访问 3. SwitchB 允许其它任意网段的地址t elnet 访问 2 数据配置步骤 『PC 管理交换机的流程』 1. 如果一台P C 想远程T ELNET 到一台设备上,首先要保证能够二者之间正常通信。 SwitchA 为三层交换机,可以有多个三层虚接口,它的管理v lan 可以是任意一个 具有三层接口并配置了I P 地址的v lan 2. SwitchB 为二层交换机,只有一个二层虚接口,它的管理v lan 即是对应三层虚 接口并配置了I P 地址的v lan 3. Telnet 用户登录时,缺省需要进行口令认证,如果没有配置口令而通过T elnet 登录,则系统会提示“password required, but none set.”。 【SwitchA 相关配置】

Cisco交换机配置新手篇-端口配置(一)

C i s c o交换机配置新手篇-端口配置(一) 上回跟大家介绍了如何正确连接交换机,今天用一些配置片段给大家介绍一下端口的配置。鉴于网上大多数配置事例都是show-run出来的结果。不利于新手对命令配置过程的了解,所以笔者将配置片段和注意的地方都注明了一下,希望能帮助新手尽快了解如何正确配置交换机。 在IOS输入命令时只要缩写的程度不会引起混淆,使用配置命令的时候都可以使用缩写的形式。比如:Switch>enable,在用户模式下以en开头的命令就只有enable,所以可以缩写成Switch>en。也可以用TAB键把命令自动补全,如Switch>en,按键盘TAB后自动补全为Switch>enable。 快捷键: 1.Ctrl+A:把光标快速移动到整行的最开始 2.Ctrl+E:把光标快速移动到整行的最末尾 3.Esc+B:后退1个单词 4.Ctrl+B:后退1个字符 5.Esc+F:前进1个单词 6.Ctrl+F:前进1个字符 7.Ctrl+D:删除单独1个字符 8.Backspace:删除单独1个字符 9.Ctrl+R:重新显示1行 10.Ctrl+U:擦除1整行 11.Ctrl+W:删除1个单词 12. Ctrl+Z从全局模式退出到特权模式 13.Up arrow或者Ctrl+P:显示之前最后输入过的命令 14.Down arrow或者Ctrl+N:显示之前刚刚输入过的命令 配置enable口令以及主机名字,交换机中可以配置两种口令 (一)使能口令(enable password),口令以明文显示 (二)使能密码(enbale secret),口令以密文显示 两者一般只需要配置其中一个,如果两者同时配置时,只有使能密码生效. Switch.> /*用户直行模式提示符 Switch.>enable /*进入特权模式 Switch.# /*特权模式提示符 Switch.# config terminal /*进入配置模式 Switch.(config)# /*配置模式提示符 Switch.(config)# hostname Pconline /*设置主机名Pconline Pconline(config)# enable password pconline /*设置使能口令为pconline Pconline(config)# enable secret network /*设置使能密码为network Pconline(config)# line vty 0 15 /*设置虚拟终端线 Pconline(config-line)# login /*设置登陆验证 Pconline(config-line)# password skill /*设置虚拟终端登陆密码 注意:默认情况下如果没有设置虚拟终端密码是无法从远端进行telnet的,远端进行telnet 时候会提示设置login密码。许多新手会认为no login是无法从远端登陆,其实no login是代表不需要验证密码就可以从远端telnet到交换机,任何人都能telnet到交换机这样是很危险的,千万要注意。 Cisco交换机配置新手篇-端口配置(二)

2016年华为交换机配置步骤讲解

BIOS LOADING ... CopyrighT (c) 2008-2011 HUAWEI TECH CO,, LTD, (Ver248t ^un 26 2012, 18:54:52) press ctr1+B to enrer BOOTROM menu ?*. 0 Auto-booti ng.,. Decompressing image file .*? done Inirialize FSP Task PPI DEV sysinit .............................................. OK vrrp emd di sabl e... BFD emd disable*.. SEP emd di sable? * ? Hard system init............................................ OK Begin to start the system, pl ease wai ti ng VOS VF5彳门亍工 ............................... O K. Starrup File Check........................................ O K vos monitor ini t*..*,*..* .OK CFM inix advan匚E ........................................ OK PAT init .......................................................... OK HA S2M 1nit.................................................. O K VDS VFS irht hind............................. OK vRP_Root begin,,, VRP_in111 al 1zeTask begin.?. init the Device Link .................................... . . CFG(_planETrrit begin................................ CFM_Ini t begi n ........................................... CLi_cmdinit begin■ VRP_RegestAnLiNK€ird begin create task begi门……. task 1n1t begin... Recover configurate on, ,, OK!Press ENTER To get started. 恢复出厂设置: reset saved-configuration reboot 配置交换机的步骤: 1、设置管理VLAN及业务VLAN Sys Vlan 1163 //管理VLAN Vlan 1103 //业务VLAN 设置交换机管理IP地址 ip address 10.12031 255.255.255.0 in terface vla n 1163

