2016年安徽省马鞍山市当涂县乌溪中学联考九年级上学期数学期中试卷与解析
2012-2013学年安徽省马鞍山市当涂县乌溪中学七年级(上)期中数学试卷

2012-2013学年安徽省马鞍山市当涂县乌溪中学七年级(上)期中数学试卷一.选择题(每题3分,共24分)1.(3分)(2012秋•当涂县校级期中)下列各数中最大的是()A.0.3 B.﹣2012 C.﹣0.0001 D.2.(3分)(2012秋•当涂县校级期中)下列说法正确的是()A.求几个因数的积的运算叫做乘方B.正负号不同的两个数是互为相反数C.5万与50000的大小相同D.两个有理数相除,商一定小于被除数3.(3分)(2012秋•当涂县校级期中)若<0,a+b+c>0,则a,b,c中负数有()A.0个B.1个C.1个或3个D.3个4.(3分)(2012秋•当涂县校级期中)在数轴上与表示3的点距离5个单位长度的点所表示的数是()A.8 B.﹣8 C.﹣2 D.﹣2或85.(3分)(2012秋•当涂县校级期中)若a为有理数,则3a与4a的大小关系是()A.3a>4a B.3a<4a C.3a=4a D.无法确定6.(3分)(2012秋•当涂县校级期中)数轴上点A表示﹣2,点B表示﹣5,则表示AB两点间的距离的算式是()A.﹣2﹣5 B.2﹣5 C.|﹣5|+|﹣2| D.﹣2﹣(﹣5)7.(3分)(2012秋•当涂县校级期中)用四舍五入法得到数a的近似数是3.40,精确地说这个a范围是()A.3.395≤a<3.405 B.3.35≤a≤3.45C.3.395<a<3.405 D.3.3 5<a<3.458.(3分)(2012秋•当涂县校级期中)有2012个数相乘,积为0,则这2012个数中()A.全是负数 B.有两个互为相反数C.只有一个0 D.至少一个是0二.填空题(每题3分,共21分)9.(3分)(2012秋•当涂县校级期中)已知3与a互为相反数,则=.10.(3分)(2012秋•当涂县校级期中)若|a﹣1|+(b﹣2)2=0,则(a﹣b)2013=.11.(3分)(2012秋•当涂县校级期中)计算:=.12.(3分)(2012秋•当涂县校级期中)若单项式﹣2ax3y|n﹣2|是关于x,y的7次单项式且系数是4,则a=,n=.13.(3分)(2012秋•当涂县校级期中)我国的钓鱼岛列岛由钓鱼岛(4300000平方米)、黄尾屿(1080000平方米)、赤尾屿(154000平方米)、南小岛(463000平方米)、北小岛(302000平方米)和3块小岛礁即大北小岛、大南小岛、飞濑岛等组成,总面积约6344000平方米.6344000平方米用科学记数法表示为.14.(3分)(2012秋•当涂县校级期中)当整数n=时,多项式x n+2﹣2x2﹣n+10是三次多项式.15.(3分)(2012秋•当涂县校级期中)若代数式3x2+5x﹣6的值是9,则代数式x2+x﹣6的值是.三.解答题(共75分)16.(16分)(2012秋•当涂县校级期中)计算(1)0﹣21(2)8×(3)[1]×[2﹣(﹣3)2](4).17.(8分)(2012秋•当涂县校级期中)从﹣3<x<3中取一个合适的整数代入求值.18.(8分)(2014秋•太康县期中)已知多项式3x2y2﹣xy3+5x4y﹣7y5+y4x6,回答下列问题:(1)它是几次几项式?(2)把它按x的升幂重新排列;(3)把它按y的升幂重新排列.19.(8分)(2012秋•当涂县校级期中)甲、乙两同学从教室门口出发沿同一条路去餐厅吃饭,甲走出10米后,乙才出发追甲,已知乙的速度比甲快a米/秒.(1)试用代数式表示乙需要多少时间才能追上甲.(2)当a=0.2时,求乙赶上甲所用的时间.20.(8分)(2012秋•当涂县校级期中)观察下列等式(△表示一种运算)1△=1;2△=2×1;3△=3×2×1;4△=4×3×2×1根据你发现的规律计算下面各题:(1)求5△的值;(2)求的值.21.(9分)(2012秋•当涂县校级期中)在今年“光棍节”这一天原阳县各大商场纷纷举行优惠大促销,期中一家珠宝商场采取“满一百送二十元,并且连环赠送”的酬宾方式【即顾客每用100元(现金,奖券或者现金奖券合一)就送20元奖券】一位顾客拿了10000元钱,他可以购买多少元钱的物品?相当于几折优惠?22.(9分)(2012秋•当涂县校级期中)某检修小组乘一辆汽车沿一条东西方向的公路检修路线,规定向东走为正,某天早晨.从A地出发到晚上收工时,行走的记录如下(单位:km):+18,﹣9,+7,﹣14,﹣6,+15,﹣6,﹣8.(1)收工时,检修小组在A地的何方,相距多远?(2)若汽车行驶每千米耗油a升,求这天共耗油多少?23.(9分)(2004•南山区)某地电话拨号入网有两种收费方式,用户可以任选其一.(Ⅰ)计时制:0.05元/分;(Ⅱ)包月制:50元/月(限一部个人住宅电话上网).此外,每一种上网方式都得加收通信费0.02元/分.(1)某用户某月上网的时间为x小时,请你分别写出两种收费方式下该用户应该支付的费用;(2)若某用户估计一个月内上网的时间为20小时,你认为采用哪种方式较为合算?2012-2013学年安徽省马鞍山市当涂县乌溪中学七年级(上)期中数学试卷参考答案与试题解析一.选择题(每题3分,共24分)1.(3分)(2012秋•当涂县校级期中)下列各数中最大的是()A.0.3 B.﹣2012 C.﹣0.0001 D.【分析】根据有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,进行比较即可.【解答】解:0.3==,=,故D选项中的数最大.故选D.【点评】本题考查了有理数的大小比较,解答本题的关键是掌握有理数大小比较的法则.2.(3分)(2012秋•当涂县校级期中)下列说法正确的是()A.求几个因数的积的运算叫做乘方B.正负号不同的两个数是互为相反数C.5万与50000的大小相同D.两个有理数相除,商一定小于被除数【分析】A、利用乘方的定义判断即可;B、利用相反数的定义判断即可;C、变形判断即可;D、利用有理数的除法法则判断即可得到结果.【解答】解:A、几个相同因式的积的运算叫做乘方,本选项错误;B、只有符合不同的两个数为相反数,本选项错误;C、5万=50000,故5万与50000相同,本选项正确;D、两个有理数相除,商不一定小于被除数,例如(﹣10)÷(﹣2)=5,本选项错误.故选C.【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.3.(3分)(2012秋•当涂县校级期中)若<0,a+b+c>0,则a,b,c中负数有()A.0个B.1个C.1个或3个D.3个【分析】根据ab除以c,商为负数,得到ab与c异号,即a,b,c中有一个负数或三个都为负数,再由三个数之和为正数,得到a,b,c中只有一个是负数.【解答】解:根据题意得:abc<0,即a,b,c中有一个负数或三个都为负数,∵a+b+c>0,∴a,b,c中有一个负数.故选B.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.4.(3分)(2012秋•当涂县校级期中)在数轴上与表示3的点距离5个单位长度的点所表示的数是()A.8 B.﹣8 C.﹣2 D.﹣2或8【分析】分为两种情况:当点在表示3的点的左边时,当点在表示3的点的右边时,列出算式求出即可.【解答】解:当点在表示3的点的左边时,此时数为:3+(﹣5)=﹣2,当点在表示3的点的右边时,此时数为:3+(+5)=8,故选D.【点评】本题考查了数轴的应用,关键是能根据题意列出算式,注意有两种情况.5.(3分)(2012秋•当涂县校级期中)若a为有理数,则3a与4a的大小关系是()A.3a>4a B.3a<4a C.3a=4a D.无法确定【分析】要确定3a与4a的关系,需确定a的取值,然后分情况讨论,根据讨论结果即可选择正确结论.【解答】解:由于4a﹣3a=a,a是字母可以代表任何数,所以可分三种情况:①当a>0时,4a>3a;②当a=0时,4a=3a;③当a<0时,4a<3a.故在不确定a的值的情况下,不能确定4a与3a的大小关系.故选D.【点评】本题考查了两个代数式A与B比较大小的方法:作差法.如果A﹣B>0,则A>B;如果A﹣B=0,则A=B;如果A﹣B<0,则A<B.6.(3分)(2012秋•当涂县校级期中)数轴上点A表示﹣2,点B表示﹣5,则表示AB两点间的距离的算式是()A.﹣2﹣5 B.2﹣5 C.|﹣5|+|﹣2| D.﹣2﹣(﹣5)【分析】根据数轴上两点AB之间的距离可表示为|A的坐标﹣B的坐标|,即可得出答案.【解答】解:∵数轴上点A表示﹣2,点B表示﹣5,∴表示AB两点间的距离的算式是﹣2﹣(﹣5),故选D.【点评】本题考查了数轴的应用,主要考查学生的理解能力,注意:一般是大的数减去小的数.7.(3分)(2012秋•当涂县校级期中)用四舍五入法得到数a的近似数是3.40,精确地说这个a范围是()A.3.395≤a<3.405 B.3.35≤a≤3.45C.3.395<a<3.405 D.3.3 5<a<3.45【分析】近似值是通过四舍五入得到的,3.40可以由大于或等于3.395的数,9后面的一位数字,满5进1得到.或由小于3.405的数,舍去0后的数字得到,因而3.395≤a<3.405.【解答】解:近似数3.40表示的精确数x的范围是3.395≤x<3.405.故选A.【点评】本题主要考查对近似数概念的理解.8.(3分)(2012秋•当涂县校级期中)有2012个数相乘,积为0,则这2012个数中()A.全是负数 B.有两个互为相反数C.只有一个0 D.至少一个是0【分析】根据0乘以任何数都等于0解答.【解答】解:∵2012个数相乘,积为0,∴这2012个数中至少一个是0.故选D.【点评】本题考查了有理数的乘法,是基础题,主要利用了0乘以任何数都等于0.二.填空题(每题3分,共21分)9.(3分)(2012秋•当涂县校级期中)已知3与a互为相反数,则=﹣18.【分析】根据只有符号不同的两个数叫做互为相反数求出a,再根据有理数的乘方进行计算即可得解.【解答】解:∵3与a互为相反数,∴a=﹣3,∴a3=×(﹣3)3=﹣18.故答案为:﹣18.【点评】本题考查了相反数的定义,有理数的乘方,是基础题,熟记概念并求出a的值是解题的关键.10.(3分)(2012秋•当涂县校级期中)若|a﹣1|+(b﹣2)2=0,则(a﹣b)2013=﹣1.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得,a﹣1=0,b﹣2=0,解得a=1,b=2,所以,(a﹣b)2013=(1﹣2)2013=﹣1.故答案为:﹣1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.11.(3分)(2012秋•当涂县校级期中)计算:=.【分析】先根据数的乘方法则计算出各数,再根据有理数的加减法则进行计算即可.【解答】解:原式=﹣1+1+﹣=.故答案为:.【点评】本题考查的是有理数的混合运算,熟知有理数混合运算的法则是解答此题的关键.12.(3分)(2012秋•当涂县校级期中)若单项式﹣2ax3y|n﹣2|是关于x,y的7次单项式且系数是4,则a=﹣2,n=﹣2或6.【分析】根据单项式的系数和次数的定义,来确定a与n的值.【解答】解:∵单项式﹣2ax3y|n﹣2|是关于x,y的7次单项式且系数是4,∴﹣2a=4,3+|n﹣2|=7,解得:a=﹣2,n=﹣2或6.故答案为:﹣2,﹣2或6.【点评】本题考查了单项式的系数和次数,单项式中数字因数叫做单项式的系数,指数指单项式中所有字母次数的和.13.(3分)(2012秋•当涂县校级期中)我国的钓鱼岛列岛由钓鱼岛(4300000平方米)、黄尾屿(1080000平方米)、赤尾屿(154000平方米)、南小岛(463000平方米)、北小岛(302000平方米)和3块小岛礁即大北小岛、大南小岛、飞濑岛等组成,总面积约6344000平方米.6344000平方米用科学记数法表示为 6.344×106平方米.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于6344000有7位,所以可以确定n=7﹣1=6.【解答】解:6 344 000=6.344×106.故答案为:6.344×106平方米.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.14.(3分)(2012秋•当涂县校级期中)当整数n=±1时,多项式x n+2﹣2x2﹣n+10是三次多项式.【分析】根据多项式次数的定义求得n的值.【解答】解:该多项式共有三项:x n+2、﹣2x2﹣n、10,其中x n+2、﹣2x2﹣n有可能是三次项,根据单项式的次数的定义,2+n=3,或2﹣n=3,解得:n=1或﹣1.故答案为:±1.【点评】此题考查了多项式的次数:多项式里次数最高项的次数,叫做这个多项式的次数.15.(3分)(2012秋•当涂县校级期中)若代数式3x2+5x﹣6的值是9,则代数式x2+x﹣6的值是﹣1.【分析】根据已知条件得到3x2+5x﹣6=9,通过移项得到3x2+5x=﹣15,所以在该等式的两边同时除以3即可求得x2+x的值,将其整体代入所求的代数式并求值即可.【解答】解:由题意,得3x2+5x﹣6=9,即3x2+5x=15,所以x2+x=5,则x2+x﹣6=5﹣6=﹣1.故答案是:﹣1.【点评】本题考查了代数式求值.注意“整体代入”的巧妙运用,减少了繁琐的计算.三.解答题(共75分)16.(16分)(2012秋•当涂县校级期中)计算(1)0﹣21(2)8×(3)[1]×[2﹣(﹣3)2](4).【分析】(1)根据加法结合律进行计算即可;(2)先算乘法,再算加减即可;(3)先算小括号里面的,再算中括号里面的,再算乘法即可;(4)先算乘方,再算乘除即可.【解答】解:(1)原式=0﹣21++﹣=(﹣21+)+(﹣)=﹣18;(2)8×=﹣﹣﹣=(﹣﹣)﹣=﹣8﹣=﹣8;(3)[1]×[2﹣(﹣3)2]=[1]×[2﹣(﹣3)2]=[1﹣(1﹣)]×(2﹣9)=(1﹣)×(﹣7)=×(﹣7)=﹣;(4)(4)=﹣8××=﹣8.【点评】本题考查的是有理数的混合运算,熟知有理数混合运算的法则是解答此题的关键.17.(8分)(2012秋•当涂县校级期中)从﹣3<x<3中取一个合适的整数代入求值.【分析】根据分式有意义,分母不等于0列式求出x的取值范围,然后把分子分母分解因式后约分,再选择符合条件的x的值代入进行计算即可得解.【解答】解:要使分式有意义,x2﹣2x≠0,x+2≠0,解得,x≠0,x≠2,x≠﹣2,∵﹣3<x<3,∴整数x只能取﹣1或1,+=+=+,当取x=1时,原式=+=﹣,(当取x=﹣1时,原式=+=3+2=5).【点评】本题考查了代数式求值,本题易错点在于要先求出x的取值范围从而确定出x可取的整数值.18.(8分)(2014秋•太康县期中)已知多项式3x2y2﹣xy3+5x4y﹣7y5+y4x6,回答下列问题:(1)它是几次几项式?(2)把它按x的升幂重新排列;(3)把它按y的升幂重新排列.【分析】(1)根据几个单项式的和叫做多项式,即多项式的每一项都是一个单项式,单项式的个数就是多项式的项数,如果一个多项式含有a个单项式,次数是b,那么这个多项式就叫b次a项式作答;(2)按字母x的升幂排列是指按字母x的指数从小到大依次排列;(3)按字母y的升幂排列指按字母y的指数从小到大依次排列.【解答】解:(1)3x2y2﹣xy3+5x4y﹣7y5+y4x6是十次五项式;(2)按x的降幂排列为﹣7y5﹣xy3+3x2y2+5x4y+y4x6;(3)按y的升幂排列为5x4y+3x2y2﹣xy3+y4x6﹣7y5.【点评】本题考查了多项式的有关定义,按某一个字母的升幂排列是指按此字母的指数从小到大依次排列,降幂正好相反,多项式的次数是“多项式中次数最高的项的次数”.19.(8分)(2012秋•当涂县校级期中)甲、乙两同学从教室门口出发沿同一条路去餐厅吃饭,甲走出10米后,乙才出发追甲,已知乙的速度比甲快a米/秒.(1)试用代数式表示乙需要多少时间才能追上甲.(2)当a=0.2时,求乙赶上甲所用的时间.【分析】(1)根据甲走出10米后,乙才出发追甲,求出乙比甲多走的路程,再根据乙的速度比甲快a米/秒,即可得出答案;(2)把a的值代入(1)中的式子即可.【解答】解:(1)∵甲走出10米后,乙才出发追甲,乙的速度比甲快a米/秒,∴乙需要秒的时间才能追上甲;(2)当a=0.2时,==50(秒),乙赶上甲所用的时间是50秒.【点评】此题考查了列代数式,用到的知识点是路程、速度、时间的关系,关键是读懂题意,找出题目中的数量关系,列出代数式.20.(8分)(2012秋•当涂县校级期中)观察下列等式(△表示一种运算)1△=1;2△=2×1;3△=3×2×1;4△=4×3×2×1根据你发现的规律计算下面各题:(1)求5△的值;(2)求的值.【分析】(1)根据新定义得到5△=5×4×3×2×1,然后进行乘法运算;(2)根据新定义得到100△=100×99×…×2×1,98△=98×97×…×2×1,然后进行除法运算.【解答】解:(1)5△=5×4×3×2×1=120;(2)∵100△=100×99×…×2×1,98△=98×97×…×2×1,∴==100×99=9900.【点评】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.21.(9分)(2012秋•当涂县校级期中)在今年“光棍节”这一天原阳县各大商场纷纷举行优惠大促销,期中一家珠宝商场采取“满一百送二十元,并且连环赠送”的酬宾方式【即顾客每用100元(现金,奖券或者现金奖券合一)就送20元奖券】一位顾客拿了10000元钱,他可以购买多少元钱的物品?相当于几折优惠?【分析】注意理解题意,这里是连环赠送.一旦满100元就可获得赠送,这100元还可以包括奖励券.相当于几折销售,即原价的十分之几.【解答】解:第一次付款10000元时奖励2000元奖券,第二次付款2000元时,奖励400元奖券,第三次付款400元时,奖励80元奖券,第四次付款80元,四次共购回:10000+2000+400+80=12480(元).10000÷12480≈80.1%,即相当于八折优惠.答:他可以购买12480元钱的物品,相当于八折优惠.【点评】考查了有理数的混合运算,注意认真理解题意,弄清优惠政策.注意几折就是原价的十分之几.22.(9分)(2012秋•当涂县校级期中)某检修小组乘一辆汽车沿一条东西方向的公路检修路线,规定向东走为正,某天早晨.从A地出发到晚上收工时,行走的记录如下(单位:km):+18,﹣9,+7,﹣14,﹣6,+15,﹣6,﹣8.(1)收工时,检修小组在A地的何方,相距多远?(2)若汽车行驶每千米耗油a升,求这天共耗油多少?【分析】(1)根据正数和负数的意义列出算式,进行计算即可;(2)先求出汽车共行驶的路程,再根据汽车行驶每千米耗油a升,即可得出答案.【解答】解:(1)根据题意得:18﹣9+7﹣14﹣6+15﹣6﹣8=﹣3,则在A地西方,相距3千米.(2)∵汽车共行驶的路程是:18+9+7+14+6+15+6+8=83(千米),汽车行驶每千米耗油a升,∴这天共耗油83a升.【点评】此题考查了列代数式,用到的知识点是正数和负数的意义,关键是根据题意列出算式,再根据有理数的加减运算进行计算.23.(9分)(2004•南山区)某地电话拨号入网有两种收费方式,用户可以任选其一.(Ⅰ)计时制:0.05元/分;(Ⅱ)包月制:50元/月(限一部个人住宅电话上网).此外,每一种上网方式都得加收通信费0.02元/分.(1)某用户某月上网的时间为x小时,请你分别写出两种收费方式下该用户应该支付的费用;(2)若某用户估计一个月内上网的时间为20小时,你认为采用哪种方式较为合算?【分析】(1)第一种是费用=每分钟的费用×时间+通信费,第二种的费用=月费+通信费;(2)分别计算x=20时对应的费用,再进行比较.【解答】解:(1)采用计时制应付的费用为:0.05•x•60+0.02•x•60=4.2x(元).采用包月制应付的费用为:50+0.02•x•60=(50+1.2x)(元);(2)若一个月内上网的时间为20小时,则计时制应付的费用为84元,包月制应付的费用为74元,很明显,包月制较为合算.【点评】表示费用的时候注意单位的统一,正确代值计算比较大小.解决问题的关键是读懂题意,找到所求的量的等量关系.参与本试卷答题和审题的老师有:caicl;sks;zjx111;zhjh;星期八;ZJX;gbl210;dbz1018;HJJ;lantin;gsls;HLing;lanchong;kuaile(排名不分先后)菁优网2016年6月26日。
九年级(上)期中数学试卷(答案)

九年级(上)期中数学试卷一、选择题(本大题共20个小题,每小题3分,共60分.)在四个选项中只有一项是正确的.1.下列说法正确的是()A.各有一个角是70°的等腰三角形相似B.各有一个角是95°的等腰三角形相似C.所有的矩形相似D.所有的菱形相似2.在△ABC中,∠C=90°,sinB=,则tanA的值为()A.B.1 C.D.3.如图是一块三角形的草坪,现要在草坪上建一座凉亭供大家休息,要使凉亭到草坪三条边的距离相等,则凉亭的位置应选在()A.△ABC三条中线的交点B.△ABC三边的垂直平分线的交点C.△ABC三条角平分线的交点D.△ABC三条高所在直线的交点4.如图,在△ABC中,已知∠AED=∠B,DE=6;AB=10,AE=5,则BC的长为()A.3 B.12 C.D.75.如图,在△ABC中,D、E分别为AB,AC的中点,连接BE,DC交于F点,则△DEF与△BDF 的面积比为()A.1:2 B.1:4 C.4:9 D.1:36.如图,D,E,F分别是OA,OB,OC的中点,下面的说法中:①△ABC与△DEF是位似图形;②△ABC与△DEF的相似比为1:2;③△ABC与△DEF的周长之比为2:1;④△ABC与△DEF的面积之比为4:1.正确的是()A.①②③ B.①③④ C.①②④ D.②③④7.如图,点F是▱ABCD的边CD上一点,直线BF交AD的延长线与点E,则下列结论错误的是()A.B.C.D.8.如图,四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成①②③④四个三角形.若OA:OC=OB:OD,则下列结论中一定正确的是()A.①②相似B.①③相似C.①④相似D.②相似9.在△ABC中,∠C=90°,∠B=50°,AB=10,则BC的长为()A.10tan50°B.10cos50°C.10sin50°D.10.如图,一个小球由地面沿着坡度i=1:2的坡面向上前进了10m,此时小球距离地面的高度为()A.5m B.m C.m D.m11.正方形网格中,∠AOB如图放置,则sin∠AOB=()A.B. C.D.212.如图,为测量某物体AB的高度,在D点测得A点的仰角为30°,朝物体AB方向前进20米,到达点C,再次测得点A的仰角为60°,则物体AB的高度为()A.10米B.10米C.20米D.米13.如图,⊙O的直径为10cm,弦AB为8cm,P是弦AB上一点,若OP的长是整数,则满足条件的点P有()A.2个B.3个C.4个D.5个14.如图,已知A,B,C三点在⊙O上,AC⊥BO于O,∠B=55°,则∠BOC的度数为()A.45°B.35°C.70°D.80°15.如图,⊙O的圆心O到直线m的距离为3cm,⊙O的半径为1cm,将直线m向右(垂直于m 的方向)平移,使m与⊙O相切,则平移的距离为()A.1cm B.2cm C.4cm D.2cm或4cm16.如图,两个同心圆的半径分别为3cm和5cm,大圆的一条弦AB与小圆相切,则弦AB的长为()A.3cm B.4cm C.6cm D.8cm17.如图,PA、PB是⊙O的切线,切点是A、B,已知∠P=60°,0A=3,那么∠AOB所对弧的长度为()A.6πB.5πC.3πD.2π18.如图,扇形AOB的半径为1,∠AOB=90°,以AB为直径画半圆,则图中阴影部分的面积为()A. B.C.D.19.边长为a的正六边形的面积为()A. a B.4a2C.a2D.a220.如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是()A.CM=DM B.=C.∠ACD=∠ADC D.OM=MD二、填空题(本大题共4个小题,每小题3分,共12分.)21.如图所示,已知∠DAB=∠CAE,再添加一个条件就能使△ADE∽△ABC,则这个条件可能是.(写出一个即可)22.在△ABC中,∠A,∠B都是锐角,且(sinA﹣)2+(tanB﹣1)2=0,则∠C=.23.