指数与指数函数.板块一.学生版

合集下载

3.1.2 指数函数的图象和性质

3.1.2 指数函数的图象和性质

考源教学资源网
第15页
返回导航
第三章 §3.1 §3.1.2
第二课时
名师一号 · 数学 · 新课标B版 · 必修1
2.函数图像的对称变换 (1)函数 y=f(-x)的图像与函数 y=f(x)的图像关于 y 轴对 称. (2)函数 y=-f(x)的图像与函数 y=f(x)的图像关于 x 轴对 称. (3)函数 y=-f(-x)的图像与函数 y=f(x)的图像关于原点 对称.
变式训练 1 (2011· 成都市玉林中学高一月考)函数 f(x)= ax-b 的图像如图所示,其中 a,b 为常数,则下列结论正确的 是( )
考源教学资源网
第26页
返回导航
第三章 §3.1 §3.1.2
第二课时
名师一号 · 数学 · 新课标B版 · 必修1
A.a>1,b<0 C.0<a<1,b>0
第10页
返回导航
第三章 §3.1 §3.1.2
第二课时
名师一号 · 数学 · 新课标B版 · 必修1
解析 f(-x)=2
2-(-x)2
=2
2-x2
=f(x),
∴f(x)是偶函数. f(x)是由 y=2t,t=2-x2 复合而成. ∵y=2t 在定义域上单调递增,t=2-x2 在(-∞,0)上单 调递增,在(0,+∞)上单调递减, ∴f(x)在(0,+∞)上单调递减,在(-∞,0)上单调递增.
例 1 已知 f(x)=2x,作出下列函数图像. (1)y=f(x)-1; (2)y=-f(x).
考源教学资源网
第22页
返回导航
第三章 §3.1 §3.1.2
第二课时
名师一号 · 数学 · 新课标B版 · 必修1

基本初等函数(1)—+指数函数及其性质-学生版

基本初等函数(1)—+指数函数及其性质-学生版

)
x
a
A.
B.
C.
D.
第 2 页(共 4 页)
20.设 a 0 , b 0 ,下列命题中正确的是 ( )
A.若 2a 2a 2b 3b ,则 a b
B.若 2a 2a 2b 3b ,则 a b
C.若 2a 2a 2b 3b ,则 a b
D.若 2a 2a 2b 3b ,则 a b

28.
1.5
1 3
(
7 )0
1
84
4
2
(3
2
3)6
(
2
)
2 3

6
3
29.定义运算: a
b
b, a a, a
b b
则函数
f
(x)
3 x
3x 的值域为

30.已知不等式
1 2x2 x
(1 )2x2 mxm4 对任意 x R 恒成立,则实数 m 2
的取值范围是

31.已知函数
f
(x)
ax
(x
0)
是 (, ) 上的增函数,那么实数 a 的取值范围是

ax 3a 8 (x 0)
32.已知函数 y ax2 2 (a 0, a 1) 的图象恒过定点 A ,则定点 A 的坐标为

33.已知函数
f
(x)
ax2 1 (x (a 2)eax
0) (x
为 0)
R
上的单调函数,则实数
a
的取值范围是

34.已知函数 f (x) | 2x 1| ,a b c ,且 f (a) f (c) f (b),则下列结论中,一定成立的是 b 0 , c 0 ;② a 0 , b 0 , c 0 ;③ 2a 2c ;④ 2a 2c 2 .

新2024秋季高一必修数学第一册人教A版第四章指数函数与对数函数《指数》

新2024秋季高一必修数学第一册人教A版第四章指数函数与对数函数《指数》

教学设计:新2024秋季高一必修数学第一册人教A版第四章指数函数与对数函数《指数》教学目标(核心素养)1.数学抽象:学生能够理解指数的概念,包括底数、指数和幂的含义,以及它们之间的关系。

