溶质运移理论-(三)水动力弥散方程的解析解法-文档资料
COMSOL地球科学-溶质运移-theory

应用模式属性(Application Mode Properties) 应用模式属性( )
中仿科技---专业信息化软件及技术咨询公司 中仿科技 专业信息化软件及技术咨询公司 CnTech Co.,Ltd--- Leading Engineering Virtual Prototyping Solutions Provider
Fluid and Solid rxns
中仿科技---专业信息化软件及技术咨询公司 中仿科技 专业信息化软件及技术咨询公司 CnTech Co.,Ltd--- Leading Engineering Virtual Prototyping Solutions Provider
info@
中仿科技---专业信息化软件及技术咨询公司 中仿科技 专业信息化软件及技术咨询公司 CnTech Co.,Ltd--- Leading Engineering Virtual Prototyping Solutions Provider
info@
info@
内容
“Saturated Porous Media”模式偏微分方程 “Variable Saturated Porous Media”模式偏微分方程
对流 吸附和阻滞 水里扩散 反应 保守和非保守公式
应用模式属性(Application Mode Properties) 求解域控制方程设定(Subdomain Settings) 边界条件设定(Boundary Settings) 点、边设定(Point and Edge Settings)
Radioactive decay--liquid Radioactive decay--solid Creation from parent cLi --liquid ci Creation from sorbed parent cPi --solid
地下水流-热-质(或污染物、示踪剂)迁移数值方法

不可混溶流体
污 染 物
水
不同性质溶体之间无明显的突变界
石油污
油
染物在
含水层
水
中运移
不同性质溶体之间有明显的突变界
4
二、溶质(污染物)运移理论方法
1、可混溶流体迁移机理
对流作用-由于孔隙平均速度引起引起的溶质迁移。 弥散作用-由于浓度梯度作用引起的溶质迁移。包 括分子扩散和机械弥散作用。
5
二、溶质(污染物)运移理论方法
C C n1
n1
i1, j,k i, j,k
x
]zyt
[C n1 i1/ 2,
j,k
vn xi1/ 2,
j,k
C n1 i1/ 2,
j,k
vn xi1/
2,
j
,k
]zyt
[Dyi, j1/ 2,k
C C n1
n1
i, j1,k i, j,k
y
Dyi, j1/ 2,k
C n1 i, j1,k y
1、水动力弥散理论
水动力弥散
分子扩散
两部分
机械弥散
由浓度高的方 向向浓度底 的方向运动, 趋于均一
由于微观多孔介质中流 速分布的不均一而引起 的示踪剂(水质点)浓 度在地下水含水层中不 均匀分布的现象。
6
二、溶质(污染物)运移理论方法
1、水动力弥散理论:机械弥散原因
1. 同一空隙中不同部位的流速分布不均匀 2. 不同空隙的流速大小不同 3. 固体骨架导致流速分布的不均匀
t tn1 tn 内的质量守恒。均衡区为由连接节
点i,j,k的六条线段的垂直平分面围成的区域。
根据能量守恒原理,可得显示格式:
[x
T T n1
地下水溶质运移数值模型

地下水溶质运移数值模型(资料性附录)水是溶质运移的载体,地下水溶质运移数值模拟宜在地下水流场模拟基础上,因此地下水溶质运移数值模型包括水流模型和溶质运移模型两部分。
DJ 地下水水流模型非均质、各向异性、空间三维结构、非稳定地下水流系统:1)控制方程σ∂h ∂hy 3(“∂h}∂(∂h ∖S,—=—K v —+—K Y —+—K ——+/∂t 3xI ∂x)为('∂y JAzI ~∂z)式中:SS 一一给水度[I/];h --- 水位[1];Kχf Ky,Kz ——分别为X,y,Z 方向上的渗透系数[EΓ∣];T 一一时间[T ];Qs 一一源汇项m注:方括号[]中的符号为量纲,以下同。
2)初始条件h(x y y 9z y t)=Zz 0(x,y,z)(x,y,z)∈Ω,/=O 式中:4*,y ,z)——已知水位分布:Q ——模型模拟区。
3)边界条件:第一类边界: 〃(x,y,z√)∣「=Λ(x,y,z√)(x,y,z)∈Γ1,r≥O式中:r '一一类边界; h(x,y,z,t)一一类边界上的己知水位函数。
