动态规划模型的建立与求解步骤
动态规划

=MIN(3+12,4+10)=14
最短路线: A—— B2 ——C2——D2——E2——F 最优解: d1*(A)= B2,最短用时14
1
B2
C3
4 2
D3
5
E2
4
A
2
C2
3 3 3
D2
2
F
3
B1
5 4
C1
4
2
E1
最优解: d2*(B1)= C1
1
B2
C3
4 2
D3
5
E2
4
A
2
C2
3 3 3
D2
2
F
3
B1
5 4
C1
4
2
E1
4
3
D1
A
B
C
D
E
F
如果S2=B2,则下一步能取C2或C3,故
f2(B2)=MIN r(B2,C2)+ f3(C2)
r(B2,C3)+ f3(C3) =MIN(2+8,1+11)=10
最短路线: B2 ——C2——D2——E2——F
1
B2
C3
4 2
D3
5
E2
4
A
2
C2
3 3 3
D2
2
F
3
B1
5 4
C1
4
2
E1
4
3
D1
A
B
C
D
E
F
如果S4=D3,则下一步只能取E2,故
动态规划与回溯法解决0-1背包问题

0-1背包动态规划解决问题一、问题描述:有n个物品,它们有各自的重量和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?二、总体思路:根据动态规划解题步骤(问题抽象化、建立模型、寻找约束条件、判断是否满足最优性原理、找大问题与小问题的递推关系式、填表、寻找解组成)找出01背包问题的最优解以及解组成,然后编写代码实现。
原理:动态规划与分治法类似,都是把大问题拆分成小问题,通过寻找大问题与小问题的递推关系,解决一个个小问题,最终达到解决原问题的效果。
但不同的是,分治法在子问题和子子问题等上被重复计算了很多次,而动态规划则具有记忆性,通过填写表把所有已经解决的子问题答案纪录下来,在新问题里需要用到的子问题可以直接提取,避免了重复计算,从而节约了时间,所以在问题满足最优性原理之后,用动态规划解决问题的核心就在于填表,表填写完毕,最优解也就找到。
过程:a) 把背包问题抽象化(X1,X2,…,Xn,其中 Xi 取0或1,表示第i 个物品选或不选),V i表示第i 个物品的价值,W i表示第i 个物品的体积(重量);b) 建立模型,即求max(V1X1+V2X2+…+VnXn);c) 约束条件,W1X1+W2X2+…+WnXn<capacity;d) 定义V(i,j):当前背包容量j,前i 个物品最佳组合对应的价值;e) 最优性原理是动态规划的基础,最优性原理是指“多阶段决策过程的最优决策序列具有这样的性质:不论初始状态和初始决策如何,对于前面决策所造成的某一状态而言,其后各阶段的决策序列必须构成最优策略”。
判断该问题是否满足最优性原理,采用反证法证明:假设(X1,X2,…,Xn)是01背包问题的最优解,则有(X2,X3,…,Xn)是其子问题的最优解,假设(Y2,Y3,…,Yn)是上述问题的子问题最优解,则理应有(V2Y2+V3Y3+…+V n Yn)+V1X1 > (V2X2+V3X3+…+VnXn)+V1X1;而(V2X2+V3X3+…+VnXn)+V1X1=(V1X1+V2X2+…+VnXn),则有(V2Y2+V3Y3+…+VnYn)+V1X1 > (V1X1+V2X2+…+VnXn);该式子说明(X1,Y2,Y3,…,Yn)才是该01背包问题的最优解,这与最开始的假设(X1,X2,…,Xn)是01背包问题的最优解相矛盾,故01背包问题满足最优性原理;f) 寻找递推关系式,面对当前商品有两种可能性:第一,包的容量比该商品体积小,装不下,此时的价值与前i-1个的价值是一样的,即V(i,j)=V(i-1,j);第二,还有足够的容量可以装该商品,但装了也不一定达到当前最优价值,所以在装与不装之间选择最优的一个,即V(i,j)=max{V(i-1,j),V(i-1,j-w(i))+v(i) }其中V(i-1,j)表示不装,V(i-1,j-w(i))+v(i) 表示装了第i个商品,背包容量减少w(i)但价值增加了v(i);由此可以得出递推关系式:1) j<w(i) V(i,j)=V(i-1,j)2) j>=w(i) V(i,j)=max{ V(i-1,j),V(i-1,j-w(i))+v(i) }number=4,capacity=7四、构造最优解:最优解的构造可根据C列的数据来构造最优解,构造时从第一个物品开始。
数学建模的基本流程