2.逻辑推理:通过实例分析,学生能够推导出指数运算法则,并理解其背后的逻辑依据。

3.数学建模:初步建立指数模型,理解指数在描述实际问题(如增长、衰减)中的应用。

4.数学运算:掌握指数的基本运算法则,包括同底数幂的乘法、除法、幂的乘方和积的乘方等。

5.数学交流:能够用数学语言准确表达指数的概念、运算法则及其应用,与同学和教师进行有效交流。

教学重点•指数概念的理解与掌握。

•指数运算法则的推导与应用。

•指数模型在实际问题中的应用。

教学难点•理解指数概念中底数、指数和幂之间的动态关系。

•灵活运用指数运算法则解决实际问题。

教学资源•多媒体课件(包含指数概念介绍、运算法则推导及例题分析)。

•教材及配套习题册。

•黑板和粉笔/白板和笔,用于板书和演示。

•实物或模型(如细胞分裂、人口增长等指数增长现象的模拟),用于辅助说明。

教学方法•讲授与演示结合:通过多媒体展示指数的概念和运算法则,结合实例进行讲解。

•启发式教学:通过提问引导学生思考,逐步揭示指数的本质和运算法则。

•合作学习:分组讨论指数运算法则的应用,促进学生之间的交流与合作。

•练习巩固:通过课堂练习和课后作业,巩固学生对指数概念及运算法则的理解。

教学过程导入新课•生活实例引入:展示细胞分裂、人口增长等实际问题的图片或视频,引导学生观察并思考这些现象的共同特征——即数量的快速增长,且增长速度与初始数量成正比。

由此引出指数的概念。

新课教学1.指数概念的讲解:•定义指数:介绍底数、指数和幂的概念,强调它们之间的关系。

•举例说明:通过具体例子(如2³=8)说明指数运算的过程和结果。

•强调底数的限制:说明底数不能为0且不能为负数(在实数范围内),同时指出当底数为1或-1时的特殊情况。

人教B版高中数学必修一教案-3.1 指数与指数函数

人教B版高中数学必修一教案-3.1 指数与指数函数

2.1.2 指数函数及其性质(1)三维目标一、知识与技能1.掌握指数函数的概念、图象和性质..能借助计算机或计算器画指数函数的图象. 3.能由指数函数图象探索并理解指数函数的性质. 二、过程与方法1.在学习的过程中体会研究具体函数及其性质的过程和方法,如具体到一般的过程,数形结合的方法等.2.通过探讨指数函数的底数a >0,且a ≠1的理由,明确数学概念的严谨性和科学性,做一个具备严谨科学态度的人.三、情感态度与价值观1.通过实例引入指数函数,激发学生学习指数函数的兴趣,体会指数函数是一类重要的函数模型,并且有广泛的用途,逐步培养学生的应用意识.2.在教学过程中,通过现代信息技术的合理应用,让学生体会到现代信息技术是认识世界的有效手段. 教学重点指数函数的概念和性质. 教学难点用数形结合的方法从具体到一般地探索、概括指数函数的性质. 教具准备多媒体、学案. 教学过程(一)新课导学探究一:指数函数的概念问题1:细胞分裂时,第一次由1个分裂成2个(即 12),第2次由2个分裂成4个(即 ),第3次由4个分裂成8个(即 ),如此下去,如果第x 次分裂得到 个细胞,那么细胞个数y 与次数x 的关系式是问题2:《庄子·天下篇》中写道:“一尺之棰,日取其半,万世不竭。

”请你写出截取x 次后,木棰剩余量y 关于x 的关系式是【讨论】:(1)这两个关系式是否构成函数?我们发现:在两个关系式中,每给一个自变量都有唯一的一个函数值和它对应,因此关系式2x y= 和 1()2xy = 都是函数关系式。

(2)这是我们学过的哪个函数?如果不是,你能否根据该函数的特征给它起个恰当的名字?我们发现: 函数2x y= 和 1()2xy =在在形式上是是相同的,解析式的右边都是指数式,且自变量都在指数位置上。