第二类边界:式中:「2 --- 二类边界;∂nq(x,y,Z) (x,y,z)∈Γ2κ——三维空间上的渗透系数张量;nn——边界r2的外法线方向;q(x,y t z)——二类边界上已知流量函数。
第三类边界:r(k(h-z)-+ah)=q(x,y,z)加r3式中:0一一系数;「3一—二类边界;k一一三维空间上的渗透系数张量;n——边界G的外法线方向;q(x,y f z)——三类边界上已知流量函数。
D.2地下水水质模型1)控制方程R啜喘[吗(他C)Fe—/〜元式中:R——迟滞系数,无量纲Pb SC~Θ~∂Cph——介质密度IM1-3];θ——介质孔隙度,无量纲;C——组分的浓度[M1,];亍一一介质骨架吸附的溶质浓度[M1,];t——时间[T];X,y,Z一—空间位置坐标[1];Dij——水动力弥散系数张量[1?T」];Vi——地下水渗流速度张量[EΓ∣];q s——源和汇[T∣];CJ一一源或汇水流中组分的浓度[M1";4一一溶解相一级反应速率[T」];4一一吸附相一级反应速率[Tj]。
第2章_土壤水动力学基本方程

2.3非饱和土壤水运动的达西定律
2.3.3非饱和导水率的数学表达
含水量为 s Δ ,最大半径为 R1的毛管排空。 2 2 Δ M 1Δ M 1 i 1,2,, M 1 对一般情况 K s iΔ K s Δ 2 w g j 2 w g j i 1 h2 2 h2 j j 2 M M M 又
K s iΔ K s i M2 K s i 1,M , M 1 2, 1 Ks Δ1 M 1 例题2.1 2 2 j 1 h 2 2 w g j 1 h j j j 1 h j
j i 1 h 2 j
Δ 1 1 1 g 2 j i 1 h2 2 i h j w j j
H h z h 1 J w K h K h K h z z z
2.3非饱和土壤水运动的达西定律
2.3.2 Buckingham-Darcy通量定律
Buckingham-Darcy通量定律也可写成: 符号相反, 向下为正
非饱和流与饱和流的比较: 共同之处:都服从热力学第二定律,都是从水势高的地 方向水势低的地方运动。 不同之处: ①土壤水流的驱动力不同。 饱和流的驱动力是重力势和压力势;
非饱和流的是重力势和基质势。
②导水率差异 非饱和导水率远低于饱和导水率;当基质势从0降低到 -100kpa时,导水率可降低几个数量级,只相当于饱和导 水率的十万分之一。 ③土壤空隙的影响土壤。在高吸力下,粘土的非饱和导 水率比砂土高。
16~40cm/d
〉100cm/d
中
很高
40~100cm/d
高
2.3非饱和土壤水运动的达西定律
绝大多数田间和植物根区的土壤水流过程都处 在非饱和状态。非饱和流研究为土壤物理学最 活跃的研究领域之一。 2.3.1 非饱和流与饱和流的比较
第五节 溶质运移问题的简单解析解

第五节 溶质运移问题的简单解析解由第二节的对流弥散方程可知,溶质运移问题比地下水运动问题更复杂,更难求得解析解。
只有当含水层为均质各向同性,而且计算区域几何形状简单时,才有可能求得解析解。
下面介绍几种简单的解析解。
一. 一维问题简单的解析解实验室中的土柱试验就是一个简单的一维问题。
一个土柱中装满砂,用水饱和并且让水以固定的速度向下流动。
水中的示踪剂浓度为0。
试验开始时土柱上部换装示踪剂浓度为C 0的溶液,一直保持到试验结束。
如果不考虑吸附、化学反应和放射性衰变,取流向为x 轴,则对流弥散方程(6-91)简化为x c u xc D t c x L ∂∂-∂∂=∂∂22 (6-184) 初始条件00)0,(≥=x x c边界条件⎩⎨⎧≥=∞≥=00),(0),0(0t t c t c t c 该问题的解为(Ogata 和Banks ,1961):⎥⎥⎦⎤⎢⎢⎣⎡++⎪⎪⎭⎫ ⎝⎛-=)2()exp(22),(0t D t u x erfc D x u t D t u x erfc c t x c L x L x L x (6-185) 式中 )(e r f c—余误差函数; )e x p (—指数。
在天然情况下,一维运动往往出现在有一段平直的被污染的河流或渠道,河水渗漏补给地下水,地下水以固定速度u 作一维流动,如图6—25图6—25渠道渗漏作为一个线源引起的地下水污染Sauty (1980)求得该情况下的解为⎥⎥⎦⎥⎢⎢⎣⎢+--=)2()exp()2(2),(0t D t u x erfc D x u t D t u x erfc c t x c L x L x L x (6-186) (6—185)式和(6—186)式在第二项前面符号不同。
