分式及分式方程 期末综合复习及答案
初中数学解分式方程综合练习题(附答案)

初中数学解分式方程综合练习题一、单选题1.下列计算正确的是( )A. 235a b ab +=B. ()222a b a b -=-C. ()32626x x =D. 835x x x ÷= 2.如图,90B D ∠=∠=︒,BC CD =,140∠=︒,则2∠=( )A.40°B.50°C.60°D.75°3.下列等式从左到右的变形一定正确的是( ) A. 11b b a a +=+ B. b bm a am = C. 2ab b a a= D. 22b b a a = 4.若,x y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( ) A.2x x y +- B.22y x C.3223y x D.()222y x y -5.在平面直角坐标系中,将函数3y x =的图象向上平移6个单位长度,则平移后的图象与x 轴的交点坐标为( )A.(2)0,B.(20)-,C.(6)0,D.(60)-,6.如图是三条两两相交的笔直公路,某物流公司现要修建一个货物中转站,使它到三条公路的距离相等,这个货物中转站可选的位置有( )A .3个B .4个C .5个D .6个7.如果一个正比例函数的图象经过不同象限的两点()()2,,,3A m B n ,那么一定有( )A.0,0m n >>B.0,0m n ><C.0,0m n <>D.0,0m n <<8.关于x 的方程32211x m x x -=+++无解,则m 的值为( ) A.5- B.8-C.2-D.59.下列各分式中,是最简分式的是( ) A.105xy xB. 22x y x y-- C. x y x+ D. 24x 10.若x 为整数,且使分式2123x x ++的值为整数,则满足条件的x 的值有( ) A.5个 B.6个 C.8个 D.7个11.随着时代的进步,人们对 2.5PM (空气中直径小于等于2.5微米的颗粒)的关注日益密切.某市一天中 2.5PM 的值31(ug /m )y 随时间(h)t 的变化如图所示,设2y 表示0时到t 时2.5PM 的值的极差(即0时到t 时 2.5PM 的最大值与最小值的差),则2y 与t 的函数关系大致是( )A .B .C .D .二、解答题12.某商店购进A B 、两种商品,购买1个A 商品比购买1个B 商品多花10元,并且花费300元购买A 商品和花费100元购买B 商品的数量相等.(1)求购买一个A 商品和一个B 商品各需要多少元;(2)商店准备购买A B 、两种商品共80个,若A 商品的数量不少于B 商品数量的4倍,并且购买A B 、商品的总费用不低于1000元且不高于1050元,那么商店有哪几种购买方案?13.随着5G 技术的发展,人们对各类5G 产品的使用充满期待,某公司计划在某地区销售一款5G 产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化.设该产品在第x (x 为正整数)个销售周期每台的销售价格为y 元,y 与x 之间满足如图所示的一次函数关系.(1)求y 与x 之间的关系式;(2)设该产品在第x 个销售周期的销售数量为p (万台),p 与x 的关系可以用1122p x =+来描述.根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?14.如图,在ABC △中,90,BAC E ∠=︒为边BC 上的点,且,AB AE D =为线段BE 的中点,过点E 作EF AE ⊥,过点A 作//AF BC ,且,AF EF 相交于点F .(1)求证:C BAD ∠=∠;(2)求证:AC EF =.15.如图, ,60,AB BC ABC BDC =∠=∠=︒求证: AD CD BD +=;三、计算题16.计算: 1.(6)(2)(3)a a a a +--+2.221121x x x x x x--÷+++17.计算:(1)222123234x y x xy --; (2)22y x x xy y x+--. 18.计算:693()(1).x x x x--÷- 19.计算下列小题:(1)计算:20(2)3(6)----;(2)解分式方程:22511x x =--.20.若33m n a a -÷=,且22m n +=,求34m n -21.化简(1)2245a a +--(2)()()22228423xy x y x y xy -+--+-22.对于实数,a b 定义运算:(,0)(,0)b b a a b a a b a a b a -⎧>≠⎪=⎨≤≠⎪⎩▲ 如: 3123=2,8-=▲242416==▲. 照此定义的运算方式计算: [][]2(4)(4)(2)-⨯--▲▲四、填空题23.已知分式2x m x n -+,当2x =时,分式的值为0;当1x =时,分式无意义,则m n += . 24.分式22,b a b a ab a ab ---+的最简公分母是 . 25.一个周长是20cm 的长方形,它的面积()2cm S 与长边()cm x 之间的函数表达式为 ,自变量x 的取值范围是 .26.已知()214k y k x k =-+-是一次函数,则()201932k += .27.如图,在ABC △中,10,12,8,AB AC BC AD AD ====是BAC ∠的平分线.若,P Q 分别是AD 和AC 上的动点,则PC PQ +的最小值是 .28.如图,BD 是ABC △的角平分线,它的垂直平分线分别交AB ,BD ,BC 于点E ,F ,G ,若30ABC ∠=︒,45C ∠=︒,ED =H 是BD 上的一个动点,则HG HC +的最小值为 .29.分解因式:3x x -=___________.参考答案1.答案:D解析:A 、23a b +,无法计算,故此选项错误;B 、222()2a b a ab b -=-+,故此选项错误;C 、()32628x x =,故此选项错误; D 、835x x x ÷=,故此选项正确;故选:D .2.答案:B解析:3.答案:C解析:分式的基本性质是分式的分子、分母同乘(或除以)一个不为零的整式,分式的值不变.选项A,分子、分母同加1,不符合分式的基本性质,故A 错;选项B,分子、分母同乘m ,没有限制m 不等于零,故B 错;选项D,分子乘b ,分母乘a ,故D 错;选项C,分式2ab a中暗含0a ≠这个条件,所以分子、分母同时除以a ,分式值不变,故选C.4.答案:D解析:根据分式的基本性质,可知若,x y 的值均扩大为原来的3倍,选项A 中,23233x x x y x y ++≠-- ,故此选项错误;选项B 中,22629y y x x≠故此选项错误;选项C 中,3322542273y y x x≠ ,故此选项错误;选项D 中22221829()()y y x y x y =--,故此选项正确.5.答案:B解析:根据函数图象的平移规律,可知3y x =向上平移6个单位后得到的函数解析式为36y x =+,令0y =,即360x +=,解得2x =-,∴与x 轴的交点坐标为(20)-,,故选B6.答案:B 解析:利用角平线性质知角平分线上的点到角两边距离相等,通过三角形内心为其内切圆的圆心来解得.解答:根据三条路线构成的三角形知,三角形的内心为三角形内角角平分线的交点. 由三角形内心为该三角形内切圆的圆心,∴所以符合货物中转站到各路的距离相等.这样的点可找到一个.两外角平分线的交点,到三条公路的距离也相等,可找到三个.故答案为:B .7.答案:D 解析:∵点()2,A m 的横坐标为20>, ∴此点在一、四象限;∵点(),3B n 的纵坐标为30>,∴此点在一、二象限,∴此函数的图象一定经过二、四象限,∴点()2,A m 在第四象限,(),3B n 在第二象限,∴0,0m n <<.故答案为:0,0m n <<.8.答案:A解析:原分式通分得322(1)11x x m x x -++=++ 等式两边同时乘以(1)x +,得322(1)x x m -=++整理得4x m =+因为原分式无解,所以原分式的分母10x +=,即1x =-代入4x m =+中得,14m -=+,解得5m =-,故选A.9.答案:C解析:10.答案:C解析:2122(3)662333x x x x x +++==++++31,2,3,6x ∴+=±±±±,即4,2,1,5,0,6,3,9x =------时,分式的值为整数.故选C.11.答案:B解析:当0t =时,极差285850y -==,当010t <≤时,极差2y 随t 的增大而增大,最大值为43; 当1020t <≤时,极差2y 随t 的增大保持43不变;当2024t <≤时,极差2y 随t 的增大而增大,最大值为98; 故选:B .12.答案:解:(1)设购买一个B 商品需要x 元,则购买一个A 商品需要(10)x +元, 依题意,得:30010010x x=+, 解得:5x =,经检验,5x =是原方程的解,且符合题意,1015x ∴+=.答:购买一个A 商品需要15元,购买一个B 商品需要5元.(2)设购买B 商品m 个,则购买A 商品(80)m -个,依题意,得:80415(80)5100015(80)51050m m m m m m -≥⎧⎪-+≥⎨⎪-+≤⎩,解得:1516m ≤≤. m 为整数,15m ∴=或16.