思科交换机实用配置步骤详解

1.交换机支持的命令: 交换机基本状态: switch: ;ROM状态,路由器是rommon> hostname> ;用户模式 hostname# ;特权模式 hostname(config)# ;全局配置模式 hostname(config-if)# ;接口状态交换机口令设置: switch>enable ;进入特权模式 switch#config terminal ;进入全局配置模式 switch(config)#hostname ;设置交换机的主机名 switch(config)#enable secret xxx ;设置特权加密口令 switch(config)#enable password xxa ;设置特权非密口令switch(config)#line console 0 ;进入控制台口 switch(config-line)#line vty 0 4 ;进入虚拟终端 switch(config-line)#login ;允许登录 switch(config-line)#password xx ;设置登录口令xx switch#exit ;返回命令

交换机VLAN设置: switch#vlan database ;进入VLAN设置 switch(vlan)#vlan 2 ;建VLAN 2 switch(vlan)#no vlan 2 ;删vlan 2 switch(config)#int f0/1 ;进入端口1 switch(config-if)#switchportaccess vlan 2 ;当前端口加入vlan 2 switch(config-if)#switchport mode trunk ;设置为干线 switch(config-if)#switchport trunk allowed vlan 1,2 ;设置允许的vlan switch(config-if)#switchport trunk encap dot1q ;设置vlan 中继switch(config)#vtp domain ;设置发vtp域名 switch(config)#vtp password ;设置发vtp密码 switch(config)#vtp mode server ;设置发vtp模式 switch(config)#vtp mode client ;设置发vtp模式 交换机设置IP地址: switch(config)#interface vlan 1 ;进入vlan 1 switch(config-if)#ipaddress ;设置IP地址 switch(config)#ip default-gateway ;设置默认网关

S5130S-HI系列交换机产品白皮书

H3C S5130S-HI 新一代千兆以太网交换机 产品概述 H3C S5130S-HI 系列交换机是杭州华三通信技术有限公司(以下简称H3C 公司)自主开发的千兆以太网交换机产品,是为要求具备高性能、高端口密度且易于安装的网络环境而设计的智能型可网管交换机。 H3C S5130S-HI 系列以太网交换机提供10/100/1000Base-T 自适应以太网端口、10G SFP+光口。在企业网中,可以作为接入设备提供千兆到桌面应用;在城域网或者行业用户中,向下可以提供千兆接入最终用户或汇接低端交换机,向上可以通过千兆万兆光纤或者链路聚合汇聚到大容量的L3 交换机。 H3C S5130S-HI 系列以太网交换机支持创新的IRF(Intelligent ReEIlient Framework,智能弹性架构)技术,用户可以将最多9 台交换机连接,形成一个逻辑上的独立实体,从而构建具备高可靠性、易扩展性和易管理性的新型智能网络。 H3C S5130S-HI 系列以太网交换机端口形态更加丰富,支持双可插拔电源。 H3C S5130S-HI 系列以太网交换机包含如下型号: S5130S-28S-HI:24 个10/100/1000BASE-T 以太网端口(其中8 个是combo 口),4 个10G BASE-X SFP+万兆端口,内置模块化冗余双电源; S5130S-52S-HI:48 个10/100/1000BASE-T 以太网端口,4 个10G BASE-X SFP+万兆端口,内置模块化冗余双电源; S5130S-28S-PWR-HI:24 个10/100/1000BASE-T 以太网端口(其中4 个是combo 口),4 个10G BASE-X SFP+万兆端口,内置模块化冗余双电源; S5130S-52S-PWR-HI:48 个10/100/1000BASE-T 以太网端口,4 个10G BASE-X SFP+万兆端口,内置模块化冗余双电源; S5130S-28S-HI S5130S-52S-HI S5130S-28S-PWR-HI S5130S-52S-PWR-HI