数学建模的基本流程数学建模是一种通过数学方法来解决现实问题的过程。
它可以应用于各种领域,如物理、经济、生物、环境等。
数学建模的基本流程包括问题描述、建立模型、模型求解以及结果分析与验证。
下面将详细介绍数学建模的基本流程。
首先是问题描述阶段。
在这个阶段,我们需要清楚地了解问题要解决的实际背景和目标,明确问题的详细描述以及需要考虑的限制条件。
这个阶段的目标是对问题进行全面的分析和理解,确保我们对问题的认识是正确的和完整的。
接下来是建立模型阶段。
在这个阶段,我们需要将实际问题转化为数学问题。
具体来说,就是通过数学符号和方程式来表达出问题的关键因素和各种关系。
模型的建立需要结合问题的具体情况和所采取的数学方法,选择适当的数学模型。
通常,数学建模所采用的模型可以分为确定性模型和随机模型两大类。
确定性模型是以确定性的方式描述实际问题的模型,其中的变量和参数都是确定的。
常见的确定性模型包括线性规划模型、非线性规划模型、动态规划模型等。
而随机模型是以概率的方式描述实际问题的模型,其中的变量和参数都是随机的。
常见的随机模型包括马尔可夫链模型、蒙特卡洛模型等。
在这个阶段,我们需要根据实际问题的特点和需求来选择合适的数学模型。
然后是模型求解阶段。
一旦模型建立完毕,我们就需要通过数值计算、优化算法等方法来求解模型。
这个阶段需要使用计算机程序来实现模型求解。
在进行模型求解时,我们还需要对模型的数学方法进行抽象和简化,以便更好地进行计算和求解。
最后是结果分析与验证阶段。
在这个阶段,我们需要对模型的求解结果进行分析和验证。
具体来说,就是对模型的输出进行解释,并与实际问题进行比对。
如果模型的结果与实际问题吻合,那么我们就可以认为模型是有效的。
否则,我们需要对模型进行修正和改进。
这个阶段还可以对模型的灵敏度进行分析,以了解模型对输入数据和参数的变化的响应程度。
总之,数学建模的基本流程包括问题描述、建立模型、模型求解以及结果分析与验证。
一、用动态规划方法手工求解下面的问题:

一、用动态规划方法手工求解下面的问题:生产单位产品的成本费为1(千元)。
同时,在任何一个月内,生产能力所允许的最大生产批量为不超过6个单位。
又知每单位产品的库存费用为每月0.5(千元),同时要求在第一个月开始之初, 及在第四个月末,均无产品库存。
问:在满足上述条件下,该厂应如何安排各个时期的生产与库存,使所花的总成本费用最低?解:这是一个多阶段问题,我们按照计划时间自然划分阶段。
状态变量k x 定义为第k 月月初时的存储量,决策变量k u 定义为第k 月的产量,记每个月需求量为k s ,则状态转移方程为:4,3,2,1,0,1=≥-+=+k x s u x x k k k k k第k 月允许决策集合 }60|{)(≤≤=k kk k u u x D阶段指标为阶段的生产成本费用和存储费用之和,即:⎩⎨⎧=>++=00035.0),(k k k k k k k u u u x u x v指标函数为∑==41,1),(k k k k n u x v V)(k k x f 表示由第k 月出发采用最优方案到第4月月底4个月时间内总成本{}1,2,3,4,)(),(min )(11)(=+=++∈k x f u x v x f k k k k k x D u k k k k k由条件可得到递推式:()⎪⎪⎩⎪⎪⎨⎧+⎩⎨⎧=>++==++∈}00035.0{min )(0)(11)(55k k k k k k x D u k k x f u u u x x f x f k k k k=4,3,2,1()}00035.0{min )(554444)(44444x f u u u x x f x D u +⎩⎨⎧=>++=∈)(44444354x D x x s x u ∈-=-+=4f (0)=7 4u =4 4f (1)=6.5 4u =3 4f (2)=6 4u =2 4f (3)=5.54u =1 4f (4)=24u =0()}00035.0{min )(443333)(33333x f u u u x x f x D u +⎩⎨⎧=>++=∈)(233343343x D x x x s x u ∈-+=-+= 3f (0) = min {12, 12.5, 13, 13.5, 11} = 11 3u =63f (1) = min {11.5, 12, 12.5, 13, 10.5} = 10.53u =6 3f (2) = min {8, 11.5, 12, 12.5, 10} = 8 3u =0 3f (3) = min {8, 11.5, 12, 9.5} = 8 3u =0 3f (4) = min {8, 11.5, 9} = 83u =0 3f (5) = min {8, 8.5} = 8 3u =0 3f (6) = min {5} = 53u =0()}00035.0{min )(332222)(22222x f u u u x x f x D u +⎩⎨⎧=>++=∈)(322232232x D x x x s x u ∈-+=-+=2f (0) = min {17, 17.5, 16, 17} = 162u =52f (1) = min {16.5, 17, 15.5, 16.5, 17.5} = 15.5 2u =4 2f (2) = min {16, 16.5, 15, 16, 17, 18} = 152u =3 2f (3) = min {12.5, 14, 14.5, 15.5, 16.5, 17.5, 15.5} = 12.52u =0 2f (4) = min {12.5, 14, 15, 16, 17, 15} = 12.52u =0 2f (5) = min {10.5, 14.5, 15.5, 16.5, 14.5} = 10.52u =0 2f (6) = min {11, 15, 16, 14} = 112u =0()}00035.0{min )(221111)(11111x f u u u x x f x D u +⎩⎨⎧=>++=∈)(211121121x D x x x s x u ∈-+=-+= 1f (0) = min {21, 21.5, 22, 20.5, 21.5} = 20.51u =5逆推可得 u={5, 0, 6, 0} x={0, 3, 0, 4}即第1个月生产5单位产品,第4个月生产6单位产品,第2、3月不生产。
西南交大853运筹学重要考点(不明年限)

运筹学重要考点第一部分:线性规划1、线性规划与单纯形法(1)线性规划问题的数学模型(2)线性规划问题解的概念(3)线性规划问题的图解法(4)单纯形法①将所给问题标准化②计算、迭代步骤③最优性的判定(解的判定定理)④人工变量法:大M法和两阶段法2、对偶问题⑴原问题转化为对应的对偶问题⑵对偶问题的基本性质⑶对偶单纯形法的计算⑷影子价格3、灵敏度分析⑴价值系数灵敏度分析⑵约束条件灵敏度分析⑶技术系数灵敏度分析4、运输问题⑴表上作业法①初始基的确定:最小元素法、伏格尔法②最优解的判别:闭回路法、位势法③改进方法:闭环回路调整法⑵产销不平衡运输问题的求解第二部分:整数规划⑴分支定界法⑵割平面法⑶0-1规划建模及解法(隐枚举法)⑷指派问题①解法:匈牙利法②非标准指派问题第三部分:动态规划1、动态规划的基本思想2、动态规划的解题步骤⑴建立动态规划模型⑵采用逆序法求解3、动态规划的应用⑴最短路问题(一维资源分配问题)⑵生产经营问题①生产——库存问题②库存——销售问题③限期采购问题⑶可靠性问题⑷背包问题⑸设备更新问题第四部分:图与网路计划1、图的基本概念和性质2、最小树(Kruskal算法)3、最短路问题及算法⑴Dijcskra算法⑵Ford算法4、网路最大流问题5、最小费用最大流问题6、中国邮递员问题(奇偶图上作业法)7、网络计划⑴绘制网络图⑵计算时间参数和确定关键路径⑶网络计划的调整和优化单纯型对偶单纯型(改进单纯计算及参数灵敏度不考)运输整数规划(分支定界和割平面计算不考)动态规划(会计算即可)动态规划应用(只考一维资源费配背包可靠度排序)图论网络计划(知道关键路线特征及虚工作意义即可不考计算)。
数学建模--短程赛跑中运动员速度变化情况

短程赛跑中运动员速度变化情况摘要本文就讨论“短程赛跑过程中速度变化情况”的问题参考了Keller的赛跑模型建立了动态优化数学模型. 在赛跑路程确定的前提下,通过利用最优化原理,建立动态规划模型对运动员在短程赛跑过程中速度错误!未找到引用源。
与时间错误!未找到引用源。
的关系进行了讨论,得到在赛跑过程中速度受到自身生理条件的限制、内外阻力等因素的影响,并假定冲力错误!未找到引用源。
满足微分方程关系式,内外阻力错误!未找到引用源。
与速度成正比.针对问题一,根据已知条件求解微分方程,并根据牛顿运动第二定理得出速度错误!未找到引用源。
关于时间错误!未找到引用源。
的表达式为错误!未找到引用源。