∴商店有2种购买方案,方案①:购进A 商品65个、B 商品15个;方案②:购进A 商品64个、B 商品16个.解析:13.答案:解:(1)设函数的解析式为:(0)y kx b k =+≠,由图象可得,700055000k b k b +=⎧⎨+=⎩, 解得,5007500k b =-⎧⎨=⎩, ∴y 与x 之间的关系式:5007500y x =-+;(2)设销售收入为w 万元,根据题意得,11(5007500)()22w yp x x ==-++, 即2250(7)16000w x =--+,∴当7x =时,w 有最大值为16000,此时500775004000y =-⨯+=(元)答:第7个销售周期的销售收入最大,此时该产品每台的销售价格是4000元.解析:14.答案:(1),AB AE D =为线段BE 的中点,AD BC ∴⊥, 90C DAC ∴∠+∠=︒,90BAC ∠=︒,90BAD DAC ∴∠+∠=︒,C BAD ∴∠=∠.(2)//AF BC ,FAE AEB ∴∠=∠,AB AE =,B AEB ∴∠=∠B FAE ∴∠=∠,且90,AEF BAC AB AE ∠=∠=︒=.()ABC EAF ASA ∴≌△△,AC EF ∴=.解析:15.答案:证明:如图2中,延长DC 到E,使得DB DE =∵,60DB DE BDC =∠=︒,∴△BDE 是等边三角形,,60,BD BE DBE ABC ∴∠=∠=∠=︒ABD CBE ∴∠=∠,∵AB BC =,∴△ABD ≅ △CBE ,∴AD EC =,∴BD DE DC CE DC AD ==+=+.∴AD CD BD +=.解析:16.答案:1.原式22412312a a a a a =+---=-2.原式21(1)(1)11x x x x x x x -+=⋅=+-+ 解析: 17.答案:解:(1)原式2222222689121212y y x x y x y x y =--222689.12y y x x y--= (2)原式2()y x x x y x y=--- 22()()y x x x y x x y =--- .x y x+=- 解析:18.答案:解:原式22693(3) 3.3x x x x x x x x x x -+--=÷=⋅=-- 解析:19.答案:解:(1)原式43416=-++=;(2)两边都乘以(1)(1)x x +-,得:2(1)5x +=, 解得:32x =, 检验:当32x =时,5(1)(1)04x x +-=≠, ∴原分式方程的解为32x =. 解析:20.答案:解:由1333m n m n a a a ---÷==,得到10m n --=,即1m n =+,代入22m n +=中得:222n n ++=,即0n =,把0n =代入得:1m =,则343m n -=.解析:21.答案:(1)原式3425a a =-+-3a =--(2)原式2222844812xy x y x y xy =-+-+-+225512x y =++ 解析:22.答案:解:根据题意得,412(4)216--==▲,2(4)(2)(4)16--=-=▲, 则[][]12(4)(4)(2)16116-⨯--=⨯=▲▲ 解析:23.答案:3解析:由题意,得402010m n n -=⎧⎪+≠⎨⎪+=⎩,解得41m n =⎧⎨=-⎩,故4(1)3m n +=+-=. 24.答案:()()a a b a b +-解析: 分式22,b a b a ab a ab---+的分母分别是22(),()a ab a a b a ab a a b -=-+=+,故最简公分母是()()a a b a b +-25.答案:210S x x =-+;510x <<解析:长方形的长为cm x ,周长为20cm ,则宽为()10cm x -, 所以它的面积()21010S x x x x =-=-+,易得010010x x x x >⎧⎪->⎨⎪>-⎩,解得510x <<.26.答案:1- 解析:由题意得1k =且10k -≠,解得1k =-,所以()()2019201932321k ++=-=-.27.答案:9.6解析:如图,连接.,BP AB AC AD =是BAC ∠的平分线,AD ∴垂直平分,.BC BP CP ∴=过点B 作BQ AC ⊥于点, Q BQ 交AD 于点P ,则此时PC PQ +取得最小值,最小值为BQ 的长,如图所示.11,22ABC S BC AD AC BQ =⋅=⋅△1289.610BC AD BQ AC ⋅⨯∴===28.答案:解析:29.答案:(1)(1)x x x +-解析:本题考查了分解因式,遵循先提取公因式,再利用平方差公式的顺序,32(1)(1)(1)x x x x x x x -=-=+-.。
八年级上册分式方程综合练习及答案

分式方程同步练习班级学号姓名得分一、选择题1.下列关于x 的方程是分式方程的为( ). A .25x +-3=36x+ B .17x a++=3-x C .x a b x a b a b-=-D .2(1)11x x -=- 2.解分式方程2236111x x x +=+--,下列四步中,错误的一步是( ). A .方程两边分式的最简公分母是x 2-1B .方程两边同乘(x 2-1),得整式方程2(x -1)+3(x +1)=6C .解这个整式方程得x =1D .原方程的解为x =13.当x =时,25x x --与1x x +互为相反数.4.把分式方程1222x x x+=--化为整式方程为. 5.解下列分式方程:(1)32322x x x +=+-; (2)8177x x x----=8. 6.若关于x 的方程323-=--x m x x 有正数解,则(). (A)m >0且m ≠3 (B)m <6且m ≠3 (C)m <0(D)m >67.完成某项工作,甲独做需a 小时,乙独做需b 小时,则两人合作完成这项工作的80%,所需要的时间是(). (A))(54b a +小时 (B))11(54b a +小时 (C))(54b a ab+小时(D)ba ab+小时 8.a 个人b 天可做c 个零件(设每人速度一样),则b 个人用同样速度做a 个零件所需天数是().(A)c a 2(B)2ac(C)a c 2(D)2c a 二、填空题9.x =______时,两分式44-x 与13-x 的值相等. 10.关于x 的方程324+=-b xa 的解为______.11.当a =______时,关于x 的方程4532=-+x a ax 的根是1.12.若方程114112=---+x x x 有增根,则增根是______. 13.关于x 的方程11=+x a的解是负数,则a 的取值范围为____________.14.一艘轮船在静水中的最大航速为20千米/时,它在江水中航行时,江水的流速为v 千米/时,则它以最大航速顺流航行s 千米所需的时间是______. 三、解方程15..32121=-+--xx x16.⋅+=+--1211422x xx x x 17.⋅-+=+-xx x x x 25316 四、列方程解应用题18.甲工人工作效率是乙工人工作效率的212倍,他们同时加工1500个零件,甲比乙提前18个小时完工,问他们每人每小时各加工多少个零件?19.甲、乙两地相距50km ,A 骑自行车,B 乘汽车,同时从甲城出发去乙城.已知汽车的速度是自行车速度的2.5倍,B 中途休息了0.5小时还比A 早到2小时,求自行车和汽车的速度.20.面对全球金融危机的挑战,我国政府毅然启动内需,改善民生.国务院决定从2009年2月1日起,在全国范围内实施“家电下乡”,农民购买入选产品,政府按原价购买总额的....13..%.给予补贴返还.某村委会组织部分农民到商场购买入选的同一型号的冰箱、电视机两种家电,已知购买冰箱的数量是电视机的2倍,且按原价购买冰箱总额为40000元、电视机总额为15000元.根据“家电下乡”优惠政策,每台冰箱补贴返还的金额比每台电视机补贴返还的金额多65元,求冰箱、电视机各购买多少台?(2)列出方程(组)并解答.参考答案1.D 点拨:分母中含未知数的方程是分式方程,选项A 中的分母不含未知数,选项B 、C 中的分母含有字母,但不是未知数x ,故选D.2.D 点拨:解分式方程时要检验,当x =1时,最简公分母x 2-1=0,所以原分式方程无解,故选D. 3.56 点拨:5x x --2与1x x +互为相反数,即5x x --2+1x x +=0,解得x =56,经检验,x =56是原方程的根.4.x +2(x -2)=-1 点拨:原方程可变形为2x x -+2=12x --,方程两边同乘x -2,得x +2(x -2)=-1.5.解:(1)去分母,得3x (x -2)+2(x +2)=3(x +2)(x -2),去括号,得3x 2-6x +2x +4=3x 2-12,整理,得-4x =-16,解得x =4. 经检验x =4是原方程的解,所以原方程的解为x =4.(2)方程两边同乘x -7,得x -8+1=8(x -7),解这个方程,得x =7.检验,当x =7时,x -7=0.所以x =7是原方程的增根,所以原方程无解. 6.B .7.C .8.A .9.x =-8.10.⋅--=462b a x11.⋅-=317a12.x =1.13.a <1且a ≠0.14.20+v s小时.15.无解.16.⋅-=21x 17.无解.18.设乙的工作效率为x 个/时,甲的工作效率为x 25个/时.182515001500+=x x .50=x .经检验,x =50是原方程的根. 答:甲每小时加工125个,乙每小时加工50个. 19.设自行车速度为x 千米/时,汽车速度为2.5x 千米/时.xx 502215.250=++.x =12.经检验x =12是原方程的根. 答:自行车的速度为12km/时,汽车的速度为30km/时. 20.(1)2x ,40000×13%,x2%1340000⨯,15000×13%,x %1315000⨯;(2)冰箱、电视机分别购买20台、10台.。