如图,△ABC内接于⊙O,若∠B=30°,AC=3,则⊙O的直径为.24.如图,在⊙O上有定点C和动点P,位于直径AB的两侧,过点C作CP的垂线与PB的延长线交于点Q.已知⊙O的直径为5,tan∠ABC=,则CQ的最大值为.三、解答题(本大题共5个小题,共48分.)解答应写出文字说明、推理过程或演算步骤.25.如图,在△ABC中,已知:∠A=30°,∠C=105°,AC=4,求AB和BC的长.26.如图,等边三角形ABC的边长为5,点E为BC边上一点,且BE=2,点D为AC边上一点,若∠AED=60°,求CD的长?27.如图,已知Rt△ABC,∠C=90°,CD是斜边AB上的高.(1)求证:CD2=AD•BD;(2)若AC=3,BC=4,求BD的长和求sin∠BCD的值.28.已知:如图,AB是⊙O的直径,⊙O过AC的中点D,DE切⊙O于点D,交BC于点E.(1)求证:DE⊥BC;(2)如果CD=4,CE=3,求⊙O的半径.29.如图,已知AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC=∠BAC.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为2,∠ACD=30°,求图中阴影部分的面积.参考答案与试题解析一、选择题(本大题共20个小题,每小题3分,共60分.)在四个选项中只有一项是正确的.1.下列说法正确的是()A.各有一个角是70°的等腰三角形相似B.各有一个角是95°的等腰三角形相似C.所有的矩形相似D.所有的菱形相似【分析】A、根据等腰三角形的性质和相似三角形的判定定理进行判断;B、根据等腰三角形的性质和相似三角形的判定定理进行判断;C、D根据相似图形的定义进行判断.【解答】解:A、若一个等腰三角形的顶角为70°,而另一个的顶角为40°,则此两个等腰三角形不相似,故本选项错误;B、95°的角只能是顶角,则顶角为95°的两个等腰三角形相似,故本选项正确;C、所有的矩形是形状不唯一确定的图形,不一定是相似形,故本选项错误;D、所有的菱形是形状不唯一确定的图形,不一定是相似形,故本选项错误;故选:B.2.在△ABC中,∠C=90°,sinB=,则tanA的值为()A.B.1 C.D.【分析】先根据特殊角的三角函数值得出∠B,从而得出∠A,即可计算出结果.【解答】解:∵在Rt△ABC中,∠C=90°,∵sinB=,∴∠B=30°,∴∠A=60°,∴tanA=.故选A.3.如图是一块三角形的草坪,现要在草坪上建一座凉亭供大家休息,要使凉亭到草坪三条边的距离相等,则凉亭的位置应选在()A.△ABC三条中线的交点B.△ABC三边的垂直平分线的交点C.△ABC三条角平分线的交点D.△ABC三条高所在直线的交点【分析】直接根据角平分线的性质进行解答即可.【解答】解:∵角平分线上的点到角两边的距离相等,∴凉亭的位置应选在△ABC三条角平分线的交点上.故选C.4.如图,在△ABC中,已知∠AED=∠B,DE=6;AB=10,AE=5,则BC的长为()A.3 B.12 C.D.7【分析】由公共角和已知条件证明△ADE∽△ACB,得出对应边成比例,即可求出BC的长.【解答】解:∵∠A=∠A,∠AED=∠B,∴△ADE∽△ACB,∴,即,解得:BC=12.故选:B.5.如图,在△ABC中,D、E分别为AB,AC的中点,连接BE,DC交于F点,则△DEF与△BDF 的面积比为()A.1:2 B.1:4 C.4:9 D.1:3【分析】证明DE是△ABC的中位线,由三角形中位线定理得出DE∥BC,DE=BC,得出△DEF∽△CBF,得出对应边成比例EF:BF=DE:BC=1:2,得出△DEF与△BDF的面积比=EF:BF,即可得出结果.【解答】解:∵D、E分别为AB,AC的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=BC,∴△DEF∽△CBF,∴EF:BF=DE:BC=1:2,∴△DEF与△BDF的面积比=EF:BF=1:2;故选:A.6.如图,D,E,F分别是OA,OB,OC的中点,下面的说法中:①△ABC与△DEF是位似图形;②△ABC与△DEF的相似比为1:2;③△ABC与△DEF的周长之比为2:1;④△ABC与△DEF的面积之比为4:1.正确的是()A.①②③ B.①③④ C.①②④ D.②③④【分析】根据位似图形的性质,得出①△ABC与△DEF是位似图形,进而根据位似图形一定是相似图形得出②△ABC与△DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案.【解答】解:根据位似性质得出①△ABC与△DEF是位似图形,②△ABC与△DEF是相似图形,且相似比是:=2,③△ABC与△DEF的周长比等于相似比,即2:1,④根据面积比等于相似比的平方,则△ABC与△DEF的面积比为4:1.综上所述,正确的结论是:①③④.故选:B.7.如图,点F是▱ABCD的边CD上一点,直线BF交AD的延长线与点E,则下列结论错误的是()A.B.C.D.【分析】由四边形ABCD是平行四边形,可得CD∥AB,AD∥BC,CD=AB,AD=BC,然后平行线分线段成比例定理,对各项进行分析即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴CD∥AB,AD∥BC,CD=AB,AD=BC,∴,故A正确;∴,∴,故B正确;∴,故C错误;∴,∴,故D正确.故选C.8.如图,四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成①②③④四个三角形.若OA:OC=OB:OD,则下列结论中一定正确的是()A.①②相似B.①③相似C.①④相似D.②相似【分析】由两边成比例和夹角相等(对顶角相等),即可得出△AOB∽△COD,即可得出结果.【解答】解:∵OA:OC=OB:OD,∠AOB=∠COD,∴△AOB∽△COD,C正确;故选:C.9.在△ABC中,∠C=90°,∠B=50°,AB=10,则BC的长为()A.10tan50°B.10cos50°C.10sin50°D.【分析】根据三角函数的定义即可求解.【解答】解:∵cosB=,∴BC=ABcosB=10cos50°.故选:B.10.如图,一个小球由地面沿着坡度i=1:2的坡面向上前进了10m,此时小球距离地面的高度为()A.5m B.m C.m D.m【分析】可利用勾股定理及所给的比值得到所求的线段长.【解答】解:∵AB=10米,tanA==.∴设BC=x,AC=2x,由勾股定理得,AB2=AC2+BC2,即100=x2+4x2,解得x=2,∴AC=4,BC=2米.故选B.11.正方形网格中,∠AOB如图放置,则sin∠AOB=()A.B. C.D.2【分析】找出以∠AOB为内角的直角三角形,根据正弦函数的定义,即直角三角形中∠AOB的对边与斜边的比,就可以求出.【解答】解:如图,作EF⊥OB,则EF=2,OF=1,由勾股定理得,OE=,∴sin∠AOB===.故选B.12.如图,为测量某物体AB的高度,在D点测得A点的仰角为30°,朝物体AB方向前进20米,到达点C,再次测得点A的仰角为60°,则物体AB的高度为()A.10米B.10米C.20米D.米【分析】首先根据题意分析图形;本题涉及到两个直角三角形,应利用其公共边AB及CD=DC﹣BC=20构造方程关系式,进而可解,即可求出答案.【解答】解:∵在直角三角形ADB中,∠D=30°,∴=tan30°∴BD==AB∵在直角三角形ABC中,∠ACB=60°,∴BC==AB∵CD=20∴CD=BD﹣BC=A B﹣AB=20解得:AB=10.故选A.13.如图,⊙O的直径为10cm,弦AB为8cm,P是弦AB上一点,若OP的长是整数,则满足条件的点P有()A.2个B.3个C.4个D.5个【分析】首先过点O作OC⊥AB于点C,连接OB,由垂径定理可求得OP的取值范围为3≤OP≤5,而OP=3的点只有一个,OP=4的点有2个,OP=5的点有2个,故符合条件的点P有5个.【解答】解:过点O作OC⊥AB于点C,连接OB,∵⊙O的直径为10cm,弦AB为8cm,∴BC=AB=4(cm),OB=5cm,∴OC==3(cm),∴3cm≤OP≤5cm,∵OP的长是整数,∴OP=3的点只有一个,OP=4的点有2个,OP=5的点有2个,∴满足条件的点P有5个.故选D.14.如图,已知A,B,C三点在⊙O上,AC⊥BO于O,∠B=55°,则∠BOC的度数为()A.45°B.35°C.70°D.80°【分析】根据三角形的内角和得到∠A=35°,根据圆周角定理即可得到结论.【解答】解:∵AC⊥BO于O,∠B=55°,∴∠A=35°,∴∠BOC=2∠A=70°,故选C.15.如图,⊙O的圆心O到直线m的距离为3cm,⊙O的半径为1cm,将直线m向右(垂直于m 的方向)平移,使m与⊙O相切,则平移的距离为()A.1cm B.2cm C.4cm D.2cm或4cm【分析】直线m向右平移时,会与圆在左边相切,或者右边相切,有两种情况,分别讨论解答即可.【解答】解:∵圆心O到直线m的距离为3cm,半径为1cm,∴当直线与圆在左边相切时,平移距离为:3﹣1=2cm,当直线与圆在右边相切时,平移距离为:3+1=4cm,故选D.16.如图,两个同心圆的半径分别为3cm和5cm,大圆的一条弦AB与小圆相切,则弦AB的长为()A.3cm B.4cm C.6cm D.8cm【分析】连接OC和OB,根据切线的性质:圆的切线垂直于过切点的半径,知OC⊥AB,应用勾股定理可将BC的长求出,从而求出AB的长.【解答】解:连接OC和OB,∵弦AB与小圆相切,∴OC⊥AB,在Rt△OBC中,BC===4cm,∴AB=2BC=8cm.故选D.17.如图,PA、PB是⊙O的切线,切点是A、B,已知∠P=60°,0A=3,那么∠AOB所对弧的长度为()A.6πB.5πC.3πD.2π【分析】由于PA、PB是⊙O的切线,由此得到∠OAP=∠OBP=90°,而∠P=60°,然后利用四边形的内角和即可求出∠AOB然后利用已知条件和弧长公式即可求出∠AOB所对弧的长度.【解答】解:∵PA、PB是⊙O的切线,∴∠OAP=∠OBP=90°,而∠P=60°,∴∠AOB=120°,∠AOB所对弧的长度==2π.故选D.18.如图,扇形AOB的半径为1,∠AOB=90°,以AB为直径画半圆,则图中阴影部分的面积为()A. B.C.D.【分析】首先利用扇形公式计算出半圆的面积和扇形AOB的面积,然后求出△AOB的面积,用S半+S△AOB﹣S扇形AOB可求出阴影部分的面积.圆【解答】解:在Rt△AOB中,AB==,S半圆=π×()2=π,S△AOB=OB×OA=,S扇形OBA==,故S阴影=S半圆+S△AOB﹣S扇形AOB=.故选C.19.边长为a的正六边形的面积为()A. a B.4a2C.a2D.a2【分析】边长为a的正六边形的面积是边长是a的等边三角形的面积的6倍,据此即可求解.【解答】解:边长为a的等边三角形的面积=a2=a2,则边长为a的正六边形的面积等于6×a2=a2.故选C.20.如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是()A.CM=DM B.=C.∠ACD=∠ADC D.OM=MD【分析】由直径AB垂直于弦CD,利用垂径定理得到M为CD的中点,B为劣弧的中点,可得出A和B选项成立,再由AM为公共边,一对直角相等,CM=DM,利用SAS可得出三角形ACM 与三角形ADM全等,根据全等三角形的对应角相等可得出选项C成立,而OM不一定等于MD,得出选项D不成立.【解答】解:∵AB是⊙O的直径,弦CD⊥AB,垂足为M,∴M为CD的中点,即CM=DM,选项A成立;B为的中点,即=,选项B成立;在△ACM和△ADM中,∵,∴△ACM≌△ADM(SAS),∴∠ACD=∠ADC,选项C成立;而OM与MD不一定相等,选项D不成立.故选:D二、填空题(本大题共4个小题,每小题3分,共12分.)21.如图所示,已知∠DAB=∠CAE,再添加一个条件就能使△ADE∽△ABC,则这个条件可能是∠D=∠B.(写出一个即可)【分析】先证出∠DAE=∠BAC,再由∠D=∠B,根据三角形相似的判定方法即可得出△ADE∽△ABC.【解答】解:这个条件可能是∠D=∠B;理由如下:∵∠DAB=∠CAE,∴∠DAB+∠BAE=∠CAE+∠BAE,即∠DAE=∠BAC,又∵∠D=∠B,∴△ADE∽△ABC.22.在△ABC中,∠A,∠B都是锐角,且(sinA﹣)2+(tanB﹣1)2=0,则∠C=75°.【分析】根据偶次幂具有非负性可得sinA﹣=0,tanB﹣1=0,再根据特殊角的三角函数值可得:∠A=60°,∠B=45°,然后再利用三角形内角和定理可得答案.【解答】解:由题意得:sinA﹣=0,tanB﹣1=0,解得:∠A=60°,∠B=45°,则∠C=180°﹣60°﹣45°=75°,故答案为:75°.23.如图,△ABC内接于⊙O,若∠B=30°,AC=3,则⊙O的直径为6.【分析】过C作直径CD,连AD,根据圆周角定理及推论得到∠CAD=90°和∠D=∠B=30°,再根据30度角所对的直角边等于斜边的一半即可得到圆的直径.【解答】解:过C作直径CD,连AD,∴∠D=∠B=30°,∠CAD=90°,∴CD=2AC=6,∴⊙O的直径为6;故答案为:6.24.如图,在⊙O上有定点C和动点P,位于直径AB的两侧,过点C作CP的垂线与PB的延长线交于点Q.已知⊙O的直径为5,tan∠ABC=,则CQ的最大值为.【分析】由AB为直径和PC⊥CQ可得出∠PCQ=90°=∠ACB,又由∠P与∠A为同弦所对的圆周角,可得出∠P=∠A,从而得出△ACB∽△PCQ,即得出CQ=•CP,由tan∠ABC=得出CQ=CP,当CP最大时,CQ也最大,而CP为圆内一弦,故CP最大为直径,由此得出CQ的最大值.【解答】解:∵线段AB为⊙O的直径,∴∠ACB=90°.∵CQ⊥PC,∴∠PCQ=90°=∠ACB,又∵∠P=∠A(同弦圆周角相等),∴△ACB∽△PCQ,∴.在Rt△ACB中,tan∠ABC=,∴=,∴CQ=•CP=CP.∵线段CP是⊙O内一弦,∴当CP过圆心O时,CP最大,且此时CP=5.∴CQ=×5=.故答案为:.三、解答题(本大题共5个小题,共48分.)解答应写出文字说明、推理过程或演算步骤.25.如图,在△ABC中,已知:∠A=30°,∠C=105°,AC=4,求AB和BC的长.【分析】过C作CD⊥AB于D,则∠CDA=∠CDB=90°,在Rt△ACD中,由∠A=30°,AC=4,求得CD=AC•sinA=2,AD=AC,cosA=2,根据三角形的内角和得到∠B=45°,在Rt△BCD中,根据BD=CD=2,BC=2,即可得到AB=2+2.【解答】解:过C作CD⊥AB于D,则∠CDA=∠CDB=90°,在Rt△ACD中,∵∠A=30°,AC=4,∴CD=AC•sinA=2,AD=AC,cosA=2,∵∠A=30°,∠ACB=105°,∴∠B=45°,在Rt△BCD中,BD=CD=2,BC=2,∴AB=2+2.26.如图,等边三角形ABC的边长为5,点E为BC边上一点,且BE=2,点D为AC边上一点,若∠AED=60°,求CD的长?【分析】由等边三角形的性质得出AB=BC=AC=5,∠B=∠C=60°,证明△ABE∽△ECD,得出对应边成比例=,即可求出CD的长.【解答】解:∵△ABC是等边三角形,∴AB=BC=AC=5,∠B=∠C=60°,∵∠AEC=∠AED+∠DEC,∠AEC=∠B+∠BAE,∴∠AED+∠DEC=∠B+∠BAE,又∵∠AED=∠B=60°,∴∠DEC=∠BAE,∴△ABE∽△ECD,∴=,∵BE=2,BC=5,∴EC=3,∴CD===.27.如图,已知Rt△ABC,∠C=90°,CD是斜边AB上的高.(1)求证:CD2=AD•BD;(2)若AC=3,BC=4,求BD的长和求sin∠BCD的值.【分析】(1)由互余两角的关系得出∠B=∠ACD,∠DCB=∠A,证出△ACD∽△CBD,得出对应边成比例,即可得出结论;(2)由相似三角形的性质得出,由勾股定理求出AB,由三角形的面积求出CD,得出BD,即可得出sin∠BCD的值.【解答】(1)证明:∵∠ACB=90°,∠ACD+∠DCB=90°,∵CD是斜边AB上的高,∴∠B+∠DCB=90°,∠A+∠ACD=90°,∴∠B=∠ACD,∠DCB=∠A,∴△ACD∽△CBD,∴,即CD2=AD•BD;(2)解:由(1)知:△ACD∽△CBD,∴,在Rt△ABC中,AC=3,BC=4,∴AB==5,由△ABC的面积得:AB•CD=AC•BC,∴5CD=3×4,∴CD=,∴,解得:BD=,sin∠BCD===.28.已知:如图,AB是⊙O的直径,⊙O过AC的中点D,DE切⊙O于点D,交BC于点E.(1)求证:DE⊥BC;(2)如果CD=4,CE=3,求⊙O的半径.【分析】本题由已知DE是⊙O的切线,可联想到常作的一条辅助线,即“见切点,连半径,得垂直”,然后再把要证的垂直与已有的垂直进行联系,即可得出证法.【解答】(1)证明:连接OD,(1分)∵DE切⊙O于点D,∴DE⊥OD,∴∠ODE=90°,(2分)又∵AD=DC,AO=OB,∴OD是中位线,∴OD∥BC,(3分)∴∠DEC=∠ODE=90°,∴DE⊥BC;(4分)(2)解:连接BD,(5分)∵AB是⊙O的直径,∴∠ADB=90°,(6分)∴BD⊥AC,∴∠BDC=90°,又∵DE⊥BC,Rt△CDB∽Rt△CED,(7分)∴,∴BC=,(9分)又∵OD=BC,∴OD=,即⊙O的半径为.(10分)29.如图,已知AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC=∠BAC.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为2,∠ACD=30°,求图中阴影部分的面积.【分析】(1)连接OC,由OA=OC,利用等边对等角得到∠OAC=∠OCA,由∠DAC=∠BAC,等量代换得到一对内错角相等,得到AD与OC平行,由AD垂直于EF,得到OC垂直于EF,即可得到EF为圆O的切线;(2)由∠ACD的度数求出∠OCA为60°,确定出三角形AOC为等边三角形,由半径为2求出AC 的长,在直角三角形ACD中,由30度所对的直角边等于斜边的一半求出AD的长,再利用勾股定理求出CD的长,由扇形AOC面积减去三角形AOC面积求出弓形的面积,再由三角形ACD面积减去弓形面积即可求出阴影部分面积.【解答】解:(1)连接OC,∵OA=OC,∴∠OAC=∠OCA,∵∠DAC=∠BAC,∴∠DAC=∠OCA,∴AD∥OC,∵AD⊥EF,∴OC⊥EF,则EF为圆O的切线;(2)∵∠ACD=30°,∠ADC=90°,∴∠CAD=∠OCA=60°,∴△AOC为等边三角形,∴AC=OC=OA=2,在Rt△ACD中,∠ACD=30°,∴AD=AC=1,根据勾股定理得:CD=,∴S阴影=S△ACD﹣(S扇形AOC﹣S△AOC)=×1×﹣(﹣×22)=﹣.。
安徽省马鞍山市当涂县乌溪中学七年级数学上学期期中试

安徽省马鞍山市当涂县乌溪中学2015-2016学年七年级数学上学期期中试题一、反复比较,慎重选择哟!(每小题3分,共30分)1.如果获利100元记作+100元,那么支出200元记作( )A.+200元B.﹣200元C.+100元D.﹣100元2.下列结论中错误的是( )A.零是整数 B.零不是正数C.零是偶数 D.零不是自然数3.若|﹣a|=a,则a的取值范围是( )A.a<0 B.a>0 C.a≥0 D.a≤04.两数之和为负,积为正,则这两个数应是( )A.同为负数 B.同为正数 C.一正一负 D.有一个为05.关于多项式26﹣3x5+x4+x3+x2+x的说法正确的是( )A.是六次六项式 B.是五次六项式 C.是六次五项式 D.是五次五项式6.下列各组式子中说法正确的是( )A.3xy与﹣2yz是同类项B.5xy与6yx是同类项C.2x与x2是同类项D.2x2y与2xy2是同类项7.一个两位数,个位数字为a,十位数字比个位数字大1,则这个两位数可表示为( ) A.11a﹣1 B.11a﹣10 C.11a+1 D.11a+108.不改变代数式a2﹣(2a+b+c)的值,把它括号前的符号变为相反的符号,应为( ) A.a2+(﹣2a+b+c)B.a2+(﹣2a﹣b﹣c)C.a2+(﹣2a)+b+c D.a2﹣(﹣2a﹣b﹣c)9.设a是实数,则|a|﹣a的值( )A.可以是负数B.不可能是负数C.必是正数 D.可以是正数也可以是负数10.一列数:0,1,2,3,6,7,14,15,30,____,_____,____这串数是由小明按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数应该是下面的( )A.31,32,64 B.31,62,63 C.31,32,33 D.31,45,46二、注意审题,细心填空呦!(每小题3分,共30分)11.稀士元素具有独特的性质和广泛的应用,我国稀土资源的总储量约为1050000000吨,用科学记数法表示为__________.12.单项式﹣是__________次单项式,系数为__________.13.近似数1.60万精确到__________.14.若﹣7x m+2y与﹣3x3y n是同类项,则m+n=__________.15.(__________)2=64.16.若a与b互为相反数,c、d互为倒数,则﹣cd+值是__________.17.三个连续奇数,中间一个为2n﹣1,则这三个连续奇数之和为__________.18.若x2+x=2,则(x2+2x)﹣(x+1)值是__________.19.某影剧院第一排有30个座位,以后的每一排都比前一排多4个座位,则第n排的座位是__________.20.规定一种新的运算“☆”,a☆b=a b,例如3☆2=32=9,则﹣☆4=__________.三、开动脑筋,一定要做对呦21.计算:(1)﹣14﹣〔2﹣(﹣3)2〕÷(﹣)3(2)(﹣﹣+)÷.22.化简:(1)2a+2(a+1)﹣3(a﹣1);(2)﹣3(2x2﹣xy)+4(x2+xy﹣6).23.解方程:(1);(2).24.按括号内要求解方程组:(1)(代入法)(2)(加减法)25.若|3x+6|+(3﹣y)2=0,求多项式3y2﹣x2+(2x﹣y)﹣(x2+3y2)的值.26.某化肥厂把化肥送到甲、乙两个村庄,先后各送了两次.每次的运量和运费如表次序甲村运量(吨)乙村运量(吨)共计运费(元)第1次 6 5 270第2次8 11 490试问两个村庄应该各负担运费多少元?(提醒:一吨化肥运往同一村庄的运费相同.)2015-2016学年安徽省马鞍山市当涂县乌溪中学七年级(上)期中数学试卷一、反复比较,慎重选择哟!(每小题3分,共30分)1.如果获利100元记作+100元,那么支出200元记作( )A.+200元B.﹣200元C.+100元D.﹣100元【考点】正数和负数.【专题】应用题.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:∵“正”和“负”相对,获利100元记作+100元,∴支出200元,记作﹣200元.故选:B.【点评】此题考查的知识点是正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.下列结论中错误的是( )A.零是整数 B.零不是正数C.零是偶数 D.零不是自然数【考点】有理数.【分析】本题结合0的性质进行分析即可.【解答】解:0不是正数,是整数,且是偶数,也是自然数.故答案为D.【点评】本题考查0的特殊性质,结合性质分析即可.3.若|﹣a|=a,则a的取值范围是( )A.a<0 B.a>0 C.a≥0 D.a≤0【考点】绝对值.【专题】计算题.【分析】根据绝对值的性质:一个负数的绝对值是它的相反数,0的绝对值是0.若|﹣a|=a,则可求得a的取值范围.注意0的相反数是0.【解答】解:因为一个负数的绝对值是它的相反数;0的绝对值是0或相反数,所以如果|﹣a|=a,那么a的取值范围是a≥0.故选C.【点评】此题考查的知识点是绝对值,关键明确绝对值规律总结:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.4.两数之和为负,积为正,则这两个数应是( )A.同为负数 B.同为正数 C.一正一负 D.有一个为0【考点】有理数的乘法;有理数的加法.【分析】根据两数之和为负,积为正可判断出两数的正负情况.【解答】解:∵两数积为正,∴两数同号,又∵两数和为负,两数均为负数.