;路程错误!未找到引用源。
满足的表达式为错误!未找到引用源。
;再通过MATLAB对问题二表格中的数据进行非线性拟合,求解出运动员在赛跑过程中达到最大速度的时间为错误!未找到引用源。
;最后由已求得的数据得出速度错误!未找到引用源。
关于时间错误!未找到引用源。
的最终表达式错误!未找到引用源。
,并利用MATLAB的plot函数作出了错误!未找到引用源。
的示意图,发现在赛程的进行一段时间后,运动员的速度能达到极限也就是函数的极大值处,这段时间过后,由于能量的来源受到限制,所以运动员的速度会越来越慢,较符合实际情况;针对问题二,将表格中的数据逐个代入到速度错误!未找到引用源。
关于时间错误!未找到引用源。
的最终表达式错误!未找到引用源。
中,即可算出速度错误!未找到引用源。
的理论值,再将理论值与实际值进行比较、总结,得到最终表格,并发现理论值与实际值的误差很小,说明得出的理论表达式较为准确. 关键词跑步速度阻力系数最大冲力冲力限制系数非线性曲线拟合一、问题重述经研究发现在短跑比赛中,运动员由于生理条件的限制在达到一定的高速度后不可能持续发挥自己的最大冲力. 假设运动员克服生理限制后能发挥的冲力满足错误!未找到引用源。
,错误!未找到引用源。
决策模型知识点总结
决策模型知识点总结一、决策模型的基本概念1.1 决策模型的定义决策模型是指对决策问题进行形式化描述和分析的数学模型或者计算机模型。
它是对决策问题中的决策者、决策的目标、决策的条件以及可能的决策方案进行系统化的表达、分析和比较的工具。
1.2 决策模型的分类根据不同的分类标准,决策模型可以分为多种类型,常见的分类包括:(1)决策环境的分类:确定性模型、随机模型和不确定性模型;(2)决策者的分类:单人决策模型和多人博弈模型;(3)决策问题的分类:多目标决策模型和单目标决策模型;(4)模型的形式和用途:数学模型、计算机模型、仿真模型等。
1.3 决策模型的特点决策模型具有形式简练、准确性高、计算精密、易于分析和优化等特点,可以帮助决策者做出准确、科学的决策,提高决策效率和决策质量。
二、决策模型的建立与求解2.1 决策模型的建立步骤(1)确定决策者、决策目标和影响决策的条件;(2)确定可能的决策方案;(3)建立决策模型,包括决策变量、决策目标函数、约束条件等;(4)确定求解方法,对决策模型进行求解。
2.2 决策模型的求解方法常见的决策模型求解方法包括:(1)数学规划方法,包括线性规划、整数规划、非线性规划等;(2)决策树方法,包括期望值决策树、价值决策树等;(3)决策支持系统方法,包括专家系统、模拟等。
2.3 决策模型的评价方法决策模型的评价方法包括:(1)灵敏度分析,分析模型中参数变动对决策结果的影响;(2)稳健性分析,评价模型对不确定因素的抗风险能力;(3)效果验证,通过实际运用来验证模型的效果。
三、常见的经典决策模型3.1 线性规划模型线性规划模型是研究一个包含若干线性约束条件下的线性目标函数最优值的数学方法。
线性规划模型适用范围广泛,常用于生产计划、资源配置等领域。
3.2 整数规划模型整数规划模型是在线性规划模型的基础上,限制决策变量为整数的规划模型。
整数规划模型适用于需求具有离散性的问题,如项目选址、设备分配等领域。
运筹学第五版习题答案
运筹学第五版习题答案运筹学是一门研究如何优化决策的学科,它涉及到数学、统计学和计算机科学等多个领域。
运筹学的应用范围非常广泛,包括生产调度、物流管理、供应链优化等等。
而《运筹学第五版》是一本经典的教材,它提供了大量的习题供学生练习和巩固所学知识。
本文将为大家提供《运筹学第五版》习题的答案,希望对学习者有所帮助。
第一章:引论1. 运筹学的定义是什么?运筹学是一门研究如何优化决策的学科,它利用数学和统计学的方法来解决实际问题。
2. 运筹学的应用领域有哪些?运筹学的应用领域包括生产调度、物流管理、供应链优化、金融风险管理等。
3. 运筹学方法的基本步骤是什么?运筹学方法的基本步骤包括问题建模、模型求解、解的验证和实施。
第二章:线性规划模型1. 什么是线性规划模型?线性规划模型是一种数学模型,它描述了一种目标函数和一组线性约束条件下的最优化问题。
2. 如何确定线性规划模型的最优解?线性规划模型的最优解可以通过线性规划算法来求解,如单纯形法、内点法等。
3. 什么是对偶问题?对偶问题是与原始线性规划模型相对应的另一个线性规划模型,它可以用来计算原始问题的下界。