分式及方程综合测试卷(带答案)

初分式及方程综合测试卷(带答案)(满分100分60分钟完成)学生姓名:____________ 分数:____________一.选择题(共8小题,每题3分,共24分)1.(2014•广州)下列运算正确的是()A.5ab﹣ab=4 B.C.a6÷a2=a4D.(a2b)3=a5b3+=2.(2014•贺州)使分式有意义,则x的取值范围是()A.x≠1B.x=1 C.x≤1D.x≥13.(2014•毕节地区)若分式的值为零,则x的值为()A.0B.1C.﹣1 D.±14.(2014•南通)化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x5.(2014•河东区一模)当x=1时,(x﹣2﹣)÷=()A.4B.3C.2D.16.(2014•台州)将分式方程1﹣=去分母,得到正确的整式方程是()A.1﹣2x=3 B.x﹣1﹣2x=3 C.1+2x=3 D.x﹣1+2x=37.(2014•安次区一模)对于非零实数a、b,规定a⊗b=.若2⊗(2x﹣1)=1,则x的值为()A.B.C.D.﹣8.(2014•龙东地区)已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2C.m≥2且m≠3D.m>2且m≠3二.填空题(共4小题,每题3分,共12分)9.(2014•白银)化简:=_________.10.(2014•台州)有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n次运算的结果y n=_________(用含字母x和n的代数式表示).11.(2014•泰州)已知a2+3ab+b2=0(a≠0,b≠0),则代数式+的值等于_________.12.(2014•凉山州)关于x的方程=﹣1的解是正数,则a的取值范围是_________.三.解答题(共9小题,13-14每题4分,15-16每题5分,17-18每题8分,19-21每题10分,共64分)13.(2014•滨州)计算:•.14.(2014•泸州)计算(﹣)÷.15.(2014•仙桃)解方程:.16.(2014•宿迁)解方程:.17.(2014•大庆)已知非零实数a满足a2+1=3a,求的值.18.(2014•安顺)先化简,再求值:(x+1﹣)÷,其中x=2.19.(2014•云南)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?20.(2014•徐州)几个小伙伴打算去音乐厅观看演出,他们准备用360元钱购买门票.下面是两个小伙伴的对话:根据对话的内容,请你求出小伙伴们的人数.21.甲、乙两名采购员同去一家饲料公司购买两次饲料.两次饲料的价格分别为m元/千克和n元/千克(m、n 都为正数,且m≠n),两名采购员的购货方式不同,其中甲每次购买800千克;乙每次用去800元,而不管购买多少饲料.(1)用含m、n的代数式表示甲、乙两名采购员两次购买饲料的平均单价各是多少?(2)若规定:谁两次购买饲料的平均单价低,谁的购货方式合算,请你判断甲、乙两名采购员购货方式哪个更合算?说明理由.分式方程的章末综合测试卷参考答案与试题解析一.选择题(共8小题)1.(2014•广州)下列运算正确的是()C.a6÷a2=a4D.(a2b)3=a5b3 A.5ab﹣ab=4 B.+=解答:解:A、原式=4ab,故A选项错误;B、原式=,故B选项错误;C、原式=a4,故C选项正确;D、原式=a6b3,故D选项错误.故选:C.2.(2014•贺州)使分式有意义,则x的取值范围是()A.x≠1B.x=1 C.x≤1D.x≥1解答:解:根据题意得:x﹣1≠0,解得:x≠1.故选:A.3.(2014•毕节地区)若分式的值为零,则x的值为()A.0B.1C.﹣1 D.±1解答:解:由x2﹣1=0,得x=±1.①当x=1时,x﹣1=0,∴x=1不合题意;②当x=﹣1时,x﹣1=﹣2≠0,∴x=﹣1时分式的值为0.故选:C.4.(2014•南通)化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x解答:解:=﹣===x,故选:D.5.(2014•河东区一模)当x=1时,(x﹣2﹣)÷=()A.4B.3C.2D.1解答:解:(x﹣2﹣)÷=,当x=1时,原式==2.6.(2014•台州)将分式方程1﹣=去分母,得到正确的整式方程是()A.1﹣2x=3 B.x﹣1﹣2x=3 C.1+2x=3 D.x﹣1+2x=3解答:解:分式方程去分母得:x﹣1﹣2x=3,故选:B.7.(2014•安次区一模)对于非零实数a、b,规定a⊗b=.若2⊗(2x﹣1)=1,则x的值为()A.B.C.D.﹣解答:解:根据题意得:2⊗(2x﹣1)=﹣=1,去分母得:2﹣(2x﹣1)=4x﹣2,去括号得:2﹣2x+1=4x﹣2,移项合并得:6x=5,解得:x=,经检验是分式方程的解.故选A.8.(2014•龙东地区)已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2C.m≥2且m≠3D.m>2且m≠3解答:解:分式方程去分母得:m﹣3=x﹣1,解得:x=m﹣2,由方程的解为非负数,得到m﹣2≥0,且m﹣2≠1,解得:m=2且m≠3.故选:C二.填空题(共4小题)9.(2014•白银)化简:=x+2.解答:解:+=﹣==x+2.故答案为:x+2.10.(2014•台州)有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n次运算的结果y n=(用含字母x和n的代数式表示).解答:解:将y1=代入得:y2==;将y2=代入得:y3==,依此类推,第n次运算的结果y n=.故答案为:.11.(2014•泰州)已知a2+3ab+b2=0(a≠0,b≠0),则代数式+的值等于﹣3.解答:解:∵a2+3ab+b2=0,∴a2+b2=﹣3ab,∴原式===﹣3.故答案为:﹣3.12.(2014•凉山州)关于x的方程=﹣1的解是正数,则a的取值范围是a>﹣1且a≠﹣.解答:解:=﹣1,解得x=,∵=﹣1的解是正数,∴x>0且x≠2,即0且≠2,解得a>﹣1且a≠﹣.故答案为:a>﹣1且a≠﹣.三.解答题(共9小题)13.(2014•滨州)计算:•.解答:解:•=•=x14.(2014•泸州)计算(﹣)÷.解答:解:原式=(﹣)•=(﹣)•(﹣),=﹣•,=﹣.15.(2014•仙桃)解方程:.解答:解:方程两边都乘3(x+1),得:3x﹣2x=3(x+1),解得:x=﹣,经检验x=﹣是方程的解,∴原方程的解为x=﹣.16.(2014•宿迁)解方程:.解答:解:方程两边同乘以x﹣2得:1=x﹣1﹣3(x﹣2)整理得出:2x=4,解得:x=2,检验:当x=2时,x﹣2=0,故x=2不是原方程的根,故此方程无解.17.(2014•大庆)已知非零实数a满足a2+1=3a,求的值.解答:解:∵a2+1=3a,即a+=3,∴两边平方得:(a+)2=a2++2=9,则a2+=7.18.(2014•安顺)先化简,再求值:(x+1﹣)÷,其中x=2.解答:解:原式=[﹣]•=•=•=﹣,当x=2时,原式=﹣=3.19.(2014•云南)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?解答:解:设第一批盒装花的进价是x元/盒,则2×=,解得x=30经检验,x=30是原方程的根.答:第一批盒装花每盒的进价是30元.20.(2014•徐州)几个小伙伴打算去音乐厅观看演出,他们准备用360元钱购买门票.下面是两个小伙伴的对话:根据对话的内容,请你求出小伙伴们的人数.解答:解:设票价为x元,由题意得,=+2,解得:x=60,则小伙伴的人数为:=8.答:小伙伴们的人数为8人.21.甲、乙两名采购员同去一家饲料公司购买两次饲料.两次饲料的价格分别为m元/千克和n元/千克(m、n都为正数,且m≠n),两名采购员的购货方式不同,其中甲每次购买800千克;乙每次用去800元,而不管购买多少饲料.(1)用含m、n的代数式表示甲、乙两名采购员两次购买饲料的平均单价各是多少?(2)若规定:谁两次购买饲料的平均单价低,谁的购货方式合算,请你判断甲、乙两名采购员购货方式哪个更合算?说明理由.解答:解:(1)根据题意列得:甲采购员两次购买饲料的平均单价为=元/千克;乙采购员两次购买饲料的平均单价为=元/千克;(2)﹣==,∵(m﹣n)2≥0,2(m+n)>0,∴﹣≥0,即≥,则乙的购货方式合算.。
初中数学分式及分式方程含答案