底数是常数,指数是自变量。

结论:函数2x y= 和 1()2x y =都是函数y =a x 的具体形式.函数y =a x是一类重要的函数模型,并且有广泛的用途,它可以解决好多生活中的实际问题,这就是我们下面所要研究的一类重要函数模型——指数函数. (引入新课,书写课题)(二)概念讲解指数函数的概念:一般地,函数y =a x (a >0,a ≠1)叫做指数函数,其中x 是自变量,函数的定义域是R . 思考:1、指数函数解析式的结构特征: ①xa 前面的系数为:1 ②a 的取值范围:a >0,a ≠1③指数只含x2:为什么规定10≠>a a 且呢?否则会出现什么情况呢?①当0=a ,ⅰ若0>x ,则00=xⅱ若0≤x ,则x0无意义,如:21-=x ,则010102121===-y 无意义。

新教材人教B版高中数学必修2精品教学课件:第四章 指数函数、对数函数与幂函数(6课时)

新教材人教B版高中数学必修2精品教学课件:第四章 指数函数、对数函数与幂函数(6课时)

(4)图象的应用——数形结合
例6
四 指数函数的单调性及其应用
(1)利用指数函数的单调性研究最值问题
例7
1. 用min{a,b,c}表示a,b,c三个数中的最小值,设f(x)=min{2x,x+2,10-x}(x≥0)
,则f(x)的最大值为( )
A.4
B.5
C.6
D.7
2.
(2)利用指数函数的单调性比较大小
知识梳理 一、指数函数的概念
二、指数函数的性质与图像
指数函数y=ax(a>0且a≠1)具有下列性质: (1)定义域是 实数集R . (2)值域是(0,+∞),因此,对任何实数x,都有ax>0,也就是说函数图 像一定在x轴的上方. (3)函数图像一定过点(0,1) . (4)当a>1时,y=ax是 增 函数; 当0<a<1时,y=ax是 减 函数.
1.
2.
五 指数幂等式及幂的方程问题
例5
1.
2.
解决有关幂的综合问题的方法与技巧 要观察、分析,并对所给条件进行适当的加工、处理、变形,以便运用公式 和幂的有关性质进行化简、求值,同时还要注意方程思想、整体代入思想、 化归与转化思想、换元法等数学思想方法的运用.
小结
1.根式.
记忆口诀 正数开方要分清,根指奇偶大不同, 根指为奇根一个,根指为偶双胞生. 负数只有奇次根,算术方根零或正, 正数若求偶次根,符号相反值相同. 负数开方要慎重,根指为奇才可行, 根指为偶无意义,零取方根仍为零.
第四章 指数函数、对数函数与幂函数
4.1 指数与指数函数
4.1.1 实数指数幂及其运算
学习目标
重点:分数指数幂的概念及指数幂的运算性质. 难点:1.根式的概念及根式的有关性质.

2018年高考数学一轮复习第二章函数导数及其应用第8讲指数与指数函数课件理2017041501166

2018年高考数学一轮复习第二章函数导数及其应用第8讲指数与指数函数课件理2017041501166
第8讲 指数(zhǐshù)与指数(zhǐshù) 函数
第一页,共31页。
考纲要求
考情分析
命题趋势
1.了解指数函数模型的实际背 景.
2.理解有理数指数幂的含义, 了解实数指数幂的意义,掌握 幂的运算.
3.理解指数函数的概念,理解 指数函数的单调性,掌握指数 函数图象通过的特殊点.
4.知道指数函数是一类重要的 函数模型.
零的 n 次方根是零
当 n 是偶函数时,正数的 n 次方根有 ___两__个___,这两个数互为__相__反___数_
n ± a(a>0)
负数没有偶次方根
第四页,共31页。
(2)两个重要公式
a
①n
an=|a|=
n为奇数
a -a
a≥0, a<0
n为偶数
②(n a)n=____a____(注意:a 必须使n a有意义).
第五页,共31页。
2.有理数的指数幂
(1)幂的有关概念
m
①正分数指数幂:an
=___n__a_m__(a>0,m,n∈N*,且
n>1);
1
1
m
②负分数指数幂:a-n
=___a_mn____=___n_a_m___(a>0,m,n∈N*,且 n>1).
③0 的正分数指数幂等于____0____,0 的负分数指数无幂意___义___(y__ìy.ì)
∴m21
-m-2
1
=m2
-m-2
1
m+1 m-1+1=m+m-1+1=14+1=15.
m2 -m-2
m2 -m-2
第十八页,共31页。
•二 指数函数的图象(tú xiànɡ)及应用