故选A.【点评】本题考查有理数的加法和乘法法则.熟练掌握有理数乘法的性质,同号的两个数相乘得正.5.关于多项式26﹣3x5+x4+x3+x2+x的说法正确的是( )A.是六次六项式 B.是五次六项式 C.是六次五项式 D.是五次五项式【考点】多项式.【分析】根据多项式次数的定义知,该多项式的次数是5次,又因为次多项式有6个单项式组成,所以是五次六项式.【解答】解:多项式26﹣3x5+x4+x3+x2+x次数最高的项的次数是5,且有6个单项式组成,所以是五次六项式.故选B.【点评】不含字母的项叫做常数项,26的次数是0,即该多项式的次数不少六次,而是五次.6.下列各组式子中说法正确的是( )A.3xy与﹣2yz是同类项B.5xy与6yx是同类项C.2x与x2是同类项D.2x2y与2xy2是同类项【考点】同类项.【分析】同类项是所含的字母相同,且相同字母的次数相同.【解答】解:根据同类项所含的字母相同,且相同字母的次数相同,可得:3xy、﹣2yz不是同类项,所含字母不相同;2x、x2不是同类项,所含字母的次数不相同;2x2y与2xy2不是同类项,所含字母的次数不一样.综上可得B正确故选B【点评】本题考查同类项的概念,属于基础题,注意同类项所含的字母相同,且相同字母的次数相同.7.一个两位数,个位数字为a,十位数字比个位数字大1,则这个两位数可表示为( ) A.11a﹣1 B.11a﹣10 C.11a+1 D.11a+10【考点】列代数式.【分析】由于十位数字比个位数字大1,则十位上的数位a+1,又个位数字为a,则两位数即可表示出来.【解答】解:由于个位数字为a,十位数字比个位数字大1,则十位数字为a+1,∴这个两位数可表示为10(a+1)+a=11a+10.故选D.【点评】本题考查了代数式的列法,正确理解题意是解决这类题的关键.注意两位数的表示方法为:十位数×10+个位数.8.不改变代数式a2﹣(2a+b+c)的值,把它括号前的符号变为相反的符号,应为( ) A.a2+(﹣2a+b+c)B.a2+(﹣2a﹣b﹣c)C.a2+(﹣2a)+b+c D.a2﹣(﹣2a﹣b﹣c)【考点】去括号与添括号.【专题】计算题.【分析】括号前的“﹣”号变成“+”号,括号里各项变号即可.【解答】解:原式=a2+(﹣2a﹣b﹣c).故选B.【点评】本题考查添括号的方法:添括号时,若括号前是“+”,添括号后,括号里的各项都不改变符号;若括号前是“﹣”,添括号后,括号里的各项都改变符号.9.设a是实数,则|a|﹣a的值( )A.可以是负数B.不可能是负数C.必是正数 D.可以是正数也可以是负数【考点】绝对值;有理数的减法.【专题】压轴题.【分析】因为a是实数,所以应根据a≥0或a<0两种情况去掉绝对值符号,再进行计算.【解答】解:(1)a≥0时,|a|﹣a=a﹣a=0;(2)a<0时,|a|﹣a=﹣a﹣a=﹣2a>0.故选B.【点评】本题主要考查了绝对值以及有理数的减法的知识,a是实数时,正数、0、负数三种情况都要考虑到,用到了分类讨论的方法.10.一列数:0,1,2,3,6,7,14,15,30,____,_____,____这串数是由小明按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数应该是下面的( )A.31,32,64 B.31,62,63 C.31,32,33 D.31,45,46【考点】规律型:数字的变化类.【专题】规律型.【分析】本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1.由此可解出接下来的3个数.【解答】解:依题意得:接下来的三组数为31,62,63.故选B.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.二、注意审题,细心填空呦!(每小题3分,共30分)11.稀士元素具有独特的性质和广泛的应用,我国稀土资源的总储量约为1050000000吨,用科学记数法表示为1.05×109.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将1 050 000 000用科学记数法表示为1.05×109.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.单项式﹣是5次单项式,系数为﹣.【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式定义得:单项式﹣是5次单项式,系数为﹣.【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.注意π属于数字因数.13.近似数1.60万精确到百位.【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数1.60万精确到百位.故答案为百位.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.14.若﹣7x m+2y与﹣3x3y n是同类项,则m+n=2.【考点】同类项.【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,几个常数项也是同类项.同类项与字母的顺序无关,与系数无关,进而求出即可.【解答】解:∵﹣7x m+2y与﹣3x3y n是同类项,∴m+2=3,n=1,∴m=1,n=1,∴m+n=2.故答案为:2.【点评】本题考查同类项的定义,同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同;是易混点.同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.15.(±8)2=64.【考点】平方根.【专题】计算题.【分析】根据平方根的定义解答即可.【解答】解:∵64的平方根是±=±8,∴(±8)2=64.故答案为±8.【点评】本题考查的是平方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.16.若a与b互为相反数,c、d互为倒数,则﹣cd+值是﹣2.【考点】代数式求值;相反数;倒数.【专题】计算题;推理填空题.【分析】首先根据a与b互为相反数,可得a+b=0,;再根据c、d互为倒数,可得cd=1;然后把a+b=0,,cd=1代入﹣cd+,求出算式的值是多少即可.【解答】解:∵a与b互为相反数,∴a+b=0,;∵c、d互为倒数,∴cd=1,∴﹣cd+=﹣1+(﹣1)=﹣2.故答案为:﹣2.【点评】(1)此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.(2)此题还考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:互为相反数的两个数的和等于0.(3)此题还考查了一个数的倒数的求法,要熟练掌握,解答此题的关键是要明确:互为倒数的两个数的乘积是1.17.三个连续奇数,中间一个为2n﹣1,则这三个连续奇数之和为6n﹣3.【考点】整式的加减;列代数式.【分析】由题意可得另两个奇数分别为(2n﹣3)与(2n+1),可得和(4n﹣2)是中间奇数的2倍.即可得三个连续奇数的和是3(2n﹣1).【解答】解:这三个连续奇数的和为3(2n﹣1)=6n﹣3.故答案为6n﹣3.【点评】本题考查了列代数式,列代数式时,要注意语句中的关键字,解决问题的关键是读懂题意,找到所求的量的等量关系.18.若x2+x=2,则(x2+2x)﹣(x+1)值是1.【考点】代数式求值.【分析】先对所给代数式去括号,合并同类项,然后将已知代入整理后的代数式求值.【解答】解:若x2+x=2,则(x2+2x)﹣(x+1)=x2+2x﹣x﹣1=x2+x﹣1=2﹣1=1.【点评】对于代数式求值的题目,根据所给的已知条件,对所给代数式适当变形是解题的关键,变形的目标是能够利用已知条件,此类题目题型多,解题没有统一的规律可循.19.某影剧院第一排有30个座位,以后的每一排都比前一排多4个座位,则第n排的座位是4n+26.【考点】列代数式.【分析】根据以后的每一排都比前一排多4个座位,则d第n排比第1排多4(n﹣1)个座位.【解答】解:第n排的座位是30+4(n﹣1)=4n+26.【点评】注意:多几排即多几个4.20.规定一种新的运算“☆”,a☆b=a b,例如3☆2=32=9,则﹣☆4=.【考点】有理数的乘方.【专题】新定义;实数.【分析】原式利用已知的新定义化简,计算即可得到结果.【解答】解:根据题中的新定义得:﹣☆4=(﹣)4=,故答案为:【点评】此题考查了有理数的乘方,弄清题中的新定义是解本题的关键.三、开动脑筋,一定要做对呦21.计算:(1)﹣14﹣〔2﹣(﹣3)2〕÷(﹣)3(2)(﹣﹣+)÷.【考点】有理数的混合运算.【分析】(1)先算括号里面的,再算乘方,乘除,最后算加减即可;(2)根据乘法分配律进行计算即可.【解答】解:(1)原式=﹣14﹣(2﹣9)÷(﹣)3=﹣1+7×(﹣8)=﹣1﹣56=﹣57;(2)原式=﹣×36﹣×36+×36=﹣27﹣8+15=﹣20.【点评】本题考查的是有理数的混合运算,熟知有理数混合运算的法则是解答此题的关键.22.化简:(1)2a+2(a+1)﹣3(a﹣1);(2)﹣3(2x2﹣xy)+4(x2+xy﹣6).【考点】整式的混合运算.【专题】计算题.【分析】(1)(2)的步骤基本相同,都是先去括号,然后将同类项合并.【解答】解:(1)2a+2(a+1)﹣3(a﹣1),=2a+2a+2﹣3a+3,=a+5;(2)﹣3(2x2﹣xy)+4(x2+xy﹣6),=﹣6x2+3xy+4x2+4xy﹣24,=﹣2x2+7xy﹣24.【点评】本题考查整式的基本运算规则,细心计算即可.23.解方程:(1);(2).【考点】解一元一次方程.【专题】计算题.【分析】(1)(2)都是带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.【解答】解:(1)去分母,得3(x﹣3)﹣4(5x﹣4)=18,去括号,得3x﹣9﹣20x+16=18,移项、合并同类项,得﹣17x=11,系数化为1,得x=﹣;(2)去分母,得3(x+1)﹣12=2(2x﹣1),去括号,得3x+3﹣12=4x﹣2,移项、合并同类项,得﹣x=7,系数化为1,得x=﹣7.【点评】本题考查了解一元一次方程的方法,去分母,去括号,移项、合并同类项,系数化为1.24.按括号内要求解方程组:(1)(代入法)(2)(加减法)【考点】解二元一次方程组.【专题】计算题;一次方程(组)及应用.【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1),由②得:p=﹣4q+5③,将③代入①得:2(﹣4q+5)﹣3q=13,即﹣11q=3,解得:q=﹣,把q=﹣代入③得:p=.则方程组的解为;(2)方程组整理得:,①×3+②×5得:34x=28,即x=,把x=代入①得:y=.则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.25.若|3x+6|+(3﹣y)2=0,求多项式3y2﹣x2+(2x﹣y)﹣(x2+3y2)的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【专题】计算题;整式.【分析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【解答】解:∵|3x+6|+(3﹣y)2=0,∴3x+6=0,3﹣y=0,解得:x=﹣2,y=3,则原式=3y2﹣x2+2x﹣y﹣x2﹣3y2=﹣2x2+2x﹣y=﹣8﹣4﹣3=﹣15.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.26.某化肥厂把化肥送到甲、乙两个村庄,先后各送了两次.每次的运量和运费如表次序甲村运量(吨)乙村运量(吨)共计运费(元)第1次 6 5 270第2次8 11 490试问两个村庄应该各负担运费多少元?(提醒:一吨化肥运往同一村庄的运费相同.)【考点】二元一次方程组的应用.【分析】设运往甲村庄每吨化肥需要x元,运往乙村庄每吨化肥需要y元,则根据表格中的数据列出方程组并解答.【解答】解:设运往甲村庄每吨化肥需要x元,运往乙村庄每吨化肥需要y元,则,解得,则6x+8x=280(元),5y+11y=480(元),答:甲村庄应该负担运费280元,乙村庄应该负担运费480元.【点评】本题考查了二元一次方程组的应用.当问题较复杂时,有时设与要求的未知量相关的另一些量为未知数,即为间接设元.无论怎样设元,设几个未知数,就要列几个方程.。
九年级数学上册期中考试卷(附带有答案)

九年级数学上册期中考试卷(附带有答案)(满分:120分考试时间:120分钟)一.选择题(每题3分,共10小题)1.下列四个几何体中,主视图与左视图相同的几何体有()A.1个B.2个C.3个D.4个2.已知反比例函数的图象经过点(﹣3,2),那么这个反比例函数的解析式是()A.y=B.y=﹣C.y=D.y=﹣3.某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为2米,则这个坡面的坡度为()A.1:2 B.1:3 C.1:D.:14.下列说法中,正确的个数为()(1)在同圆或等圆中,弦相等则所对的弧相等(2)优弧一定比劣弧长(3)弧相等则所对的圆心角相等(4)在同圆或等圆中,圆心角相等则所对的弦相等.A.1个B.2个C.3个D.4个5.在⊙O中,弦AB等于圆的半径,则它所对应的圆心角的度数为()A.120°B.75°C.60°D.30°6.将二次函数y=﹣3x2的图象平移后,得到二次函数y=﹣3(x﹣1)2的图象,平移的方法可以是()A.向左平移1个单位长度B.向右平移1个单位长度C.向上平移1个单位长度D.向下平移1个单位长度7.在同一平面直角坐标系中,函数y=kx﹣k与y=(k<0)的图象大致是()A. B C.D.8.如图,客轮在海上以30km/h的速度由B向C航行,在B处测得灯塔A的方向角为北偏东80°,测得C处的方向角为南偏东25°,航行1小时后到达C处,在C处测得A的方向角为北偏东20°,则C到A 的距离是()A.15km B.15km C.15(+)km D.5(+3)km9.如图①,在Rt△ABC中,∠ACB=90°,∠A=30°,动点D从点A出发,沿A→C→B以1cm/s的速度匀速运动到点B,过点D作DE⊥AB于点E,图②是点D运动时,△ADE的面积y(cm2)随时间x(s)变化的关系图象,则AB的长为()A.4cm B.6cm C.8cm D.10cm10.如图,矩形ABCD中,E是BC的中点,连接AE,过点E作EF⊥AE交DC于点F,连接AF.设,下列结论:(1)△ABE∽△ECF(2)AE平分∠BAF(3)当k=1时,△ABE∽△ADF(4)tan∠EAF=k.其中结论正确的是()A.(1)(2)(3)(4) B.(1)(3)(4) C.(1)(2) D.(2)(3)二.填空题(共8小题,11--14每题3分,15--18每题4分)11.在△ABC中,(tan A﹣)2+|﹣cos B|=0,则∠C的度数为.12.若y关于x的函数y=(m﹣1)x|m+1|﹣4是二次函数,则m的值是.13.如图是一个圆柱体的三视图,由图中数据计算此圆柱体的侧面积为.(结果保留π)14.如图,平行四边形OABC的边OA在x轴上,顶点C在反比例函数y=﹣(x<0)的图象上,BC与y 轴相交于点D,且D为BC的中点,则平行四边形OABC的面积为.15.如图,由边长为1的小正方形构成的网格中,点A,B,C都在格点上,以AB为直径的圆经过点C,D,则tan∠ADC的值为.16.如图,抛物线y=ax2+bx+c分别交坐标轴于A(﹣2,0),B(6,0),C(0,﹣3),则﹣3<ax2+bx+c≤0的解是.17.飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t﹣t2.在飞机着陆滑行中,滑行最后的150m所用的时间是s.18.如图,A1,A2,A3,A4,…,A n在y轴上,纵坐标分别是1,2,3,4,…,n,分别过A1,A2,A3,A4,…,A n作x轴的平行线,交函数y=﹣的图象于B1B2,B3,B4,…,B n,以A1B1,A2B2,A3B3,A4B4,…,A n B n为边向下作平行四边形,其中C1,D1在x轴上,C2,D2在直线A1B1上,C3,D3在直线A2B2上,C4,D4在直线A3B3上,…,∁n,D n,在直线A n﹣1B n﹣1上,每个平行四边形的锐角都是60°,则A n B n∁n D n的面积是(用n表示)三.解答题(共7小题,共62分)19.计算:⑴﹣2cos30°+6sin245°.⑵(π﹣1)0+4sin45°﹣+|﹣3|.20.如图,已知一次函数y1=kx+b的图象与函数y2=(x>0)的图象交于A(6,﹣),B(,n)两点,与y轴交于点C.将直线AB沿y轴向上平移t个单位长度得到直线DE,DE与y轴交于点F.(1)求y1与y2的解析式(2)观察图象,直接写出y1<y2时x的取值范围(3)连接AD,CD,若△ACD的面积为6,求t的值21.无人机在实际生活中应用广泛.如图所示,小明利用无人机测量大楼的高度,无人机在空中P处,测得楼CD楼顶D处的俯角为45°,测得楼AB楼顶A处的俯角为60°.已知楼AB和楼CD之间的距离BC为100米,楼AB的高度为10米,从楼AB的A处测得楼CD的D处的仰角为30°(点A、B、C、D、P在同一平面内).(1)填空:∠APD=度,∠ADC=度(2)求楼CD的高度(结果保留根号)(3)求此时无人机距离地面BC的高度.22.如图,△ABC中,AB=AC,以AB为直径的⊙O交AC,BC分别于点E,D两点,连接ED,BE.(1)求证:DE=BD.(2)若BC=12,AB=10,求BE的长..23.某药店新进一批桶装消毒液,每桶进价35元,原计划以每桶55元的价格销售,为更好地助力疫情防控,现决定降价销售.已知这种消毒液销售量y(桶)与每桶降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:(1)求y与x之间的函数关系式(2)这次助力疫情防控中,该药店仅获利1760.这种消毒液每桶实际售价多少元?(3)这种消毒液每桶售价多少元时,获利最大,最大利润是多少元?24.如图,抛物线y=ax2+bx+3(a≠0)与x轴交于A,B两点(点B在点A的右侧),与y轴交于点C,OB =OC,抛物线的对称轴为直线x=1.(1)求抛物线的解析式(2)点P为抛物线的对称轴上一点,连接AC,CP,AP,当△ACP的周长最小时,求点P的坐标(3)在(2)的情况下,在y轴上是否存在点Q,使以A,P,Q为顶点的三角形为直角三角形,若存在,直接写出点Q的坐标若不存在,请说明理由.25.【基础巩固】(1)如图1,在四边形ABCD中,对角线BD平分∠ABC,∠ADB=∠DCB,求证:BD2=BA•BC【尝试应用】(2)如图2,四边形ABCD为平行四边形,F在AD边上,AB=AF,点E在BA延长线上,连结EF,BF,CF,若∠EFB=∠DFC,BE=4,BF=5,求AD的长【拓展提高】(3)如图3,在△ABC中,D是BC上一点,连结AD,点E,F分别在AD,AC上,连结BE,CE,EF,若DE=DC,∠BEC=∠AEF,BE=12,EF=5,,求的值.参考答案一.选择题(共10小题)1.D.2.D.3.A.4.B.5.C.6.B.7.D.8.D.9.C.10.C.二.填空题(共8小题)11.75°12.﹣3.13.24π.14.8.15..16.﹣2≤x<0或4<x≤6.17.10.18.三.解答题(共11小题)19.原式=﹣2×+6×()2=﹣+6×=﹣1﹣+3=2.原式=1+4×﹣2+3=1+2﹣2+3=4.20.【解答】解:(1)将点A(6,﹣)代入y2=中∴m=﹣3∴y2=∵B(,n)在y2=中,可得n=﹣6∴B(,﹣6)将点A、B代入y1=kx+b∴解得∴y1=x﹣(2)∵一次函数与反比例函数交点为A(6,﹣),B(,﹣6)∴<x<6时,y1<y2(3)在y1=x﹣中,令x=0,则y=﹣∴C(0,﹣)∵直线AB沿y轴向上平移t个单位长度∴直线DE的解析式为y=x﹣+t∴F点坐标为(0,﹣+t)过点F作GF⊥AB于点G,连接AF直线AB与x轴交点为(,0),与y轴交点C(0,﹣)∴∠OCA=45°∵FC=t∴FG=t∵A(6,﹣),C(0,﹣)∴AC=6∵AB∥DF∴S△ACD=S△ACF∴×6×t=6∴t=2故答案为:2.21.【解答】解:(1)∵∠MP A=60°,∠NPD=45°∴∠APD=180°﹣∠MP A﹣∠NPD=75°.过点A作AE⊥CD于点E.则∠DAE=30°∴∠ADC=180°﹣90°﹣30°=60°.故答案为:75 60.(2)由题意可得AE=BC=100米,EC=AB=10米在Rt△AED中,∠DAE=30°tan30°=解得DE=∴CD=DE+EC=(+10)米.∴楼CD的高度为(+10)米.(3)过点P作PG⊥BC于点G,交AE于点F则∠PF A=∠AED=90°,FG=AB=10米∴∠P AF=∠MP A=60°∵∠ADE=60°∴∠P AF=∠ADE∵∠DAE=∠30°∴∠P AD=30°∵∠APD=75°∴∠ADP=75°∴∠ADP=∠APD则AP=AD∴△APF≌△DAE(AAS)∴PF=AE=100米∴PG=PF+FG=100+10=110(米).∴此时无人机距离地面BC的高度为110米.22.【解答】(1)证明:解法一:连接AD∵AB为⊙O的直径∴AD⊥BC∵AB=AC∴∠CAD=∠BAD∴弧DE=弧BD∴DE=BD(2)解:连接AD∵BC=12∴BD=BC=6∵AB=10∴AD===8∵S△ABC=BC•AD=AC•BE∴BE===.23.【解答】解:(1)设y与x之间的函数关系式为y=kx+b(k≠0)将(1,110),(3,130)代入y=kx+b得:解得:∴y与x之间的函数关系式为y=10x+100(0<x<20).(2)依题意得:(55﹣x﹣35)(10x+100)=1760整理得:x2﹣10x﹣24=0解得:x1=﹣2(不符合题意,舍去),x2=12∴55﹣x=55﹣12=43.答:这种消毒液每桶实际售价为43元.(3)售价为50元时,最大利润为2250元24.【解答】解:(1)令x=0,则y=3∴C(0,3)∴OC=3∵OB=OC∴B(3,0)∵抛物线的对称轴为直线x=1∴﹣=1∴b=﹣2a∴y=ax2﹣2ax+3将B(3,0)代入y=ax2﹣2ax+3∴9a﹣6a+3=0解得a=﹣1∴b=2∴抛物线的解析式为:y=﹣x2+2x+3.(2)∵A、B关于对称轴x=1对称∴AP=BP∴AP+CP=BP+CP≥BC∴当B、C、P三点共线时,AP+CP的值最小,此时△ACP的周长最小连接BC交对称轴x=1于点P设直线BC的解析式为y=kx+b∴解得∴y=﹣x+3∴P(1,2)(3)存在点Q,使得以A,P,Q为顶点的三角形为直角三角形,理由如下:在y=﹣x2+2x+3中,令y=0,则﹣x2+2x+3=0解得x=﹣1或x=3∴A(﹣1,0)设Q(0,t)∴AP2=8,AQ2=1+t2,PQ2=1+(t﹣2)2当∠P AQ=90°时,1+(t﹣2)2=8+1+t2解得t=﹣1∴Q(0,﹣1)当∠APQ=90°时,1+t2=8+1+(t﹣2)2解得t=3∴Q(0,3)当∠AQP=90°时,8=1+t2+1+(t﹣2)2解得t=1+或t=1﹣∴Q(0,1+)或(0,1﹣)综上所述:Q点坐标为(0,﹣1)或(0,3)或(0,1+)或(0,1﹣).25.【解答】(1)证明:∵BD平分∠ABC∴∠ABD=∠DBC∵∠ADB=∠DCB∴△ABD∽△DBC∴=∴BD2=BA•BC(2)∵四边形ABCD为平行四边形∴AD∥BC,AD=BC∴∠AFB=∠FBC,∠DFC=∠FCB∵AB=AF∴∠AFB=∠ABF∴∠ABF=∠FBC∵∠DFC=∠FCB,∠EFB=∠DFC∴∠EFB=∠FCB∴△EBF∽△FBC∴=,即=解得:BC=∴AD=(3)过点C作CM∥AD交EF的延长线于点M∵∠AEF+∠CEF+∠DEC=180°,∠BEC+∠CBE+∠BCE=180°∴∠CEF=180°﹣∠AEF﹣∠DEC,∠CBE=180°﹣∠BEC﹣∠BCE ∵DE=DC∴∠DEC=∠DCE∴∠CEF=∠CBE∵CM∥AD∴∠DEC=∠ECM∵∠DEC=∠DCE∴∠ECM=∠DCE∴△ECM∽△BCE∴==∵BE=12∴EM=8∵EF=5∴FM=8﹣5=3∵CM∥AD∴==.。