分式及分式方程一.选择题(共40小题)1.如果a,b,c,d是正数,且满足a+b+c+d=2,+++=4,那么+++的值为()A.1B.C.0D.42.若=A﹣,则A是()A.﹣3B.2C.3D.53.化简的结果是()A.B.C.D.4.化简+的结果是()A.B.C.x+2D.x+45.如果x+y=5,那么代数式(1+)÷的值为()A.1B.﹣1C.5D.﹣56.如果2x﹣y=,那么代数式(﹣4x)÷的值为()A.﹣B.C.2D.﹣27.若x+2y﹣1=0,则(x﹣)÷(1﹣)的值为()A.﹣1B.1C.2D.8.计算:﹣=()A.1B.2C.D.9.若a+2b=0,则分式(+)÷的值为()A.B.C.﹣D.﹣3b10.若x+=3,则的值是()A.B.C.3D.611.已知,则的值为()A.5B.6C.7D.812.已知a,b为实数且满足a≠﹣1,b≠﹣1,设M=+,N=+.①若ab=1时,M=N②若ab>1时,M>N③若ab<1时,M<N④若a+b=0,则M•N≤0则上述四个结论正确的有()个.A.1B.2C.3D.413.若分式=3,则的值为()A.1B.2C.3D.414.若,则的值为()A.4B.5C.6D.715.已知实数x,y,z满足++=,且=11,则x+y+z的值为()A.12B.14C.D.916.已知,那么=()A.6B.7C.9D.1017.式子的值不可能为()A.﹣3B.0C.1D.318.式子++的值不可能等于()A.﹣2B.﹣1C.0D.119.计算所得的结果是()A.x﹣c B.x﹣a C.D.20.已知:a,b,c三个数满足,则的值为()A.B.C.D.21.已知x+y+z=0,且,则代数式(x+1)2+(y+2)2+(z+3)2的值为()A.3B.14C.16D.3622.若,则M为()A.0B.C.D.23.已知,则A,B的值分别为()A.A=3,B=﹣4B.A=4,B=﹣3C.A=1,B=2D.A=2,B=1 24.若x2﹣4x+1=0,则代数式x﹣的值为()A.2B.﹣2C.2+2D.2+2或2﹣2 25.已知x2﹣2x﹣1=0,那么x2+=()A.4B.5C.6D.726.分式方程=的解为()A.x=﹣1B.x=0C.x=1D.x=227.分式方程+1=的解为()A.无解B.x=1C.x=﹣1D.x=﹣228.若方程无解,则m=()A.1B.2C.4D.前面几个都不对29.方程=的解为()A.x=﹣5B.x=5C.x=D.x=﹣30.已知关于x的分式方程的解是非负数,则m的取值范围是()A.m>5B.m≥5C.m≥5且m≠6D.m>5且m≠6 31.解分式方程时,在方程两边同乘(x+1),把原方程化为:2x﹣(x+1)=1,这一变形过程体现的数学思想主要是()A.类比思想B.转化思想C.方程思想D.函数思想32.观察下面的变形规律:,,,,…,回答问题:若+++…+=,则x的值为()A.100B.98C.1D.33.已知关于x的分式方程=1的解是非正数,则m的取值范围是()A.m≤3B.m≤3且m≠2C.m<3D.m<3且m≠2 34.关于x的方程有增根,则m的值为()A.2B.﹣7C.5D.﹣535.若关于x的分式方程无解,则a的值为()A.1B.﹣1C.1或0D.1或﹣136.已知关于x的方程的解为正数,则k的取值范围为()A.k>﹣2且k≠﹣1B.﹣2<k<0且k≠﹣1C.k>2D.k<2且k≠﹣137.下列关于x的方程:+x=1,=,=,=2中,分式方程的个数是()A.1个B.2个C.3个D.4个38.若分式﹣2与的值互为相反数,则x=()A.B.C.D.39.如果关于x的方程﹣=0无解,则m的值是()A.2B.0C.1D.﹣240.若关于x的分式方程+=1有增根,则m的值是()A.m=0B.m=﹣1C.m=0或m=3D.m=3分式及分式方程参考答案与试题解析一.选择题(共40小题)1.解:∵a+b+c+d=2,+++=4,∴+++=++=﹣1+﹣1+﹣1+﹣1=2×()﹣4=2×4﹣4=8﹣4=4,故选:D.2.解:A=+==2,故选:B.3.解:=﹣===;故选:C.4.解:+=+==;故选:B.5.解:原式=(+)•,=•,=x+y,∵x+y=5,故选:C.6.解:(﹣4x)÷=•=•=y﹣2x,∵2x﹣y=,∴原式=﹣(2x﹣y)=﹣.故选:A.7.解:原式=÷=•=x+2y,由x+2y﹣1=0,得到x+2y=1,则原式=1.故选:B.8.解:﹣===2,故选:B.9.解:原式=[]÷=•=,∵a+2b=0,∴原式==.故选:A.10.解:∵x+=3,∴原式==,故选:A.11.解:∵,∴(a+)2=9,即a2+2+=9,则=7,故选:C.12.解:∵M=+,N=+,∴M﹣N=+﹣(+)=+==,①当ab=1时,M﹣N=0,∴M=N,故①正确;②当ab>1时,2ab>2,∴2ab﹣2>0,当a<0时,b<0,(a+1)(b+1)>0或(a+1)(b+1)<0,∴M﹣N>0或M﹣N<0,∴M>N或M<N,故②错误;③当ab<1时,a和b可能同号,也可能异号,∴(a+1)(b+1)>0或(a+1)(b+1)<0,而2ab﹣2<0,∴M>N或M<N,故③错误;④M•N=(+)•(+)=++,∵a+b=0,∴原式=+==,∵a≠﹣1,b≠﹣1,∴(a+1)2(b+1)2>0,∵a+b=0∴ab≤0,M•N≤0,故④正确.故选:B.13.解:原式=∵y﹣x=3xy,∴原式===4,故选:D.14.解:∵(x+)2=9,∴x2++2=9,故x2+=7,∴(x﹣)2=x2+﹣2=5.故选:B.15.解:∵=11,∴1++1++1+=14,即++=14,∴++=,而++=,∴=,∴x+y+z=12.故选:A.16.解:∵+=2,∴=2,即a+b=2ab,则原式===7,故选:B.17.解:=当a=b=c=0时,=0,而abc≠0,∴不能等于0,故选:B.18.解:++=,分式的值不能为0,因为只有a=b=c时,分母才为0,此时分式没意义,故选:C.19.解:原式=+[﹣]=+[﹣]=+=﹣==,故选:C.20.解:由已知可得,,,,则ac+bc=3abc①,ab+ac=4abc②,bc+ab=5abc③,①+②+③得,2(ab+bc+ca)=12abc,即=.故选:A.21.解:∵x+y+z=0,且,设a=x+1,b=y+2,c=z+3,则a+b+c=x+y+z+6=6,++=0,∴=0,即ab+ac+bc=0,∴(x+1)2+(y+2)2+(z+3)2=a2+b2+c2=(a+b+c)2﹣2(ab+ac+bc)=62﹣2×0=36.∴(x+1)2+(y+2)2+(z+3)2的值为36.故选:D.22.解:M=﹣=,故选:D.23.解:+==,∵,∴,解得:A=1,B=2,故选:C.24.解:原式=﹣=,∵x2﹣4x+1=0,∴x2=4x﹣1,则原式====2,故选:A.25.解:∵当x=0时,x2﹣2x﹣1=﹣1≠0,∴x=0不是方程x2﹣2x﹣1=0的解,则方程两边都除以x,得:x﹣2﹣=0,即x﹣=2,∴(x﹣)2=4,即x2﹣2+=4,∴x2+=6,故选:C.26.解:去分母得:2(x﹣3)=3(x﹣2),解得:x=0,经检验x=0是分式方程的根.故选:B.27.解:去分母得:1+x﹣3=﹣x,解得:x=1,经检验x=1是分式方程的解.故选:B.28.解:方程两边同时乘以(x﹣2),得:x﹣3=﹣m即x=3﹣m∵当x=2时分母为0,方程无解,∴3﹣m=2m=1故选:A.29.解:去分母得:2x+2=x﹣3,解得:x=﹣5,经检验x=﹣5是分式方程的解,故选:A.30.解:分式方程去分母得:m﹣6=x﹣1,解得:x=m﹣5,由分式方程的解是非负数,得到m﹣5≥0,且m﹣5≠1,解得:m≥5且m≠6,故选:C.31.解:分式方程时,在方程两边同乘(x+1),把原方程化为:2x﹣(x+1)=1,这一变形过程体现的数学思想主要是转化思想,故选:B.32.解:根据拆项法化简得:﹣+﹣+﹣+…+﹣=,整理得:=,去分母得:2x+2=x+100,解得:x=98,经检验x=98是分式方程的解,则x的值为98,故选:B.33.解:分式方程去分母得:m﹣2=x+1,解得:x=m﹣3,由分式方程的解为非正数,得到m﹣3≤0,且m﹣3≠﹣1,解得:m≤3且m≠2,故选:B.34.解:,去分母得:3x﹣2﹣m=2x+2,由分式方程有增根,得到x+1=0,即x=﹣1,把x=﹣1代入整式方程得:﹣3﹣2﹣m=﹣2+2,解得:m=﹣5.故选:D.35.解:去分母得:x﹣a=ax+a,即(a﹣1)x=﹣2a,当a﹣1=0,即a=1时,方程无解;当a﹣1≠0,即a≠1时,解得:x=,由分式方程无解,得到=﹣1,即a=﹣1,综上,a的值为1或﹣1,故选:D.36.解:方程两边同时乘以x﹣1,得x﹣2x+2=﹣k,解得:x=2+k,∵解为正数,∴k>﹣2,当x=1时,k=﹣1,∴k>﹣2且k≠﹣1,故选:A.37.解:=不是分式方程,是整式方程,故选:C.38.解:根据题意得:﹣2+=0,去分母得:x2﹣2x2+10x+x2﹣4x﹣5=0,解得:x=,经检验x=是分式方程的解,故选:B.39.解:去分母得:﹣m﹣1+x=0,由分式方程无解,得到x﹣3=0,即x=3,把x=3代入整式方程得:﹣m﹣1+3=0,解得:m=2,故选:A.40.解:方程两边都乘x﹣4,得3﹣(x+m)=x﹣4,∵原方程有增根,∴最简公分母x﹣4=0,解得x=4,当x=4时,3﹣(4+m)=4﹣4,m=﹣1,故选:B.。
【期末复习】2020年八年级数学上册 期末复习专题 分式(含答案)