当Peclet 数Lx D xu Pe = 相当大时,上二式第二项比第一项小得多,故近似有)2(2),(0t D t u x erfc c t x c L x -=(6-187) 公式(6—187)适用10≥Pe 的情况。
COMSOL地球科学-溶质运移-theory

保守和非保守形式 在地球科学溶质运移应用模式有保守和非保守形式的控制方程可以选用 保守形式的控制方程——适用可压缩流体,流体的密度在空间是变化的
θs
ci c c + ρb Pi i + [ θ s D Li ci + uci ] = RLi + RPi + Sci t c t
非保守形式的控制方程——适用不可压缩流体,不可压缩流体对流项速度 的散度是0
info@
中仿科技---专业信息化软件及技术咨询公司 中仿科技 专业信息化软件及技术咨询公司 CnTech Co.,Ltd--- Leading Engineering Virtual Prototyping Solutions Provider
info@
Fluid and Solid rxns
中仿科技---专业信息化软件及技术咨询公司 中仿科技 专业信息化软件及技术咨询公司 CnTech Co.,Ltd--- Leading Engineering Virtual Prototyping Solutions Provider
info@
info@
内容
“Saturated Porous Media”模式偏微分方程 “Variable Saturated Porous Media”模式偏微分方程
对流 吸附和阻滞 水里扩散 反应 保守和非保守公式
应用模式属性(Application Mode Properties) 求解域控制方程设定(Subdomain Settings) 边界条件设定(Boundary Settings) 点、边设定(Point and Edge Settings)
应用模式属性(Application Mode Properties) 应用模式属性( )
土壤水与溶质的运移
土壤水与溶质的运移Contents5.0 Introduction5.1 Classifying and determining of soil water土壤水的类型划分及土壤水分含量的测定5.2 Energy status of soil water土壤水的能态5.3 Soil water movement土壤水的运动5.4 Solute transportation in soils土壤中的溶质运移Soil water土壤水是土壤的最重要组成部分之一;在土壤形成过程中起着极其重要的作用,在很大程度上参与了土壤内进行的许多物质转化过程:矿物质风化、有机化合物的合成和分解等;作物吸水的最主要来源;自然界水循环的重要环节;非纯水,而是稀薄的溶液,溶有各种溶质,还有胶体颗粒悬浮或分散其中。
Principal sources of soil water●Precipitation——Rain, snow, hail(雹); fog, mist(霜)●Ground water——lateral movement from upslope, upward movement from the underlying rock strata.precipitation Surface devoid of vegetationReachdirectly Vegetated surfaceinterceptedcanopyCanopy throughfall andstemflow atmosphereevaporation infiltration Run offSoil waterDrainage and lostEvapotraspirationThe composition of soil waterSoil water contains a number of dissolved solid and gaseous constituents,many of which exist in mobile ionic form,and a variety of suspended solid components.Base cations(Ca2+, Mg2+, K+, Na+, NH4+)PrecipitationMineral weatheringOrganic matter decomposition Lime and fertilizersourcesH+——a measure of