2020年人教版 八年级数学上册国庆节假期作业:第11章《三角形》基础过关(无答案)

合集下载

2020年秋人教版八年级数学上册第11章随课练:《三角形》

2020年秋人教版八年级数学上册第11章随课练:《三角形》

第11章随课练:《三角形》 一.选择题 1.已知一个三角形的三条边长均为正整数.若其中仅有一条边长为5,且它又不是最短边,则满足条件的三角形个数为( ) A.4 B.6 C.8 D.10 2.若一个多边形的内角和是1080度,则这个多边形的边数为( ) A.6 B.7 C.8 D.10 3.正多边形的一个外角为60°,则这个多边形的边数为( ) A.5 B.6 C.7 D.8 4.有下列长度的线段,不能组成三角形的是( ) A.1cm、2cm、3cm B.2cm、3cm、4cm C.3cm、4cm、5cm D.4cm、5cm、6cm 5.下列各图中,正确画出AC边上的高的是( )

A. B.

C. D. 6.如图,△ABC中,∠C=70°,若沿图中虚线截去∠C,则∠1+∠2=( )

A.360° B.250° C.180° D.140° 7.如图,在△ABC中,∠A=60度,点D,E分别在AB,AC上,则∠1+∠2的大小为多少度( ) A.140 B.190 C.320 D.240 8.如图,在△ABC中,∠ACB=100°,∠A=20°,D是AB上一点,将△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于( )

A.40° B.20° C.55° D.30° 9.如果三角形的三个内角的度数比是2:3:4,则它是( ) A.锐角三角形 B.钝角三角形 C.直角三角形 D.钝角或直角三角形 10.一张△ABC纸片,点M、N分别是AB、AC上的点,若沿直线MN折叠后,点A落在AC边的下面A′的位置,如图所示.则∠1,∠2,∠A之间的数量关系是( )

A.∠1=∠2+∠A B.∠1=2∠2+∠A C.∠1=∠2+2∠A D.∠1=2∠2+2∠A 二.填空题 11.如果将一副三角板按如图方式叠放,那么∠1= .

12.如图,平面内有五个点,以其中任意三个点为顶点画三角形,最多可以画 个三角形. 13.一个多边形的每一个外角为30°,那么这个多边形的边数为 . 14.一个三角形有两边分别为4cm和8cm,则第三边长x的取值范围 . 15.如图,足球图片正中的黑色正五边形的外角和是 °.

2020年秋人教版 八年级上册第11章《三角形》测试卷

2020年秋人教版 八年级上册第11章《三角形》测试卷
21.(7 分)已知,如图,在△ABC 中,AH 平分∠BAC 交 BC 于点 H,D、E 分别在 CA、 BA 的延长线上,DB∥AH,∠D=∠E. (1)求证:DB∥EC; (2)若∠ABD=2∠ABC,∠DAB 比∠AHC 大 5°.求∠D 的度数.
22.(8 分)如图,在△ABC 中,∠A=75°,∠ABC 与∠ACB 的三等分线分别交于点 M、N 两点. (1)求∠BMC 的度数; (2)若设∠A=α,用 α 的式子表示∠BMC 的度数.
A.55°
B.35°
C.45°
D.25°
5.如图,点 E 在四边形 ABCD 的 CD 边的延长线上,若∠ADE=120°,则∠A+∠B+∠C
的度数为( )
A.240°
B.260°
C.300°
D.320°
6.如图,已知在△ABC 中,∠C=90°,BE 平分∠ABC,且 BE∥AD,∠BAD=20°,则
()
A.三角形的稳定性
B.垂线段最短
C.两点之间,线段最短
D.三角形两边之和大于第三边
3.如果线段 AM 和线段 AN 分别是△ABC 边 BC 上的中线和高,那么下列判断正确的是( )
A.AM>AN
B.AM≥AN
C.AM<AN
D.AM≤AN
4.如图,∠A=∠C=90°,AD、BC 交于点 E,∠2=25°,则∠1 的值为( )

三.解答题(共 6 小题,满分 46 分)
19.(7 分)已知△ABC 的周长为 33cm,AD 是 BC 边上的中线,

(1)如图,当 AC=10cm 时,求 BD 的长. (2)若 AC=12cm,能否求出 DC 的长?为什么?

2020年人教版八年级数学上册《第11章三角形》单元测试卷(解析版)

2020年人教版八年级数学上册《第11章三角形》单元测试卷(解析版)