【期末复习】2020年八年级数学上册期末复习专题分式一、选择题1.下面各式中, x+y,,,﹣4xy,,分式的个数有()A.1个 B.2个 C.3个 D.4个2.如果把分式中的x和y都扩大2倍,那么分式的值()A.不变 B.缩小2倍 C.扩大2倍 D.扩大4倍3.化简的结果是( )4.下列分式是最简分式的是()A. B. C. D.5.已知,则的值是()A. B.﹣ C.2 D.﹣26.下列等式成立的是()7.化简÷(1+)的结果是( )8. (﹣0.5)﹣2的倒数是()A.4B.0.25C.﹣4D.﹣0.259.方程22221=-+--xx x 的解是( ) A.x=1 B.x=﹣1 C.x=2 D.x=﹣210.现装配30台机器,在装配好6台,由于采用新技术,每天的工作效率提高了一倍,结果共用了3天完成任务,求原来每天装配机器的台数x,则下面所列方程中正确的是( )A .32x 30x 6=+ B.32x 24x 6=++ C.3x 224x 6=+ D.32x30x 30=+11.为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了A 、B 两类玩具,其中A 类玩具的进价比B 类玩具的进价每个多3元,经调查:用900元购进A 类玩具的数量与用750元购进B 类玩具的数量相同.设A 类玩具的进价为m 元/个,根据题意可列分式方程为( )A .B .C .D .12.若关于x 的分式方程=2﹣的解为正数,则满足条件的正整数m 值为( ) A.1,2,3 B.1,2 C.1,3 D.2,3二、填空题13.若分式的值为负数,则x 的取值范围是 .14.2015年10月.我国本土科学家屠呦呦荣获诺贝尔生理学或医学奖,她创制新型抗疟药青蒿素为人类作出了突出贡献.疟原虫早期期滋养体的直径约为0.00000122米,这个数字用科学记数法表示为 米.15.已知,则代数式的值为 。
16.已知关于x 的方程322=-+x m x 的解是正数,那么m 的取值范围为___________ 17.已知: =+,则A= ,B= .18.观察下列各等式:,,,…根据你发现的规律,计算: = (n 为正整数).三、解答题19.化简:144)14(2-+-÷---x x x x x x .20.化简:962966322--+++⋅+a a a a a a .21.解分式方程:22.解分式方程:.23.已知A=222111x x x x x ++--- (1)化简A ;(2)若x 满足-1≤x <2,且x 为整数,请选择一个适合的x 值代入,求A 的值.24.已知m2+3m﹣4=0,求代数式(m+2﹣)÷的值.25.甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?26.早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?27.为提高学校的机房条件,学校决定新购进一批电脑,经了解某电脑公司有甲、乙两种型号的电脑销售,已知甲电脑的售价比乙电脑高1000元,如果购买相同数量的甲、乙两种型号的电脑,甲所需费用为10万元,乙所需费用为8万元.(1)问甲、乙两种型号的电脑每台售价各多少元?(2)学校决定购买甲、乙两种型号的电脑共100台,且购买乙型号电脑的台数超过甲型号电脑的台数,但不多于甲型号电脑台数的4倍,则当购买甲、乙两种型号的电脑各多少台时,学校需要的总费用最少?并求出最少的费用.参考答案1.B2.A3.A4.C5.D6.C7.A8.B.9.A10.C11.C12.C13.答案为:﹣1<x <.14.答案为:1.22×10﹣6.15.答案为:4.16.答案为:m >-6且m ≠-417.答案为:1;218.答案为:. 19.原式=22-+x x . 20.原式=a2. 21.去分母得:1+2x ﹣6=x ﹣4,解得:x=1,经检验x=1是分式方程的解;22.解:方程两边乘(x+3)(x ﹣3)得:3+x(x+3)=(x+3)(x ﹣3),整理得:3+x 2+3x=x 2﹣9,移项得:x 2+3x ﹣x 2=﹣9﹣3,合并得:3x=﹣12,解得:x=﹣4,检验:当x=﹣4时,(x+3)(x ﹣3)≠0,则原方程的解是x=﹣4.23.答案为:(1) 11x -;(2)-1.24.解:原式=m(m+3)=m 2+3m ,∵m 2+3m ﹣4=0,∴m 2+3m=4,∴原式=4.25.解:26.解:(1)设小明步行的速度是x米/分,由题意得:,解得:x=60,经检验:x=60是原分式方程的解,答:小明步行的速度是60米/分;(2)小明家与图书馆之间的路程最多是y米,根据题意可得:,解得:y≤240,答:小明家与图书馆之间的路程最多是240米.27.解:。
分式及分式方程综合的练习及答案详解

分式及分式方程综合练习一、选择题:1.分式1322--+x x x 的值为0,则x 的值为 ( ) A. x=-3 B. x=1 C. x=-3或 x=3 D. x=-3或 x=12.若关于x 的方程222-=-+x m x x 有增根,则m 的值与增根x 的值分别是( ) A.m=-4,x=2 B. m=4,x=2 C. m=-4,x=-2 D. m=4,x=-23.若已知分式 96122+---x x x 的值为0,则x -2的值为 ( ) A. 91或-1 B. 91或1 C.-1 D.1 4.如果分式33--x x 的值为1,则x 的值为 ( )A. x ≥0B. x>3C. x ≥0且x ≠3D. x ≠35.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是 ( )A .8 B.7 C .6 D .56.在同一段路上,某人上坡速度为a ,下坡速度为b ,则该人来回一趟的平均速度是 ( )A .aB .bC .2b a +D .ba 2ab + 二、填空题7、已知432z y x ==,则=+--+z y x z y x 232 。
8.已知,2x 1-x =则代数式22x 1x +的值为 9.已知113x y -=,则代数式21422x xy y x xy y----的值为 。
10.当m = 时,关于x 的分式方程213x m x +=--无解。
11.若关于x 的分式方程311x a x x --=-无解,则a = 。
12.若方程42123=----xx x 有增根,则增根是 . 13.如果b a b a +=+111,则=+ba ab . 14.已知23=-+y x y x ,那么xy y x 22+= . 15.全路全长m 千米,骑自行车b 小时到达,为了提前1小时到达,自行车每小时应多走 千米.三、计算题16、解方程 ⑴ x x 523=- ⑵ 625--=-x x x x⑶ 2-x -313-x x -2= ⑷ 1132422x x+=--17.已知12,4-=-=+xy y x ,求1111+++++y x x y 的值;18.求)1999)(1998(1.....)3)(2(1)2)(1(1)1(1+++++++++++x x x x x x x x 的值,并求当x=1时,该代数式的值.19.已知21x x x -+=5,求2421x x x ++的值。
分式及分式方程练习题(附答案)
第十六章 分式单元复习一、选择题1.下列各式中,不是分式方程的是( )111..(1)1111.1.[(1)1]110232x A B x x x x x x xC D x x x -=-+=-+=--=+-2.如果分式2||55x x x -+的值为0,那么x 的值是( )A .0B .5C .-5D .±53.把分式22x yx y +-中的x ,y 都扩大2倍,则分式的值( )A .不变B .扩大2倍C .扩大4倍D .缩小2倍4.下列分式中,最简分式有( )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b -++-++----A .2个B .3个C .4个D .5个5.分式方程2114339x x x +=-+-的解是( )A .x=±2B .x=2C .x=-2D .无解6.若2x+y=0,则2222x xy y xy x ++-的值为( )A .-13.55B - C .1 D .无法确定7.关于x 的方程233xkx x =+--化为整式方程后,会产生一个解使得原分式方程的最简公分母为0,则k 的值为()A .3B .0C .±3D .无法确定8.使分式224x x +-等于0的x 值为( )A .2B .-2C .±2D .不存在9.下列各式中正确的是( )....a ba ba ba bA B a b a b a b a ba b a b a b a bC D a b a b a b b a-++--==-----++--+-+-==-+-+-10.下列计算结果正确的是( )22222211..()223..()955b a a b A B a ab a b ab a a m n n xy xy C D xy x x m a a --=-÷-=-÷=÷= 二、填空题1.若分式||55y y--的值等于0,则y= __________ . 2.在比例式9:5=4:3x 中,x=_________________ .3.计算:1111b a b a a b a b++---=_________________ . 