2017-2018年安徽省马鞍山市当涂县乌溪中学八年级上学期数学期中试卷与答案

赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC. (1)如图,当∠APB=90°时,若AC=5,PC=62,求BC的长;(2)当∠APB=90°时,若AB=45APBC的面积是36,求△ACB的周长.P 2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。
DBC2017-2018学年安徽省马鞍山市当涂县乌溪中学八年级(上)期中数学试卷一、选择题(每题3分,共30分)1.(3分)在平面直角坐标系中,点P(3,﹣2)在()A.第一象限B.第二象限C.第三象限D.第四象限2.(3分)点P(﹣3,4)到y轴的距离是()A.3 B.4 C.﹣3 D.53.(3分)一次函数y=2x﹣3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限4.(3分)下列函数:(1)y=2x﹣1,(2),(3)y=﹣3x,(4)y=x2+1中,是一次函数的有()A.3个 B.2个 C.1个 D.0个5.(3分)下列说法错误的是()A.三角形的中线、高、角平分线都是线段B.任意三角形内角和都是180°C.三角形按角可分为锐角三角形、直角三角形和等腰三角形D.直角三角形两锐角互余6.(3分)直线y=﹣x+1上有两点A(x1,y1),B(x2,y2),且x1<x2,则y1与y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.无法确定7.(3分)已知一次函数y=kx+b,若当x增加3时,y减小2,则k的值是()A.B.C.D.8.(3分)如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P点经过的路程为x,以点A、P、D为顶点的三角形的面积是y,则下列图象能大致反映y与x的函数关系的是()A. B.C.D.9.(3分)直线y=2x﹣4与两坐标轴所围成的三角形面积等于()A.2 B.4 C.6 D.810.(3分)如图,在△ABC中,已知点D、E、F分别是边BC、AD、CE上的中点,且S=4cm2,则S△BEF的值为()△ABCA.2 cm2B.1 cm2C.cm2D.cm2二、填空题(每题3分,共12分)11.(3分)写出“对顶角相等”的逆命题.12.(3分)函数的自变量x的取值范围是.13.(3分)如图,等腰△ABC中,AB=AC,BD为腰AC的中线,将△ABC分成长12cm和9cm的两段,则等腰△ABC的腰长为.14.(3分)若直线y=2x+b与两坐标轴围成的三角形面积为9,则b=.三、解答题(共58分)15.(6分)已知等腰三角形周长为24cm,若底边长为y(cm),一腰长为x(cm),(1)写出y与x的函数关系式(2)求自变量x的取值范围(3)画出这个函数的图象.16.(6分)已知一次函数的图象过(3,5)和(﹣4,﹣9)两点.(1)求此一次函数的解析式;(2)试判断点(﹣1,﹣3)是否在此一次函数的图象上.17.(4分)已知:△ABC中,AB=5,BC=2a+1,AC=12,求a的范围.18.(8分)已知,如图,△ABC中,∠ABC=66°,∠ACB=54°,BE、CF是两边AC、AB上的高,它们交于点H.求∠ABE和∠BHC的度数.19.(8分)已知一次函数y=(2m+1)x+m﹣2,(1)若函数的图象经过原点,求m的值;(2)若函数的图象在y轴上的截距为﹣3,求m的值;(3)若函数的图象平行于直线y=x+1,求m的值;(4)若该函数的图象不过第二象限,求m的取值范围.20.(10分)如图,在△ABC中,内角平分线BP和外角平分线CP相交于点P,根据下列条件求∠P的度数.(1)若∠ABC=50°,∠ACB=80°,则∠P=,若∠ABC+∠ACB=110°,则∠P=;(2)若∠BAC=90°,则∠P=;(3)从以上的计算中,你能发现∠P与∠BAC的关系是;(4)证明第(3)题中你所猜想的结论.21.(8分)小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍.小颖在小亮出发后50min 才乘上缆车,缆车的平均速度为180m/min.设小亮出发x min后行走的路程为y m,图中的折线表示小亮在整个行走过程中y与x的函数关系.(1)小亮行走的总路程是m,他途中休息了min;(2)①当50≤x≤80时,求y与x的函数关系式;②当小颖到达缆车终点时,小亮离缆车终点的路程是多少?22.(8分)一手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A型手机x部,B型手机y部.三款手机的进价和预售价如表:(1)用含x,y的式子表示购进C型手机的部数;(2)求出y与x之间的函数关系式;(3)假设所购进手机全部售出,综合考虑各种因素,该手机经销商在购销这批手机过程中需另外支出各种费用2500元①求出预估利润P(元)与x(部)的函数关系式;(注:预估利润P=预售总额﹣购机款﹣各种费用)②求出预估利润的最大值,并写出此时购进三款手机各多少部.2017-2018学年安徽省马鞍山市当涂县乌溪中学八年级(上)期中数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)在平面直角坐标系中,点P(3,﹣2)在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵3>0,﹣2<0,∴点P(3,﹣2)在第四象限.故选:D.2.(3分)点P(﹣3,4)到y轴的距离是()A.3 B.4 C.﹣3 D.5【解答】解:点P(﹣3,4)到y轴的距离是|﹣3|=3.故选:A.3.(3分)一次函数y=2x﹣3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵k=2>0,∴函数经过第一、三象限,∵b=﹣3<0,∴函数与y轴负半轴相交,∴图象不经过第二象限.故选:B.4.(3分)下列函数:(1)y=2x﹣1,(2),(3)y=﹣3x,(4)y=x2+1中,是一次函数的有()A.3个 B.2个 C.1个 D.0个【解答】解:(1)y=2x﹣1,符合一次函数的定义,是一次函数;(2),自变量次数不为1,故不是一次函数;(3)y=﹣3x,符合一次函数的定义,是一次函数;(4)y=x2+1,自变量次数不为1,故不是一次函数.故选:B.5.(3分)下列说法错误的是()A.三角形的中线、高、角平分线都是线段B.任意三角形内角和都是180°C.三角形按角可分为锐角三角形、直角三角形和等腰三角形D.直角三角形两锐角互余【解答】解:A、三角形的中线高角平分线都是线段,故本选项正确;B、根据三角形的内角和定理,三角形的内角和等于180°,故本选项正确;C、因为三角形按角分为直角三角形和斜三角形(锐角三角形、钝角三角形),故本选项错误;D、直角三角形两锐角互余,故本选项正确;故选:C.6.(3分)直线y=﹣x+1上有两点A(x1,y1),B(x2,y2),且x1<x2,则y1与y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.无法确定【解答】解:∵直线y=﹣x+1的系数k=﹣1<0,∴y随x的增大而减小,∴当x1<x2时,y1>y2.故选:A.7.(3分)已知一次函数y=kx+b,若当x增加3时,y减小2,则k的值是()A.B.C.D.【解答】解:由题意得,解得:k=﹣,故选:A.8.(3分)如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P点经过的路程为x,以点A、P、D为顶点的三角形的面积是y,则下列图象能大致反映y与x的函数关系的是()A. B.C.D.【解答】解:当点P由点A向点D运动,即0≤x≤4时,y的值为0;当点P在DC上运动,即4<x≤8时,y随着x的增大而增大;当点P在CB上运动,即8<x≤12时,y不变;当点P在BA上运动,即12<x≤16时,y随x的增大而减小.故选:B.9.(3分)直线y=2x﹣4与两坐标轴所围成的三角形面积等于()A.2 B.4 C.6 D.8【解答】解:当x=0时,y=﹣4,当y=0时,x=2,∴所求三角形的面积=×2×|﹣4|=4.故选:B.10.(3分)如图,在△ABC中,已知点D、E、F分别是边BC、AD、CE上的中点,且S=4cm2,则S△BEF的值为()△ABCA.2 cm2B.1 cm2C.cm2D.cm2【解答】解:∵由于D、E、F分别为BC、AD、CE的中点,∴△ABE、△DBE、△DCE、△AEC的面积相等,S△BEC=S△ABC=2(cm2).S△BEF=S△BEC=×2=1(cm2).故选:B.二、填空题(每题3分,共12分)11.(3分)写出“对顶角相等”的逆命题相等的角是对顶角.【解答】解:∵原命题的条件是:如果两个角是对顶角,结论是:那么这两个角相等;∴其逆命题应该为:如两个角相等那么这两个角是对顶角,简化后即为:相等的角是对顶角.12.(3分)函数的自变量x的取值范围是x≥﹣2且x≠1.【解答】解:根据题意得,x﹣1≠0且x+2≥0,解得x≥﹣2且x≠1.故答案为:x≥﹣2且x≠1.13.(3分)如图,等腰△ABC中,AB=AC,BD为腰AC的中线,将△ABC分成长12cm和9cm的两段,则等腰△ABC的腰长为8或6.【解答】解:①当AB+AD=12,BC+CD=9时∵AD=CD∴AB=8,BC=5②当AB+AD=9,BC+CD=12时∵AD=CD∴AB=6,BC=9故答案为:8或6.14.(3分)若直线y=2x+b与两坐标轴围成的三角形面积为9,则b=6或﹣6..【解答】解:把x=0代入y=2x+b得:y=b,把y=0代入y=2x+b得:x=﹣,∵△AOB的面积是9,∴OA×OB=9,∴×|b|×|﹣|=9,解得:b=±6.故答案为:6或﹣6.三、解答题(共58分)15.(6分)已知等腰三角形周长为24cm,若底边长为y(cm),一腰长为x(cm),(1)写出y与x的函数关系式(2)求自变量x的取值范围(3)画出这个函数的图象.【解答】解:(1)∵等腰三角形的周长为24cm,若底边长为ycm,一腰长为xcm.∴2x+y=24,∴y=24﹣2x,(2)∵①x﹣x<y<2x,∴x﹣x<24﹣2x<2x,∴x>6,∵②x﹣y<x<x+y,∴x<12,∴自变量x的取值范围为:6<x<12,(3)∵函数关系式为y=24﹣2x(6<x<12),图象如下:16.(6分)已知一次函数的图象过(3,5)和(﹣4,﹣9)两点.(1)求此一次函数的解析式;(2)试判断点(﹣1,﹣3)是否在此一次函数的图象上.【解答】解:(1)设一次函数的解析式为y=kx+b(k≠0),再把(3,5)和(﹣4,﹣9)两点代入得,,解得,故此一次函数的解析式为:y=2x﹣1;(2)∵由(1)可知,一次函数的解析式为y=2x﹣1,∴当x=﹣1时,y=﹣2﹣1=﹣3,∴点(﹣1,﹣3)是在此一次函数的图象上.17.(4分)已知:△ABC中,AB=5,BC=2a+1,AC=12,求a的范围.【解答】解:由三角形的三边关系可知:12﹣5<2a+1<12+5解得:3<a<818.(8分)已知,如图,△ABC中,∠ABC=66°,∠ACB=54°,BE、CF是两边AC、AB上的高,它们交于点H.求∠ABE和∠BHC的度数.【解答】解:∵△ABC中,∠ABC=66°,∠ACB=54°,∴∠A=180°﹣∠ABC﹣∠ACB=180°﹣66°﹣54°=60°,∵BE⊥AC,∴∠AEB=90°,∴∠ABE=90°﹣∠A=90°﹣60°=30°;同理,∵CF⊥AB,∴∠BFC=90°,∴∠BHF=90°﹣∠ABE=90°﹣30°=60°,∴∠BHC=180°﹣∠BHF=180°﹣60°=120°.19.(8分)已知一次函数y=(2m+1)x+m﹣2,(1)若函数的图象经过原点,求m的值;(2)若函数的图象在y轴上的截距为﹣3,求m的值;(3)若函数的图象平行于直线y=x+1,求m的值;(4)若该函数的图象不过第二象限,求m的取值范围.【解答】解:(1)∵函数的图象经过原点,∴m﹣2=0,解得m=2;(2)∵函数的图象在y轴上的截距为﹣3,∴m﹣2=﹣3,解得m=﹣1;(3)∵函数的图象平行于直线y=x+1,∴2m+1=1,解得m=0;(4)∵函数的图象不过第二象限,∴,由①得,m>﹣,由②得,m<2,所以,﹣<m<2.20.(10分)如图,在△ABC中,内角平分线BP和外角平分线CP相交于点P,根据下列条件求∠P的度数.(1)若∠ABC=50°,∠ACB=80°,则∠P=25°,若∠ABC+∠ACB=110°,则∠P= 35°;(2)若∠BAC=90°,则∠P=45°;(3)从以上的计算中,你能发现∠P与∠BAC的关系是∠P=∠A;(4)证明第(3)题中你所猜想的结论.【解答】(1)解:∵∠ACB=80°,∴∠ACD=180°﹣80°=100°,∵BP、CP分别为∠ABC、∠ACD的平分线,∴∠PBC=∠ABC=×50°=25°,∠PCD=∠ACD=×100°=50°,在△PCD中,∠PBC+∠P=∠PCD,即25°+∠P=50°,解得∠P=25°;∵∠ABC+∠ACB=110°,∴∠A=180°﹣110°=70°,∵BP、CP分别为∠ABC、∠ACD的平分线,∴∠PBC=∠ABC,∠PCD=∠ACD,根据三角形的外角性质,∠ACD=∠A+∠ABC,∠PCD=∠PBC+∠P,∴∠A+∠ABC=2(∠PBC+∠P)=2∠PBC+2∠P,∴∠A=2∠P,∠P=∠A=×70°=35°;(2)解:∵BP、CP分别为∠ABC、∠ACD的平分线,∴∠PBC=∠ABC,∠PCD=∠ACD,根据三角形的外角性质,∠ACD=∠A+∠ABC,∠PCD=∠PBC+∠P,∴∠BAC+∠ABC=2(∠PBC+∠P)=2∠PBC+2∠P,∴∠BAC=2∠P,∠P=∠BAC,∵∠BAC=90°,∴∠P=45°;(3)由计算可知,∠P=∠A;(4)证明:∵BP、CP分别为∠ABC、∠ACD的平分线,∴∠PBC=∠ABC,∠PCD=∠ACD,根据三角形的外角性质,∠ACD=∠A+∠ABC,∠PCD=∠PBC+∠P,∴∠BAC+∠ABC=2(∠PBC+∠P)=2∠PBC+2∠P,∴∠BAC=2∠P,∠P=∠BAC.故答案为:(1)25°,35°;(2)45°;(3)∠P=∠A.21.(8分)小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍.小颖在小亮出发后50min 才乘上缆车,缆车的平均速度为180m/min.设小亮出发x min后行走的路程为y m,图中的折线表示小亮在整个行走过程中y与x的函数关系.(1)小亮行走的总路程是3600m,他途中休息了20min;(2)①当50≤x≤80时,求y与x的函数关系式;②当小颖到达缆车终点时,小亮离缆车终点的路程是多少?【解答】解:(1)3600,20;(2)①当50≤x≤80时,设y与x的函数关系式为y=kx+b,根据题意,当x=50时,y=1950;当x=80时,y=3600∴解得:∴函数关系式为:y=55x﹣800.②缆车到山顶的线路长为3600÷2=1800米,缆车到达终点所需时间为1800÷180=10分钟小颖到达缆车终点时,小亮行走的时间为10+50=60分钟,把x=60代入y=55x﹣800,得y=55×60﹣800=2500.∴当小颖到达缆车终点时,小亮离缆车终点的路程是3600﹣2500=1100米.22.(8分)一手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A型手机x部,B型手机y部.三款手机的进价和预售价如表:(1)用含x,y的式子表示购进C型手机的部数;(2)求出y与x之间的函数关系式;(3)假设所购进手机全部售出,综合考虑各种因素,该手机经销商在购销这批手机过程中需另外支出各种费用2500元①求出预估利润P(元)与x(部)的函数关系式;(注:预估利润P=预售总额﹣购机款﹣各种费用)②求出预估利润的最大值,并写出此时购进三款手机各多少部.【解答】解:(1)设购进C型手机的部数为z,则x+y+z=60.即z=60﹣x﹣y.(2)由题意得,61000﹣900x﹣1200y=1100(60﹣x﹣y)即y=2x﹣50(x≥8,y≥8).(3)由题意得,P=1200x+1600y+1300z﹣900x﹣1200y﹣1100z﹣2500=300x+400y+200z﹣2500=300x+400(2x﹣50)+200(60﹣x﹣2x+50)﹣2500①P=500x﹣500.②∵x≥8,y≥8,z≥8∴29≤x≤34∴当x=34时,P最大.则A型手机34部.B型手机18部.C型手机8部.最大利润为17500元.。
九年级(上)期中数学试卷附试卷答案

九年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.如图所示的几何体是由4个相同的小正方体组成.其主视图为()A.B.C.D.2.在平面直角坐标系中,反比例函数y=﹣的图象分布在()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限3.已知两条直线被三条平行线所截,截得线段的长度如图所示,则x的值为()A.3 B.4 C.5 D.64.用配方法解一元二次方程x2﹣4x=5时,此方程可变形为()A.(x+2)2=1 B.(x﹣2)2=1 C.(x+2)2=9 D.(x﹣2)2=95.如图所示,在⊙O中,OB⊥OC于点O,则∠BAC的度数为()A.30°B.45°C.60°D.90°6.为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获20条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘.再从鱼塘中打捞100条鱼,如果在这100条鱼中有5条鱼是有记号的,则估计该鱼塘中的鱼数约为()A.300条B.380条C.400条D.420条7.二次函数y=(x+1)(x﹣3)的图象的对称轴是()A.直线x=1 B.直线x=2 C.直线x=3 D.直线x=﹣18.如果△ABC中,sinA=cosB=,则下列最确切的结论是()A.△ABC是直角三角形B.△ABC是等腰三角形C.△ABC是等腰直角三角形D.△ABC是锐角三角形9.如图,先将一张长方形的纸沿虚线对折,再对折,然后按图中虚线剪下,将剪下的纸展开,一定可以得到一个()A.菱形B.矩形C.正方形D.梯形10.下列四个函数中,在各自的自变量的取值范围内,函数值y随x值的增大而增大的函数是()A.y=﹣x B.y=3﹣2x C.y=(x>0)D.y=x2(x>0)二、填空题(每小题4分,共16分)11.方程x2=2x的根为.12.如图,某斜坡的坡度为i=1:,则该斜坡的坡角的大小是度.13.二次函数y=2(x+3)2的图象向平移个单位长度就可以得到二次函数y=2x2的图象.14.如图,在△ABC中,AB=5,D、E分别是边AC和AB上的点,且∠ADE=∠B,DE=2,那么AD•BC=.三、解答题(本大题共6个小题,共54分)15.(1)计算:|﹣2|﹣2sin30°+(﹣)2+(tan45°)﹣1(2)解方程:2x2﹣5x﹣3=0.16.已知关于x的一元二次方程x2+2(k﹣1)x+1=0有两个相等的实数根,求k 的值.17.如图,甲、乙两楼的距离AC=30cm,甲楼高AB=40m,自甲楼楼顶的B处看乙楼楼顶的D处,仰角为28°,求乙楼的高CD的长.(结果精确到0.1m,参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)18.如图所示,小明和小亮用转盘做“配紫色”游戏(红色和蓝色在一起能配成紫色)小明转动的A盘被等分成4个扇形,小亮转动的B盘被等分成3个扇形,两人分别转动转盘一次.(1)请用列表或画树状图的方法求两人转动转盘得到的两种颜色能配成紫色的概率;(2)两人转动转盘得到的两种颜色若能配成紫色则小明获胜,否则小亮获胜,这个游戏对双方公平吗?说说你的理由.19.如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=的图象相交于A(﹣1,2),B(2,m)两点,连接OA,OB.(1)分别求这两个函数的表达式;(2)直接写出使得一次函数y=kx+b的值大于反比例函数y=的值的x的取值范围,并求出△OAB的面积.20.如图,在⊙O中,直径AB=4,点C在⊙O上,且∠AOC=60°,连接BC,点P 在BC上(点P不与点B,C重合),连接OP并延长交⊙O于点M,过P作PQ⊥OM交于点Q.(1)求BC的长;(2)当PQ∥AB时,求PQ的长;(3)点P在BC上移动,当PQ的长取最大值时,试判断四边形OBMC的形状,并说明理由.四、填空题(每小题4分,共20分)21.已知方程x2﹣2x﹣1=0的两根分别为m,n,则代数式4m+2(n﹣m)﹣1的值为.22.如图是二次函数y=ax2+bx+c的图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①c>0;②b2>4ac;③b=﹣2a;④a+b+c=0,其中正确结论的番号是.23.现从四个数1,2,﹣1,﹣3中任意选出两个不同的数,分别作为函数y=ax2+bx 中a,b的值,那么所得抛物线中,满足开口向下且对称轴在y轴左侧的抛物线的概率是.24.如图,△ABC内接于⊙O,AH⊥BC于点H,若AC=20,AH=16,⊙O的半径为15,则AB=.25.如图,在△ABC中,AB>AC,∠B=45°,AC=5,BC=4.①AB的长为;②若E是AB边上一点,将△BEC沿EC所在直线翻折得到△DEC,DC交AB于F,当DE∥AC时,tan∠BCD的值为.五、解答题(本大题共3个小题,共30分)26.成都市某学校计划建一个长方形种植园,如图所示,种植园的一边靠墙,另三边用周长为30m的篱笆围成,已知墙长为18m,设这个种植园垂直于墙的一边长为x(m),种植园面积为y(m2).(1)求y与x之间的函数关系式;(2)根据实际需要,要求这个种植园的面积不小于100m2,求x的取值范围,并求这个种植园的面积的最大值.27.如图,在△ABC中,∠C=90°,AC=BC=2,点D,E分别在边BC,AB上,连接AD,ED,且∠BDE=∠ADC,过E作EF⊥AD交边AC于点F,连接DF.(1)求证:∠AEF=∠BED;(2)过A作AG∥ED交BC的延长线于点G,设CD=x,CF=y,求y与x之间的函数关系式;(3)当△DEF是以DE为腰的等腰三角形时,求CD的长.28.如图,直线y=2x﹣10分别与x轴,y轴交于点A,B,点C为OB的中点,抛物线y=﹣x2+bx+c经过A,C两点.(1)求抛物线的函数表达式;(2)点D是直线AB上方的抛物线上的一点,且△ABD的面积为.①求点D的坐标;②点P为抛物线上一点,若△APD是以PD为直角边的直角三角形,求点P到抛物线的对称轴的距离.参考答案与试题解析一、选择题(每小题3分,共30分)1.如图所示的几何体是由4个相同的小正方体组成.其主视图为()A.B.C.D.【考点】简单组合体的三视图.【分析】根据主视图定义,得到从几何体正面看得到的平面图形即可.【解答】解:从正面看得到2列正方形的个数依次为2,1,故选:D.2.在平面直角坐标系中,反比例函数y=﹣的图象分布在()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限【考点】反比例函数的性质.【分析】直接根据反比例函数的性质即可得出结论.【解答】解:∵反比例函数y=﹣中,k=﹣3<0,∴此函数图象的两个分支分别位于第二四象限.故选C.3.已知两条直线被三条平行线所截,截得线段的长度如图所示,则x的值为()A.3 B.4 C.5 D.6【考点】平行线分线段成比例.【分析】由平行线分线段成比例定理得出比例式,即可得出结果.【解答】解:∵两条直线被三条平行线所截,∴,解得:x=4,故选:B.4.用配方法解一元二次方程x2﹣4x=5时,此方程可变形为()A.(x+2)2=1 B.(x﹣2)2=1 C.(x+2)2=9 D.(x﹣2)2=9【考点】解一元二次方程﹣配方法.【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.【解答】解:∵x2﹣4x=5,∴x2﹣4x+4=5+4,∴(x﹣2)2=9.故选D.5.