4.2.1 指数函数的概念 4.2.2 指数函数的图象和性质 课件(20张)

4.2 指数函数
4.2.1 指数函数的概念 4.2.2 指数函数的图象和性质
1.理解指数函数的概念. 2.探索指数函数的单调性与图象的特殊点,并掌握指数函数图象的性质. 3.体会直观想象的过程,加强数学抽象、数学运算素养的培养.
指数函数 一般地,函数① y=ax(a>0,且a≠1) 叫做指数函数,其中指数x是自变量,定义 域是② R .
解下列方程:
(1)81×32x=
1 9
x2
;(2)22x+2+3×2x-1=0.
思路点拨
(1)两边化为同底数幂 利用指数相等求解.
(2)令2x=t(t>0),将原方程化为4t2+3t-1=0 求出t的值
解析
(1)∵81×32x=
1 9
x
2
,∴32x+4=3-2(x+2),
∴2x+4=-2(x+2),解得x=-2.
与指数函数有关的复合函数的定义域、值域问题
大家对“水痘”应该不陌生,它与其他的传染病一样,有一定的潜伏期,这段时 间里病原体在机体内不断地繁殖.病原体的繁殖方式有很多种,分裂就是其中的一 种.我们来看某种球菌的分裂过程:由1个分裂成2个,2个分裂成4个,4个分裂成8个, …… 问题 1.2个这样的球菌分裂x次后,得到的球菌的个数y与分裂次数x的关系式是什么? 提示:y=2x+1. 2.上述求出的关系式中x的范围是什么? 函数的值域是什么? 提示:x∈N*;值域是{22,23,24,…}.
比较指数幂大小
1.01365 37.8, 0.99365 0.03,
1.02365 1 377.4, 0.98365 0.000 6.
问题 1.上面的式子告诉我们一个什么道理? 提示:积跬步以致千里,积怠惰以致深渊. 2.如果不计算出结果,如何比较上式中各指数幂的大小? 提示:利用函数单调性进行比较.

【人教版】中职数学(基础模块)上册:4.1《指数与指数函数》优秀教案

指数函数Module 1HobbiesUnit 1 What’s your hobby?一、兴趣爱好的词组:1.play computer games玩电脑游戏2.play music玩音乐3. collect stamps 集邮4.keep pets养宠物5.make model ships做轮船模型6. read books读书7.take photos 照相8.make cakes做蛋糕9. plant trees种树10. grow flowers种花11.listen to music听音乐12. singing,唱歌13.dancing跳舞14.drawing画画15.play the piano弹钢琴16.play chess下棋17. play basketball 打篮球…二、课文短语:1.make model ships 做轮船模型2.love making 喜欢制作3.more than 20 ships 超过20艘轮船4.collect stamps 集邮5.keep pets 养宠物6. Three birds 三只鸟7.play music 玩音乐8. every day 每天9.read books 读书10. every night 每天晚上11.play computer games 玩电脑游戏12.about 50 games 大约50个游戏13.take photos 照相14.during my holiday 在我的假期里三、句型:1. What’s your hobby?2. Do you like…?Yes, I do. / No, I don’t.3. I love/like…I like/love dancing .4. I enjoy …I enjoy listening to music.5. My (favourite) hobby is …6. …is my (favourite) hobby.7. Is your hobby keeping pets?Yes, it’s. / No, it isn’t.Unit 2 His hobby is drawing一、课文短语:1.a great painter 一个伟大的画家2.draw cartoons 画漫画3.coloured pencils 彩色的铅笔4.his pet dog 他的宠物狗5.in the sky 在天空中6.birthday cards 生日卡片7.for his friends 给他的朋友们8.on their birthday 在他们的生日9.interesting people 有趣的人物10.beautiful places 美丽的风景11.in every room 在每一个房间12.in her house 在她的房子里13.二、句型:14.1. What’s Mike’s hobby?His hobby is …15.2. When does Mike usually draw? Mike通常在什么时候画画?He usually draws ….16.3. What does Mike give his friends for their birthday?17.4. What present does Amy give to T om?18.5. What does she want to do when she grows up?She wants to be a writer.19.三、重点精析:20.1. grow up 成长,长大want to do…想要做…21.如:When Lucy grows up she wants to be an English teacher.22.当露丝长大后,她想成为一名英语教师。