4.当x> __________时,分式213x--的值为正数. 5.计算:1111x x ++-=_______________ . 6.当分式2223211x x x x x +++--与分式的值相等时,x 须满足_______________ . 7.已知x+1x =3,则x 2+21x = ________ . 8.已知分式212x x +-:当x= _ 时,分式没有意义;当x= _______时,分式的值为0;当x=-2时,分式的值为_______. 9.当a=____________时,关于x 的方程23ax a x +-=54的解是x=1. 10.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行mkm ,•返回时每小时行nkm ,则往返一次所用的时间是_____________.三、解答题1.计算题:2222444(1)(4);282a a a a a a a --+÷-+--222132(2)(1).441x x x x x x x --+÷+-+-2.化简求值.(1)(1+11x -)÷(1-11x -),其中x=-12;(2)213(2)22x x x x x -÷-+-++,其中x=12.3.解方程:(1)1052112x x +--=2; (2)2233111x x x x +-=-+-.4.课堂上,李老师给大家出了这样一道题:当x=3,5-22212211x x x x x -+-÷-+的值.小明一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?•请你写出具体的解题过程.5.对于试题:“先化简,再求值:23111x x x----,其中x=2.”小亮写出了如下解答过程: ∵2313111(1)(1)1x x x x x x x ---=----+- ①31(1)(1)(1)(1)x x x x x x -+--+-+ ② =x -3-(x+1)=2x -2, ③∴当x=2时,原式=2×2-2=2. ④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号);(2)从②到③是否正确: ;若不正确,错误的原因是 ;(3)请你写出正确的解答过程.6.小亮在购物中心用12.5元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14元,买的饼干盒数比第一次买的盒数多25,•问他第一次在购物中心买了几盒饼干?第十六章 分式单元复习题及答案一、选择题1.下列各式中,不是分式方程的是(D )111..(1)1111.1.[(1)1]110232x A B x x x x x x x C D x x x-=-+=-+=--=+- 2.如果分式2||55x x x-+的值为0,那么x 的值是(B ) A .0 B .5 C .-5 D .±53.把分式22x y x y+-中的x ,y 都扩大2倍,则分式的值(A ) A .不变 B .扩大2倍 C .扩大4倍 D .缩小2倍4.下列分式中,最简分式有(C )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b-++-++---- A .2个 B .3个 C .4个 D .5个5.分式方程2114339x x x +=-+-的解是(B ) A .x=±2 B .x=2 C .x=-2 D .无解6.若2x+y=0,则2222x xy y xy x ++-的值为(B ) A .-13.55B -C .1D .无法确定 7.关于x 的方程233x k x x =+--化为整式方程后,会产生一个解使得原分式方程的最简公分母为0,则k 的值为(A ) A .3 B .0 C .±3 D .无法确定8.使分式224x x +-等于0的x 值为(D ) A .2 B .-2 C .±2 D .不存在9.下列各式中正确的是(C )....a b a b a b a bA B a ba b a b a b a ba ba b a b C D a b a b a b b a -++--==-----++--+-+-==-+-+- 10.下列计算结果正确的是(B )22222211..()223..()955b a a b A B a ab a b ab a a m n n xy xy C D xy x x m a a --=-÷-=-÷=÷=二、填空题1.若分式||55y y--的值等于0,则y= -5 . 2.在比例式9:5=4:3x 中,x=2027. 3.1111b a b a a b a b++---的值是 2()a b ab + . 4.当x> 13 时,分式213x--的值为正数. 5.1111x x ++-= 221x - . 6.当分式2223211x x x x x +++--与分式的值相等时,x 须满足 x ≠±1 . 7.已知x+1x =3,则x 2+21x= 7 . 8.已知分式212x x +-,当x= 2 时,分式没有意义;当x= -12 时,分式的值为0;当x=-2时,分式的值为 34 . 9.当a= -173 时,关于x 的方程23ax a x +-=54的解是x=1. 10.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行mkm ,•返回时每小时行nkm ,则往返一次所用的时间是 (a a m n +)h . 三、解答题1.计算题.2222222444(1)(4);28241(2)1.(2)(4)424a a a a a a a a a a a a a a --+÷-+----==-+--+解:原式 2222132(2)(1).441(1)(1)1(1)(2)1.(2)112x x x x x x x x x x x x x x x x --+÷+-+-+----==-+--解:原式 2.化简求值.(1)(1+11x -)÷(1-11x -),其中x=-12; 解:原式=1111111122x x x x x x x x x x -+---÷==-----. 当x=-12时,原式=15. (2)213(2)22x x x x x -÷-+-++,其中x=12.解:原式=22(1)(2)(2)3121(2)(1)2211x x x x x x x x x x ---+++÷=-=-+-++--. 当x=12时,原式=43. 3.解方程.(1)1052112x x+--=2; 解:x=74. (2)2233111x x x x +-=-+-. 解:用(x+1)(x -1)同时乘以方程的两边得,2(x+1)-3(x -1)=x+3.解得 x=1.经检验,x=1是增根.所以原方程无解.4.课堂上,李老师给大家出了这样一道题:当x=3,5-22212211x x x x x -+-÷-+的值.小明一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?•请你写出具体的解题过程.解:原式=2(1)1(1)(1)2(1)x x x x x -++--=12. 由于化简后的代数中不含字母x ,故不论x 取任何值,所求的代数式的值始终不变.所以当x=3,5-12. 5.对于试题:“先化简,再求值:23111x x x----,其中x=2.”小亮写出了如下解答过程: ∵ 2313111(1)(1)1x x x x x x x ---=----+- ① 31(1)(1)(1)(1)x x x x x x -+--+-+ ② =x -3-(x+1)=2x -2, ③∴当x=2时,原式=2×2-2=2. ④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号);(2)从②到③是否正确: 不正确 ;若不正确,错误的原因是 把分母去掉了 ;(3)请你写出正确的解答过程.解:正确的应是:23111x x x ----=312(1)(1)(1)(1)1x x x x x x x -++=-+-++ 当x=2时,原式=23. 6.小亮在购物中心用12.5元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14元,买的饼干盒数比第一次买的盒数多25,•问他第一次在购物中心买了几盒饼干?解:设他第一次在购物中心买了x 盒,则他在一分利超市买了75x 盒. 由题意得:12.51475x x -=0.5 解得 x=5.经检验,x=5是原方程的根.答:他第一次在购物中心买了5盒饼干.。
分式方程专项练习50题(有答案)
分式方程专项练习50题(有答案)1.$\frac{x}{x+2}=\frac{2}{x-1}$,改写为$x(x-1)=2(x+2)$。
2.$\frac{5x-3}{x^2}=0$,当 $5x-3=0$ 时成立,即$x=\frac{3}{5}$。
3.$\frac{x}{x}+\frac{1}{x}=1$,当 $x\neq 0$ 时成立。
4.$x^2+2x=0$,当 $x=0$ 或 $x=-2$ 时成立。
5.$\frac{13}{x(x-2)}=\frac{1}{x-1}$,改写为 $13(x-1)=x(x-2)$。