如图所示,在⊙O中,OB⊥OC于点O,则∠BAC的度数为()A.30°B.45°C.60°D.90°【考点】圆周角定理.【分析】直接根据圆周角定理即可得出结论.【解答】解:∵ON⊥OC,∴∠BOC=90°,∴∠BAC=∠BOC=×90°=45°.故选B.6.为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获20条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘.再从鱼塘中打捞100条鱼,如果在这100条鱼中有5条鱼是有记号的,则估计该鱼塘中的鱼数约为()A.300条B.380条C.400条D.420条【考点】用样本估计总体.【分析】首先求出有记号的5条鱼在100条鱼中所占的比例,然后根据用样本中有记号的鱼所占的比例等于鱼塘中有记号的鱼所占的比例,即可求得鱼的总条数.【解答】解:∵×100%=5%,∴20÷5%=400(条).故选C7.二次函数y=(x+1)(x﹣3)的图象的对称轴是()A.直线x=1 B.直线x=2 C.直线x=3 D.直线x=﹣1【考点】二次函数的性质.【分析】先根据二次函数的解析式求出函数图象与x轴的交点,再根据两交点关于对称轴对称即可得出结论.【解答】解:∵二次函数的解析式为:y=(x+1)(x﹣3),∴此抛物线与x轴的交点为(﹣1,0),(3,0),∴抛物线的对称轴为直线x==1.故选A.8.如果△ABC中,sinA=cosB=,则下列最确切的结论是()A.△ABC是直角三角形B.△ABC是等腰三角形C.△ABC是等腰直角三角形D.△ABC是锐角三角形【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值,直接得出∠A,∠B的角度从而得出答案.【解答】解:∵sinA=cosB=,∴∠A=∠B=45°,∴△ABC是等腰直角三角形.故选C.9.如图,先将一张长方形的纸沿虚线对折,再对折,然后按图中虚线剪下,将剪下的纸展开,一定可以得到一个()A.菱形B.矩形C.正方形D.梯形【考点】剪纸问题;菱形的判定.【分析】根据题意知,对折实际上就是对称,对折两次的话,剪下应有4条边,并且这4条边还相等,从而可以进行从题后的答案中选择.【解答】解:由题意知,对折实际上就是对称,对折2次的话,剪下应有4条边,并且这4条边还相等,只有菱形满足这一条件.故选:A.10.下列四个函数中,在各自的自变量的取值范围内,函数值y随x值的增大而增大的函数是()A.y=﹣x B.y=3﹣2x C.y=(x>0)D.y=x2(x>0)【考点】反比例函数的性质;一次函数的性质;正比例函数的性质;二次函数的性质.【分析】画出函数的图象即可判断.【解答】解:函数y=x2(x>0)的图象如图所示,图象从左到右是上升的,y随x值的增大而增大,故选D.二、填空题(每小题4分,共16分)11.方程x2=2x的根为x1=0,x2=2.【考点】解一元二次方程﹣因式分解法.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x2=2x,x2﹣2x=0,x(x﹣2)=0,x=0,或x﹣2=0,x1=0,x2=2,故答案为:x1=0,x2=2.12.如图,某斜坡的坡度为i=1:,则该斜坡的坡角的大小是30度.【考点】解直角三角形的应用﹣坡度坡角问题.【分析】设坡角为α,根据坡度的定义求出坡角的正切值,根据特殊角的三角函数值解答即可.【解答】解:设坡角为α,∵斜坡的坡度为i=1:,∴tanα==,∴α=30°,故答案为:30.13.二次函数y=2(x+3)2的图象向右平移3个单位长度就可以得到二次函数y=2x2的图象.【考点】二次函数图象与几何变换.【分析】根据“左加右减,上加下减”平移规律即可解决.【解答】解:根据二次函数图象的平移规律“左加右减,上加下减”,可知:二次函数y=2(x+3)2的图象向右平移3个单位长度就可以得到二次函数y=2x2的图象.故答案为:右,3.14.如图,在△ABC中,AB=5,D、E分别是边AC和AB上的点,且∠ADE=∠B,DE=2,那么AD•B C=10.【考点】相似三角形的判定与性质.【分析】由条件可证明△ADE∽△ABC,可得=,即得到AD•BC=DE•AB,代入可求得答案.【解答】解:∵∠ADE=∠B,∠EAD=∠CAB,∴△ADE∽△ABC,∴=,∴AD•BC=DE•AB,且DE=2,AB=5,∴AD•BC=10,故答案为:10.三、解答题(本大题共6个小题,共54分)15.(1)计算:|﹣2|﹣2sin30°+(﹣)2+(tan45°)﹣1(2)解方程:2x2﹣5x﹣3=0.【考点】解一元二次方程﹣因式分解法;实数的运算;负整数指数幂;特殊角的三角函数值.【分析】(1)根据特殊角的三角函数值得到原式=2﹣2×+3+1﹣1,然后根据零指数幂和负整数指数幂的意义计算;(2)利用因式分解法求解.【解答】解:(1)原式=2﹣2×+3+1﹣1=2﹣2+3+1=4;(2)(2x+1)(x﹣3)=0,2x+1=0或x﹣3=0,所以x1=﹣,x2=316.已知关于x的一元二次方程x2+2(k﹣1)x+1=0有两个相等的实数根,求k 的值.【考点】根的判别式.【分析】由方程的系数结合根的判别式即可得出关于k的一元二次方程,解之即可得出k值.【解答】解:∵关于x的一元二次方程x2+2(k﹣1)x+1=0有两个相等的实数根,∴△=[2(k﹣1)]2﹣4=4k2﹣8k=0,解得:k1=0,k2=2.答:k的值为0或2.17.如图,甲、乙两楼的距离AC=30cm,甲楼高AB=40m,自甲楼楼顶的B处看乙楼楼顶的D处,仰角为28°,求乙楼的高CD的长.(结果精确到0.1m,参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】根据题意可以得到CD的长就是甲楼的高加上BE•tan28°的和,从而可以解答本题.【解答】解:作BE⊥CD,如右图所示,∴∠BED=90°,由题意可得,AC=BE,∴BE=30m,在Rt△BDE中,∠DBE=28°,∴,∴DE=30×tan28°,∵AB=40,AB=CE,∴CD=DE+CE=30×tan28°+40≈30×0.53+40=55.9m,即乙楼的高CD的长是55.9m.18.如图所示,小明和小亮用转盘做“配紫色”游戏(红色和蓝色在一起能配成紫色)小明转动的A盘被等分成4个扇形,小亮转动的B盘被等分成3个扇形,两人分别转动转盘一次.(1)请用列表或画树状图的方法求两人转动转盘得到的两种颜色能配成紫色的概率;(2)两人转动转盘得到的两种颜色若能配成紫色则小明获胜,否则小亮获胜,这个游戏对双方公平吗?说说你的理由.【考点】游戏公平性;列表法与树状图法.【分析】(1)根据题意,用列表法将所有可能出现的结果,根据概率公式即可得答案;(2)由(1)的表格,分析可能得到紫色的概率,继而可得小亮获胜,得到结论不公平.【解答】解:(1)用列表法将所有可能出现的结果表示如下:所有可能出现的结果共有12种.红蓝黄蓝(红,蓝)(蓝,蓝)(黄,蓝)红(红,红)(蓝,红)(黄,红)黄(红,黄)(蓝,黄)(黄,黄)红(红,红)(蓝,红)(黄,红)则两人转动转盘得到的两种颜色能配成紫色的概率为=;(2)不公平.上面等可能出现的12种结果中,有3种情况可能得到紫色,故配成紫色的概率是,即小明获胜的概率是;小亮获胜的概率为1﹣=,而>,即小亮获胜的概率大,∴这个“配色”游戏对双方是不公平的.19.如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=的图象相交于A(﹣1,2),B(2,m)两点,连接OA,OB.(1)分别求这两个函数的表达式;(2)直接写出使得一次函数y=kx+b的值大于反比例函数y=的值的x的取值范围,并求出△OAB的面积.【考点】反比例函数与一次函数的交点问题.【分析】(1)先把A(﹣1,2)代入反比例函数y=求出n的值即可得出其函数解析式,再把B(2,m)代入反比例函数的解析式即可得出m的值,把AB两点的坐标代入一次函数y=kx+b,求出k、b的值即可得出其解析式;(2)直接根据函数图象可得出x的取值范围,求出一次函数与x轴的交点坐标,再根据三角形的面积公式即可得出结论.【解答】解:(1)∵A(﹣1,2)在反比例函数y=的图象上,∴n=2×(﹣1)=﹣2,∴其函数解析式为y=﹣;∵B(2,m)在反比例函数的图象上,∴m=﹣=﹣1,∴B(2,﹣1).∵A(﹣1,2),B(2,﹣1)两点在一次函数y=kx+b的图象上,∴,解得,∴一次函数的解析式为:y=﹣x +1;(2)∵A (﹣1,2),B (2,﹣1),∴一次函数y=kx +b 的值大于反比例函数y=的值时,0<x <2或x <﹣1. ∵一次函数的解析式为:y=﹣x +1, ∴D (1,0), ∴OD=1,∴S △OAB =S △OAD +S △OBD =×1×2+×1×1=1+=.20.如图,在⊙O 中,直径AB=4,点C 在⊙O 上,且∠AOC=60°,连接BC ,点P 在BC 上(点P 不与点B ,C 重合),连接OP 并延长交⊙O 于点M ,过P 作PQ ⊥OM 交于点Q .(1)求BC 的长;(2)当PQ ∥AB 时,求PQ 的长;(3)点P 在BC 上移动,当PQ 的长取最大值时,试判断四边形OBMC 的形状,并说明理由.【考点】圆的综合题.【分析】(1)在Rt△ABC中,根据BC=AB•sin60°计算即可.(2)在Rt△POB中,求出OP,再根据勾股定理即可计算.(3)因为PQ=,OQ是定值,所以OP最小时,PQ最长,所以当OM ⊥BC时,OP最短,此时PQ最长,由此即可解决问题.【解答】解:(1)如图1中,连接AC.∵OA=OC,∠AOC=60°,∴△AOC是等边三角形,∴∠A=60°,∵AB是直径,∴∠ACB=90°,∵AB=4,∴BC=AB•sin60°=4×=2.(2)如图2中,连接OQ.∵PQ∥AB,PQ⊥OM,∴OM⊥AB,∴∠POB=90°,∵∠B=30°,∴OP=OB•tan30°=,在Rt△OPQ中,PQ===.(3)如图3中,∵PQ=,OQ是定值,∴OP最小时,PQ最长,∴当OM⊥BC时,OP最短,此时PQ最长,PQ=BC=,∴PQ的最大值为.此时四边形OBMC为菱形.理由:连接BM、CM.∵OM⊥BC,OC=OB,∴∠POB=∠POC=60°,∵OB=OM=OC,∴△OMB,△OCM是等边三角形,∴OC=OB=BM=CM,∴四边形OBMC是菱形.四、填空题(每小题4分,共20分)21.已知方程x2﹣2x﹣1=0的两根分别为m,n,则代数式4m+2(n﹣m)﹣1的值为3.【考点】根与系数的关系.【分析】由韦达定理可得m+n=2.将其代入原式=4m+2n﹣2m﹣1=2m+2n﹣1=2(m+n)﹣1可得答案.【解答】解:∵方程x2﹣2x﹣1=0的两根分别为m,n,∴m+n=2,则原式=4m+2n﹣2m﹣1=2m+2n﹣1=2(m+n)﹣1=4﹣1=3,故答案为:3.22.如图是二次函数y=ax2+bx+c的图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①c>0;②b2>4ac;③b=﹣2a;④a+b+c=0,其中正确结论的番号是①②④.【考点】二次函数图象与系数的关系.【分析】①由抛物线与x轴的交点在y轴正半轴可得出c>0,①正确;②由抛物线与x轴有两个不相同的交点可得出b2﹣4ac>0,②正确;③由抛物线的对称轴为x=﹣1可得出b=2a,③错误;④由抛物线的对称轴结合点A的坐标即可得出抛物线与x轴的另一交点坐标为(1,0),进而可得出a+b+c=0,④正确.综上即可得出结论.【解答】解:①∵抛物线与y轴交点在y轴正半轴,∴c>0,①正确;②∵抛物线与x轴有两个不同的交点,∴方程ax2+bx+c=0有两个不相等的实数根,∴△=b2﹣4ac>0,∴b2>4ac,②正确;③∵抛物线对称轴为直线x=﹣1,∴﹣=﹣1,∴b=2a,③错误;④∵抛物线对称轴为直线x=﹣1,且点A的坐标为(﹣3,0),∴抛物线与x轴另一交点的坐标为(1,0),∴当x=1时,y=a+b+c=0,④正确.综上所述:正确结论的番号是①②④.故答案为:①②④.23.现从四个数1,2,﹣1,﹣3中任意选出两个不同的数,分别作为函数y=ax2+bx 中a,b的值,那么所得抛物线中,满足开口向下且对称轴在y轴左侧的抛物线的概率是.【考点】列表法与树状图法;二次函数的性质.【分析】根据题意可以所有的可能性,根据所得抛物线中,满足开口向下且对称轴在y轴左侧可以判断a、b的正负,从而可以得到所得抛物线中,满足开口向下且对称轴在y轴左侧的抛物线的概率.【解答】解:由题意可得,所有的可能性是:(1,2)、(1,﹣1)、(1,﹣3)、(2,1)、(2,﹣1)、(2,﹣3)、(﹣1,1)、(﹣1,2)、(﹣1,﹣3)、(﹣3,1)、(﹣3,2)、(﹣3,﹣1),∵所得抛物线中,满足开口向下且对称轴在y轴左侧,∴a<0,b<0,∴所得抛物线中,满足开口向下且对称轴在y轴左侧的抛物线的概率是:,故答案为:.24.如图,△ABC内接于⊙O,AH⊥BC于点H,若AC=20,AH=16,⊙O的半径为15,则AB=24.【考点】三角形的外接圆与外心.【分析】作直径AD,连接BD,根据圆周角定理得到∠ABD=90°,∠D=∠C,证明△ABD∽△AHC,根据相似三角形的性质解答即可.【解答】解:作直径AD,连接BD,∵AD为直径,∴∠ABD=90°,又AH⊥BC,∴∠ABD=∠AHC,有圆周角定理得,∠D=∠C,∴△ABD∽△AHC,∴=,即=,解得,AB=24,故答案为:24.25.如图,在△ABC中,AB>AC,∠B=45°,AC=5,BC=4.①AB的长为4+;②若E是AB边上一点,将△BEC沿EC所在直线翻折得到△DEC,DC交AB于F,当DE∥AC时,tan∠BCD的值为.【考点】翻折变换(折叠问题);解直角三角形.【分析】①如图作AM⊥BC于M.在Rt△ABM中,由∠AMB=90°,∠B=45°,推出BM=AM,AB=AM,设AM=BM=x,在Rt△AMC中,根据AC2=AM2+CM2,可得方程52=x2+(4﹣x)2,求出x即可解决问题.②如图作FN⊥BC于N.由△ACF∽△ABC,得到AC2=AF•AB,推出AF=,BF=AB ﹣AF=,求出FN、CN,根据tan∠BCD=计算即可.【解答】解:①如图作AM⊥BC于M.在Rt△ABM中,∵∠AMB=90°,∠B=45°,∴BM=AM,AB=AM,设AM=BM=x,在Rt△AMC中,∵AC2=AM2+CM2,∴52=x2+(4﹣x)2,解得x=或(舍弃),∴AB=x=7,故答案为7.②如图作FN⊥BC于N.∵DE∥AC,∴∠ACF=∠D=∠B,∵∠CAF=∠CAB,∴△ACF∽△ABC,∴AC2=AF•AB,∴AF=,∴BF=AB﹣AF=7﹣=,∴BN=FN=,∴CN=BC﹣BN=4﹣=,∴tan∠BCD===,故答案为.五、解答题(本大题共3个小题,共30分)26.成都市某学校计划建一个长方形种植园,如图所示,种植园的一边靠墙,另三边用周长为30m的篱笆围成,已知墙长为18m,设这个种植园垂直于墙的一边长为x(m),种植园面积为y(m2).(1)求y与x之间的函数关系式;(2)根据实际需要,要求这个种植园的面积不小于100m2,求x的取值范围,并求这个种植园的面积的最大值.【考点】二次函数的应用;一元二次方程的应用.【分析】(1)根据题意即可求得y与x的函数关系式为y=(30﹣2x)x;(2)根据“种植园的面积不小于100m2”列出一元二次不等式,解之可得,根据二次函数的最值问题,即可求得这个苗圃园的面积最大值.【解答】解:(1)根据题意得:y=(30﹣2x)x=﹣2x2+30x,(2)由题意得:﹣2x2+30x≥100,解得:5≤x≤10,∵30﹣2x≤18,∴x≥6,∴6≤x≤10,∵y=﹣2x2+30x=﹣2(x﹣7.5)2+112.5,∴当x=7.5时,这个种植园的面积的最大值,最大面积为112.5m2.27.如图,在△ABC中,∠C=90°,AC=BC=2,点D,E分别在边BC,AB上,连接AD,ED,且∠BDE=∠ADC,过E作EF⊥AD交边AC于点F,连接DF.(1)求证:∠AEF=∠BED;(2)过A作AG∥ED交BC的延长线于点G,设CD=x,CF=y,求y与x之间的函数关系式;(3)当△DEF是以DE为腰的等腰三角形时,求CD的长.【考点】三角形综合题.【分析】(1)如图1中,设AD与EF交于点O.首先证明∠AFE=∠EDB,∠FAE=∠B,由∠CAB+∠AFE+∠AEF=180°,∠B+∠BDE+∠DEB=180°,即可证明.(2)如图2中,过A作AG∥ED交BC的延长线于点G.是怎么CG=CD,由DE ∥AG,推出=,由△AEF∽△BED,推出=,推出=,推出DG=AF 即可解决问题.(3)分两种情形求解即可①如图3中,当DE=DF时,易知AD垂直平分线段EF,作DH⊥AB于H.列出方程求解.②当DE=EF时,由△AEF∽△BED,推出AF=BD,CF=CD,即x=y,由此即可解决问题.【解答】解:(1)如图1中,设AD与EF交于点O.∵AD⊥EF,∴∠FOD=∠C=90°,∴∠CDA+∠CFO=180°,∵∠CFO+∠AFE=180°,∴∠AFE=∠ADC=∠ADB,∵CA=CB,∴∠CAB=∠B=45°,∵∠CAB+∠AFE+∠AEF=180°,∠B+∠BDE+∠DEB=180°,∴∠AEF=∠BED.(2)如图2中,过A作AG∥ED交BC的延长线于点G.∵DE∥AG,∴∠G=∠BDE,∵∠BDE=∠ADG,∴∠G=∠ADG,∴AG=AD,∵AC⊥DG,∴GC=CD=x,∴=,∵∠FAE=∠B,∠AEF=∠DEB,∴△AEF∽△BED,∴=,∴=,∴DG=AF,∴2x=2﹣y,∴y=﹣2x+2.(0<x≤1).(3)①如图3中,当DE=DF时,易知AD垂直平分线段EF,作DH⊥AB于H.∵DA平分∠CAB,DC⊥CA,DH⊥AB,∴DC=DH=x,∵∠B=∠HDB=45°,∴BD=x,∴x+x=2,∴x=2﹣2,∴CD=2﹣2.②当DE=EF时,∵△AEF∽△BED,∴AF=BD,CF=CD,∴x=y,∴x=﹣2x+2,∴x=,∴CD=.∴当△DEF是以DE为腰的等腰三角形时,CD的长2﹣2或.28.如图,直线y=2x﹣10分别与x轴,y轴交于点A,B,点C为OB的中点,抛物线y=﹣x2+bx+c经过A,C两点.(1)求抛物线的函数表达式;(2)点D是直线AB上方的抛物线上的一点,且△ABD的面积为.①求点D的坐标;②点P为抛物线上一点,若△APD是以PD为直角边的直角三角形,求点P到抛物线的对称轴的距离.【考点】二次函数综合题.【分析】(1)由直线解析式求出A 、B 坐标,然后得出C 点坐标,再用待定系数法求出抛物线解析式;(2)①过D 作DE ∥y 轴交AB 于E ,则S △ABD =S △BDE +S △ADE =,设出D 点的横标,纵坐标用横坐标表示,同时表示出E 点坐标,从而得出△ABD 的面积表达式,再根据△ABD 的面积为,列出方程解之即可;②分两种情况:第一种,D 为直角顶点;第二种,P 为直角顶点.对于第一种情况,可以验证抛物线的顶点与D 、A 一起刚好构成直角三角形,即P 点就是抛物线的顶点;对于第二种情况,过点P 作GH ∥x 轴,DG ⊥GH 于G ,AH ⊥GH 于H ,由△DGP ∽△PHA 列出相似比例关系求解.【解答】解:(1)当y=0时,2x ﹣10=0,解得x=5,则A (5,0),当x=0时,y=2x ﹣10=﹣10,则B (0,﹣10)∵点C 为OB 的中点,∴C (0,﹣5),把A (5,0),C (0,﹣5)代入y=﹣x 2+bx +c 得,解得,∴抛物线解析式为y=﹣x 2+6x ﹣5;(2)①过D 作DE ∥y 轴交AB 于E ,如图,设D (x ,﹣x 2+6x ﹣5),则E (x ,2x ﹣10),∵S △ABD =S △BDE +S △ADE =×5×DE=(﹣x 2+6x ﹣5﹣2x +10) ∴(﹣x 2+6x ﹣5﹣2x +10)=,整理得x 2﹣4x +4=0,解得x 1=x 2=2,∴D (2,3);②∵抛物线解析式为y=﹣x 2+6x ﹣5,∴抛物线的顶点为M (3,4),∴MD=,AD=3,AM=2,∴MD 2+AD 2=AM 2,∴MD ⊥AD ,若D 为直角顶点,则P 与M 点重合,即P (3,4),如图,此时P 点到抛物线对称轴的距离为0;若P 为直角顶点,如图,过点P作GH∥x轴,DG⊥GH于G,AH⊥GH于H,∵∠APD=90°,∴△DGP∽△PHA,∴,设P(t,﹣t2+6t﹣5),则:GP=t﹣2,DG=﹣t2+6t﹣5﹣3,PH=5﹣t,AH=﹣t2+6t﹣5,∴,∴,∴,∴t2﹣5t+5=0,∴t=,∴P点坐标为(,)或(,);若P点坐标为(,),则P点到抛物线对称轴的距离为,若P点坐标为(,),则P点到抛物线对称轴的距离为.。
人教版九年级初三数学上册上学期期中教学质量检测试卷及答案
人教版九年级初三数学上册上学期期中教学质量检测试卷及答案九年级数学期中试卷本试卷分试题和答题卡两部分,所有答案一律写在答题卡上.考试时间为120分钟.试卷满分130分.注意事项:1.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写在答题卡的相应位置上,并认真核对条形码上的姓名、准考证号是否与本人的相符合.2.答选择题必须用2B铅笔将答题卡上对应题目中的选项标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔作答,写在答题卡上各题目指定区域内相应的位置,在其他位置答题一律无效.3.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.4.卷中除要求近似计算的结果取近似值外,其他均应给出精确结果.一、选择题:(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填写在题答题卡的相应的括号内.)1.下列关于x的方程中,一定是一元二次方程的是(▲)A.x-1=0B.x+x=3C.x+3x-5=0D.ax+bx+c=02.关于x的方程x+x-k=0有两个不相等的实数根,则k的取值范围为(▲)A.k>-B.k≥-C.k<-D.k>-且k≠03.45°的正弦值为(▲)A.1B.C.D.4.已知△ABC∽△DEF,∠A=∠D,AB=2cm,AC=4cm,DE=3cm,且DE <DF,则DF的长为(▲)A.1cmB.1.5cmC.6cmD.6cm或1.5cm5.在平面直角坐标系中,点A(6,3),以原点O为位似中心,在第一象限内把线段OA缩小为原来的得到线段OC,则点C的坐标为(▲)A.(2,1)B.(2,0)C.(3,3)D.(3,1)6.已知⊙A半径为5,圆心A的坐标为(1,0),点P的坐标为(-2,4),则点P与⊙A的位置关系是(▲)A.点P在⊙A上B.点P在⊙A内C.点P在⊙A外D.不能确定7.如图,在□ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC=(▲)ADFCBOE(第7题)ACBPFEQ(第10题)ABCDP(第8题)A.1︰3B.1︰4C.2︰3D.1︰28.如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12,AD=4,BC =9,点P是AB上一动点,若△PAD与△PBC相似,则满足条件的点P的个数有 (▲)A.1个B.2个C.3个D.4个9.已知线段AB,点P是它的黄金分割点,AP>BP,设以AP为边的等边三角形的面积为S1,以PB、AB为直角边的直角三角形的面积为S2,则S1与S2的关系是(▲)A.S1>S2B.S1<S2C.S1=S2D.S1≥S210.如图,△ABC是等腰直角三角形,∠ACB=90°,点E、F分别是边BC、AC的中点,P是AB上一点,以PF为一直角边作等腰直角△PFQ,且∠FPQ=90°,若AB=10,PB=1,则QE的值为(▲)A.3B.3C.4D.4二、填空题(本大题共8小题,每小题2分,共计16分.请把答案直接填写在答题卡相应位置上.)11.已知x:y=2:3,则(x+y):y=▲.12.在相同时刻的物高与影长成比例,xxxx,那么影长为30m的旗杆的高是▲m.13.某电动自行车厂三月份的产量为1000辆,由于市场需求量不断增大,五月份的产量提高到1210辆,则该厂四、五月份的月平均增长率为▲.ABCDEF(第15题)14.在△ABC中,∠A、∠B为锐角,且+(-cosB)=0,则∠C=▲°.15.如图,在□ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则DF=▲.