acidity (pH)●CO2Atmosphere ——dissolved in precipitation Soil air ——produced in soil respirationH2O + CO2H2CO3H++ HCO3-Unpolluted rain water: pH>5.6Soil water: pH <5.0●Industrial and urban emission●Organic acids derived from decaying organic material●Released by plants in exchange for nutrient base cations major sourceIron and aluminiumMajor sourcesmineral weatheringacid rainMajor formFe2+, Al3+ionssoluble organic-metallic complexesSoluble anionsNO3-, PO43-Cl-, SO42-HCO3-Mineralisation processesFertilizersAtmosphere sourcesMineral weatheringDissolved organic carbon (DOC) Pollutants (heavy metals et al.)Suspended constitutions☐Small particles of mineral and organic material ☐Often result in discoloration(变污)and increased turbidity(混浊度)of soil water.第一节土壤水的类型划分及土壤水分含量测定Classifying and determining of soil water 一、土壤水分类型及有效性Soil water types and availability土壤水分研究方法能量法数量法从土壤水分受各种力作用后自由能的变化研究水分的能态和运动、变化规律。
溶质运移反应宏观参数的估计方法
汇报人: 日期:
目录
• 溶质运移反应概述 • 溶质运移反应宏观参数介绍 • 溶质运移反应宏观参数的传统估计方
法 • 基于机器学习的溶质运移反应宏观参
数估计方法
目录
• 溶质运移反应宏观参数估计方法的应 用
• 面临的挑战与未来发展方向
01
溶质运移反应概述
溶质运移反应定义
在环境污染研究中的应用
污染源定位
通过估计溶质运移反应的宏观参数,可以模拟和预测污染物在土壤和水体中的迁 移路径和扩散范围,进而确定污染源的位置和范围。
环境风险评估
基于溶质运移模型,可以评估污染物对环境和生态系统潜在的风险,为环境管理 和政策制定提供科学依据。
在农业生产中的应用
肥料利用优化
通过估计溶质运移参数,可以了解土壤中养分的迁移转化规律,为实现合理施肥、提高肥料利用率提供决策支持 。
感谢观看
• 溶质运移反应是指溶质在多孔介质(如土壤、岩石等)中的运 动过程以及与其所处环境的相互作用。这一过程涉及到溶质的 扩散、对流、弥散以及化学反应等多个方面。
溶质运移反应的重要性
溶质运移反应在多个领域都有着广泛 的应用和重要意义,例如
水利工程:在水利工程中,溶质运移 反应的研究对于水资源管理、水库运 行和水质保护等方面都具有重要意义 。
水资源保护
溶质运移模型可用于评估不同水文地质条件下水资源的开发利用潜力,为水资源保护和可持续利用提 供决策依据。
06
面临的挑战与未来发展方 向
数据收集与处理的挑战
数据质量问题
在收集和处理数据时,可能会遇到数据不准确、不完整或 不一致等问题。为了提高数据质量,需要采用合适的数据 预处理和校正方法。
地下水溶质运移第二章
解出浓度分布。对大多数实际溶质运移问题,如地下水
污染,因溶质浓度较小,都可认为属于这种情况。
2 2 海水入侵问题 2.2
海水和淡水很容易混合,它们之间的接触带由于水动力弥散 形成一个由咸水、高矿化水、逐步变为低矿化水的过渡带。如 过渡带的宽度很窄,和整个含水层厚度相比可忽略不计时,可 近似认为海水、淡水间存在 个突变界面;如过渡带很宽,则 近似认为海水、淡水间存在一个突变界面;如过渡带很宽,则 不能做突变界面处理。我国至今未发现这种过渡带很窄可以作 为突变界面处理的情况。 可混溶的对流—弥散模型
2、饱和带溶质运移模型 2.1 地下水水质和污染问题
对流——弥散方程中含有u,浓度分布依赖于流速的分布,而溶质 的浓度变化要影响液体的密度 粘度 密度和粘度的变化又影响u的分 的浓度变化要影响液体的密度、粘度。密度和粘度的变化又影响 布。都是未知函数。只能联立求解。