6.$\frac{1}{x-1}-\frac{2}{x+1}=\frac{1}{2}$,改写为$3x^2-2x-5=0$,当 $x=\frac{1}{3}$ 或 $x=-\frac{5}{3}$ 时成立。
7.$\frac{x+1}{x-1}=\frac{x}{x+1}$,改写为 $x^2-1=0$,当 $x=1$ 或 $x=-1$ 时成立。
8.$\frac{2x-5}{3-x}=\frac{2x-2}{x+1}$,改写为 $4x^2-13x+7=0$,当 $x=1$ 或 $x=\frac{7}{4}$ 时成立。
9.$\frac{2x-5}{x-2}-\frac{1}{x+2}=x$,改写为 $3x^2-4x-3=0$,当 $x=\frac{1\pm\sqrt{13}}{3}$ 时成立。
10.$\frac{2x-1}{x+1}=1-\frac{1}{x+1}$,改写为 $x^2+3x-2=0$,当 $x=-3+\sqrt{11}$ 或 $x=-3-\sqrt{11}$ 时成立。
11.$\frac{x}{x+1}+\frac{x}{x-1}=2$,改写为 $2x^2-2x-1=0$,当 $x=\frac{1\pm\sqrt{3}}{2}$ 时成立。
12.$\frac{1}{x-1}+\frac{1}{x+1}=\frac{4}{x^2-1}$,改写为 $3x^4-8x^2-5=0$,当 $x=\pm\sqrt{\frac{5}{3}}$ 或$x=\pm\sqrt{\frac{8}{3}}$ 时成立。
北师大版八年级数学下册第 五章:分式与分式方程 期末复习题
北师大版八年级数学下册第无五章:分式与分式方程 期末复习题一、选择题(每小题3分,共30分)1.下列各式:5x -7,3x 2-1,b -32a +1,m (n +p )7,-5,x 2-xy +y 22x -1,27,45b +c 中,分式有( )A .2个B .3个C .4个D .5个2.解分式方程1-x x -2=12-x-2时,去分母变形正确的是( )A .-1+x =-1-2(x -2)B .1-x =1-2(x -2)B .C .-1+x =1+2(2-x)D .1-x =-1-2(x -2)3.下列分式中最简分式是( )A.2a 3a 2bB.a +b a 2+b 2C.a a 2-3aD.a 2-ab a 2-b 2 4.化简m 2-3m 9-m 2的结果是( )A.m m +3 B .-m m +3 C.m m -3 D.m 3-m5.下列分式中,当x =-2时,有意义的是( )A.x -2x +2B.x +2x -2C.x +2|x|-2D.x -2x 2-46.有游客m 人入住旅店,如果每n 个人住一个房间,结果还有一个人无房住,那么客房的间数为( )A.m -1nB.m n -1C.m +1nD.m n+17.若分式x 2x +1□x x +1的运算结果为x(x ≠0),则在“□”中添加的运算符号为(C) A .+ B .- C .+或÷ D .-或× 8.为加快“最美毕节”环境建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同,设现在平均每天植树x 棵,则列出的方程为( )A.400x =300x -30B.400x -30=300xC.400x +30=300xD.400x =300x +309.已知a 2+3a -3=0,则代数式a 2+9a 2的值是( )A .3 B. 3 C .15 D .910.若关于x 的分式方程2x -a x -2=12的解为非负数,则a 的取值范围是( )A .a ≥1B .a >1C .a ≥1且a ≠4D .a >1且a ≠4二、填空题(每小题3分,共15分)11.若分式3x -4有意义,则x 的取值范围是_______ 12.要使5x -1与4x -2的值相等,则x =_______ 13.当a =2 020时,分式a 2a -1+11-a的值是_______ 14.若关于x 的方程m -1x -1-x x -1=0有增根,则m 的值是_______. 15.已知A ,B 两地相距160 km ,一辆汽车从A 地到B 地的速度比原来提高了25%,结果比原来提前0.4 h 到达,这辆汽车原来的速度是_______km/h.三、解答题(共55分)16.(12分)解方程:(1)1-x x -2=x 2x -4-1;(2)x -2x +2-1=16x 2-4.17.(12分)(1)化简:(2-x -1x +1)÷x 2+6x +9x 2-1; (2)先化简(1-2x -1)·x 2-x x 2-6x +9,再在1,2,3中选取一个适当的数代入求值.18.(9分)化简a a 2-4·a +2a 2-3a -12-a,并求值,其中a 与2,3构成△ABC 的三边,且a 为整数.19.(10分)我市经济技术开发区某智能手机有限公司接到生产300万部智能手机的订单,为了尽快交货,增开了一条生产线,实际每月生产能力比原计划提高了50%,结果比原计划提前5个月完成交货,求每月实际生产智能手机多少万部.20.(12分)小张去文具店购买作业本,作业本有大、小两种规格,大本作业本的单价比小本作业本贵0.3元,已知用8元购买大本作业本的数量与用5元购买小本作业本的数量相同.(1)求大本作业本与小本作业本每本各多少元?(2)因作业需要,小张要再购买一些作业本,购买小本作业本的数量是大本作业本数量的2倍,总费用不超过15元.则大本作业本最多能购买多少本?参考答案1-10、BDBBB ACACC11、x ≠4.12、6.13、2021.14、215、8016、(1)解:方程两边同乘2(x -2),得2(1-x)=x -2(x -2).解得x =-2.检验:当x =-2时,2(x -2)≠0,∴x =-2是原分式方程的解.(2)解:方程两边同乘(x +2)(x -2),得(x -2)2-(x +2)(x -2)=16.解得x =-2.检验:当x =-2时,(x +2)(x -2)=0,∴x =-2是原方程的增根,原方程无解.17、(1)解:原式=[2(x +1)x +1-x -1x +1]÷(x +3)2(x +1)(x -1)=x +3x +1·(x +1)(x -1)(x +3)2 =x -1x +3. (2)解:原式=x -1-2x -1·x (x -1)(x -3)2 =x x -3.∵x ≠1,x ≠3,∴x =2.∴原式=-2.18、解:原式=a (a +2)(a -2)·a +2a (a -3)+1a -2=1(a -2)(a -3)+1a -2=1+a -3(a -2)(a -3)=a -2(a -2)(a -3)=1a -3. ∵a 与2,3构成△ABC 的三边,且a 为整数,∴1<a <5,即a =2,3,4.∵当a =2或a =3时,原式没有意义,∴a =4.∴原式=1.19、解:设原计划每月生产智能手机x 万部,则实际每月生产智能手机(1+50%)x 万部,根据题意,得300x -300(1+50%)x=5, 解得x =20.经检验,x =20是原方程的解,且符合题意,∴(1+50%)x =30.答:每月实际生产智能手机30万部.20、解:(1)设小本作业本每本x 元,则大本作业本每本(x +0.3)元,依题意,得 8x +0.3=5x. 解得x =0.5.经检验,x =0.5是原方程的解,且符合题意.∴x +0.3=0.8.答:大本作业本每本0.8元,小本作业本每本0.5元.(2)设大本作业本购买m 本,则小本作业本购买2m 本,依题意,得 0.8m +0.5×2m ≤15.解得m ≤813. ∵m 为正整数,∴m 的最大值为8.答:大本作业本最多能购买8本.1、最困难的事就是认识自己。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式及分式方程 期末综合复习 一、选择题: 1.分式1322xxx的值为0,则x的值为 ( ) A. x=-3 B. x=1 C. x=-3或 x=3 D. x=-3或 x=1 2.若关于x的方程222xmxx有增根,则m的值与增根x的值分别是( )
A.m=-4,x=2 B. m=4,x=2 C. m=-4,x=-2 D. m=4,x=-2 3.若已知分式 96122xxx的值为0,则x-2的值为 ( ) A. 91或-1 B. 91或1 C.-1 D.1 4.如果分式33xx的值为1,则x的值为 ( ) A. x≥0 B. x>3 C. x≥0且x≠3 D. x≠3 5.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是 ( )
A.8 B.7 C.6 D.5 6.在同一段路上,某人上坡速度为a,下坡速度为b,则该人来回一趟的平均速度是 ( )
A.a B.b C.2ba D.ba2ab
二、填空题
7、已知432zyx,则zyxzyx232 。 8.已知,2x1-x则代数式22x1x的值为 9.已知113xy,则代数式21422xxyyxxyy的值为 。 10.当m 时,关于x的分式方程213xmx无解。 11.若关于x的分式方程311xaxx无解,则a 。 12.若方程42123xxx有增根,则增根是 . 13.如果baba111,则baab . 14.已知23yxyx,那么xyyx22= . 15.全路全长m千米,骑自行车b小时到达,为了提前1小时到达,自行车每小时应多走 千米.