(图2)ACBDEFACBDEFACBDEF(图1)(第18题)ABDCEF(第16题)……16.如图,在△ABC中,AB=BC,AC=8,点F是△ABC的重心(即点F是△ABC的两条中线AD、BE的交点),BF=6,则DF=▲.17.关于x的一元二次方程mx+nx=0的一根为x=3,则关于x的方程m(x +2)+nx+2n=0的根为▲.18.如图,△ABC是一张等腰直角三角形纸板,∠C=90°,AC=BC=2,在这张纸板中剪出一个尽可能大的正方形称为第1次剪取,记所得正方形面积为S1(如图1);在余下的Rt△ADE和Rt△BDF中,分别剪取一个尽可能大的正方形,得到两个相同的正方形,称为第2次剪取,并记这两个正方形面积和为S2(如图2);继续操作下去…;第2021次剪取后,余下的所有小三角形的面积之和是▲.三、解答题(本大题共10小题,共84分.解答需写出必要的文字说明或演算步骤.)19.计算或解方程:(每小题4分,共16分)(1)计算:()-4sin60°-tan45°;(2)3x-2x-1=0;(3)x+3x+1=0(配方法);(4)(x+1)-6(x+1)+5=0.20.(本题满分6分)如图,在平面直角坐标系中,A(0,4)、B(4,4)、C (6,2).(1)在图中画出经过A、B、C三点的圆弧所在圆的圆心M的位置;OABCxy (第20题)(2)点M的坐标为▲;(3)判断点D(5,-2)与⊙M的位置关系.21.(本题满分6分)如图,在四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB =90°,E为AB中点.(1)求证:AC=AB•AD;ADCBEF(第21题)(2)若AD=4,AB=6,求的值.22.(本题满分6分)已知关于x的方程x+(m-3)x-m(2m-3)=0.(1)证明:无论m为何值方程都有两个实数根.(2)是否存在正数m,使方程的两个实数根的平方和等于26?若存在,求出满足条件的正数m的值;若不存在,请说明理由.23.(本题满分6分)某市的特色农产品在国际市场上颇具竞争力,其中属于菌类的一种猴头菇远销国外.上市时,有一外商按市场价格10元/千克收购了2021千克猴头菇存入冷库中,据预测,猴头菇的市场价格每天每千克上涨0.5元,但冷库存放这批猴头菇时每天需要支出各种费用合计220元,而且这种猴头菇在冷库中最多能保存130天,同时,平均每天有6千克的猴头菇损坏不能出售.)(1)若外商要将这批猴头菇存放x天后一次性出售,则x天后这批猴头菇的销售单价为▲元,销售量是▲千克(用含x的代数式表示);(2)如果这位外商想获得利润24000元,需将这批猴头菇存放多少天后出售?24.(本题满分8分)如图1为放置在水平桌面上的台灯的平面示意图,灯臂AO长为50cm,与水平桌面所形成的夹角∠OAM为75°.由光源O射出的边缘光线OC,OB与水平桌面所形成的夹角∠OCA,∠OBA分别为90°和30°.(不考虑其他因素,结果精确到0.1cm.参考数据:sin75°≈0.97,cos75°≈0.26,≈1.73)AOCFEDPBM(1)求该台灯照亮水平桌面的宽度BC.(2)人在此台灯下看书,将其侧面抽象成如图2所示的几何图形,若书与水平桌面的夹角∠EFC为60°,书的长度EF为24cm,点P为眼睛所在位置,当点P在EF的垂直平分线上,且到EF距离约为34cm(人的正确看书姿势是眼睛离书距离约1尺≈34cm)时,称点P为“最佳视点”.试问:最佳视点P在不在灯光照射范围内?并说明理由.25.(本题满分9分)如图,以点P(-1,0)为圆心的圆,交x轴于B、C 两点(B在C的左侧),交y轴于A、D两点(A在D的下方),AD=2,将△ABC绕点P旋转180°,得到△MCB.(1)求B、C两点的坐标;(2)请在图中画出线段MB、MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标;ACOPBDxy(第25题)(3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l与CM交点为E,点Q为BE的中点,过点E作EG⊥BC于点G,连接MQ、QG.请问在旋转过程中,∠MQG的大小是否变化?若不变,求出∠MQG 的度数;若变化,请说明理由.26.(本题满分8分)如图,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上任意一点(不与点A、B重合),连接CO并延长CO交⊙O于点D,连接AD.(1)AB=▲;(2)当∠D=20°时,求∠BOD的度数.(3)若△ACD与△BCO相似,求AC 的长.ACBDO(第26题)27.(本题满分9分)定义:已知x为实数,[x]表示不超过x的最大整数.例如:[3.14]=3,[1]=1,[-1.2]=-2.请你在学习和理解上述定义的基础上,解决下列问题:设函数y=x-[x].(1)当x=2.15时,求y=x-[x]的值.(2)当0<x<2时,求函数y=x-[x]的表达式,并画出对应的函数图像.(3)当-2<x<2时,在平面直角坐标系中,以O为圆心,r为半径作圆,且r≤2,该圆与函数y=x-[x]恰有一个公共点,请直接写出r的取值范围.xyO-1-2-3-4-1-2-3-412213434(第27题)28.(本题满分10分)如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ.已知点P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).(1)用含t的代数式表示:QB=▲,PD=▲;(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变匀速运动的点Q的速度,使四边形PDBQ在某一时刻为菱形,求出此时点Q的速度.(3)如图2,在整个P、Q运动的过程中,点M为线段PQ的中点,求出点M经过的路径长.ABCPDQ(图1)MABCPQ(图2)九年级数学期中试卷参考答案与评分标准2021.11一.选择题(本大题共有10小题,每题3分,共30分)⒈C⒉A⒊C⒋C⒌A⒍A⒎D8.B9.B10.D二、填空题(本大题共8小题,每小题2分,共计16分)11、5:312、1813、10%14、75°15、16、2.517、1或-218、1/22021三、解答题(10小题,共84分)19.(每小题4分)(1)1—2(2)x1=1,x2=-3(1)(3)x1=2(5),x2=2(5)(4)x1=0,x2=420.(本题6分)解:(1)略……2分(2)M的坐标:(2,0);……3分(3)∵,……4分∴……5分∴点D在⊙M内……6分21.解:(1)∵AC平分∠DAB,∴∠DAC=∠BAC又∵∠ADC=∠ACB=90°∴△ADC∽△ACB…………………………………………(1分)∴AC(AD)=AB(AC)∴AC2=AB•AD………………………………………(2分)(2)∵∠ACB=90°,E为AB中点.∴CE=2(1)AB=AE=3∴∠EAC=∠ECA………………………………………(3分)又∵AC平分∠DAB,∴∠DAC=∠EAC∴∠DAC=∠ECA………………………………………(4分)∴AD∥EC∴△ADF∽△ECF………………………………………(5分)∴FC(AF)=EC(AD)=3(4)∴AF(AC)=4(7).………………………………………(6分)22.(1)(2分)(2)(6分,不排除扣2分)23.(1)10+0.5x,(1分)2021―6x;(1分)(2)由题意得:(10+0.5x)(2021―6x)―10×2021―220x=24000.(2分)解得x1=40,x2=200(不合题意,舍去)(1分)答:存放40天后出售。
2015-2016学年安徽省马鞍山市当涂县乌溪中学八年级下期中数学试卷(带解析)
绝密★启用前2015-2016学年安徽省马鞍山市当涂县乌溪中学八年级下期中数学试卷(带解析)试卷副标题考试范围:xxx ;考试时间:114分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、如图,在△ABC 中,AB=AC=5,BC=6,点M 为BC 的中点,MN ⊥AC 于点N ,则MN 等于( )A .B .C .D .2、化简二次根式,结果是( )A .﹣aB .﹣aC .aD .a3、如图,在Rt △ABC 中,AB=AC .D ,E 是斜边BC 上两点,且∠DAE=45°,将△ADC 绕点A 顺时针旋转90°后,得到△AFB ,连接EF ,下列结论:①△AED ≌△AEF ; ②△ABE ∽△ACD ; ③BE+DC=DE ; ④BE 2+DC 2=DE 2. 其中正确的是( )A .②④B .①④C .②③D .①③4、一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为( ) A .4 B .8 C .10 D .125、小明的作业本上有以下四题:①=4a 2;②•=5a ;③;④,做错的题有( )A .4个B .3个C .2个D .1个6、已知方程x 2﹣5x+2=0的两个解分别为x 1、x 2,则x 1+x 2﹣x 1•x 2的值为( ) A .﹣7 B .﹣3 C .7 D .37、如果最简根式和是同类二次根式,那么a 、b 的值可以是( )A .a=0,b=2B .a=2,b=0C .a=﹣1,b=1D .a=1,b=﹣28、关于x 的方程(a ﹣5)x 2﹣4x ﹣1=0有实数根,则a 满足( ) A .a≥1 B .a >1且a≠5 C .a≥1且a≠5 D .a≠59、已知等腰三角形的一条腰长是5,底边长是6,则它底边上的高为( ) A .5 B .3 C .4 D .710、实数范围内有意义,则x 的取值范围是( )A .x >1B .x≥1C .x <1D .x≤1第II卷(非选择题)二、填空题(题型注释)11、观察下列各式:…请你将发现的规律用含自然数n(n≥1)的等式表示出来.12、若关于x的方程x2-mx+3=0有实数根,则m的值可以为_________.(任意给出一个符合条件的值即可)13、边长为a的正三角形的面积等于.14、已知+|b﹣1|=0,那么(a+b)2011的值为.15、方程(x﹣1)(x+2)=2(x+2)的根是.三、解答题(题型注释)16、若关于x的一元二次方程x2﹣2(2﹣k)x+k2+12=0有实数根α、β.(1)求实数k的取值范围;(2)设,求t的最小值.17、在国家政策的宏观调控下,某市的商品房成交价由今年3月份的14000元/m2下降到5月份的12600元/m2(1)问4、5两月平均每月降价的百分率是多少?(参考数据:≈0.95)(2)如果房价继续回落,按此降价的百分率,你预测到7月份该市的商品房成交均价是否会跌破10000元/m2?请说明理由.18、已知.甲、乙两个同学在的条件下分别计算了M 和N 的值.甲说M 的值比N 大,乙说N的值比M 大.请你判断他们谁的结论是正确的,并说明理由.19、已知方程x 2﹣4x+m=0的一个根为﹣2,求方程的另一根及m 的值.20、先化简,再求值:,其中x=﹣2.21、(1)解方程:x 2﹣2x ﹣1=0. (2)计算:(﹣4)﹣(3﹣2)(3)计算:﹣42+||﹣(2002﹣)0+.参考答案1、C2、B3、B4、C5、D6、D7、A8、A9、C10、D11、=(n+1)(n≥1).12、m=4.13、a2.14、﹣1.15、x1=﹣2,x2=3.16、(1)k≤﹣2;(2)t的最小值为﹣4.17、(1)4、5两月平均每月降价的百分率是5%;(2)可知7月份该市的商品房成交均价不会跌破10000元/m2.18、N的值比M大,理由见解析19、方程的另一根是6,m的值为﹣12.20、原式=.21、(1)x1=1+,x2=1﹣;(2)3;(3)﹣16.【解析】1、试题分析:连接AM,根据等腰三角形三线合一的性质得到AM⊥BC,根据勾股定理求得AM的长,再根据在直角三角形的面积公式即可求得MN的长.解:连接AM,∵AB=AC,点M为BC中点,∴AM⊥CM(三线合一),BM=CM,∵AB=AC=5,BC=6,∴BM=CM=3,在Rt△ABM中,AB=5,BM=3,∴根据勾股定理得:AM===4,又S△AMC=MN•AC=AM•MC,∴MN==.故选:C.2、试题分析:二次根式有意义,隐含条件a≤0,利用二次根式的性质化简.解:∵有意义∴a≤0∴原式=﹣a.故选B.3、试题分析:由△ADC绕点A顺时针旋转90°得△AFB,可知△ADC≌△AFB,∠FAD=90°,由∠DAE=45°可判断∠FAE=∠DAE,可证①△AED≌△AEF.由已知条件可证△BEF为直角三角形,则有④BE2+DC2=DE2是正确的.解:∵△ADC绕点A顺时针旋转90°得△AFB,∴△ADC≌△AFB,∠FAD=90°,∴AD=AF,∵∠DAE=45°,∴∠FAE=90°﹣∠DAE=45°,∴∠DAE=∠FAE,AE为△AED和△AEF的公共边,∴△AED≌△AEF∴ED=FE在Rt△ABC中,∠ABC+∠ACB=90°,又∵∠ACB=∠ABF,∴∠ABC+∠ABF=90°即∠FBE=90°,∴在Rt△FBE中BE2+BF2=FE2,∴BE+DC=DE③显然是不成立的.故正确的有①④,不正确的有③,②不一定正确.故选B4、试题分析:设斜边长为x,则一直角边长为x﹣2,再根据勾股定理求出x的值即可.解:设斜边长为x,则一直角边长为x﹣2,根据勾股定理得,62+(x﹣2)2=x2,解得x=10,故选C.5、试题分析:根据二次根式的性质得到==|4a2|=4a2;根据二次根式的乘法得到•=••,再根据二次根式的性质得到5a;根据二次根式的性质和二次根式的乘法得到;根据同类二次根式的定义得到与不是同类二次根式,不能合并.解:因为==|4a2|=4a2,所以①正确;因为•=••=5a,所以②正确;③因为a>0,则,所以③正确;④与不是同类二次根式,不能合并,所以④不正确.故选D.6、试题分析:根据根与系数的关系,先求出x1+x2与x1x2的值,然后再把它们的值整体代入所求代数式求值即可.解:根据题意可得x1+x2=﹣=5,x1x2==2,∴x1+x2﹣x1•x2=5﹣2=3.故选D7、试题分析:根据同类二次根式的定义,列方程组求解.解:∵和是同类二次根式∴,解得,故选A.8、试题分析:由于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,那么分两种情况:(1)当a﹣5=0时,方程一定有实数根;(2)当a﹣5≠0时,方程成为一元二次方程,利用判别式即可求出a的取值范围.解:分类讨论:①当a﹣5=0即a=5时,方程变为﹣4x﹣1=0,此时方程一定有实数根;②当a﹣5≠0即a≠5时,∵关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根∴16+4(a﹣5)≥0,∴a≥1.∴a的取值范围为a≥1.故选:A.9、试题分析:根据等腰三角形的性质求出BD=CD=3,再利用勾股定理即可求出AD.已知,AB=AC=5,BC=6,AD⊥BC,求AD的长.解:∵AB=AC=5,AD⊥BC,BC=6,∴BD=CD=3,∴AD===4.故选C.10、试题分析:先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.解:∵实数范围内有意义,∴1﹣x≥0,解得x≤1.故选D.11、试题分析:观察分析可得:=(1+1);=(2+1);…则将此题规律用含自然数n(n≥1)的等式表示出来解:∵=(1+1);=(2+1);∴=(n+1)(n≥1).故答案为:=(n+1)(n≥1).12、由于这个方程有实数根,因此⊿=≥0,即m2≥1213、试题分析:根据正三角形的性质求解.解:过点A作AD⊥BC于点D,∵AD⊥BC∴BD=CD=a,∴AD==a,面积则是:a•a=a2.14、试题分析:先根据非负数的性质求出a、b的值,再根据有理数的乘方法则求出代数式的值即可.解:∵+|b﹣1|=0,∴a+2=0,b﹣1=0,解得a=﹣2,b=1,∴(a+b)2011=(﹣2+1)2011=(﹣1)2011=﹣1.故答案为:﹣1.15、试题分析:把右边的项移到左边,提公因式法因式分解求出方程的根.解:(x﹣1)(x+2)﹣2(x+2)=0(x+2)(x﹣1﹣2)=0(x+2)(x﹣3)=0x+2=0或x﹣3=0∴x1=﹣2,x2=3.故答案是:x1=﹣2,x2=3.16、试题分析:(1)由于一元二次方程存在两实根,令△≥0求得k的取值范围;(2)将α+β换为k的表达式,根据k的取值范围得出t的取值范围,求得最小值.解:(1)∵一元二次方程x2﹣2(2﹣k)x+k2+12=0有实数根a,β,∴△≥0,即4(2﹣k)2﹣4(k2+12)≥0,4(4﹣4k+k2)﹣4k2﹣48≥0,16﹣16k﹣48≥0,即16k≤﹣32,解得k≤﹣2;(2)由根与系数的关系得:a+β=﹣[﹣2(2﹣k)]=4﹣2k,∴,∵k≤﹣2,∴﹣2≤<0,∴,即t的最小值为﹣4.17、试题分析:(1)设4、5两月平均每月降价的百分率是x,那么4月份的房价为14000(1﹣x),5月份的房价为14000(1﹣x)2,然后根据5月份的12600元/m2即可列出方程解决问题;(2)根据(1)的结果可以计算出7月份商品房成交均价,然后和10000元/m2进行比较即可作出判断.解:(1)设4、5两月平均每月降价的百分率是x,则4月份的成交价是14000﹣14000x=14000(1﹣x),5月份的成交价是14000(1﹣x)﹣14000(1﹣x)x=14000(1﹣x)(1﹣x)=14000(1﹣x)2∴14000(1﹣x)2=12600,∴(1﹣x)2=0.9,∴x1≈0.05=5%,x2≈1.95(不合题意,舍去).答:4、5两月平均每月降价的百分率是5%;(2)不会跌破10000元/m2.如果按此降价的百分率继续回落,估计7月份该市的商品房成交均价为:12600(1﹣x)2=12600×0.952=11371.5>10000.由此可知7月份该市的商品房成交均价不会跌破10000元/m2.18、试题分析:先由题意计算出xy的值,再将xy的值分别代入M、N,求出结果,再进行比较即可.解:乙的结论正确.(1分)理由:由,可得x=8,y=18.(3分)因此.(6分).(9分)∴M<N,即N的值比M大.(10分)19、试题分析:根据根与系数的关系,可求出两根的和与两根的积,将已知的根代入即可求出另一根及m的值.解:设原方程的两根为x1、x2;则:x1+x2=4,x1x2=m;∵x1=﹣2,∴x2=4﹣x1=6,m=x1x2=﹣12;即方程的另一根是6,m的值为﹣12.20、试题分析:这道求代数式值的题目,通常做法是先把代数式化简,然后再代入求值.解:原式=,=,=;将x=﹣2代入,得:原式=.21、试题分析:(1)首先找出公式中的a,b,c的值,再代入求根公式x=,然后求解即可;(2)根据二次根式的混合运算的法则计算即可;(3)根据绝对值的性质,零指数幂的性质计算即可.解:(1)x2﹣2x﹣1=0∵a=1,b=﹣2,c=﹣1,∴x==1,∴x1=1+,x2=1﹣;(2)(﹣4)﹣(3﹣2)=4﹣﹣+=3;(3)﹣42+||﹣(2002﹣)0+=﹣16+2﹣﹣1+﹣1 =﹣16.。
九年级上册数学期中试卷测试卷附答案
九年级上册数学期中试卷测试卷附答案一、初三数学 一元二次方程易错题压轴题(难)1.已知:在平面直角坐标系xoy 中,直线k y x b =+分别交x 、y 轴于点A 、B 两点,OA=5,∠OAB=60°.(1)如图1,求直线AB 的解析式;(2)如图2,点P 为直线AB 上一点,连接OP ,点D 在OA 延长线上,分别过点P 、D 作OA 、OP 的平行线,两平行线交于点C ,连接AC,设AD=m,△ABC 的面积为S,求S 与m 的函数关系式; (3)如图3,在(2)的条件下,在PA 上取点E ,使PE=AD, 连接EC,DE,若∠ECD=60°,四边形ADCE 的周长等于22,求S 的值.【答案】(1)直线解析式为353y x =-+(2)S=5325322m +;(3)203S =. 【解析】 【分析】(1)先求出点B 坐标,设AB 解析式为y kx b =+,把点A(5,0),B(0,3分别代入,利用待定系数法进行求解即可;(2)由题意可得四边形ODCP 是平行四边形,∠OAB=∠APC=60°,则有PC=OD=5+m ,∠PCH=30°,过点C 作CH ⊥AB ,在Rt △PCH 中 利用勾股定理可求得CH=)352m +,再由S=12AB •CH 代入相关数据进行整理即可得; (3) 先求得∠PEC=∠ADC ,设∠OPA=α,则∠OPC= ∠ADC= ∠PEC=60°+α,在BA 延长线上截取AK=AD ,连接OK ,DK ,DE ,证明△ADK 是等边三角形,继而证明△PEC ≌△DKO ,通过推导可得到OP=OK=CE=CD ,再证明△CDE 是等边三角形,可得CE=CD=DE ,连接OE ,证明△OPE ≌△EDA ,继而可得△OAE 是等边三角形,得到OA=AE=5 ,根据四边形ADCE 的周长等于22,可得ED=172m -,过点E 作EN ⊥OD 于点N ,则DN=52m +,由勾股定理得222EN DN DE +=, 可得关于m 的方程,解方程求得m 的值后即可求得答案.【详解】(1)在Rt △ABO 中OA=5,∠OAB=60°, ∴∠OBA=30°,AB=10 , 由勾股定理可得OB=53,∴B(0,53),设AB解析式为y kx b=+,把点A(5,0),B(0,53)分别代入,得0553k bb=+⎧⎪⎨=⎪⎩,∴353kb⎧=-⎪⎨=⎪⎩,∴直线解析式为353y x=-+;(2)∵CP//OD,OP//CD,∴四边形ODCP是平行四边形,∠OAB=∠APC=60°,∴PC=OD=5+m,∠PCH=30°,过点C作CH⊥AB,在Rt△PCH中 PH=52m+,由勾股定理得CH=()35m+,∴S=12AB•CH=135325310(5)2m m⨯⨯+=+;(3) ∵∠ECD=∠OAB=60°,∴∠EAD+∠ECD=180°,∠CEA+∠ADC=180°,∴∠PEC=∠ADC,设∠OPA=α,则∠OPC= ∠ADC= ∠PEC=60°+α,在BA延长线上截取AK=AD,连接OK,DK,DE,∵∠DAK=60°,∴△ADK是等边三角形,∴AD=DK=PE,∠ODK=∠APC,∵PC=OD,∴△PEC≌△DKO,∴OK=CE,∠OKD=∠PEC=∠OPC=60°+α,∠AKD= ∠APC=60°,∴∠OPK= ∠OKB,∴OP=OK=CE=CD,又∵∠ECD=60°,∴△CDE是等边三角形,∴CE=CD=DE ,连接OE ,∵ ∠ADE=∠APO ,DE=CD=OP , ∴△OPE ≌△EDA , ∴AE=OE , ∠OAE=60°, ∴△OAE 是等边三角形, ∴OA=AE=5 ,∵四边形ADCE 的周长等于22, ∴AD+2DE=17, ∴ED=172m-, 过点E 作EN ⊥OD 于点N ,则DN=52m +, 由勾股定理得222EN DN DE +=, 即22253517()()()22m m -++=, 解得13m =,221m =-(舍去), ∴S=153253+=203.【点睛】本题考查的四边形综合题,涉及了待定系数法,平行四边形的判定与性质,勾股定理,全等三角形的判定与性质,等边三角形的判定与性质,解一元二次方程等,综合性较强,有一定的难度,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.2.如图,直角坐标系xOy 中,一次函数y kx b =+的图象1l 分别与x 轴,y 轴交于A ,B 两点,点A 坐标为()9,0,正比例函数12y x =的图象2l 与1l 交于点(),3C m ,点(),0N n 在x 轴上一个动点,过点N 作x 轴的垂线与直线1l 和2l 分别交于P 、Q 两点.(1)求m 的值及直线1l 所对应的一次函数表达式; (2)当03PQ <时,求n 的取值范围; (3)求出当n 为何值时,PQC ∆面积为12?【答案】(1)6m =;9y x =-+;(2)46n <或68n <;(3)2n =或10. 【解析】 【分析】(1)直接将点C 代入正比例函数,可求得m 的值,然后将点C 和点A 代入一次函数,可求得一次函数解析式;(2)用含n 的式子表示出PQ 的长,然后解不等式即可;(3)用含有n 的式子表示出△PQC 的底边长和高的长,然后求解算式即可得. 