2020年人教版八年级数学上册《第11章三角形》单元测试卷一.选择题(共10小题)1.图中锐角三角形的个数有()个.A.2B.3C.4D.52.如图,AD是△ABC的中线,已知△ABD的周长为22cm,AB比AC长3cm,则△ACD 的周长为()A.19cm B.22cm C.25cm D.31cm3.下列图形中,不是运用三角形的稳定性的是()A.B.C.D.4.已知三角形的两边长分别为2和9,第三边长为正整数,则这样的三角形个数为()A..3B.4C..5D..65.如图,将一副三角板按如图方式叠放,则角α等于()A.165°B.135°C.105°D.75°6.三角形具有稳定性,所以要使如图所示的五边形木架不变形,至少要钉上()根木条.A.1B.2C.3D.47.下列图形中具有稳定性的是()A.正方形B.长方形C.平行四边形D.锐角三角形8.下列说法正确的是()A.对角线相等且互相垂直的四边形是菱形B.对角线互相平分的四边形是正方形C.对角线互相垂直的四边形是平行四边形D.对角线相等且互相平分的四边形是矩形9.如图,足球图片正中的黑色正五边形的内角和是()A.180°B.360°C.540°D.720°10.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为()A.180°B.270°C.360°D.720°二.填空题(共8小题)11.在图中共有个三角形.12.直角三角形中,两锐角的角平分线所夹的锐角是度.13.如图,桥梁拉杆和桥面构成三角形的结构,根据的数学道理.14.三角形一边长为4,另一边长为7,且第三边长为奇数,则第三边的长为.15.三角形具有稳定性,要使一个四边形框架稳定不变形,至少需要钉根木条.16.在下列四个图形中,具有稳定性的是(填序号)①正方形②长方形③直角三角形④平行四边形17.在五边形ABCDE中,若∠A+∠B+∠C+∠D=440°,则∠E=.18.把一块含60°的三角板与一把直尺按如图方式放置,则∠α=度.三.解答题(共8小题)19.用6根火柴能否组成四个一样大的三角形,若能,请说明你的图形.20.(1)如图(1),已知,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠B =30°,∠C=50°.求∠DAE的度数;(2)如图(2),已知AF平分∠BAC,交边BC于点E,过F作FD⊥BC,若∠B=x°,∠C=(x+36)°,①∠CAE=(含x的代数式表示)②求∠F的度数.21.要使四边形木架(用4根木条钉成)不变形,至少要再钉上几根木条?五边形木架和六边形木架呢?22.已知△ABC中,AB=6,BC=4,求AC的取值范围.23.如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上几根木条?要使一个n边形(n≥4)木架在同一平面内不变形,至少还要再钉上几根木条?24.四边形ABCD中,∠A=145°,∠D=75°.(1)如图1,若∠B=∠C,试求出∠C的度数;(2)如图2,若∠ABC的角平分线BE交DC于点E,且BE∥AD,试求出∠C的度数;(3)①如图3,若∠ABC和∠BCD的角平分线交于点E,试求出∠BEC的度数.②在①的条件下,若延长BA、CD交于点F(如图4),将原来条件“∠A=145°,∠D=75°”改为“∠F=40°”,其他条件不变,∠BEC的度数会发生变化吗?若不变,请说明理由;若变化,求出∠BEC的度数.25.如图,五边形ABCDE的每个内角都相等,且∠1=∠2=∠3=∠4.AC与DE平行吗?请说明理由.26.(1)如图①,△OAB、△OCD的顶点O重合,且∠A+∠B+∠C+∠D=180°,则∠AOB+∠COD=°;(直接写出结果)(2)连接AD、BC,若AO、BO、CO、DO分别是四边形ABCD的四个内角的平分线.①如图②,如果∠AOB=110°,那么∠COD的度数为;(直接写出结果)②如图③,若∠AOD=∠BOC,AB与CD平行吗?为什么?2020年人教版八年级数学上册《第11章三角形》单元测试卷参考答案与试题解析一.选择题(共10小题)1.图中锐角三角形的个数有()个.A.2B.3C.4D.5【分析】先找出以A为顶点的锐角三角形的个数,再找出以E为顶点的锐角三角形的个数,然后将两种锐角三角形相加即可.【解答】解:①以A为顶点的锐角三角形△ABC、△ADC共2个;②以E为顶点的锐角三角形:△EDC,共1个;所以图中锐角三角形的个数有2+1=3(个);故选:B.【点评】本题考查了三角形.数三角形的个数,可以按照数线段条数的方法,如果一条线段上有n个点,那么就有条线段,也可以与线段外的一点组成个三角形.2.如图,AD是△ABC的中线,已知△ABD的周长为22cm,AB比AC长3cm,则△ACD 的周长为()A.19cm B.22cm C.25cm D.31cm【分析】根据题意得到AB=AC+3,根据中线的定义得到BD=DC,根据三角形的周长公式计算即可.【解答】解:由题意得,AB=AC+3,∵AD是△ABC的中线,∴BD=DC,∵△ABD的周长为22,∴AB+BD+AD=AC+3+DC+AD=22,则AC+DC+AD=19,∴△ACD的周长=AC+DC+AD=19(cm),故选:A.【点评】本题考查的是三角形的中线,三角形一边的中点与此边所对顶点的连线叫做三角形的中线.3.下列图形中,不是运用三角形的稳定性的是()A.B.C.D.【分析】利用三角形的稳定性进行解答.【解答】解:伸缩门是利用了四边形的不稳定性,A、B、D都是利用了三角形的稳定性.故选:C.【点评】本题考查了三角形的稳定性在实际生活中的应用问题,关键是分析能否在同一平面内组成三角形.4.已知三角形的两边长分别为2和9,第三边长为正整数,则这样的三角形个数为()A..3B.4C..5D..6【分析】根据三角形的三边关系:三角形两边之和大于第三边,两边差小于第三边;解答即可.【解答】解:设第三边长为x,由题意可得9﹣2<x<9+2,解得7<x<11,故x为8、9、10,这样的三角形个数为3.故选:A.【点评】本题考查了三角形的三边关系:三角形两边之和大于第三边,两边差小于第三边;牢记三角形的三边关系是解答的关键.5.如图,将一副三角板按如图方式叠放,则角α等于()A.165°B.135°C.105°D.75°【分析】根据三角形内角和定理求出∠1,根据三角形外角的性质求出∠2,根据邻补角的概念计算即可.【解答】解:∠1=90°﹣30°﹣60°,∴∠2=∠1﹣45°=15°,∴∠α=180°﹣15°=165°,故选:A.【点评】本题考查的是三角形内角和定理和三角形的外角的性质,掌握三角形内角和等于180°是解题的关键.6.三角形具有稳定性,所以要使如图所示的五边形木架不变形,至少要钉上()根木条.A.1B.2C.3D.4【分析】三角形具有稳定性,所以要使五边形木架不变形需把它分成三角形,即过六边形的一个顶点作对角线,有几条对角线,就至少要钉上几根木条.【解答】解:过五边形的一个顶点作对角线,有5﹣3=2条对角线,所以至少要钉上2根木条.故选:B.【点评】本题考查了三角形具有稳定性,是基础题,作出图形更形象直观.7.下列图形中具有稳定性的是()A.正方形B.长方形C.平行四边形D.锐角三角形【分析】根据三角形具有稳定性解答.【解答】解:正方形,长方形,平行四边形,锐角三角形中只有锐角三角形具有稳定性.故选:D.【点评】本题考查了三角形的稳定性,是基础题,需熟记.8.下列说法正确的是()A.对角线相等且互相垂直的四边形是菱形B.对角线互相平分的四边形是正方形C.对角线互相垂直的四边形是平行四边形D.对角线相等且互相平分的四边形是矩形【分析】利用多边形对角线的性质,分析四个选项即可得出结论.【解答】解:利用排除法分析四个选项:A、菱形的对角线互相垂直且平分,故A错误;B、对角线互相平分的四边形式应该是平行四边形,故B错误;C、对角线互相垂直的四边形并不能断定为平行四边形,故C错误;D、对角线相等且互相平分的四边形是矩形,故D正确.故选:D.【点评】本题考查了多变形对角线的性质,解题的关键是牢记各特殊图形对角线的性质即可解决该题.9.如图,足球图片正中的黑色正五边形的内角和是()A.180°B.360°C.540°D.720°【分析】根据多边形内角和公式(n﹣2)×180°即可求出结果.【解答】解:黑色正五边形的内角和为:(5﹣2)×180°=540°,故选:C.【点评】本题考查了多边形的内角和公式,解题关键是牢记多边形的内角和公式.10.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为()A.180°B.270°C.360°D.720°【分析】根据三角形外角的性质和四边形内角和等于360°可得∠A+∠B+∠C+∠D+∠E+∠F的度数.【解答】解:如图,∵∠1=∠A+∠C,∠2=∠B+∠F,∠1+∠2+∠D+∠E=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故选:C.【点评】此题考查三角形的内角和,角的和与差,掌握三角形的内角和定理是解决问题的关键.二.填空题(共8小题)11.在图中共有8个三角形.【分析】按照从左到右的顺序,分单个的三角形和复合的三角形找出所有的三角形,然后再计算个数.【解答】解:三角形有:△ACE、△CDE、△DEF、△BCD,△CDF、△ACD、△BCE、△ACB,共8个.故答案为:8.【点评】考查了三角形,本题难点在于找出复合三角形的个数,按照一定的顺序找即可做到不重不漏.12.直角三角形中,两锐角的角平分线所夹的锐角是45度.【分析】根据△ACB为Rt△,利用三角形内角和定理求出∠CAB+∠ABC=90°,再利用角平分线的性质即可求出两锐角的角平分线所夹的锐角的度数.【解答】解:如图所示△ACB为Rt△,AD,BE,分别是∠CAB和∠ABC的角平分线,AD,BE相交于一点F.∵∠ACB=90°,∴∠CAB+∠ABC=90°∵AD,BE,分别是∠CAB和∠ABC的角平分线,∴∠FAB+∠FBA=∠CAB+∠ABC=45°.故答案为:45.【点评】此题主要考查学生对三角形内角和定理和角平分线的性质等知识点的理解和掌握,此题难度不大,要求学生应熟练掌握.13.如图,桥梁拉杆和桥面构成三角形的结构,根据的数学道理三角形具有稳定性.【分析】根据三角形的三边一旦确定,则形状大小完全确定,即三角形的稳定性作答.【解答】解:桥梁拉杆和桥面构成三角形的结构,根据的数学道理三角形具有稳定性.故答案为:三角形具有稳定性.【点评】本题考查三角形的稳定性在实际生活中的应用问题,是基础题型.14.三角形一边长为4,另一边长为7,且第三边长为奇数,则第三边的长为5,7,9.【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边.即可求解.【解答】解:第三边的取值范围是大于3而小于11,又第三边长为奇数,故第三边的长为5,7,9.故答案为:5,7,9.【点评】考查了三角形的三边关系:两边之和大于第三边,两边之差小于第三边.还要注意第三边长为奇数这一条件.15.三角形具有稳定性,要使一个四边形框架稳定不变形,至少需要钉1根木条.