对流—弥散方程(运移方程)
c c ( Di , j ) (cui ) N t xi x j xi
(3 68) (3.68)
与一般运动方程不同之处: 多了一项反映由浓度差引起的自然对流。只有同时考虑: 水头梯度引起的流动; 由浓度差引起的自然对流 才能反映地下水的真实流向和海水迴流现象。单纯实际(实测) 水头等值线不反映地下水流向 为此,由 水头等值线不反映地下水流向。 为此 由(3.67) (3 67)定义转换水头
3) 集中参数型水质模型
如果只关心污染物随时间的变化而不是不同位置上污染程度的差别, 可考虑用黑箱模型或一个单元的模型来处理。此时浓度只是时间的函数, 与空间位置无关。
模型选择:
首先考虑的是模型是用的目的。如研究污染物的浓度分布,模 首先考虑的是模型是用的目的 如研究污染物的浓度分布 模 拟锋面推移过程,则浓度随空间位置的变化必须考虑,只能用分布 参数模型,以给出浓度的时空变化。集中参数模型比较粗糙,求出 的浓度不代表某一口井的溶质浓度,只是一个全局平均意义下的值。 其次考虑能够取得的数据的数量和质量。如资料不够,只能用 一个简单的模型。 第三要考虑计算工作量。 絶大部分水质问题采用分布参数模型。应尽量用对流 絶大部分水质问题采用分布参数模型 应尽量用对流—弥散模 型,因它比较符合实际。纯对流模型虽然回避了确定弥散系数的困 难,但损失了解的精度。且纯对流模型在计算量上的减少并不明显, 对现在的计算机来说也不重要 所以现在使用对流—弥散模型是 对现在的计算机来说也不重要。 必然趋势,实际情况也是如此。
土壤中反应溶质运移的对流—弥散模型及其解析解
土壤中反应溶质运移的对流—弥散模型及其解析解
《土壤中反应溶质运移的对流-弥散模型及其解析解》介绍了土壤中的反应溶质运移的对流-弥散模型,以及其解析解的求解方法。
该模型有助于揭示溶质在介质中的运动过程,可用于求解土壤溶质运移中的不确定性和可变性。
首先,文章介绍了对流–弥散模型,它是一种考虑介质的内部不稳定性和动态性的模型,主要用于描述介质中的溶质运移。
它可以用来模拟土壤中的溶质运移,并求解不确定性和可变性。
文章着重介绍了该模型的物理原理和数学表达式,提出了一种新的对流-弥散模型。
其次,文章重点讨论了对流–弥散模型解析解的求解方法。
文章提出了一种基于混合对象的对流–弥散模型,并介绍了其解析解的求解方法。
具体而言,它可以从实际场景中求解混合对象模型的参数,并应用此模型来揭示溶质在介质中的运动过程。
最后,文章介绍了对流–弥散模型应用的两个实例,以更加详细地说明这一模型在实际应用中的作用。
文章也分别针对实际应用场景下混合对象模型的参数求解和结果分析,提出了相应的结论。
总之,本文以土壤中反应溶质运移的对流-弥散模型为例,详细介绍了其解析解的求解方法,以及混合对象模型的参数求解和结果分析。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
23
无限长多孔介质砂柱,初试示踪剂呈阶梯函数分布
求解思路:
初始浓度的分布视为沿x轴连续分布的瞬 时变强度点源,利用点源基本解积分求取
取浓度坐标与阶梯相重合,线源的坐标用x’表示,有
C表示示踪剂浓度,n为有效 孔隙率;ω 为砂柱横截面积
24
无限长多孔介质砂柱,初试示踪剂呈阶梯函数分布
考虑与u等速的动坐标系,在位于x’处强度为 ' dm C n dx f 的瞬时点源作用下,任意点处的微分浓 度为:
对于式(4-11),令
8
一、基本解
(4-15)
代入(4-15)
讨论并计算得 代入得最终结果
9
一、基本解
(4-20)
空间瞬时点源的解
分析上式得 等浓度面为圆心位于原点处的球面; 浓度空间分布情况如图所示;
10
一、基本解
任何时刻处浓度最大值在原点 随时间增加,原点处浓度减少 由于
或
对于式
19
二、一维水动力弥散问题
此时有
简化成 采取动坐标,令 则
比静止流场多了一个对流项
,让坐标原点跟着流速一起前进
20
二、一维水动力弥散问题
将X、T反变换
21
二、一维水动力弥散问题
与正态分布密度函数对比
浓度曲线出现峰值的x坐标
曲线在点 ut处对称;
当x 时, C 0;
积分得
浓度与y、z无关,实质为一维弥散问题
17
一、基本解-有限空间(平面)问题
' y 对于边界简单的情况,可用反映法转化为无限空 间问题在叠加求解
,相当于水流问题中的隔水边界。假设点(x0,y0) 对半无限含水层中瞬时注入质量为m的示踪剂
C 0 n
18