【详解】(1)将点C(m ,3)代入正比例函数12y x =得: 3=1m 2,解得:m=6 则点C(6,3) ∵A(9,0)将点A ,C 代入一次函数y kx b =+得:0936k bk b =+⎧⎨=+⎩解得:k=-1,b=9∴一次函数解析式为:y=-x+9 (2)∵N(n ,0) ∴P(n ,9-n),Q(n ,12n ) ∴PQ=192n n --∵要使03PQ < ∴0<1932n n --≤ 解得:46n <或68n <(3)在△PQC 中,以PQ 的长为底,则点C 到PQ 的距离为高,设为h 第(2)已知:PQ=139922n n n --=- 由图形可知,h=6n - ∵△PQC 的面积为12 ∴12=136922nn -- 情况一:当n <6是,则原式化简为:12=()136922n n ⎛⎫--⎪⎝⎭ 解得:n=2或n=10(舍)情况二:当n ≥6时,则原式化简为:12=()136922n n ⎛⎫-- ⎪⎝⎭解得:n=2(舍)或n=10 综上得:n=2或n=10. 【点睛】本题考查一次函数的综合,用到了解一元二次方程,求三角形面积等知识点,解题关键是用含n 的算式表示出PQ 的长度,注意需要添加绝对值符号.3.近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从去年年底至今年3月20日,猪肉价格不断走高,3月20日比去年年底价格上涨了60%.某市民在今年3月20日购买2.5千克猪肉至少要花200元钱,那么去年年底猪肉的最低价格为每千克多少元?(2)3月20日,猪肉价格为每千克60元,3月21日,某市决定投入储备猪肉并规定其销售价在每千克60元的基础上下调a %出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克60元的情况下,该天的两种猪肉总销量比3月20日增加了a %,且储备猪肉的销量占总销量的34,两种猪肉销售的总金额比3月20日提高了1%10a ,求a 的值. 【答案】(1)去年年底猪肉的最低价格为每千克50元;(2)a 的值为20. 【解析】 【分析】(1)设去年年底猪肉价格为每千克x 元;根据题意列出一元一次不等式,解不等式即可;(2)设3月20日两种猪肉总销量为1;根据题意列出方程,解方程即可. 【详解】解:(1)设去年年底猪肉价格为每千克x 元; 根据题意得:2.5×(1+60%)x ≥200, 解得:x ≥50.答:去年年底猪肉的最低价格为每千克50元; (2)设3月20日的总销量为1;根据题意得:60(1﹣a%)×34(1+a%)+60×14 (1+a%)=60(1+110a%),令a%=y ,原方程化为:60(1﹣y )×34(1+y )+60×14(1+y )=60(1+110y ),整理得:5y 2﹣y=0,解得:y=0.2,或y=0(舍去), 则a%=0.2, ∴a=20;答:a 的值为20. 【点睛】本题考查了一元一次不等式的应用、一元二次方程的应用;根据题意列出不等式和方程是解决问题的关键.4.为了满足师生的阅读需求,某校图书馆的藏书从2016年底到2018年底两年内由5万册增加到7.2万册.(1)求这两年藏书的年均增长率;(2)经统计知:中外古典名著的册数在2016年底仅占当时藏书总量的5.6%,在这两年新增加的图书中,中外古典名著所占的百分率恰好等于这两年藏书的年均增长率,那么到2018年底中外古典名著的册数占藏书总量的百分之几?【答案】(1)这两年藏书的年均增长率是20%;(2)到2018年底中外古典名著的册数占藏书总量的10%. 【解析】 【分析】(1)根据题意可以列出相应的一元二次方程,从而可以得到这两年藏书的年均增长率; (2)根据题意可以求出这两年新增加的中外古典名著,从而可以求得到2018年底中外古典名著的册数占藏书总量的百分之几. 【详解】解:(1)设这两年藏书的年均增长率是x ,()2517.2x +=,解得,10.2x =,2 2.2x =-(舍去), 答:这两年藏书的年均增长率是20%;(2)在这两年新增加的图书中,中外古典名著有()7.2520%0.44-⨯=(万册), 到2018年底中外古典名著的册数占藏书总量的百分比是:5 5.6%0.44100%10%7.2⨯+⨯=,答:到2018年底中外古典名著的册数占藏书总量的10%. 【点睛】本题考查一元二次方程的应用,解答本题的关键是明确题意,列出相应的方程,利用方程的知识解答,这是一道典型的增长率问题.5.如图,已知AB 是⊙O 的弦,半径OA=2,OA 和AB 的长度是关于x 的一元二次方程x 2﹣4x+a=0的两个实数根. (1)求弦AB 的长度; (2)计算S △AOB ;(3)⊙O 上一动点P 从A 点出发,沿逆时针方向运动一周,当S △POA =S △AOB 时,求P 点所经过的弧长(不考虑点P 与点B 重合的情形).【答案】(1)AB=2;(2)S △AOB 33)当S △POA =S △AOB 时,P 点所经过的弧长分别是43π、83π、103π. 【解析】试题分析:(1)OA 和AB 的长度是一元二次方程的根,所以利用一元二次方程的根与系数的关系即可求出AB 的长度;(2)作出△AOB 的高OC ,然后求出OC 的长度即可求出面积; (3)由题意知:两三角形有公共的底边,要面积相等,即高要相等. 试题解析:(1)由题意知:OA 和AB 的长度是x 2﹣4x+a=0的两个实数根, ∴OA+AB=﹣41-=4, ∵OA=2, ∴AB=2;(2)过点C 作OC⊥AB 于点C ,∵OA=AB=OB=2,∴△AOB 是等边三角形,∴AC=12AB=1, 在Rt△ACO 中,由勾股定理可得:3△AOB =12AB ﹒OC=1233;(3)延长AO 交⊙O 于点D ,由于△AOB 与△POA 有公共边OA , 当S △POA =S △AOB 时,∴△AOB 与△POA 高相等,由(2)可知:等边△AOB 的高为3,∴点P 到直线OA 的距离为3,这样点共有3个 ①过点B 作BP 1∥OA 交⊙O 于点P 1,∴∠BOP 1=60°, ∴此时点P 经过的弧长为:1202180π⨯=43π, ②作点P 2,使得P 1与P 2关于直线OA 对称,∴∠P 2OD=60°, ∴此时点P 经过的弧长为:2402180π⨯=83π, ③作点P 3,使得B 与P 3关于直线OA 对称,∴∠P 3OP 2=60°, ∴此时P 经过的弧长为:3002180π⨯ =103π, 综上所述:当S △POA =S △AOB 时,P 点所经过的弧长分别是43π、83π、103π.【点睛】本题主要考查了一元二次方程与圆的综合知识.涉及等边三角形性质,圆的对称性等知识,能综合运用所学知识,选择恰当的方法进行解题是关键.二、初三数学 二次函数易错题压轴题(难)6.对于函数y =ax 2+(b+1)x+b ﹣2(a ≠0),若存在实数x0,使得a 20x +(b+1)x 0+b ﹣2=x0成立,则称x 0为函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点. (1)当a =2,b =﹣2时,求y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点;(2)若对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,求实数a 的取值范围;(3)在(2)的条件下,若y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,且直线y =﹣x+2121a +是线段AB 的垂直平分线,求实数b 的取值范围.【答案】(1)不动点是﹣1或2;(2)a 的取值范围是0<a <2;(3)b 的取值范围是﹣2b <0. 【解析】 【分析】(1)将a =2,b =﹣2代入函数y =ax 2+(b+1)x+b ﹣2(a ≠0),得y =2x 2﹣x ﹣4,然后令x =2x 2﹣x ﹣4,求出x 的值,即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点;(2)对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,可以得到x =ax 2+(b+1)x+b ﹣2(a ≠0)时,对于任何实数b 都有△>0,然后再设t =△,即可求得a 的取值范围;(3)根据y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,可知点A 和点B 均在直线y =x 上,然后设出点A 和点B 的坐标,从而可以得到线段AB 的中点坐标,再根据直线y =﹣x+2121a +是线段AB 的垂直平分线,从而可以求得b 的取值范围. 【详解】解:(1)当a =2,b =﹣2时, 函数y =2x 2﹣x ﹣4, 令x =2x 2﹣x ﹣4, 化简,得x 2﹣x ﹣2=0 解得,x 1=2,x 2=﹣1,即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点是﹣1或2; (2)令x =ax 2+(b+1)x+b ﹣2, 整理,得 ax 2+bx+b ﹣2=0,∵对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点, ∴△=b 2﹣4a (b ﹣2)>0,设t =b 2﹣4a (b ﹣2)=b 2﹣4ab+8a ,对于任何实数b ,t >0, 故(﹣4a )2﹣4×1×8a <0, 解得,0<a <2,即a 的取值范围是0<a <2; (3)由题意可得, 点A 和点B 在直线y =x 上, 设点A (x 1,x 1),点B (x 2,x 2),∵A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点, ∴x 1,x 2是方程ax 2+bx+b ﹣2=0的两个根, ∴x 1+x 2=﹣b a, ∵线段AB 中点坐标为(122x x +,122x x+), ∴该中点的坐标为(2b a -,2b a-), ∵直线y =﹣x+2121a +是线段AB 的垂直平分线,∴点(2b a -,2ba -)在直线y =﹣x+2121a +上, ∴2ba -=21221b a a ++∴﹣b =222122a a a ≤+=24,(当a =22时取等号) ∴0<﹣b ≤2, ∴﹣24≤b <0, 即b 的取值范围是﹣24≤b <0. 【点睛】本题是一道二次函数综合题、主要考查新定义、二次函数的性质、二次函数图象上点的坐标特征、一次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.7.如图,直线y =12x ﹣2与x 轴交于点B ,与y 轴交于点A ,抛物线y =ax 2﹣32x+c 经过A ,B 两点,与x 轴的另一交点为C . (1)求抛物线的解析式;(2)M 为抛物线上一点,直线AM 与x 轴交于点N ,当32MN AN =时,求点M 的坐标; (3)P 为抛物线上的动点,连接AP ,当∠PAB 与△AOB 的一个内角相等时,直接写出点P 的坐标.【答案】(1)y =12x 2﹣32x ﹣2;(2)点M 的坐标为:(5,3)或(﹣2,3)或(2,﹣3)或(1,﹣3);(3)点P 的坐标为:(﹣1,0)或(32,﹣258)或(173,509)或(3,﹣2). 【解析】 【分析】(1)根据题意直线y =12x ﹣2与x 轴交于点B ,与y 轴交于点A ,则点A 、B 的坐标分别为:(0,-2)、(4,0),即可求解;(2)由题意直线MA的表达式为:y=(12m﹣32)x﹣2,则点N(43m-,0),当MNAN=32时,则NHON=32,即4343mmm---=32,进行分析即可求解;(3)根据题意分∠PAB=∠AOB=90°、∠PAB=∠OAB、∠PAB=∠OBA三种情况,分别求解即可.【详解】解:(1)直线y=12x﹣2与x轴交于点B,与y轴交于点A,则点A、B的坐标分别为:(0,﹣2)、(4,0),则c=﹣2,将点B的坐标代入抛物线表达式并解得:a=12,故抛物线的表达式为:y=12x2﹣32x﹣2①;(2)设点M(m,12m2﹣32m﹣2)、点A(0,﹣2),将点M、A的坐标代入一次函数表达式:y=kx+b并解得:直线MA的表达式为:y=(12m﹣32)x﹣2,则点N(43m-,0),当MNAN=32时,则NHON=32,即:4343mmm---=32,解得:m=5或﹣2或2或1,故点M的坐标为:(5,3)或(﹣2,3)或(2,﹣3)或(1,﹣3);(3)①∠PAB=∠AOB=90°时,则直线AP的表达式为:y=﹣2x﹣2②,联立①②并解得:x=﹣1或0(舍去0),故点P(﹣1,0);②当∠PAB=∠OAB时,当点P在AB上方时,无解;当点P在AB下方时,将△OAB沿AB折叠得到△O′AB,直线OA交x轴于点H、交抛物线为点P,点P为所求,则BO=OB=4,OA=OA=2,设OH=x,则sin∠H=BO OAHB HA'=,即:2444x x=++,解得:x=83,则点H(﹣83,0),.则直线AH的表达式为:y=﹣34x﹣2③,联立①③并解得:x=32,故点P(32,﹣258);③当∠PAB=∠OBA时,当点P在AB上方时,则AH=BH,设OH=a,则AH=BH=4﹣a,AO=2,故(4﹣a)2=a2+4,解得:a=32,故点H(32,0),则直线AH的表达式为:y=43x﹣2④,联立①④并解得:x=0或173(舍去0),故点P (173,509); 当点P 在AB 下方时,同理可得:点P (3,﹣2); 综上,点P 的坐标为:(﹣1,0)或(32,﹣258)或(173,509)或(3,﹣2). 【点睛】本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形、勾股定理的运用等,要注意分类讨论,解题全面.8.已知函数222222(0)114(0)22x ax a x y x ax a x ⎧-+-<⎪=⎨---+≥⎪⎩(a 为常数). (1)若点()1,2在此函数图象上,求a 的值. (2)当1a =-时,①求此函数图象与x 轴的交点的横坐标.②若此函数图象与直线y m =有三个交点,求m 的取值范围.(3)已知矩形ABCD 的四个顶点分别为点()2,0A -,点()3,0B ,点()3,2C ,点()2,2D -,若此函数图象与矩形ABCD 无交点,直接写出a 的取值范围.【答案】(1)1a =或3a =-;(2)①1x =--1x =+;②724m ≤<或21m -<<-;(3)3a <--或1a ≤<-或a >【解析】 【分析】(1)本题根据点(1,2)横坐标大于零,故将点代入对应解析式即可求得a 的取值. (2)①本题将1a =-代入解析式,分别令两个函数解析式y 值为零即可求得函数与x 轴交点横坐标;②本题可求得分段函数具体解析式,继而求得顶点坐标,最后平移直线y m =观察其与图像交点,即可得到答案.(3)本题可根据对称轴所在的位置分三种情况讨论,第一种为当2a <-,将2222y x ax a =-+-函数值与2比大小,将2211422y x ax a =---+与0比大小;第二种为当20a -≤<,2222y x ax a =-+-函数值与0比大小,且该函数与y 轴的交点和0比大小,2211422y x ax a =---+函数值与2比大小,且该函数与y 轴交点与2比大小;第三种为2222y x ax a =-+-与y 轴交点与2比大小,2211422y x ax a =---+与y 轴交点与0比大小.【详解】(1)将()1,2代入2211422y x ax a =---+中,得2112422a a =---+,解得1a =或3a =-.(2)当1a =-时,函数为2221,(0)17(0)22x x x y x x x ⎧+-<⎪=⎨-++≥⎪⎩,①令2210x x +-=,解得1x =--1x =- 令217022x x -++=,解得1x =+或1x =-综上,1x =--1x =+.②对于函数()2210y x x x =+-<,其图象开口向上,顶点为()1,2--; 对于函数217(0)22y x x x =-++≥,其图象开口向下,顶点为()1,4,与y 轴交于点70,2⎛⎫⎪⎝⎭. 综上,若此函数图象与直线y m =有三个交点,则需满足724m ≤<或21m -<<-. (3)2222y x ax a =-+-对称轴为x a =;2211422y x ax a =---+对称轴为x a =-. ①当2a <-时,若使得2222y x ax a =-+-图像与矩形ABCD 无交点,需满足当2x =-时,2222y x ax a =-+-24+422a a =->+,解不等式得0a >或4a ,在此基础上若使2211422y x ax a =---+图像与矩形ABCD 无交点,需满足当3x =时,2221111493422220y x ax a a a =---+=⨯--+<-,解得3a >或3a <--,综上可得:3a <--.②当20a -≤<时,若使得2222y x ax a =-+-图像与矩形ABCD 无交点,需满足2x =-时,2222y x ax a =-+-24+420a a =+-<;当0x =时,22222=20y x ax a a =-+--≤;得2a ≤<,在此基础上若使2211422y x ax a =---+图像与矩形ABCD 无交点,需满足0x =时,2221114=42222y x ax a a ---+->=;3x =时,2221111493422222y x ax a a a =---+=⨯--+>-;求得21a -<<-; 综上:21a -≤<-.③当0a ≥时,若使函数图像与矩形ABCD 无交点,需满足0x =时,22222=22y x ax a a =-+--≥且2221114+40222y x ax a a =---+=-<;求解上述不等式并可得公共解集为:22a >.综上:若使得函数与矩形ABCD 无交点,则322a <--或21a -≤<-或22a >. 【点睛】本题考查二次函数综合,求解函数解析式常用待定系数法,函数含参数讨论时,往往需要分类讨论,分类讨论时需要先选取特殊情况以用来总结规律,继而将规律一般化求解题目.9.如图,直线l :y =﹣3x +3与x 轴,y 轴分别相交于A 、B 两点,抛物线y =﹣x 2+2x +b 经过点B .(1)该抛物线的函数解析式;(2)已知点M 是抛物线上的一个动点,并且点M 在第一象限内,连接AM 、BM ,设点M 的横坐标为m ,△ABM 的面积为S ,求S 与m 的函数表达式,并求出S 的最大值; (3)在(2)的条件下,当S 取得最大值时,动点M 相应的位置记为点M '. ①写出点M '的坐标;②将直线l 绕点A 按顺时针方向旋转得到直线l ',当直线l ′与直线AM '重合时停止旋转,在旋转过程中,直线l '与线段BM '交于点C ,设点B ,M '到直线l '的距离分别为d 1,d 2,当d 1+d 2最大时,求直线l '旋转的角度(即∠BAC 的度数).【答案】(1)2y x 2x 3=-++;(2)21525228S m ⎛⎫=--+ ⎪⎝⎭ ,258;(3)①57,24M ⎛⎫'⎪⎝⎭;②45° 【解析】 【分析】(1)利用直线l 的解析式求出B 点坐标,再把B 点坐标代入二次函数解析式即可求出b 的值.(2)设M的坐标为(m,﹣m2+2m+3),然后根据面积关系将△ABM的面积进行转化.(3)①由(2)可知m=52,代入二次函数解析式即可求出纵坐标的值.②可将求d1+d2最大值转化为求AC的最小值.【详解】(1)令x=0代入y=﹣3x+3,∴y=3,∴B(0,3),把B(0,3)代入y=﹣x2+2x+b并解得:b=3,∴二次函数解析式为:y=﹣x2+2x+3.(2)令y=0代入y=﹣x2+2x+3,∴0=﹣x2+2x+3,∴x=﹣1或3,∴抛物线与x轴的交点横坐标为-1和3,∵M在抛物线上,且在第一象限内,∴0<m<3,令y=0代入y=﹣3x+3,∴x=1,∴A的坐标为(1,0),由题意知:M的坐标为(m,﹣m2+2m+3),∴S=S四边形OAMB﹣S△AOB=S△OBM+S△OAM﹣S△AOB=12×m×3+12×1×(-m2+2m+3)-12×1×3=﹣12(m﹣52)2+258,∴当m=52时,S取得最大值258.(3)①由(2)可知:M′的坐标为(52,74).②设直线l′为直线l旋转任意角度的一条线段,过点M′作直线l1∥l′,过点B作BF⊥l1于点F ,根据题意知:d 1+d 2=BF , 此时只要求出BF 的最大值即可, ∵∠BFM′=90︒,∴点F 在以BM′为直径的圆上, 设直线AM′与该圆相交于点H , ∵点C 在线段BM′上, ∴F 在优弧'BM H 上, ∴当F 与M′重合时, BF 可取得最大值, 此时BM′⊥l 1,∵A (1,0),B (0,3),M′(52,74), ∴由勾股定理可求得:AB 10,M′B 55M′A 85, 过点M′作M′G ⊥AB 于点G , 设BG =x ,∴由勾股定理可得:M′B 2﹣BG 2=M′A 2﹣AG 2, ∴851610﹣x )2=12516﹣x 2,∴x 510cos ∠M′BG ='BG BM =22,∠M′BG= 45︒ 此时图像如下所示,∵l 1∥l′,F 与M′重合,BF ⊥l 1 ∴∠B M′P=∠BCA =90︒, 又∵∠M′BG=∠CBA= 45︒ ∴∠BAC =45︒. 【点睛】本题主要考查了一次函数与二次函数的综合以及一次函数旋转求角度问题,正确掌握一次函数与二次函数性质及综合问题的解法是解题的关键.10.如图,已知二次函数1L :()22311y mx mx m m =+-+≥和二次函数2L :()2341y m x m =--+-()1m ≥图象的顶点分别为M 、N ,与x 轴分别相交于A 、B两点(点A 在点B 的左边)和C 、D 两点(点C 在点D 的左边),(1)函数()22311y mx mx m m =+-+≥的顶点坐标为______;当二次函数1L ,2L 的y值同时随着x 的增大而增大时,则x 的取值范围是_______; (2)判断四边形AMDN 的形状(直接写出,不必证明); (3)抛物线1L ,2L 均会分别经过某些定点; ①求所有定点的坐标;②若抛物线1L 位置固定不变,通过平移抛物线2L 的位置使这些定点组成的图形为菱形,则抛物线2L 应平移的距离是多少? 【答案】(1)()1,41m --+,13x;(2)四边形AMDN 是矩形;(3)①所有定点的坐标,1L 经过定点()3,1-或()1,1,2L 经过定点()5,1-或()1,1-;②抛物线2L 应平移的距离是423+或423-. 【解析】 【分析】(1)将已知抛物线解析式转化为顶点式,直接得到点M 的坐标;结合函数图象填空; (2)利用抛物线解析式与一元二次方程的关系求得点A 、D 、M 、N 的横坐标,可得AD 的中点为(1,0),MN 的中点为(1,0),则AD 与MN 互相平分,可证四边形AMDN 是矩形;(3)①分别将二次函数的表达式变形为1:(3)(1)1L y m x x =+-+和2:(1)(5)1L y m x x =----,通过表达式即可得出所过定点;②根据菱形的性质可得EH 1=EF=4即可,设平移的距离为x ,根据平移后图形为菱形,由勾股定理可得方程即可求解. 【详解】解:(1)12bx a=-=-,顶点坐标M 为(1,41)m --+, 由图象得:当13x 时,二次函数1L ,2L 的y 值同时随着x 的增大而增大.故答案为:(1,41)m --+;13x;(2)结论:四边形AMDN 是矩形.由二次函数21:231(1)L y mx mx m m =+-+和二次函数22:(3)41(1)L y m x m m =--+-解析式可得:A 点坐标为41(1m m ---,0),D 点坐标为41(3m m-+,0), 顶点M 坐标为(1,41)m --+,顶点N 坐标为(3,41)m -,AD ∴的中点为(1,0),MN 的中点为(1,0), AD ∴与MN 互相平分,∴四边形AMDN 是平行四边形,又AD MN =,∴□AMDN 是矩形;(3)①二次函数21:231(3)(1)1L y mx mx m m x x =+-+=+-+,故当3x =-或1x =时1y =,即二次函数21:231L y mx mx m =+-+经过(3,1)-、(1,1)两点,二次函数22:(3)41(1)(5)1L y m x m m x x =--+-=----,故当1x =或5x =时1y =-,即二次函数22:(3)41L y m x m =--+-经过(1,1)-、(5,1)-两点, ②二次函数21:231L y mx mx m =+-+经过(3,1)-、(1,1)两点,二次函数22:(3)41L y m x m =--+-经过(1,1)-、(5,1)-两点,如图:四个定点分别为(3,1)E -、(1,1)F ,(1,1)H -、(5,1)G -,则组成四边形EFGH 为平行四边形,∴FH ⊥HG ,FH=2,HM=4-x ,设平移的距离为x ,根据平移后图形为菱形, 则EH 1=EF=H 1M=4,由勾股定理可得:FH 2+HM 2=FM 2, 即22242(4)x =+-, 解得:423x =±,抛物线1L 位置固定不变,通过左右平移抛物线2L 的位置使这些定点组成的图形为菱形,则抛物线2L 应平移的距离是423+或423-.