三、计算题 16、解方程 ⑴ xx523 ⑵ 625xxxx
⑶ 2-x-313-xx-2 ⑷ 1132422xx
17.已知12,4xyyx,求1111yxxy的值; 18.求)1999)(1998(1.....)3)(2(1)2)(1(1)1(1xxxxxxxx的值,并求当x=1时,该代数式的值.
19.已知21xxx=5,求2421xxx的值。 20.已知2410xx,求441xx的值。 21.设1abc,求111abcababcbcac的值。 22.已知M=222yxxy、N=2222yxyx,其中x:y=5:2,求: M – N的值。 23. 某校师生到距学校20千米的公路旁植树,甲班师生骑自行车先走45分钟后,乙班的师生乘汽车出发,结果两班师生同时到达.已知汽车的速度是自行车速度的2.5倍,求两种车的速度各是多少?
24.某校原有600张旧课桌急需维修,经过A、B、C三个工程队的竞标得知,A、B的工作效率相同,且都为C队的2倍,若由一个工程队单独完成,C队比A 队要多用10天.学校决定由三个工程队一齐施工,要求至多6天完成维修任务.三个工程队都按原来的工作效率施工2天时,学校又清理出需要维修的课桌360张,为了不超过6天时限,工程队决定从第3天开始,各自都提高工作效率,A、B队提高的工作效率仍然都是C队提高的2倍.这样他们至少还需要3天才能成整个维修任务. ⑴求工程队A原来平均每天维修课桌的张数; ⑵求工程队A提高工作效率后平均每天多维修课桌张数的取值范围. 25.某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元. (1)该商场两次共购进这种运动服多少套? (2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,
那么每套售价至少是多少元?(利润率100%利润成本)
26.某工程,甲工程队单独做40天完成,若乙工程队单独做30天后,甲、乙两工程队再合作20天完成. (1)求乙工程队单独做需要多少天完成? (2)将工程分两部分,甲做其中一部分用了x天,乙做另一部分用了y天,其中x、y均为正整数,且x<15,y<70,求x、y..
27.某公司为了扩大经营,决定购进6台机器用于生产某种活塞。现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示。经过预算,本次购买机器所耗资金不能超过34万元. (1)按该公司要求可以有几种购买方案? (2)若该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种方案?
甲 乙 价格(万元/台) 7 5 每台日产量(个) 100 60 参考答案 一、选择题 1、A 2、B 3、D 4、C 5、A 6、D 二、填空题
7、43 8、6 9、4 10、-6 11、1 12、x=2 13、-1 14、526 15、)(1-bbm 三、计算 16、(1)x=5 (2)x=10 (3)无解 (4)x=-5
17、-1534
18、)1999(1999xx,20001999 (提示:将)1(1xx拆成111xx…)
19、12xxx=5,∴5112xxx ∴x-1+x1=5
1 ∴x+x1=56 ∴2514122xx
∴原式=112525141111x122x
20、x2-4x+1=0 ∴x+x1=4 ∴x2+142-x1xx122)( ∴原式= x2+2x1-2 =14-2 =12 21、原式=1111111bcbbcbbbcbcbbcbbcb
22、x:y=5:2 所以y=x
5
2 M-N=73))(()(xy222222yxxyyxyxyxyxyx
23、45分钟=3/4小时 解:设自行车的速度为x千米/小时,则汽车的速度为2.5x千米/小时 依题意列方程: 20/x-20/(2.5x)=3/4 x=16 所以2.5x=16×2.5=40 自行车的速度为16千米/小时,汽车的速度为40千米/小时。
24解:(1)设C队原来平均每天修课桌x张,则A队原来平均每天维修2x张. 根据题意得:10x2600-x600 解这个方程得:x=30, 经检验,x=30是原方程的根且符合题意. ∴2x=60. 故A队原来平均每天维修课桌60张, (2)设C队提高工效后平均每天多维修课桌y张. 施工2天时,已维修(60+60+30)×2=300(张), 从第3天起还需维修的张数应为600-300+360=660(张). ∵A队原来平均每天维修课桌60张,A、B的工作效率相同,且都为C队的2倍, ∴没提高工作效率之前三个队每天维修课桌张数=60+60+30=150张, 根据题意得:3(2y+2y+y+150)≤660≤4(2y+2y+y+150), 解这个不等式组得:3≤y≤14, ∴6≤2y≤28
25、解:(1)设商场第一次购进x套运动服,由题意得: 10x32000-x268000 解这个方程,得x=200, 经检验,x=200是所列方程的根, 2x+x=2×200+200=600, 所以商场两次共购进这种运动服600套; (2)设每套运动服的售价为y元,由题意得:
%2068000320006800032000y600
解这个不等式,得y≥200, 所以每套运动服的售价至少是200元.
26、解:(1)设乙工程队单独做需要a天完成, 则30×1a140120a1)( 解之得:a=100 经检验,a=100是所列方程的解, 乙工程队单独做需要100天完成. (2)甲做其中一部分用了x天,乙做另一部分用了y天,
则1100y40x 即:y=100-2.5x,又x<15,y<70
即70x5.2-10015x<< 解之得:12<x<15, 因为x是整数,所以x=13或14, 又∵y也为正整数, ∴当x=13时,y=100-2.5x=67.5(舍去) 当x=14时,y=100-x=65. ∴x=14,y=65.
27、解:(1)设购买甲种机器x台,乙种机器(6-x)台, 由题意,得7x+5(6-x)≤34 解不等式,得x≤2, 故x可以取0,1,2三个值 所以,该公司按要求可以有以下三种购买方案: 方案一:不购买甲种机器,购买乙种机器6台; 方案二:购买甲种机器1台,购买乙种机器5台; 方案三:购买甲种机器2台,购买乙种机器4台; (2)按方案一购买机器,所耗资金为30万元,日产量6×60= 360(个); 按方案二购买,资金为1×7+5×5=32(万元),日产量为1×100+5×60=400(个), 按方案三购买,资金为 2×7+4×5=34(万元);日产量为2×100+4×60=440(个) 因此,选择方案二既能达到生产能力不低于380(个),又比方案三节约2万元资金,故应选择方案二。