【分析】根据三角形的稳定性可得答案.【解答】解:如图所示:要使这个木架不变形,他至少还要再钉上1个木条,故答案为:1【点评】此题主要考查了三角形的稳定性,关键是掌握当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.16.在下列四个图形中,具有稳定性的是③(填序号)①正方形②长方形③直角三角形④平行四边形【分析】根据三角形具有稳定性对各图形分析后解答.【解答】解:在下列四个图形中,具有稳定性的是三角形.故答案为:③【点评】本题主要考查了三角形具有稳定性的性质,是基础题,但容易出错.17.在五边形ABCDE中,若∠A+∠B+∠C+∠D=440°,则∠E=100°.【分析】首先利用多边形的外角和定理求得正五边形的内角和,然后减去已知四个角的和即可.【解答】解:正五边形的内角和为(5﹣2)×180°=540°,∵∠A+∠B+∠C+∠D=440°,∴∠E=540°﹣440°=100°,故答案为:100°.【点评】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.18.把一块含60°的三角板与一把直尺按如图方式放置,则∠α=120度.【分析】三角板中∠B=90°,三角板与直尺垂直,再用四边形的内角和减去∠A、∠B、∠ACD即得∠α的度数.【解答】解:如图:∵在四边形ABCD中,∠A=60°,∠B=90°,∠ACD=90°,∴∠α=360°﹣∠A﹣∠B﹣∠ACD=360°﹣60°﹣90°﹣90°=120°,故答案为:120.【点评】本题主要考查了多边形的内角和.关键是得出用四边形的内角和减去∠A、∠B、∠ACD即得∠α的度数.三.解答题(共8小题)19.用6根火柴能否组成四个一样大的三角形,若能,请说明你的图形.【分析】用6根火柴能组成四个一样大的三角形,把六根火柴棒组合成一个正三棱锥即可.【解答】解:首先用3根火柴棒拼成一个等边三角形,然后用3根火柴棒与原来的3根火柴棒组合成三棱锥,因为三棱锥有4个面,每个面都是一样大小的三角形,所以用6根火柴能组成四个一样大的三角形.【点评】此题主要考查了空间想象能力的应用,以及正三棱锥的特征和应用,要熟练掌握.20.(1)如图(1),已知,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠B =30°,∠C=50°.求∠DAE的度数;(2)如图(2),已知AF平分∠BAC,交边BC于点E,过F作FD⊥BC,若∠B=x°,∠C=(x+36)°,①∠CAE=72°﹣x°(含x的代数式表示)②求∠F的度数.【分析】(1)先根据三角形内角和得到∠CAB=180°﹣∠B﹣∠C=100°,再根据角平分线与高线的定义得到∠CAE=∠CAB=50°,∠ADC=90°,则∠CAD=90°﹣∠C =40°,然后利用∠DAE=∠CAE﹣∠CAD计算即可;(2)根据题意可知∠B=x°,∠C=(x+36)°,根据三角形的内角和定理可知∠ADC+∠DAC+∠C=180°,∠ADC=∠B+∠BAF,根据角平分线的性质,可知∠EAC=∠BAF,可得出∠ADC的度数,再根据FD⊥BC,可得出∠F的度数.【解答】解:(1)∵∠B=30°,∠C=50°,∴∠CAB=180°﹣∠B﹣∠C=100°,∵AD是△ABC角平分线,∴∠CAE=∠CAB=50°,∵AE分别是△ABC的高,∴∠ADC=90°,∴∠CAD=90°﹣∠C=40°,∴∠DAE=∠CAE﹣∠CAD=50°﹣40°=10°;(2)①∵∠B=x°,∠C=(x+36)°,AF平分∠BAC,∴∠EAC=∠BAF,∴∠CAE=[180°﹣x°﹣(x+36)°]=72°﹣x°,②∠AEC=∠BAE+∠B=72°,∵FD⊥BC,∴∠F=18°.【点评】本题考查的是三角形的角平分线、中线和高以及三角形内角和定理,掌握三角形的角平分线、中线和高的概念,正确运用数形结合思想是解题的关键.21.要使四边形木架(用4根木条钉成)不变形,至少要再钉上几根木条?五边形木架和六边形木架呢?【分析】根据三角形的稳定性解答.【解答】解:如图,根据三角形的稳定性可知,要使四边形木架不变形,至少要再钉上1根木条,要使五边形木架不变形,至少要再钉上2根木条,要使六边形木架不变形,至少要再钉上3根木条.【点评】本题考查的是三角形的稳定性,当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.22.已知△ABC中,AB=6,BC=4,求AC的取值范围.【分析】根据三角形的第三边应大于两边之差,而小于两边之和进行分析求解.【解答】解:根据三角形的三边关系,得6﹣4<AC<6+4,∴2<AC<10.AC的取值范围是:2<AC<10.【点评】本题考查了求三角形第三边的范围,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.23.如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上几根木条?要使一个n边形(n≥4)木架在同一平面内不变形,至少还要再钉上几根木条?【分析】从一个多边形的一个顶点出发,能做(n﹣3)条对角线,把三角形分成(n﹣2)个三角形.【解答】解:根据三角形的稳定性,要使六边形木架不变形,至少再钉上3根木条;要使一个n边形木架不变形,至少再钉上(n﹣3)根木条.【点评】本题考查了多边形以及三角形的稳定性;掌握从一个顶点把多边形分成三角形的对角线条数是n﹣3.24.四边形ABCD中,∠A=145°,∠D=75°.(1)如图1,若∠B=∠C,试求出∠C的度数;(2)如图2,若∠ABC的角平分线BE交DC于点E,且BE∥AD,试求出∠C的度数;(3)①如图3,若∠ABC和∠BCD的角平分线交于点E,试求出∠BEC的度数.②在①的条件下,若延长BA、CD交于点F(如图4),将原来条件“∠A=145°,∠D=75°”改为“∠F=40°”,其他条件不变,∠BEC的度数会发生变化吗?若不变,请说明理由;若变化,求出∠BEC的度数.【分析】(1)先根据四边形内角和等于360°求出∠B+∠C的度数,再除以2即可求解;(2)先根据平行线的性质得到∠ABE的度数,再根据角平分线的定义得到∠ABC的度数,再根据四边形内角和等于360°求出∠BEC的度数;(3)①先根据四边形内角和等于360°求出∠ABC+∠BCD的度数,再根据角平分线的定义得到∠EBC+∠ECB的度数,再根据三角形内角和等于180°求出∠BEC的度数;②先根据三角形内角和等于180°求出∠FBC+∠BCF的度数,再根据角平分线的定义得到∠EBC+∠ECB的度数,再根据三角形内角和等于180°求出∠BEC的度数【解答】解:(1)∵四边形ABCD中,∠A=145°,∠D=75°,∴∠B+∠C=360°﹣(145°+75°)=140°,∵∠B=∠C,∴∠C=70°;(2)∵BE∥AD,∴∠ABE=180°﹣∠A=180°﹣145°=35°,∵∠ABC的角平分线BE交DC于点E,∴∠ABC=70°,∴∠C=360°﹣(145°+75°+70°)=70°;(3)①∵四边形ABCD中,∠A=145°,∠D=75°,∴∠B+∠C=360°﹣(145°+75°)=140°,∵∠ABC和∠BCD的角平分线交于点E,∴∠EBC+∠ECB=70°,∴∠BEC=180°﹣70°=110°;②不变.∵∠F=40°,∴∠FBC+∠BCF=180°﹣40°=140°,∵∵∠ABC和∠BCD的角平分线交于点E,∴∠EBC+∠ECB=70°,∴∠BEC=180°﹣70°=110°.【点评】本题考查了多边形内角与外角,解决的关键是综合运用四边形的内角和以及三角形的内角和、熟练运用平行线的性质和角平分线的定义.25.如图,五边形ABCDE的每个内角都相等,且∠1=∠2=∠3=∠4.AC与DE平行吗?请说明理由.【分析】由五边形ABCDE的内角都相等,先求出五边形的每个内角度数,再求出∠1=∠2=∠3=∠4=36°,从而求出∠CAD=108°﹣72°=36°,得出内错角相等,可得两直线平行.【解答】答:AC∥DE,理由:∵五边形ABCDE的内角和=540°,且每个内角都相等.∴∠B=∠BAE=∠E=108°.∵∠1=∠2=∠3=∠4.∴∠1=∠2=∠3=∠4==36°,∴∠CAD=108°﹣36°×2=36°,∴∠CAD=∠4,∴AC∥DE.【点评】本题主要考查了平行线的判定、正五边形的内角和以及正五边形的有关性质.解此题的关键是能够求出∠1=∠2=∠3=∠4=36°,和正五边形的每个内角是108°.26.(1)如图①,△OAB、△OCD的顶点O重合,且∠A+∠B+∠C+∠D=180°,则∠AOB+∠COD=180°;(直接写出结果)(2)连接AD、BC,若AO、BO、CO、DO分别是四边形ABCD的四个内角的平分线.①如图②,如果∠AOB=110°,那么∠COD的度数为70°;(直接写出结果)②如图③,若∠AOD=∠BOC,AB与CD平行吗?为什么?【分析】(1)根据三角形内角和解答即可;(2)①由四边形的内角和为360°以及角平分线的定义可得∠AOB+∠COD=180°,据此解答即可;②由①得∠AOB+∠COD=180°,从而得出∴∠ADO+∠BOD=180°,可得∠AOD=∠BOC=90°,进而得出∠DAB+∠ADC=180°,可得AB∥CD.【解答】解:(1)∵∠AOB+∠COD+∠A+∠B+∠C+∠D=180°×2=360°,∠A+∠B+∠C+∠D=180°,∴∠AOB+∠COD=360°﹣180°=180°.故答案为180;(2)①∵AO、BO、CO、DO分别是四边形ABCD的四个内角的平分线,∴,,,,∴∠OAB+∠OBA+∠OCD+∠ODC=,在四边形ABCD中,∠DAB+∠CBA+∠BCD+∠ADC=360°,∴∠OAB+∠OBA+∠OCD+∠ODC=,在△OAB中,∠OAB+∠OBA=180°﹣∠AOB,在△OCD中,∠OCD+∠ODC=180°﹣∠COD,∴180°﹣∠AOB+180°﹣∠COD=180°,∴∠AOB+∠COD=180°;∵∠AOB=110°,∴∠COD=180°﹣110°=70°.故答案为:70°;②AB∥CD,理由如下:∵AO、BO、CO、DO分别是四边形ABCD的四个内角的平分线,∴,,,,∴∠OAB+∠OBA+∠OCD+∠ODC=,在四边形ABCD中,∠DAB+∠CBA+∠BCD+∠ADC=360°,∴∠OAB+∠OBA+∠OCD+∠ODC=,在△OAB中,∠OAB+∠OBA=180°﹣∠AOB,在△OCD中,∠OCD+∠ODC=180°﹣∠COD,∴180°﹣∠AOB+180°﹣∠COD=180°,∴∠AOB+∠COD=180°;∴∠ADO+∠BOD=360°﹣(∠AOB+∠COD)=360°﹣180°=180°,∵∠AOD=∠BOC,∴∠AOD=∠BOC=90°.在∠AOD中,∠DAO=∠ADO=180°﹣∠AOD=180°﹣90°=90°,∵,,∴,∴∠DAB+∠ADC=180°,∴AB∥CD.【点评】此题考查了三角形内角和定理、三角形外角的性质、平行线的性质以及角平分线的定义,掌握角平分线的性质和等量代换是解决问题的关键.。