华为交换机基本配置命令29908

华为交换机基本配置命令 一、单交换机VLAN划分 命令命令解释 system 进入系统视图 system-view 进入系统视图 quit 退到系统视图 undo vlan 20 删除vlan 20 sysname 交换机命名 disp vlan 显示vlan vlan 20 创建vlan(也可进入vlan 20) port e1/0/1toe1/0/5 把端口1-5放入VLAN 20 中 5700系列 单个端口放入VLAN [Huawei]intg0/0/1 [Huawei]port link-typeaccess(注:接口类型access,hybrid、trunk) [Huawei]port default vlan 10 批量端口放入VLAN [Huawei]port-group 1 [Huawei-port-group-1]group-member ethernet G0/0/1 to ethernet G0/0/20 [Huawei-port-group-1]port hybrid untagged vlan 3 删除group(组)vlan 200内的15端口 [Huawei]intg0/0/15 [Huawei-GigabitEthernet0/0/15]undo port hybrid untagged vlan 200 通过group端口限速设置 [Huawei]Port-group 2 [Huawei]group-member g0/0/2 to g0/0/23 [Huawei]qos lr outbound cir 2000 cbs 20000 disp vlan 20 显示vlan里的端口20 int e1/0/24 进入端口24 undo port e1/0/10 表示删除当前VLAN端口10 disp curr 显示当前配置 return 返回 Save 保存 info-center source DS channel 0 log state off trap state off通过关闭日志信息命令改变DS模块来实现(关闭配置后的确认信息显示) info-center source DS channel 0 log state on trap state on 通过打开日志信息命令改变DS模块来实现(打开配置后的确认信息显示)

思科交换机配置常用命令(精编文档).doc

【最新整理,下载后即可编辑】 Cisco三层交换机配置命令及解释 (2011-07-11 08:54:50) 分类:IT资讯 标签: cisco 杂谈 基本配置 S> enable 进入特权模式 S# configure terminal 进入全局配置模式 S(config)# hostname name 改变交换机名称 S(config)# enable password level level_# password 设置用户口令(level_#=1)或特权口令(level_#=15) S(config)# line console 0 进入控制台接口 S(config-line)# password console_password 接上一条命令,设置控制台口令 S(config)# line vty 0 15 进入虚拟终端 S(config-line)# password telnet_password 接上一条命令,设置Telnet口令 S(config-line)# login 允许Telnet登录 S(config)# enable password|secret privilege_password 配置特权口令(加密或不加密) S(config)# interface ethernet|fastethernet|gigabitethernet slot_#/port_# 进入接口子配置模式 S(config-if)# [no] shutdown 关闭或启用该接口(默认启用) S(config)# ip address IP_address sunbet_mask 指定IP地址 S(config)# ip default-gateway router's_IP_address 指定哪台路由器地址为默认网关 S# show running-config 查看当前的配置 S# copy running-config startup-config 将RAM中的当前配置保存到NVRAM中

Mellanox-4036-QDR交换机白皮书

Mellanox Technologies Mellanox GD4036高性能QDR InfiniBand交换机 Mellanox公司是全球网格骨干解决方案的领导者,致力于为下一代数据中心网络化计算提供最为全面的解决方案。Mellanox公司的产品涵盖了从服务器到网络交换到存储互联的各个领域,凭借先进的架构设计以及严谨的质量控制,Mellanox公司的软硬件产品在全球用户市场获得了广泛的好评,通过IBM、HP、SGI、NEC、SUN等合作伙伴建立了OEM合作关系,Mellanox公司的产品以及解决方案正在被部署在各行各业。 作为业高性能InfiniBand交换解决方案,Mellanox GD4036为高性能计算集群和网格提供了水平空前的性能和扩展性。GD4036交换机能使高性能应用运行在分布式的服务器、存储和网络资源上。Mellanox GD4036对单个机箱中的36个节点精心设计并提供了QDR规格的40Gb/s通讯带宽,多台GD4036或者与Mellanox其他产品配合,我们可以搭建更大规模的集群运算系统,可配置的节点数量范围从十几个到几千个,内部无阻塞的交换设计最大限度的为集群运算系统提供了可靠高效的通讯环境

Mellanox Technologies 一、Mellanox GD4036模块介绍 Mellanox GD4036主要由主机箱、sPSU电源模块以及相应的系统散热模块构成,整机采用模块化设计、无线缆接插件紧密连接结构,大大提高了设备的可靠性,同时方便了系统安装以及以后的维护工作。 GD4036机箱及相关部件 Mellanox GD4036机箱采用工业标准设计完全符合19英寸机柜的安装,支持网络机柜和服务器机柜安装使用;高度为1U,在一个标准42U机柜中可以轻松部署多台Mellanox GD4036;Mellanox GD4036提供了机架导轨,更方便机箱的机柜安装;

相关文档
最新文档