【点睛】本题考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.三、初三数学 旋转易错题压轴题(难)11.如图1,在Rt ABC △中,90A ∠=︒,AB AC =,点D ,E 分别在边AB ,AC 上,AD AE =,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是_________,位置关系是_________;(2)探究证明:把ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断PMN 的形状,并说明理由;(3)拓展延伸:把ADE 绕点A 在平面内自由旋转,若4=AD ,10AB =,请直接写出PMN 面积的最大值.【答案】(1)PM PN =,PM PN ⊥;(2)等腰直角三角形,见解析;(3)492【解析】 【分析】(1)由三角形中位线定理及平行的性质可得PN 与PM 等于DE 或CE 的一半,又△ABC 为等腰直角三角形,AD=AE ,所以得PN=PM ,且互相垂直;(2)由旋转可推出BAD CAE ∆∆≌,再利用PM 与PN 皆为中位线,得到PM=PN ,再利用角度间关系推导出垂直即可;(3)找到面积最大的位置作出图形,由(2)可知PM=PM ,且PM ⊥PN ,利用三角形面积公式求解即可. 【详解】(1)PM PN =,PM PN ⊥;已知点M ,P ,N 分别为DE ,DC ,BC 的中点,根据三角形的中位线定理可得12PM EC =,12PN BD =,//PM EC ,//PN BD 根据平行线性质可得DPM DCE ∠=∠,NPD ADC ∠=∠ 在Rt ABC ∆中,90A ∠=︒,AB AC =,AD AE = 可得BD EC =,90DCE ADC ∠+∠=︒ 即得PM PN =,PM PN ⊥ 故答案为:PM PN =;PM PN ⊥. (2)等腰直角三角形,理由如下: 由旋转可得BAD CAE ∠=∠, 又AB AC =,AD AE = ∴BAD CAE ∆∆≌∴BD CE =,ABD ACE ∠=∠, ∵点M ,P 分别为DE ,DC 的中点 ∴PM 是DCE ∆的中位线 ∴12PM CE =,且//PM CE , 同理可证12PN BD =,且//PN BD ∴PM PN =,MPD ECD ∠=∠,PNC DBC ∠=∠, ∴MPD ECD ACD ACE ACD ABD ∠=∠=∠+∠=∠+∠,DPN PNC PCN DBC PCN ∠=∠+∠=∠+∠,∴90MPN MPD DPN ACD ABD DBC PCN ABC ACB ∠=∠+∠=∠+∠+∠+∠=∠+∠=︒,即PMN ∆为等腰直角三角形.(3)把ADE ∆绕点A 旋转的如图的位置,此时1()72PN AD AB =+=,1()72PM AE AC =+= 且PN 、PM 的值最长,由(2)可知PM PN =,PM PN ⊥ 所以PMN ∆面积最大值为1497722⨯⨯=. 【点睛】本题主要考查三角形中位线的判定及性质、全等三角形的判定及性质、等腰直角三角形的判定及性质、旋转的性质等相关知识,解题关键在于找到图形中各角度之间的数量关系.12.小明研究了这样一道几何题:如图1,在△ABC 中,把AB 点A 顺时针旋转α (0°<α<180°)得到AB ′,把AC 绕点A 逆时针旋转β得到AC ′,连接B ′C ′.当α+β=180°时,请问△AB ′C ′边B ′C ′上的中线AD 与BC 的数量关系是什么?以下是他的研究过程: 特例验证:(1)①如图2,当△ABC 为等边三角形时,AD 与BC 的数量关系为AD = BC ; ②如图3,当∠BAC =90°,BC =8时,则AD 长为 .猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.拓展应用(3)如图4,在四边形ABCD,∠C=90°,∠A+∠B=120°,BC=12,CD=6,DA=63,在四边形内部是否存在点P,使△PDC与△PAB之间满足小明探究的问题中的边角关系?若存在,请画出点P的位置(保留作图痕迹,不需要说明)并直接写出△PDC的边DC上的中线PQ的长度;若不存在,说明理由.【答案】(1)①12;②4(2) AD=12BC,理由见解析(3)存在,313【解析】【分析】(1)①由已知条件可得AD⊥B′C′,由α+β=180°可得∠BAC+∠B′AC′=180°,已知∠BAC=60°,可求得∠B′AC′=120°继而∠B′=∠C′=30°,可得AD=12AB′=12BC②当∠BAC=90°时,可得∠B′AC′=∠BAC=90°,△B′AC′是直角三角形,可证得△BAC≌△B′AC′,推出对应边相等,已知BC=8求出AD的长.(2)先做辅助线,延长AD到M,使得AD=DM,连接B′M、C′M,如图1所示:因为B′D=DC′,AD=DM,对角线相互平分,可得四边形AC′MB′是平行四边形,得出对应边相等,由∠BAB′+∠CAC′=180°推得∠BAC=∠AB′M,可证明△BAC≌△AB′M,所以BC=AM,AD=12 BC;(3)先做辅助线,作线段BC的垂直平分线交BE于P,即为点P的位置;延长AD交BC的延长线于M,线段BC的垂直平分线交BC于F,连接PA、PD、PC,作△PDC的中线PQ,连接DF交PC于O假设P点存在,再证明理由.根据已知角可得出△DCM是直角三角形,∠MDC=30°,可得出CMDM在;∵CD=6,∠DCM=90°,∠MDC=30°,∠M=90°﹣∠MDC=60°,可求得EM=12 BMDE=EM﹣DM﹣由已知DAAE=DE且BE⊥AD,可得PF是线段BC的垂直平分线,证得PA=PD因为PB=PC,PF∥CD,可求得CF=12BC,利用线段长度可求得∠CDF=60°利用全等三角形判定定理可证得△FCP≌△CFD(AAS),进而证得四边形CDPF是矩形,得∠CDP=90°,∠ADP =60°,可得△ADP是等边三角形,求出DQ、DP,在Rt△PDQ中可求得PQ长度.【详解】(1)①∵△ABC是等边三角形∴AB=BC=AC=AB′=AC′,∠BAC=60°∵DB′=DC′∴AD⊥B′C′∵∠BAB′+∠CAC′=180°∴∠BAC+∠B′AC′=180°∴∠B′AC′=180°﹣∠BAC=180°﹣60°=120°∴∠B′=∠C′=30°∴AD=12AB′=12BC故答案:1 2②∵∠BAB′+∠CAC′=180°∴∠BAC+∠B′AC′=180°∵∠BAC=90°∴∠B′AC′=∠BAC=90°在△BAC和△B′AC′中,''"90"AB ABBAC B ACAC AC=⎧⎪∠=∠=︒⎨⎪=⎩∴△BAC≌△B′AC′(SAS)∴BC=B′C′∵B′D=DC′∴AD=12B′C′=12BC=4(2)AD与BC的数量关系:AD=12BC;理由如下:延长AD到M,使得AD=DM,连接B′M、C′M,如图1所示:∵B′D=DC′,AD=DM,∴四边形AC′MB′是平行四边形,∴∠B′AC′+∠AB′M=180°,AC′=B′M=AC,∵∠BAB′+∠CAC′=180°,∴∠BAC+∠B′AC′=180°,∴∠BAC=∠AB′M,在△BAC和△AB′M中,'''AC B MBAC AB MAB AB=⎧⎪∠=∠⎨⎪=⎩,∴△BAC≌△AB′M(SAS),∴BC=AM,∴AD=12BC;(3)存在;作BE⊥AD于E,作线段BC的垂直平分线交BE于P,即为点P的位置;理由如下:延长AD交BC的延长线于M,线段BC的垂直平分线交BC于F,连接PA、PD、PC,作△PDC的中线PQ,连接DF交PC于O,如图4所示:∵∠A+∠B=120°,∴∠ADC=150°,∴∠MDC=30°,在Rt△DCM中,∵CD=6,∠DCM=90°,∠MDC=30°,∴CM3DM3,∠M=90°﹣∠MDC=60°,在Rt△BEM中,∵∠BEM=90°,BM=BC+CM333,∠MBE=90°﹣∠M=30°,∴EM=12BM3∴DE=EM﹣DM333∵DA3∵BE⊥AD,∴PA=PD,∵PF是线段BC的垂直平分线,∴PB=PC,PF∥CD,在Rt△CDF中,∵CD=6,CF=12 BC∴tan∠CDF=CFCD=6,∴∠CDF=60°,∴∠MDF=∠MDC+∠CDF=30°+60°=90°,∴∠ADF=90°=∠AEB,∴∠CBE=∠CFD,∵∠CBE=∠PCF,∴∠CFD=∠PCF=30°,∵∠CFD+∠CDF=90°,∠PCF+∠CPF=90°,∴∠CPF=∠CDF=60°,在△FCP和△CFD中,CPF CDFPCF CFD CF CF∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△FCP≌△CFD(AAS),∴CD=PF,∵CD∥PF,∴四边形CDPF是矩形,∴∠CDP=90°,∴∠ADP=∠ADC﹣∠CDP=60°,∴△ADP是等边三角形,∴∠APD=60°,∵∠BPF=∠CPF=90°﹣30°=60°,∴∠BPC=120°,∴∠APD+∠BPC=180°,∴△PDC与△PAB之间满足小明探究的问题中的边角关系;在Rt△PDQ中,∵∠PDQ=90°,PD=DADN=12CD=3,∴PQ.【点睛】本题考查了三角形的边旋转的问题,旋转前后边长不变,根据已知角度变化,求得线段之间关系.在证明某点知否存在时,先假设这点存在,能求出相关线段或坐标,即证实存在性.13.如图,在直角坐标系中,已知点A(-1,0)、B(0,2),将线段AB绕点A按逆时针方向旋转90°至AC.(1)点C的坐标为(,);(2)若二次函数的图象经过点C.①求二次函数的关系式;②当-1≤x≤4时,直接写出函数值y对应的取值范围;Z_X_X_K]③在此二次函数的图象上是否存在点P(点C除外),使△ABP是以AB为直角边的等腰直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.【答案】(1) ∴点C的坐标为(-3,1) .(2)①∵二次函数的图象经过点C(-3,1),∴.解得∴二次函数的关系式为②当-1≤x≤4时,≤y≤8;③过点C作CD⊥x轴,垂足为D,i) 当A为直角顶点时,延长CA至点,使,则△是以AB为直角边的等腰直角三角形,过点作⊥轴,∵=,∠=∠,∠=∠=90°,∴△≌△,∴AE=AD=2,=CD=1,∴可求得的坐标为(1,-1),经检验点在二次函数的图象上;ii)当B点为直角顶点时,过点B作直线L⊥BA,在直线L上分别取,得到以AB为直角边的等腰直角△和等腰直角△,作⊥y轴,同理可证△≌△∴BF=OA=1,可得点的坐标为(2, 1),经检验点在二次函数的图象上.同理可得点的坐标为(-2, 3),经检验点不在二次函数的图象上综上:二次函数的图象上存在点(1,-1),(2,1)两点,使得△和△是以AB为直角边的等腰直角三角形.【解析】(1)根据旋转的性质得出C点坐标;(2)①把C点代入求得二次函数的解析式;②利用二次函数的图象得出y的取值范围;③分二种情况进行讨论.14.如图,已知△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE的中点,连接CF,DF.(1)如图1,当点D在AB上,点E在AC上时①证明:△BFC是等腰三角形;。
安徽省马鞍山市当涂县乌溪初级中学2015-2016学年七年级下学期期中考试数学试题(无答案)
乌溪初中2015—2016学年第二学期1.面积为2的正方形的边长是( ) A.整数 B.分数 C.有理数 D.无理数 2.已知a ﹥b ,则下列不等式一定成立的是( ) A.44a b +<+ B.22a b < C.22a b -<- D.0a b -< 3.下列运算正确的是( ) A .36329)3(y x y x -=- B .22()()a b a b a b ++=+ C .442232)21(4y x xy y x -=-⋅ D .235()x x = 4.三个数3π---、、的大小顺序是( )A .-3﹤-π﹤-3 B .-π﹤-3﹤-3 C .-3﹤-3﹤-π D .-3﹤-3﹤-π 5.下列运算正确的是:( ) 0.1=±=10=-10= 6. 计算(-a -b )2等于( ). A .a 2+b 2 B .a 2-b 2 C .a 2+2ab +b 2 D .a 2-2ab +b 2 7. 若(x 2+px+q)(x 2+7)的计算结果中,不含x 2项,则q 的值是( ). A. 0 B. 7 C. -7 D. 8. 关于x 的不等式组23(3)1324x x x x a <-+⎧⎪⎨+>+⎪⎩,有四个整数解,则a 的取值范围是( ).A.11542a -<-≤ B.11542a -<-≤ C.11542a --≤≤ D.11542a -<<- 9. 下列多项式中能.用平方差公式分解因式的是( ). A .12+-x B. mn m 2052- C. 22y x -- D. 22)(b a -+10.下列多项式的分解因式,正确的是( ).A .12xyz -9x 2y 2=3xyz (4-3xy )B .3a 2y -3ay +6y =3y (a 2-a +2)C .-x 2+xy -xz =-x (x 2+y -z )学校______________ 准考证号__________ 班 级______________ 姓 名______________D .a 2b +5ab -b =b (a 2+5a )二、填空题(每题3分,共18分)11.-0.000000259用科学记数法表示为______________________.12.已知a 、b 为两个连续整数,且a < <b ,则a+b=13. 若01222=+-++b b a ,则a =__________,=b _________. 14.642÷82=2n+1,则n=_______.15.不等式2m-1≤6的正整数解是 .16.分解因式x 2+ax+b 时,甲看错了a 的值,分解的结果是(x+6)(x-1),乙看错了b,分解的结果是(x-2)(x+1),那么x 2+ax+b 分解因式正确的结果是 .三、解答题(本大题共7小题,共49分)17.计算(每小题4分,共8分)(1))1(2)14.3(201420-⨯---π (2))3)(3(22a b b a --18.分解因式(每小题4分,共8分)(1)x 3-25x (2) 8a-4a 2-419. 解不等式(组)并在数轴上表示解集(每小题4分,共8分)(1) )1)(5(5)2)(2(+->+-+x x x x (2) ≤ ⎪⎩⎪⎨⎧-->--12134)2(3x x x x20.(本题6分)已知2a-1的平方根是±3,3a+2b+4的立方根是3,求a+b的平方根.21.化简求值(6分)⑴(x2+3x)(x-3)-x(x-2)2+(-x-y)(y-x)其中x=3 y=-2.的值必为6的倍数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1页(共24页) 2015-2016学年安徽省马鞍山市当涂县乌溪中学、博望中学联考九年级(上)期中数学试卷
一、选择题 1.(4分)抛物线y=﹣2x2+1的对称轴是( ) A.直线x= B.直线x=﹣ C.直线x=2 D.y轴
2.(4分)已知(5,﹣1)是双曲线y=(k≠0)上的一点,则下列各点中不在该图象上的是( ) A.(,﹣15) B.(5,1) C.(﹣1,5) D.(10,﹣) 3.(4分)已知x:y=5:2,则下列各式中不正确的是( ) A.= B.= C.= D.= 4.(4分)下列四个函数图象中,当x<0时,函数值y随自变量x的增大而减小的是( )
A. B. C. D. 5.(4分)如图,过点O作直线与双曲线y=(k≠0)交于A、B两点,过点B
作BC⊥x轴于点C,作BD⊥y轴于点D.在x轴,y轴上分别取点E、F,使点A、E、F在同一条直线上,且AE=AF.设图中矩形ODBC的面积为S1,△EOF的面积为S2,则S1、S2的数量关系是( ) 第2页(共24页)
A.S1=S2 B.2S1=S2 C.3S1=S2 D.4S1=S2
6.(4分)已知:如图,在△ABC中,∠ADE=∠C,则下列等式成立的是( )
A.= B.= C.= D.= 7.(4分)如图,△ABC中,AE交BC于点D,∠C=∠E,AD:DE=3:5,AE=8,BD=4,则DC的长等于( )
A. B. C. D. 8.(4分)函数y=﹣2x2﹣8x+m的图象上有两点A(x1,y1),B(x2,y2),若﹣2<x1<x2,则( ) A.y1<y2 B.y1>y2
C.y1=y2 D.y1、y2的大小不确定
9.(4分)将抛物线y=2x2+1的图象向右平移2个单位,再向下平移3个单位,得到的抛物线是( ) A.y=2(x+2)2﹣3 B.y=2(x+2)2﹣2 C.y=2(x﹣2)2﹣3 D.y=2(x﹣2)2﹣2 第3页(共24页)
10.(4分)如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点D是AB上的一个动点(不与A、B两点重合),DE⊥AC于点E,DF⊥BC于点F,点D从靠近点A的某一点向点B移动,矩形DECF的周长变化情况是( )
A.逐渐减小 B.逐渐增大 C.先增大后减小 D.先减小后增大 二、填空题 11.(5分)写出一个开口向下,顶点坐标是(1,﹣2)的二次函数解析式 . 12.(5分)已知二次函数y=﹣x2+4x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+4x+m=0的解为 .
13.(5分)如图,已知:∠ACB=∠ADC=90°,AD=2,CD=,当AB的长为 时,△ACB与△ADC相似.
14.(5分)二次函数y=ax2+bx+c的图象如图所示,以下结论: ①a+b+c=0;②4a+b=0;③abc<0;④4ac﹣b2<0;⑤当x≠2时,总有4a+2b>ax2+bx 其中正确的有 (填写正确结论的序号). 第4页(共24页)
三、 15.(8分)已知a:b:c=2:3:4,且2a+3b﹣2c=10,求a,b,c的值. 16.(8分)已知二次函数y=﹣2x2+4x+6. (1)求该函数图象的顶点坐标. (2)求此抛物线与x轴的交点坐标.
四、 17.(8分)如图,D是△ABC的边AC上的一点,连接BD,已知∠ABD=∠C,AB=6,AD=4,求线段CD的长.
18.(8分)如图,一个运动员推铅球,铅球在点A处出手,出手时铅球离地面约1.6m,铅球落地点在点B处,铅球运行中在运动员前4m(即OC=4)达到最高点,最高点距离地面高度为3.2m,已知铅球经过的路线是抛物线,试在图示的直面坐标系中计算这个运动员的成绩.
五、 19.(10分)李华晚上在两站相距50m的路灯下来回散步,DF=50m.已知李华 第5页(共24页)
身高AB=1.7m,灯柱CD=EF=8.5m. (1)若李华距灯柱CD的距离为DB=xm,他的影子BQ=ym,求y关于x的函数关系式. (2)若李华在两路灯之间行走,则他前后两个影子PB+BQ是否会发生变化?请说明理由.
20.(10分)如图所示,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于C(0,2),若∠ACB=90°,. 试求:(1)A、B两点的坐标; (2)二次函数的表达式.
六、 21.(12分)如图,一次函数y1=﹣x+5与反比例函数y2=的图象交于A(1,m)、B(4,n)两点. (1)求A、B两点的坐标和反比例函数的解析式; (2)根据图象,直接写出当y1>y2时x的取值范围; (3)求△AOB的面积. 第6页(共24页)
七、 22.(12分)某公司生产一种环保产品,需要添加一种新型原料,若每件产品的利润与新型原料价格成一次函数关系,且每件产品的利润y(元)与新型原料的价格x(元/千克)的函数图象如图: (1)当新型原料的价格为600元/千克时,每件产品的利润是多少? (2)新型原料是一种稀少材料,为了珍惜资源,政府部门规定:新型原料每天使用量m(千克)与价格x(元/千克)的函数关系为x=10m+500,且m千克新型原料可生产10m件产品.那么生产300件这种产品,一共可得利润是多少? (3)受生产能力的限制,该公司每天生产这种产品不超过450件,那么在(2)的条件下,该公司每天应生产多少件产品才能获得最大利润?最大利润是多少?
八、 23.(14分)如图,在矩形ABCD中,AB=3,AD=4,P是BC上的任意一点(P与B、C不重合),过点P作AP⊥PE,垂足为P,PE交CD于点E. (1)连接AE,当△APE与≌△ADE时,求BP的长; (2)设BP=x,CE=y,确定y与x的函数关系式; 第7页(共24页)
(3)当x取何值时,AE的长最短,求x的值和AE的长. 第8页(共24页)
2015-2016学年安徽省马鞍山市当涂县乌溪中学、博望中学联考九年级(上)期中数学试卷 参考答案与试题解析
一、选择题 1.(4分)抛物线y=﹣2x2+1的对称轴是( ) A.直线x= B.直线x=﹣ C.直线x=2 D.y轴 【解答】解: ∵y=﹣2x2+1, ∴b=0, ∴其图象关于y轴对称, 故选:D.
2.(4分)已知(5,﹣1)是双曲线y=(k≠0)上的一点,则下列各点中不在该图象上的是( ) A.(,﹣15) B.(5,1) C.(﹣1,5) D.(10,﹣)
【解答】解:因为点(5,﹣1)是双曲线y=(k≠0)上的一点,将(5,﹣1)代入y=(k≠0)得k=﹣5;四个选项中只有B不符合要求:k=5×1≠﹣5. 故选:B.
3.(4分)已知x:y=5:2,则下列各式中不正确的是( ) A.= B.= C.= D.=
【解答】解:A、由合比性质,得=,故A正确; B、由分比性质,得=,故B正确; C、由反比性质,得y:x=2:5.由合比性质,得=,再由反比性质,得=, 第9页(共24页)
故C正确; D、由反比性质,得y:x=2:5.由分比性质,得=.再由反比性质,得=,故D错误; 故选:D.
4.(4分)下列四个函数图象中,当x<0时,函数值y随自变量x的增大而减小的是( )
A. B. C. D. 【解答】解:A、根据函数的图象可知在对称轴的左边y随x的减小而减小;在对称轴的右边y随x的增大而增大,故本选项正确; B、根据函数的图象可知,当x<0时,在对称轴的右侧y随x的增大而减小,在对称轴的左侧y随x的增大而增大,故本选项错误; C、根据函数的图象可知在每个象限内y随x的增大而增大,故本选项错误; D、根据函数的图象可知y随x的增大而增大,故本选项错误; 故选:A.
5.(4分)如图,过点O作直线与双曲线y=(k≠0)交于A、B两点,过点B作BC⊥x轴于点C,作BD⊥y轴于点D.在x轴,y轴上分别取点E、F,使点A、E、F在同一条直线上,且AE=AF.设图中矩形ODBC的面积为S1,△EOF的面积为S2,则S1、S2的数量关系是( ) 第10页(共24页)
A.S1=S2 B.2S1=S2 C.3S1=S2 D.4S1=S2
【解答】解:设A点坐标为(m,﹣n),
过点O的直线与双曲线y=交于A、B两点,则A、B两点关与原点对称,则B的坐标为(﹣m,n); 矩形OCBD中,易得OD=n,OC=m;则S1=mn; 在Rt△EOF中,AE=AF,故A为EF中点, 由中位线的性质可得OF=2n,OE=2m; 则S2=OF×OE=2mn; 故2S1=S2. 故选:B.
6.(4分)已知:如图,在△ABC中,∠ADE=∠C,则下列等式成立的是( )
A.= B.= C.= D.= 【解答】解:∵在△ABC中,∠ADE=∠C,∠A=∠A, ∴△ADE∽△ACB,=.故选C.
7.(4分)如图,△ABC中,AE交BC于点D,∠C=∠E,AD:DE=3:5,AE=8,BD=4,则DC的长等于( )
A. B. C. D.