2020年人教版八年级上册第11章《三角形》单元测试题 含答案

2020年人教版八年级上册第11章《三角形》单元测试题  含答案

2020年人教版八年级上册第11章《三角形》单元测试题满分:120分姓名:___________班级:___________学号:___________题号一二三总分得分一.选择题(共10小题,满分30分,每小题3分)1.下列图形具有稳定性的是()A.锐角三角形B.正方形C.五边形D.六边形2.下列关于三角形的分类,有如图所示的甲、乙两种分法,则()A.甲、乙两种分法均正确B.甲分法正确,乙分法错误C.甲分法错误,乙分法正确D.甲、乙两种分法均错误3.画△ABC中BC边上的高,下列画法中正确的是()A.B.C.D.4.在三角形中,交点一定在三角形内部的有()①三角形三条高的交点;②三角形三条中线的交点;③三角形的三条内角平分线的交点.A.①②③B.②③C.①③D.①②5.如图,△BAC的外角∠CAE为120°,∠C=80°,则∠B为()A.60°B.40°C.30°D.45°6.三角形两条边的长分别是2和8,且第三条边的长是偶数,则第三边的长是()A.4B.6C.8D.107.下列说法正确的是()A.四边形的内角和大于它的外角和B.三角形中至少有一个内角不小于90°C.一个多边形中,锐角最多有三个D.每一个外角都等于15°的多边形是二十六边形8.如图,∠A=∠C=90°,AD、BC交于点E,∠2=25°,则∠1的值为()A.55°B.35°C.45°D.25°9.如图,∠ACD是△ABC的外角,∠BAC=80°,∠ABC和∠ACD的平分线相交于点E,连接AE,则∠CAE的度数是()A.35°B.40°C.50°D.55°10.如图,四边形ABCD中,过点A的直线l将该四边形分割成两个多边形,若这两个多边形的内角和分别为α和β,则α+β的度数是()A.360°B.540°C.720°D.900°二.填空题(共8小题,满分32分,每小题4分)11.各边相等、各角也相等的多边形叫做.12.如图,6根钢管交接成六边形钢架ABCDEF,要使钢架稳定且不能活动,最少还需根钢管.13.在Rt△ABC中,如果一个锐角为60°,那么另一个锐角为.14.如图,AD是△ABC的中线,已知△ABD的周长为25cm,AB比AC长6cm,则△ACD 的周长为cm.15.一个n边形的内角和是它外角和的两倍,那么该多边形是边形.16.如图,AD,CD分别平分∠BAC和∠ACB,若∠ADC=110°,那么∠B=.17.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A=.18.三条线段a=6,b=3,c为整数,由a,b,c为边组成的三角形共有个.三.解答题(共7小题,满分58分)19.(7分)判断下列各组线段是否能组成三角形.(1)a=3.2cm,b=2.1cm,c=5cm;(2)a=2cm,b=2cm,c=4cm;(3)a=1cm,b=4cm,c=4cm.20.(7分)如图,AE,DE分别平分∠BAC和∠BDC,∠B=∠BDC=45°,∠C=51°,求∠E的度数.21.(8分)根据条件画图,并回答问题:(1)画一个锐角△ABC(三边均不相等);(2)作出BC边上的中线AE和高AD;(3)写出两个以AD为高的三角形.22.(8分)如图,BD,CE分别是△ABC的高,BD和CE相交于O.(1)图中有哪几个直角三角形?(2)图中有与∠2相等的角吗?请说明理由;(3)若∠A=55°,∠ACB=65°,求∠3,∠4和∠5的度数.23.(8分)如图,AD、AE分别是△ABC的高和角平分线,∠B=50°,∠ACB=80°.点F在BC的延长线上,FG⊥AE,垂足为H,FG与AB相交于点G.(1)求∠AGF的度数;(2)求∠DAE的度数.24.(10分)(1)如图1,四边形ABCD中,∠ABC和∠BCD的平分线交于点P,已知∠A+∠D=140°,求∠P的度数;(2)如图2,在四边形ABCD中,∠ABC和∠ADC外角的三等分线交于点P,已知∠ABC =3∠ABP,∠ADE=3∠ADP,请写出∠A、∠C与∠P的数量关系,并证明;(3)如图3,E在CD边的延长线上,F在AD边的延长线上,∠BAD和∠DEF的平分线交于点P,请直接写出∠B、∠C、∠F、∠P的数量关系:.25.(10分)探究与发现:【探究一】我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图①,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD 的数量关系,并证明你探究的数量关系.【探究二】三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图②,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠A与∠P的数量关系,并证明你探究的数量关系.【探究三】若将△ADC改成任意四边形ABCD呢?已知:如图③,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论直接写出∠A+∠B与∠P的数量关系.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:A、锐角三角形具有稳定性,故此选项正确;B、正方形不具有稳定性,故此选项错误;C、五边形不具有稳定性,故此选项错误;D、六边形不具有稳定性,故此选项错误;故选:A.2.解:甲正确的分类应该为,乙分法正确;故选:C.3.解:表示△ABC中BC边上的高的是D选项.故选:D.4.解:①三角形三条高的交点可能在内部,可能在外部,还可能是直角顶点,个①错误;②三角形三条中线的交点在三角形内部,故②正确;③三角形的三条内角平分线的交点在三角形内部,故③正确.故选:B.5.解:由三角形的外角性质得:∠CAE=∠B+∠C,∴∠B=∠CAE﹣∠C=120°﹣80°=40°;故选:B.6.解:8﹣2<第三边<8+2,即:6<第三边<10;∵第三边为偶数,∴第三边为8,故选:C.7.解:A、∵四边形的内角和等于它的外角和,∴选项A不符合题意;B∵三角形中,锐角最多有三个,∴选项B不符合题意;C、∵一个多边形中,锐角最多有三个,∴选项C符合题意;D、∵每一个外角都等于15°的多边形是二十四边形,∴选项D不符合题意;故选:C.8.解:∵∠2=∠A﹣∠AEB=90°﹣∠AEB,∠1=∠C﹣∠AEB=90°﹣∠CED,又∵∠AEB=∠CED,∴∠1=∠2=25°.故选:D.9.解:∵∠BAC=80°,∴∠ABC+∠BCA=180°﹣80°=100°,∴∠BAC的外角=100°,∵∠ABC和∠ACD的平分线相交于点E,∴∠CAE=50°,故选:C.10.解:如图:四边形ABCE的内角和为:(4﹣2)×180°=360°,△ADE的内角和为180°,∴α+β=360°+180°=540°.故选:B.二.填空题(共8小题,满分32分,每小题4分)11.解:各边相等、各角也相等的多边形叫做正多边形;故答案为:正多边形.12.解:根据三角形的稳定性,得如图:从图中可以看出,要使框架稳固且不活动,至少还需要添3根钢管.13.解:∵一个锐角为60°,∴另一个锐角为90°﹣60°=30°.故答案为:30°.14.解:∵AD是BC边上的中线,∴BD=CD,∴△ABD和△ACD周长的差=(AB+BD+AD)﹣(AC+AD+CD)=AB﹣AC,∵△ABD的周长为25cm,AB比AC长6cm,∴△ACD周长为:25﹣6=19cm.故答案为19.15.解:根据题意,得(n﹣2)•180°=720°,解得:n=6,故答案为:六.16.解:∵在△ABC中,∠ADC=110°,∴∠DAC+∠DCA=180°﹣∠ADC=180°﹣110°=70°,∵AD、CD分别平分∠BAC,∠ACB,∴∠BAC+∠BCA=2(∠DAC+∠DCA)=2×70°=140°,∵∠B+∠BAC+∠BCA=180°,∴∠B=180°﹣140°=40°,故答案为:40°.17.解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠ABC=2∠ABP,∠ACM=2∠ACP,又∵∠ABP=20°,∠ACP=50°,∴∠ABC=2×20°=40°,∠ACM=2×50°=100°,∴∠A=∠ACM﹣∠ABC=60°,故答案为60°.18.解:根据三角形的三边关系知c的取值范围是:3<c<9,又c的值为整数,因而c的值可以是:4、5、6、7、8共5个数,因而由a、b、c为边可组成5个三角形.故答案为:5.三.解答题(共7小题,满分58分)19.解:(1)3.2+2.1>5,因而能构成三角形;(2)2+2=4,因而不能组成三角形;(3)1+4>4,4﹣1<4,因而可以组成三角形.20.解:∵∠B=∠BDC=45°,∴AB∥CD,∵∠C=51°,∴∠BAC=∠C=51°,∵AE,DE分别平分∠BAC和∠BDC,∴∠BAE=BAC=,∠EDB=BDC=,∵∠AFB=∠DFE,∴∠E=∠B+∠BAE﹣∠BDE=45°+﹣=48°.21.解:(1)如图所示:△ABC即为所求的三角形.(2)如图所示,过点A作AD⊥BC于点D,AD即为BC边上的高线;取BC的中点E,连接AE,线段AE即为BC边上的中线;(3)如图所示,以AD为高的三角形可以是:△ABC、△ABD.22.解:(1)∵BD,CE分别是△ABC的高,∴∠ADB=∠CDB=∠AEC=∠BEC=90°,∴图中有6个直角三角形,分别为△ABD、△CBD、△ACE、△BCE、△OBE、△OCD;(2)图中有与∠2相等的角为∠1,理由如下:∵∠2+∠A=90°,∠1+∠A=90°,∴∠1=∠2;(3)∵∠CDB=90°,∠ACB=65°,∴∠3=90°﹣∠ACB=90°﹣65°=25°,∵∠A=55°,∠ACB=65°,∴∠ABC=180°﹣∠A﹣∠ACB=180°﹣55°﹣65°=60°,∵∠BEC=90°,∴∠4=90°﹣∠ABC=30°,∴∠5=∠BOC=180°﹣∠3﹣∠4=180°﹣25°﹣30°=125°.23.解:(1)∵∠B=50°,∠ACB=80°,∴∠BAC=180°﹣50°﹣80°=50°,∵AE是∠BAC的角平分线,∴∠BAE=,∵FG⊥AE,∴∠AHG=90°,∴∠AGF=180°﹣90°﹣25°=65°;(2)∵AD⊥BC,∴∠ADB=90°,∵∠AED=∠B+∠BAE=50°+25°=75°,∴∠DAE=180°﹣∠AED﹣∠ADE=15°.24.解:(1)∵∠A+∠ABC+∠BCD+∠D=360°,且∠A+∠D=140°,∴∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣140°=220°,∵PB,PC分别是∠ABC和∠BCD的平分线,∴∠PBC+∠PCB=110°,∴∠P=180°﹣(∠PBC+∠PCB)=180°﹣110°=70°;(2)设∠ABP=x,∠ADP=y,则∠ABC=3x,∠ADE=3y,由“8”字形可得∠A+x=∠P+y,∴x﹣y=∠F﹣∠P,∵∠A+3x+∠C+180°﹣3y=360°,∴∠A+3(∠P﹣∠A)+∠C=180°,∴3∠P﹣2∠A+∠C=180°;(3)设∠BAP=∠F AP=x,∠CEP=∠FEP=y,由“8”字形可得∠P+x=∠F+y,∴x﹣y=∠F﹣∠P,∵∠ADC=360°﹣∠B﹣∠C﹣2x=∠EDF=180°﹣∠F﹣2y,∴180°﹣∠B﹣∠C﹣2x+2y+∠F=0,即180°﹣∠B﹣∠C﹣2(∠F﹣∠P)+∠F=0∴∠F+∠B+C﹣2∠P=180°.25.解:探究一:∠FDC+∠ECD=180°+∠A.理由如下:∵∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,∴∠FDC+∠ECD=∠A+∠ACD+∠A+∠ADC=180°+∠A;探究二:∵DP、CP分别平分∠ADC和∠ACD,∴∠PDC=∠ADC,∠PCD=∠ACD,∴∠DPC=180°﹣∠PDC﹣∠PCD,=180°﹣∠ADC﹣∠ACD,=180°﹣(∠ADC+∠ACD),=180°﹣(180°﹣∠A),=90°+∠A;探究三:∵DP、CP分别平分∠ADC和∠BCD,∴∠PDC=∠ADC,∠PCD=∠BCD,∴∠P=180°﹣∠PDC﹣∠PCD=180°﹣∠ADC﹣∠BCD=180°﹣(∠ADC+∠BCD)=180°﹣(360°﹣∠A﹣∠B)=(∠A+∠B).即2∠P=∠B+∠A.故答案为:2∠P=∠B+∠A.。