第三章:网络优化模型1. 什么是网络优化模型?网络优化模型是一种描述网络结构的数学模型,它可以用来解决最短路径、最小生成树、最大流等问题。
2. 最短路径问题如何求解?最短路径问题可以通过迪杰斯特拉算法或弗洛伊德算法来求解。
3. 最大流问题如何求解?最大流问题可以通过Ford-Fulkerson算法或Edmonds-Karp算法来求解。
第四章:整数规划模型1. 什么是整数规划模型?整数规划模型是一种线性规划模型的扩展,它要求决策变量取整数值。
2. 整数规划问题如何求解?整数规划问题可以通过分支定界法或割平面法来求解。
3. 什么是混合整数规划模型?混合整数规划模型是一种整数规划模型的扩展,它要求部分决策变量取整数值,部分决策变量取连续值。
第五章:动态规划模型1. 什么是动态规划模型?动态规划模型是一种描述决策过程的数学模型,它将问题划分为一系列的阶段,并通过递推关系求解最优解。
非线性与动态规划(逆推法例题)
基本原理
逆推法基本原理
引例
基本原理
假设初始状态为1 状态转移方程 +1 = T(, ).逆推解法的计算步骤是,利
模型建立
用已知条件,从 k = n 开始由后向前推算,求得各阶段的最优决策和最优指标函数,
最后算出 1 (1 )时便得到最优指标函数值。然后,再从k=1开始,利用状态转移方
动态规划题目讲解
小组成员:
指导老师:
动态规划的基本介绍
动态规划是把多阶段决策问题作为研究对象。
多阶段决策问题:根据问题本身的特点,将其求解的全过程划分为若干个相互联系的阶段(即将问
题划分为许多个相互联系的子问题),在每一阶段都需要作出决策,并且在一个阶段的决策确定以
后,再转移到下一个阶段。往往前一个阶段的决策要影响到后一个阶段的决策,从而影响整个过程。
称为k子过程策 ( )(略,简称子策略,记作, ( ),
即, ( ) = +1 +1 , … ( )
8
14
18
D1
5
9
C2
由决策组成的序列称为策略。从初始状态1 开始,由
各阶段的决策 ( )(k=1,2,…,n)组成的序列称为全过程
策略,简称为策略,一般记作1, (1 ),即
一般用字母K表示。
5
K=3
K=4
2.状态
在整个过程中,每个阶段开始所处的自然状况或客观
条件称为状态,是不可控因素。每个阶段的状态为该
阶段初始点的集合。描述每个阶段状态的变量称为状
态变量。用s 表示第K阶段的状态变量。 的全体可取
值组成的集合,称为第K阶段允许状态集合,用大写的
k 表示。
动态规划中定义的状态应具有下列性质:某个阶段的
数学建模第三版习题答案
数学建模第三版习题答案数学建模是一门应用数学的学科,通过建立数学模型来解决实际问题。
《数学建模第三版》是一本经典的教材,其中的习题对于学生来说是非常重要的练习材料。
在这篇文章中,我将为大家提供《数学建模第三版》习题的答案,希望能够帮助大家更好地理解和应用数学建模的知识。
第一章:数学建模的基础知识1. 数学建模的定义:数学建模是指将实际问题转化为数学问题,并通过建立数学模型来解决问题的过程。
2. 数学建模的基本步骤:问题的分析与理解、建立数学模型、求解数学模型、模型的验证与应用。
3. 数学建模的分类:确定性建模和随机建模。
4. 数学建模的特点:抽象性、理想化、简化性和应用性。
第二章:线性规划模型1. 线性规划模型的基本形式:目标函数和约束条件都是线性的。
2. 线性规划模型的求解方法:图形法、单纯形法和对偶理论。
3. 线性规划模型的应用:生产计划、资源分配、运输问题等。
第三章:整数规划模型1. 整数规划模型的基本形式:目标函数是线性的,约束条件中包含整数变量。
2. 整数规划模型的求解方法:分枝定界法、割平面法、动态规划法等。
3. 整数规划模型的应用:项目选择、装配线平衡问题、旅行商问题等。
第四章:动态规划模型1. 动态规划模型的基本思想:将一个大问题分解为若干个子问题,通过求解子问题的最优解来求解整个问题的最优解。
2. 动态规划模型的求解方法:递推法、备忘录法和自底向上法。
3. 动态规划模型的应用:背包问题、最短路径问题、最长公共子序列问题等。
第五章:非线性规划模型1. 非线性规划模型的基本形式:目标函数和约束条件中包含非线性函数。
2. 非线性规划模型的求解方法:牛顿法、拟牛顿法、全局优化法等。
3. 非线性规划模型的应用:经济增长模型、生态系统模型、医学诊断模型等。
第六章:图论模型1. 图论模型的基本概念:顶点、边、路径、回路等。
2. 图论模型的求解方法:深度优先搜索、广度优先搜索、最短路径算法等。