2024届新高考一轮总复习人教版 第二章 第5节 指数与指数函数 课件(40张)


分数指数幂 负分数指数幂
1 规定 a-mn= 1m=__n_a_m__(a>0,m,n∈N*,n>1)
an
0 的分数指数幂 0 的正分数指数幂等于_0__,0 的负分数指数幂没有意义
4.有理数指数幂的运算性质 (1)aras=__a_r+__s __(a>0,r,s∈Q). (2)(ar)s=__a_r_s _(a>0,r,s∈Q). (3)(ab)r=__a_rb_r__(a>0,b>0,r∈Q). 5.指数函数定义 一般地,函数 y=ax(a>0,且 a≠1)叫做指数函数,其中指数 x 是自变量,定义域是 _R___.
在(-∞,+∞)上是_减__函__数___
[必记结论] 指数函数的图象与底数大小的比较 如图是指数函数(1)y=ax,(2)y=bx,(3)y=cx,(4)y=dx 的图象,底数 a,b,c,d 与 1 之间的大小关系为 c>d>1>a>b.
由此我们可得到以下规律:在 y 轴右(左)侧图象越高(低),其底数越大.
第二章 函 数
[课标解读] 1.了解指数幂的拓展过程,掌握指数幂的运算性质. 2.了解指数函数 的实际意义,理解指数函数的概念. 3.能画具体指数函数的图象,探索并理解指数函 数的单调性与特殊点.
备考第 1 步——梳理教材基础,落实必备知识 1.根式及相关概念 (1)a 的 n 次方根定义 如果_x_n_=__a__,那么 x 叫做 a 的 n 次方根,其中 n>1,且 n∈N*. (2)根式:式子n a叫做根式,这里 n 叫做_根__指__数___,a 叫做_被__开__方__数___.
备考第 2 步——突破核心考点,提升关键能力 考点 1 指数幂的运算 【考点集训】

高中数学必修一(人教版)《4.2.1 指数函数的概念》课件


[答案] B
[方法技巧] 判断一个函数是指数函数的方法
(1)需判断其解析式是否符合y=ax(a>0,且a≠1)这一结构特征. (2)看是否具备指数函数解析式所具有的所有特征.只要有一个特征不具备, 则该函数就不是指数函数.
【对点练清】
1.下列函数是指数函数的是
A.y=π2x C.y=2x-1
B.y=(-8)x D.y=x2
[方法技巧] 实际应用问题中指数函数模型的类型
(1)指数增长模型: 设原有量为N,每次的增长率为p,则经过x次增长,该量增长到y,则y=N(1 +p)x(x∈N). (2)指数减少模型: 设原有量为N,每次的减少率为p,则经过x次减少,该量减少到y,则y=N(1 -p)x(x∈N). (3)指数型函数: 把形如y=kax(k≠0,a>0,且a≠1)的函数称为指数型函数,这是非常有用 的函数模型.
[典例1] 给出下列函数:
①y=2·3x;②y=3x+1;③y=3x;
④y=x3;⑤y=(-2)x.
其中,指数函数的个数是
()
A.0
B.1
C.2
D.4
[解析] ①中,3x的系数是2,故①不是指数函数;②中,y=3x+1的指数是x +1,不是自变量x,故②不是指数函数;③中,3x的系数是1,幂的指数是自变量 x,且只有3x一项,故③是指数函数;④中,y=x3的底数为自变量,指数为常数, 故④不是指数函数.⑤中,底数-2<0,不是指数函数.
(2)若指数函数 f(x)的图象经过点(2,9),求 f(x)的解析式及 f(-1)的值.
[解析] (1)指数函数 y=f(x)=ax(a>0,且 a≠1)的图象经过点-2,14,可 得 a-2=14,解得 a=2,函数的解析式为 y=2x,f(4)f(2)=24·22=64.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
题型一 指数数与式的运算
【例1】
求下列各式的值:

⑴ 33(5);⑵ 2(3); ⑶ 335; ⑷ 2()()abab;

⑸ 4334(3)(3).⑹238;⑺1225;⑻512;⑼341681.

【例2】
求下列各式的值:
⑴ 44100;⑵ 55(0.1);⑶ 2(4);⑷ 66()()xyxy.

【例3】
用分数指数幂表示下列各式:
(1)32x (2)43)(ba(a+b>0)

(3)32)(nm (4)4)(nm(m>n)
(5)56qp(p>0) (6)mm3

典例分析
板块一.指数基本运算
2

【例4】
用分数指数幂表示下列分式(其中各式字母均为正数)
(1)43aa (2)aaa
(3)322baab (4)4233)(ba

【例5】
用分数指数幂的形式表示下列各式(其中0)a:3aa;322aa;3aa.
【例6】
用根式的形式表示下列各式(a>0)
15a,34a,35a,2
3
a

【例7】
用分数指数幂的形式表示下列各式:
2
aa
,332aa,aa (式中a>0)

【例8】
求值:238,12100,314,341681.
【例9】
求下列各式的值:
(1)122 (2)126449

(3)3410000 (4)2312527
3

【例10】
求下列各式的值:
(1)3225 (2)2327

(3)323649 (4)32254
(5)432981 (6)63231.512

【例11】
计算下列各式(式中字母都是正数)
2115
11

3366
22

(1)(2)(6)(3);ababab

3
1

8
8
4

(2)().mn

【例12】
计算下列各式:
(1)232(0);aaaa

(2)34(25125)5

【例13】
计算下列各式:
⑴ 34(25125)25; ⑵ 111344213243(,0)6aababab.
4

【例14】
用分数指数幂表示下列各式(其中各式字母均为正数):
⑴ 326baab;⑵ 1122aaa;⑶ 341564()mmmmm.

【例15】
化简:⑴111()()()abcabcabcabcabcxxx ⑵abbccacaabbcbccaabxxx.
【例16】
化简32233

【例17】
求证:442186224
【例18】
写出使下列等式成立的x的取值范围:
1 313133xx 2 5)5()25)(5(2xxxx
5

【例19】
化简与求值:
(1)642642;
(2)11111335572121nn.

【例20】
求值:333732137321.
题型二 指数运算求值
【例21】
若62344112aaa,则实数a的取值范围是( )
A.aR B.12a C.12a D.12a≤

【例22】
已知221na,求33nnnnaaaa的值.

【例23】
已知uaaxx其中a>0, Rx将下列各式分别u用表示出来:
1 22xxaa 2 2323xxaa
6

【例24】
下列判断正确的有
①有理数的有理数次幂一定是有理数 ②有理数的无理数次幂一定是无理数
③无理数的有理数次幂一定是有理数 ④无理数的无理数次幂一定是无理数
A.3个 B.2个 C.1个 D.0个

【例25】
化简:)()(41412121yxyx

【例26】
已知13xx,求下列各式的值:
(1)1122xx (2)3322.xx

【例27】
已知31xa,求2362aaxx的值.
【例28】
已知210xx,求847xx的值.
【例29】
已知:63232dcba,求证:)1)(1(1)(1(cb)da.
7

【例30】
已知:72a,25b,求35433343143223342233969babbbababba的值.
【例31】
设0mn,mnxnm,化简:22244xAxx.
【例32】
设 1120082008(N)2nnan,那么2(1)naa的值是
【例33】
若()xxafxaa,求10001()1001iif

相关文档
最新文档