人教版2020年八年级上册第11章《三角形》达标检测卷(含答案)

人教版2020年八年级上册第11章《三角形》达标检测卷(含答案)

八年级上册第11章《三角形》达标检测卷满分120分 姓名:_______班级:_______考号:_______成绩:________一、选择题(满分30分)1.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C .D . 2.下列各组线段中,能组成三角形的是( )A .a =3 cm ,b =8 cm ,c =5 cmB .a =5 cm ,b =5 cm ,c =10 cmC .a =12 cm ,b =5 cm ,c =6 cmD .a =15 cm ,b =10 cm ,c =7 cm3.如图,在生活中,我们经常会看见如图所示的情况,在电线杆上拉两条钢筋,来加固电线杆,这是利用了三角形的( )A .稳定性B .灵活性C .对称性D .全等性4.在△ABC 中,若一个内角等于另两个内角的差,则这个三角形必定是( ) A .锐角三角形B .直角三角形C .钝角三角形D .以上三个都是5.如图,∠C=50°,∠B=30°,则∠CAD 的度数是A .80°B .90°C .100°D .110°6.下列多边形中,对角线是5条的多边形是( )A .四边形B .五边形C .六边形D .七边形7.已知a b c 、、是ABC ∆的三边长,化简a b c b a c +----的值是( )A .2c -B .22b c -C .22a c -D .22a b -8.如图,△ABC 的面积为8,AD 为BC 边上的中线,E 为AD 上任意一点,连接BE ,CE ,图中阴影部分的面积为()A.2 B.3 C.4 D.59.已知一个正多边形的一个外角是72︒,则该正多边形的边数为()A.9 B.4 C.5 D.π10.如图,过正六边形ABCDEF的顶点B作一条射线与其内角∠BAF的角平分线相交于点P,且∠APB=40°,则∠CBP的度数为()A.80°B.60°C.40°D.30°二、填空题(满分32分)11.如果三角形的两边长为1和5,第三边长为整数,那么三角形的周长为_____.12.如图,已知△ABC的周长为27cm,AC=9cm,BC边上中线AD=6cm,△ABD周长为19cm,AB=__________13.如图,已知AE∥BD,∠1=126°,∠2=40°,则∠C=__________°.14.已知一个正多边形的内角和是外角和的3倍,那么这个正多边形的每个内角是_____度.15.如图:在△ABC中,∠ABC,∠ACB的平分线交于点O,若∠BOC=132°,则∠A等于_____度,若∠A=60°时,∠BOC又等于_____16.如图所示,一个角60°的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2=_____.17.如图所示,A B C D E F ∠+∠+∠+∠+∠+∠=_________.18.科技馆为某机器人编制一段程序,如果机器人在平地上按照图中所示的步骤行走,那么该机器人所走的总路程为________.三、解答题(7小题,满分58分)19.(6分)如图,AD 是ABC ∆的中线,AH 是ABC ∆的高,1BD =,2AH =,求ABC ∆的面积.20.(6分)如图,五边形ABCDE 的内角都相等,且AB =BC ,AC =AD ,求∠CAD 的度数.21.(8分)如图,在ABC ∆中,(1)画出BC 边上的高AD 和ABC ∆中A ∠的平分线AE .(2)若30B ∠=︒,130ACB ∠=︒,求BAD ∠和EAD ∠的度数.22.(8分)如图,AC ,BD 为四边形ABCD 的对角线,∠ABC =90°,∠ABD +∠ADB =∠ACB ,∠ADC =∠BCD .(1)求证:AD ⊥AC ;(2)探求∠BAC 与∠ACD 之间的数量关系,并说明理由.23.(8分)如图,在△ABC 中,∠B=∠C=45°,点D 在BC 边上,点E 在AC 边上,且∠ADE=∠AED ,连结DE .(1)当∠BAD=60°,求∠CDE 的度数;(2)当点D 在BC (点B 、C 除外)边上运动时,试写出∠BAD 与∠CDE 的数量关系,并说明理由.24.(10分)已知凸四边形ABCD中,∠A=∠C=90°.(1)如图1,若DE平分∠ADC,BF平分∠ABC的邻补角,判断DE与BF位置关系并证明.(2)如图2,若BF、DE分别平分∠ABC、∠ADC的邻补角,判断DE与BF位置关系并证明.25.(12分)如图,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1.(1)当∠A为70°时,∵∠ACD-∠ABD=∠______∴∠ACD-∠ABD=______°∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线∴∠A1CD-∠A1BD=12(∠ACD-∠ABD)∴∠A1=______°;(2)∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A3,如此继续下去可得A4、…、A n,请写出∠A与∠A n的数量关系______;(3)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230度,则∠F=______.(4)如图3,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q-∠A1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值.。