二、一维水动力弥散问题
设有一无限长均质砂柱,原有溶液浓C0=0,在t=0, x=0处瞬时注入质量为m的示踪剂,取砂柱中心轴为x 轴,流速方向为正,求浓度C(x,t) 分布
根据线性叠加的思想,将线源作用视为点源的连续分布
13
一、基本解-空间瞬时无限线源与平面瞬时点源
令 解得
空间瞬时无限线源的基本解
C和z无关,Z方向不产生弥散
平面瞬时点源基本解
14
一、基本解-空间瞬时无限线源与平面瞬时点源
厚度为M的承压完整井中瞬时注入示踪剂: 线源长度为M,若瞬时注入示踪剂质量为 m M ,则
mM ml M
对应解为
15
一、基本解-空间瞬时无限面源与平面瞬时无限线源与一维瞬时点源
空间直角坐标系中,取yoz坐标面与面源重合,并设 单位面源瞬时注入质量为mf 的示踪剂 无限面源可以视为无数连 续排列的无限线源组成
mM
16
一、基本解-空间瞬时无限线源与平面瞬时点源
' y 从无限面源中分割出一根平行于z轴,在 处,宽 ' dy 度为 的窄长型微分面源,对空间上任意(x,y,z)处 的作用,与空间瞬时无限线源想当,后者单位长度注 ' m dy 入量与前者的 相当,有 f
随着Dl或者t的增大,浓度 越来越分散;
曲线在 x 处为拐点, 0 . 607 C 拐点浓度 C m
一维弥散Cmax衰减比二、三 维要慢
22
无限长多孔介质砂柱,初试示踪剂呈阶梯函数分布
一无限长均质砂柱,速度u做稳定流动,且初试浓 度呈阶梯状分布,数学模型为:
式(4-3)通解为
利用边界条件确定系数A、B。将(4-45)代入(4-46’)
常微分方程两相异实根r1>0,r2<0,上式右端第二项为 r 1 e 0,且 ,必有A=0
28
半无限长多孔介质柱体,一端为定浓度边界
将边界条件(4-44)代入(4-46’),考虑A=0,有 故 作关于t的Laplace逆变换
31
瞬时注入示踪剂-平面瞬时点源
均质各项同性、等厚的承压含水层中存在一维稳定流 动,孔隙平均流速为u,取x坐标轴平行地下水流向, 产生,在x方向为纵向弥散系数DL,在y方向为横向弥 散系数DT。
,浓度为原点的1%
随时间推移,弥散 晕范围逐步扩大
11
一、基本解-空间瞬时无限线源与平面瞬时点源
一口承压完整井中瞬 时注入示踪剂,求浓 度时空分布规律
映射
三维空间一条无 限长瞬时线源
12
一、基本解-空间瞬时无限线源与平面瞬时点源
取三维空间上z轴与瞬时线源重合,假定单位长度线 源瞬时注入示踪剂的质量为ml,在线源上任意位置 z ' 处 取一分为线源段 d z ',将其视为点源的作用,其瞬时注入 ' m d z 示踪剂质量ቤተ መጻሕፍቲ ባይዱ l ,在瞬时点源空间上任意点(x,y,z) 产生的微分浓度
地下水溶质运移理论及模型
第四章 水动力弥散方程的解析解法
中国地质大学环境学院 2019春
一、基本解
基本解 将瞬时注入点源问题的解称为基本解。由基本 解出发,利用叠加原理到处线源、面源、多点源及 连续注入问题的解。 三维空间瞬时点源
(1)均质各向同性; (2)静止流场 0,弥散系数为常数,即
,流体密度为常数; (3)t=0时,在原点处瞬时注入质量为m的溶质; (4)瞬时点源位置为坐标原点;
2
一、基本解
浓度C对称于原点分布
对流弥散方程简化成 D表示多孔介质分子扩散系数 取半径为R和R+dR的两个球面所构成的单元体为均 衡段,根据质量均衡得
3
一、基本解
略去高阶变量
问题写成
4
一、基本解
略去高阶变量
问题写成
5
一、基本解
将m、n合并成新变量m/n,得
根据因次分析中的π定理设
和 对该问题,有两个独立的π参数,依π定理有
π1、π2可有多种组合, 但上述组合可得到最简 单的常微分方程,即
6
一、基本解
(4-11)
7
一、基本解
将定解条件做适当变换
通过Boltzmann变换,将偏微分变成常微分
29
半无限长多孔介质柱体,一端为定浓度边界
进一步求解 得
30
半无限长多孔介质柱体,一端为定浓度边界
该式可用于地表水体。如一条均匀的长渠道, 在x=0处定浓度C0,并以稳定速度u流动,只需讲Dl 改成Dm 余补误差函数erfc(η)随着η的增大而减少,当x 足够大或t足够长,右端第二项可忽略不计,即
讨论一阶的情况,进行积分分解并换元求解得
相对浓度
25
无限长多孔介质砂柱,初试示踪剂呈阶梯函数分布
由于erfc(0)=1,故x=ut处,相对浓度ε =1/2,表示 ε =1/2的点与u同速度推进。
26
半无限长多孔介质柱体,一端为定浓度边界
坐标轴与数学模型如下:
作关于t的Laplace变换
27
半无限长多孔介质柱体,一端为定浓度边界