2020年人教版八年级上册第11章《三角形》单元检测卷 含答案

2020年人教版八年级上册第11章《三角形》单元检测卷   含答案

2020年人教版八年级上册第11章《三角形》单元检测卷满分120分一.选择题(共10小题,满分30分,每小题3分)1.要组成一个三角形,三条线段的长度可以是()A.1,2,3B.3,4,5C.4,6,11D.1.5,2.5,4.52.如图,在△ABC中,AB边上的高是()A.CE B.AD C.CF D.AB3.若三角形的三条高的交点在这个三角形的内部,那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形4.已知在△ABC中,∠ACB=90°,∠B=55°,则∠A的度数是()A.25°B.35°C.45°D.65°5.在△ABC中,∠A:∠B:∠C=3:4:8,则这个三角形一定是()A.等腰三角形B.直角三角形C.锐角三角形D.钝角三角形6.如图,小峰从点O出发,前进5m后向右转45°,再前进5m后又向右转45°,…,这样一直走下去,他第一次回到出发点O时,一共走的路程是()A.10米B.20 米C.40 米D.80米7.如图所示的四边形中,若去掉一个50°的角得到一个五边形,则∠1+∠2等于()A.230°B.240°C.250°D.260°8.如图,BD,CD分别是内角∠ABC和外角∠ACE的平分线,若∠A=70°,则∠D=()A.30°B.35°C.40°D.45°9.在△ABC中,∠A=150°.第一步:在△ABC上方确定一点A1,使∠A1BA=∠ABC,∠A1CA=∠ACB,如图1.第二步:在△A1BC上方确定一点A2,使∠A2BA1=∠A1BA,∠A2CA1=∠A1CA,如图2.照此下去,至多能进行()步.A.3B.4C.5D.610.一个多边形截去一角后,变成一个八边形则这个多边形原来的边数是()A.8或9B.7或8C.7或8或9D.8或9或10二.填空题(共8小题,满分24分,每小题3分)11.如图,在建筑工地上,工人师傅砌门时,常用木条EF固定长方形门框,使其不变形,这种做法的根据是.12.在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有(填序号)13.已知一个多边形的内角和是1620°,则这个多边形是边形.14.如图,在△ABC中,点D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A 的余角是.15.若一个三角形的三边长分别是xcm、(x+5)cm、(13﹣x)cm,则x的取值范围是.16.如图,∠1=∠2,∠3=∠4,∠A=100°,则∠BOC=.17.如图所示,∠A=10°,∠ABC=90°,∠ACB=∠DCE,∠ADE=∠EDF,∠CED=∠FEG.则∠F=.18.如图,则∠A+∠B+∠C+∠D+∠E+∠F的度数为.三.解答题(共9小题,满分66分)19.(6分)求下列图形中x的值:20.(6分)证明:三角形三个内角的和等于180°.已知:△ABC(如图).求证:∠A+∠B+∠C=180°.21.(6分)如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E,若∠B=30°,∠BAC=80°,求∠E的度数.22.(6分)△ABC中,AD是高,AE、BF是角平分线,且相交于点O,∠BAC=60°,∠C=80°,求∠DAE,∠BOA的度数.23.(7分)如图,在△ABC中,∠B=42°,∠C=78°,AD平分∠BAC.(1)求∠ADC的度数;(2)在图中画出BC边上的高AE,并求∠DAE的度数.24.(8分)a,b,c分别为△ABC的三边,且满足a+b=3c﹣2,a﹣b=2c﹣6.(1)求c的取值范围;(2)若△ABC的周长为18,求c的值.25.(8分)如图,已知在△ABC中,∠B与∠C的平分线交于点P.(1)当∠A=70°时,求∠BPC的度数;(2)当∠A=112°时,求∠BPC的度数;(3)当∠A=α时,求∠BPC的度数.26.(9分)(1)如图1,AD平分∠BAC,AE⊥BC,∠B=30°,∠C=70°.①∠BAC=°,∠DAE=°;②如图2.若把“AE⊥BC”变成“点F在AD的延长线上,FE⊥BC”,其它条件不变,求∠DFE的度数;(2)如图3,AD平分∠BAC,AE平分∠BEC,∠C﹣∠B=40°,求∠DAE的度数.27.(10分)如图,∠CBF、∠ACG是△ABC的外角,∠ACG的平分线所在的直线分别与∠ABC、∠CBF的平分线BD、BE交于点D、E.(1)求∠DBE的度数;(2)若∠A=70°,求∠D的度数;(3)若∠A=a,则∠D=,∠E=(用含a的式子表示)参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:根据三角形的三边关系,得A、1+2=3,不能组成三角形;B、3+4>5,能组成三角形;C、4+6<11,不能组成三角形;D、1.5+2.5<4.5,不能够组成三角形.故选:B.2.解:过点C作AB的垂线段CE,则CE为AB边上的高,故选:A.3.解:若三角形的三条高的交点在这个三角形的内部,那么这个三角形是锐角三角形.故选:A.4.解:∵在△ABC中,∠ACB=90°,∠B=55°,∴∠A=180°﹣∠B﹣∠C=180°﹣55°﹣90°=35°,故选:B.5.解:∵∠A:∠B:∠C=3:4:8,∴设∠A=3α,∠B=4α,∠C=8α,∵∠A+∠B+∠C=180°,∴3α+4α+8α=180°,∴α=12°,∴∠C=8α=96°,∴这个三角形一定是钝角三角形,故选:D.6.解:依题意可知,小峰所走路径为正多边形,设这个正多边形的边数为n,则45n=360,解得n=8,∴他第一次回到出发点O时一共走了:5×8=40米,故选:C.7.解:∵∠1=∠A+∠ACB,∠2=∠A+∠ABC,∠A+∠ABC+∠ACB=180°,∴∠1+∠2=∠A+∠ACB+∠A+∠ABC=180°+∠A=180°+50°=230°,故选:A.8.解:∵BD,CD分别是∠ABC与外角∠ACE的平分线,∴∠DCE=∠ACE,∠DBC=∠ABC,∵∠ACE﹣∠ABC=∠A=70°,∴∠D=∠DCE﹣∠DBC=∠A=35°,故选:B.9.解:∵∠A=150°,∴∠ABC+∠ACB=180°﹣∠A=30°.∵∠A1BA=∠ABC,∠A1CA=∠ACB,∴∠A1BC+∠A1CB=2(∠ABC+∠ACB)=60°,∴∠A1=180°﹣(∠A1BC+∠A1CB)=120°.同理可得:∠A2=90°,∠A3=60°,…,∠A n=180°﹣30°•(n+1),∴当∠A n>0°时,180°﹣30°•(n+1)>0°,解得n<5,∴至多能进行4步.故选:B.10.解:∵截去一个角后边数可以增加1,不变,减少1,∴原多边形的边数是7或8或9.故选:C.二.填空题(共8小题,满分24分,每小题3分)11.解:加上EF后,原不稳定的四边形中具有了稳定的三角形,故这种做法根据的是三角形的稳定性.12.解:①∵∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,∠C=90°,则该三角形是直角三角形;②∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180°,∴∠C=90°,则该三角形是直角三角形;③∠A=90°﹣∠B,则∠A+∠B=90°,∠C=90°.则该三角形是直角三角形;④∠A=∠B=∠C,则该三角形是等边三角形.故能确定△ABC是直角三角形的条件有①②③.13.解:设所求多边形的边数是x,则(n﹣2)•180°=1620,解得n=11.14.解:∵∠B=40°,∠ACD=120°,∴∠A=120°﹣40°=80°,∴∠A的余角是10°,故答案为:10°.15.解:由题意得,解得:<x<8,故答案为:<x<8.16.解:∵∠A=100°,∴∠ABC+∠ACB=80°,∵∠1=∠2,∠3=∠4∴∠2+∠4=∠ABC+∠ACB=40°,∴∠BOC=180°﹣∠2﹣∠4=140°故答案为:140°17.解:在△ABC中,∠A=10°,∠ABC=90°,在△AED中,∠FDE是它的一个外角,∴∠FDE=∠A+∠AED,∵∠ADE=∠EDF、∴∠ADE=∠EDF=90°∴∠CED=90°﹣∠A=80°∵∠CED=∠FEG,∴∠FEG=80°.在△AEF中,∠FEG是它的一个外角,∴∠FEG=∠A+∠F,∴∠F=∠FEG﹣∠A=80°﹣10°=70°.故答案为:70°.18.解:连接AD,在△AOD和△BOC中,∵∠AOD=∠BOC,∴∠B+∠C=∠1+∠2,∴∠B+∠C+∠BAF+∠EDF=∠1+∠2+∠BAF+∠EDF=∠EDA+∠F AD,∵∠EDA+∠F AD+∠E+∠F=360°,∴∠BAF+∠EDF+∠B+∠C+∠E+∠F=360°,故答案为:360°.三.解答题(共9小题,满分66分)19.解:图1,x°=360°﹣70°﹣90°﹣150°=50°,则x=50;图2,x°=180°﹣(360°﹣73°﹣90°﹣82°)=65°,则x=65;图3,x°+(x+30)°+60°+x°+(x﹣10)°=(5﹣2)×180°,解得x=115.20.解:已知:△ABC,求证:∠BAC+∠B+∠C=180°,证明:过点A作EF∥BC,∵EF∥BC,∴∠1=∠B,∠2=∠C,∵∠1+∠2+∠BAC=180°,∴∠BAC+∠B+∠C=180°.即知三角形内角和等于180°.21.解:∵∠ACD是△ABC的外角,∴∠ACD=∠B+∠BAC=30°+80°=110°,∵CE是∠ACD的平分线,∴∠ECD=∠ACD=×110°=55°,∵∠ECD是△EBC的外角,∴∠ECD=∠B+∠E,∴∠E=∠ECD﹣∠B=55°﹣30°=25°.答:∠E的度数是25°.22.解∵AD⊥BC,∴∠ADC=90°,∵∠C=80°,∴∠CAD=180°﹣90°﹣80°=10°,∵∠BAC=60°,AE是∠BAC的角平分线,∴∠EAC=∠BAE=30°,∴∠EAD=∠EAC﹣∠CAD=30°﹣10°=20°,∠ABC=180°﹣∠BAC﹣∠C=40°,∵BF是∠ABC的角平分线,∴∠ABO=20°,∴∠BOA=180°﹣∠BAO﹣∠ABO=180°﹣30°﹣20°=130°.故∠DAE,∠BOA的度数分别是20°,130°.23.(1)∵∠B=42°,∠C=78°,∴∠BAC=180°﹣∠B﹣∠C=60°,∵AD平分∠BAC,∴∠BAD=∠BAC=30°,∴∠ADC=∠B+∠BAD=42°+30°=72°;(2)如图所示,过A作AE⊥BC于E,∴∠AEB=90°,∴∠DAE=180°﹣∠AED﹣∠ADE=180°﹣90°﹣72°=18°.24.解:(1)∵a,b,c分别为△ABC的三边,a+b=3c﹣2,a﹣b=2c﹣6,∴,解得:2<c<6;(2)∵△ABC的周长为18,a+b=3c﹣2,∴a+b+c=4c﹣2=18,解得c=5.25.解:(1)∵BP和CP分别是∠B与∠C的平分线,∴∠1=∠2,∠3=∠4.∴∠2+∠4=(180°﹣∠A)=90°﹣∠A,∴∠BPC=90°+∠A.∴当∠A=70°时,∠BPC=90°+35°=125°.(2)同(1)可得,当∠A=112°时,∠BPC=90°+56°=146°.(3)同(1)可得,当∠A=α时,∠BPC=90°+.α26.解:(1)①∵∠B=30°,∠C=70°,∴∠BAC=180°﹣(30°+70°)=80°,∵AD平分∠ABC,∴∠CAD=∠BAC=40°,∵AE⊥BC,∴∠AEC=90°,∴∠CAE=90°﹣70°=20°,∴∠DAE=∠CAD﹣∠CAD=20°.故答案为80,20.②∵∠ADC=180°﹣∠CAD﹣∠C=180°﹣40°﹣70°=70°,∴∠FDE=∠ADC=70°,∵FE⊥BC,∴∠FED=90°,∴∠DFE=90°﹣∠FDE=20°.(3)∵AD平分∠ABC,∴∠BAD=∠CAD,∵AE平分∠BEC,∴∠AEB=∠AEC,∵∠C+∠CAE+∠AEC=180°,∠B+∠BAE+∠AEB=180°,∴∠C+∠CAE=∠B+∠BAE,∵∠CAE=∠CAD﹣∠DAE,∠BAE=∠BAD+∠DAE,∴∠C+∠CAD﹣∠DAE=∠B+∠BAD+∠DAE,∴2∠DAE=∠C﹣∠B=40°,∴∠DAE=20°.27.解:(1)∵BD平分∠ABC,BE平分∠CBF,∴∠DBC=ABC,∠CBE=CBF,∴∠DBC+∠CBE=(∠ABC+∠CBF)=90°,∴∠DBE=90°;(2)∵CD平分∠ACG,BD平分∠ABC,∴∠DCG=ACG,∠DBC=ABC,∵∠ACD=∠A+∠ABC,∴2∠DCG=∠ACF=∠A+∠ABC=∠A+2∠DBC,∵∠DCG=∠D+∠DBC,∴2∠DCG=2∠D+2∠DBC,∴∠A+2∠DBC=2∠D+2∠DBC,∴∠D=A=35°;(3)由(2)知∠D=A,∵∠A=α,∴∠D=,∵∠DBE=90°,∴∠E=90°﹣α.故答案为:,90°﹣.。

第11章《三角形》人教版八年级上册数学课时练基础篇(含答案)


19.已知,如图,△ ABC 中,∠ ABC=66°,∠ ACB=54°,BE、CF 是两边 AC、AB 上的高, 它们交于点 H.求∠ ABE 和∠ BHC 的度数.
晨鸟教育
20.如图,∠ ECF=90°,线段 AB 的端点分别在 CE 和 CF 上,BD 平分∠ CBA,并与∠ CAB 的外角平分线 AG 所在的直线交于一点 D, (1)∠ D 与∠ C 有怎样的数量关系?(直接写出关系及大小) (2)点 A 在射线 CE 上运动,(不与点 C 重合)时,其它条件不变,(1)中结论还成 立吗?说说你的理由.
(n﹣2)•180°=360°, n﹣2=2, n=4.
故答案为:四. 12.解:如图,连接 AO 并延长,
∵ ∠ A=80°,∠ 1=15°,∠ 2=40°, ∴ ∠ BOC=∠ A+∠ 1+∠ 2, =80°+15°+40°, =135°. 故答案为:135°.
13.解:木工师傅做完房门后,为防止变形钉上两条斜拉的木条这样做的根据是:三角形的 稳定性. 故填:三角形的稳定性.
为什么?(必须写推理过程)
(2)如图 2,如果点 B 向右移动到 AC 上,那么还能求出∠ A+∠ DBE+∠ C+∠ D+∠ E 的
晨鸟教育
大小吗?若能结果是多少?(可不写推理过程) (3)如图,当点 B 向右移动到 AC 的另一侧时,上面的结论还成立吗? (4)如图 4,当点 B、E 移动到∠ CAD 的内部时,结论又如何?根据图 3 或图 4,说明 你计算的理由.
夹角∠ BCD 为
度.
15.数一数图中共有
个三角形.
16.如图所示,已知 O 是四边形 ABCD 内一点,OB=OC=OD,∠ BCD=∠ BAD=75°,则

2020年人教版八年级上册第11章《三角形》单元复习题

2020年人教版八年级上册第11章《三角形》单元复习题 一.选择题 1.四条线段的长度分别为4,6,8,10,可以组成三角形的组数为( ) A.4 B.3 C.2 D.1 2.一个三角形至少有( ) A.一个锐角 B.两个锐角 C.一个钝角 D.一个直角 3.若n边形的每个内角为150°,则这个n边形是( ) A.九边形 B.十边形 C.十一边形 D.十二边形 4.如图,已知矩形ABCD,一条直线将该矩形ABCD分割成两个多边形,则所得任一多边形内角和度数不可能是( )

A.720° B.540° C.360° D.180° 5.如果一个三角形的两边长分别为2和5,则此三角形的第三边长可能为( ) A.2 B.3 C.6 D.7 6.如图,BD平分∠ABC,CD⊥BD,D为垂足,∠C=55°,则∠ABC的度数是( )

A.35° B.55° C.60° D.70° 7.如图,已知△ABC中,∠B=50°,若沿图中虚线剪去∠B,则∠1+∠2等于( )

A.130° B.230° C.270° D.310° 8.如图,在△ABC中,∠B=46°,∠ADE=40°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠C的大小是( )

A.46° B.66° C.54° D.80° 9.如图,∠MAB+∠NBA=130°,则∠C+∠D的值是( )

A.130° B.150° C.135° D.90° 10.如图,在Rt△ABC中,∠C=90°,D是AC上一点,直线DE∥CB交AB于点E,若∠A=30°,则∠AED的度数为( )

A.30° B.60° C.120° D.150° 11.如图所示,AB∥DE,则∠B,∠C,∠D之间的关系是( )

A.∠B+∠C+∠D=180° B.∠B+∠C﹣∠D=180° C.∠B=∠C+∠D D.∠B﹣∠C+∠D=180° 12.如图,△ABC中,延长边AB、CA构成∠1,∠2,若∠C=55°,则∠1+∠2=( ) A.125° B.235° C.250° D.305° 二.填空题 13.若一个多边形的内角和比外角和大360°,则这个多边形的边数为 . 14.一个三角形的两边长分别为2和6,第三边长为偶数,则这个三角形的周长是 . 15.如图,已知正五边形ABCDE,AF∥CD,交DB的延长线于点E,则∠DAF为 度.

人教版2020年数学八年级上册 第11章 三角形 单元综合练习 含答案

人教版2020年数学八年级上册第11章三角形单元综合练习一.选择题1.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有()A.2对B.3对C.4对D.6对2.在△ABC中,∠C=90°,点D,E分别是边AC,BC的中点,点F在△ABC内,连接DE,EF,FD.以下图形符合上述描述的是()A.B.C.D.3.下列四个图形中,线段BE是△ABC的高的是()A.B.C.D.4.在△ABC中,AB=4,BC=10,则第三边AC的长可能是()A.5 B.7 C.14 D.165.如图,AB⊥AC,CD、BE分别是△ABC的角平分线,AG∥BC,AG⊥BG,下列结论:①∠BAG=2∠ABF;②BA平分∠CBG;③∠ABG=∠ACB;④∠CFB=135°.其中正确的结论是()A.①③B.②④C.①③④D.①②③④6.如图,在△ABC中,∠ABC=40°,∠ACD=76°,BE平分∠ABC,CE平分△ABC的外角∠ACD,则∠E=()A.40°B.36°C.20°D.18°7.把边长相等的正六边形ABCDEF和正五边形GHCDL的CD边重合,按照如图所示的方式叠放在一起,延长LG交AF于点P,则∠APG=()A.141°B.144°C.147°D.150°8.如图,△ABC中,AD为△ABC的角平分线,BE为△ABC的高,∠C=70°,∠ABC=48°,那么∠3是()A.59°B.60°C.56°D.22°9.如图,在△ACB中,∠ACB=100°,∠A=20°,D是AB上一点.将△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.25°B.30°C.35°D.40°10.如果将一副三角板按如图方式叠放,那么∠1等于()A.120°B.105°C.60°D.45°二.填空题11.若一个三角形的三条高所在直线的交点在三角形外部,此三角形是三角形.12.如图,已知AE是△ABC的边BC上的中线,若AB=8cm,△ACE的周长比△AEB的周长多2cm,则AC=cm.13.如图,李叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是.14.一个三角形的两边长分别是3和7,且第三边长为奇数,这样的三角形的周长最大值是.15.如图所示,①中多边形(边数为12)是由正三角形“扩展”而来的,②中多边形是由正方形“扩展”而来的,…,依此类推,则由正n边形“扩展”而来的多边形的边数为.三.解答题16.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C =60°,求∠DAE和∠BOA的度数.17.如图,△ACB中,∠ACB=90°,∠1=∠B.(1)试说明CD是△ABC的高;(2)如果AC=8,BC=6,AB=10,求CD的长.18.如图,在△ABC中,∠BAC:∠B:∠C=3:5:7,点D是BC边上一点,点E是AC边上一点,连接AD、DE,若∠1=∠2,∠ADB=102°.(1)求∠1的度数;(2)判断ED与AB的位置关系,并说明理由.19.如图,已知D为△ABC边BC延长线上一点,DF⊥AB于F交AC于E,∠A=35°,∠D=42°,求∠ACD的度数.20.如图,在△ACB中,∠ACB=90゜,CD⊥AB于D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD、BC于E、F,求证:∠CEF=∠CFE.答案一.选择题1. B.2. C.3. D.4. B.5. C.6. D.7.B.8 . A.9.D.10. B.二.填空题11.钝角.12. 10;13.三角形的稳定性.14. 1915. n(n+1).三.解答题16.∵∠CAB=50°,∠C=60°∴∠ABC=180°﹣50°﹣60°=70°,又∵AD是高,∴∠ADC=90°,∴∠DAC=180°﹣90°﹣∠C=30°,∵AE、BF是角平分线,∴∠CBF=∠ABF=35°,∠EAF=25°,∴∠DAE=∠DAC﹣∠EAF=5°,∠AFB=∠C+∠CBF=60°+35°=95°,∴∠BOA=∠EAF+∠AFB=25°+95°=120°,∴∠DAC=30°,∠BOA=120°.故∠DAE=5°,∠BOA=120°.17.(1)∵∠1+∠BCD=90°,∠1=∠B ∴∠B+∠BCD=90°∴△BDC是直角三角形,即CD⊥AB,∴CD是△ABC的高;(2)∵∠ACB=∠CDB=90°∴S△ABC=AC•BC=AB•CD,∵AC=8,BC=6,AB=10,∴CD===.18.(1)∵∠BAC:∠B:∠C=3:5:7,∴设∠BAC=3x,∠B=5x,∠C=7x,∴3x+5x+7x=180°,解得:x=12°,∴∠BAC=36°,∠B=60°,∠C=84°,∵∠ADB=102°,∴∠1=∠ADB﹣∠C=102°﹣84°=18°;(2)ED∥AB.∵∠1=∠2,∴∠2=18°,∵∠BAC=36°,∴∠BAD=∠BAC﹣∠1=36°﹣18°=18°,∴∠2=∠BAD,∴ED∥AB.19.∵DF⊥AB,∴∠AFE=90°,∴∠AEF=90°﹣∠A=90°﹣35°=55°,∴∠CED=∠AEF=55°,∴∠ACD=180°﹣∠CED﹣∠D=180°﹣55°﹣42°=83°.答:∠ACD的度数为83°.20.证明:(1)∵∠ACB=90゜,CD⊥AB于D,∴∠ACD+∠BCD=90°,∠B+∠BCD=90°,∴∠ACD=∠B;(2)在Rt△AFC中,∠CFA=90°﹣∠CAF,同理在Rt△AED中,∠AED=90°﹣∠DAE.又∵AF平分∠CAB,∴∠CAF=∠DAE,∴∠AED=∠CFE,又∵∠CEF=∠AED,∴∠CEF=∠CFE.。

人教版八年级数学上册第11章《三角形》全章复习与巩固—知识讲解(提高)含习题答案

要点三、三角形的内角和与外角和
1.三角形内角和定理:三角形的内角和为 180°. 推论:1.直角三角形的两个锐角互余 2.有两个角互余的三角形是直角三角形
2.三角形外角性质: (1)三角形的一个外角等于与它不相邻的两个内角的和. (2)三角形的一个外角大于任意一个与它不相邻的内角.
3.三角形的外角和: 三角形的外角和等于 360°.
举一反三:
【变式】已知 a、b、c 是三角形三边长,试化简:|b+c-a|+|b-c-a|+|c-a-b|﹣|a-b+c|.
【答案】解:∵a、b、c 是三角形三边长,
∴b+c-a>0,b-c-a<0,c-a-b<0,a-b+c>0,
∴|b+c-a|+|b-c-a|+|c-a-b|-|a-b+c|,
=b+c-a-b+c+a-c+a+b-a+b-c =2b. 2.如图,O 是△ABC 内一点,连接 OB 和 OC.
类型三、与三角形有关的角
4.已知△ABC 中,AE 平分∠BAC (1)如图 1,若 AD⊥BC 于点 D,∠B=72°,∠C=36°,求∠DAE 的度数; (2)如图 2,P 为 AE 上一个动点(P 不与 A、E 重合,PF⊥BC 于点 F,若∠B>∠C,则
∠EPF=
是否成立,并说明理由.
【思路点拨】 (1)利用三角形内角和定理和已知条件直接计算即可; (2)成立,首先求出∠1 的度数,进而得到∠3 的度数,再根据∠EPF=180°﹣∠2﹣∠3 计 算即可. 【答案与解析】 证明:(1)如图 1,∵∠B=72°,∠C=36°,
解:如图(1),设 AB=x,AD=CD= 1 x . 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版2020年八年级数学上册国庆节假期作业
第11章《三角形》基础过关

一、选择题
1.内角和为540°的多边形是( )

A.B.C.D.
2.下列长度的三条线段能组成三角形的是( )
A.5,9,15 B.5,12,6 C.7,8,9 D.1,2,3
3.如图,工人师傅在安装木制门框时,为防止变形常常钉上两根木条,这样做的依据是( )

A.三角形具有稳定性
B.两点之间,线段最短
C.直角三角形的两个锐角互为余角
D.垂线段最短
4.如图,AE⊥BC于E,BF⊥AC于F,CD⊥AB于D,△ABC中AC边上的高是线段( )

A.BF B.CD C.AE D.AF
5.如图,D.E分别为∆ABC的边AC.BC的中点,则下列说法不正确的是( )

A.DE是∆ABC的中线 B.BD是∆ABC的一条中线
C.CE是AB边上的中线 D.BD是边AC上的中线
6.如图,//ABCD,60C°,25A,则F( )

A.35 B.40 C.45 D.50
7.如图,国旗上的五角星的五个角的度数是相同的,每一个角的度数都是 ( )

A. B. C. D.
8.Rt△ABC中,∠C=90°,∠B=54° ,则∠A=( )
A.36° B.46° C.56° D.66°
9.已知:等腰三角形两边长分别为9cm,5cm,则周长是( )
A.19cm B.23cm C.19cm或23cm D

不能确定

10.如图,在ABC中,点D为BC边的中点,下列说法不正确的是( )

A.BDDC B.12BDBC C.BADCAD D.BADCADSS
11.如图,直线DE经过点A,DE∥BC,∠B=44°,∠C=57°,则∠BAC的度数是( )

A.89° B.79° C.69° D.90°
12.将一副直角三角尺按如图所示摆放,则图中锐角∠α的度数是( )

相关文档
最新文档