偏导数的定义与计算方法
偏导知识点总结

偏导知识点总结一、偏导数的定义偏导数是多元函数在某一点沿着特定方向的变化率。
设函数f(x1, x2, ..., xn)在点(x1, x2, ..., xn)处有定义,对于其中的一个自变量xi,其余自变量均为常数,则函数f对xi的偏导数定义为:∂f/∂xi = lim(Δxi→0) (f(x1, x2, ..., xi+Δxi, ..., xn) - f(x1, x2, ..., xi, ..., xn)) / Δxi其中,Δxi表示自变量xi的增量。
可以看出,偏导数的定义是通过极限来描述函数在某一方向的变化率。
二、偏导数的计算方法1. 显式求导法对于多元函数f(x1, x2, ..., xn),若想求其对变量xi的偏导数,可以将其他变量视为常数,然后按照一元函数的求导法则对xi进行求导。
例如,对于函数f(x, y) = x^2 + y^2,求其对x的偏导数,可以将y视为常数,然后按照一元函数求导的方法对x进行求导,即∂f/∂x = 2x。
2. 隐式求导法对于有些多元函数,其表达式可能无法直接解出某个变量,这时就需要用到隐式求导法。
隐式求导法的核心思想是利用链式法则。
例如,对于函数f(x, y) = x^2 + y^2 - 1,求其对x 的偏导数,可以将函数表达式转化成f(x, y) - x^2 - y^2 + 1 = 0,然后对等式两边同时对x 求导,利用链式法则求出∂f/∂x。
3. 性质法则对于因为特殊的多元函数f(x1, x2, ..., xn),其偏导数计算可能会比较繁琐。
这时可以利用偏导数的性质,例如对称性、加法性、乘法性等,来简化偏导数的计算过程。
利用性质法则,可以大大提高求解偏导数的效率。
三、偏导数的性质1. 对称性若一个函数f(x1, x2, ..., xn)在定义域内是连续可微的,那么其对任意两个变量xi和xj的偏导数满足∂^2f/∂xi∂xj = ∂^2f/∂xj∂xi。
即偏导数的次序可以交换。
偏导数的定义及其计算法

但函数在该点处并不连续. 偏导数存在
2010年4月19日10时44 分 偏导数(27)
连续.
12
4、偏导数的几何意义
设 M 0 ( x0 , y0 , f ( x0 , y0 )) 为曲面 z = f ( x , y ) 上一点,
如图
2010年4月19日10时44 分
偏导数(27)
13
几何意义:
( y ≠ 0)
x 1 =− 2 sgn 2 x +y y
∂z 不存在. ≠0 ∂y x = 0 y
2010年4月19日10时44 分 偏导数(27)
9
例 4
已知理想气体的状态方程 pV = RT
∂ p ∂V ∂ T ⋅ ⋅ = −1. ( R 为常数) ,求证: ∂V ∂T ∂ p
RT ∂p RT ⇒ =− 2; 证 p= V ∂V V RT ∂V R ∂T V pV V= ⇒ = ; = ; T= ⇒ p ∂T p ∂p R R ∂p ∂V ∂T RT R V RT = − 1. ⋅ ⋅ =− 2 ⋅ ⋅ =− ∂V ∂T ∂p V p R pV
f ( x + ∆x , y , z ) − f ( x , y , z ) , f x ( x , y , z ) = lim ∆x → 0 ∆x f ( x , y + ∆y , z ) − f ( x , y , z ) , f y ( x , y , z ) = lim ∆y → 0 ∆y
f ( x , y , z + ∆z ) − f ( x , y , z ) f z ( x , y , z ) = lim . ∆z → 0 ∆z
2010年4月19日10时44 分 偏导数(27) 5
9-2偏导数

(与求导顺序无关时 应选择方便的求导顺序 与求导顺序无关时, 应选择方便的求导顺序) 与求导顺序无关时
练习
y ∂ 2z ∂ 2z (1)设z = arctan ,求 2 , x ∂x ∂x ∂y
(2)设z = xf ( x 2 − y 2 ),
(3) 已知 u = f ( r ),r =
∂u ∂r x = f ′( r ) ⋅ = f ′( r ), ∂x ∂x r
∂z ∂ f , , zy , ∂y ∂y
′ f y ( x, y) , f y ( x, y)
y= y0
显然有
fx (x0, y0 ) = fx( x, y) x=x0 ,
fy ( x0, y0 ) = f y ( x, y) x=x0 .
y= y0
偏导数的概念可以推广到二元以上的函数
如 三 元函 数 u = f ( x , y , z ) 的 偏导 数为
这两个二阶混合偏导数相等. 这两个二阶混合偏导数相等. 相等
即
∂2z ∂2z ( x, y)∈D. = ∂x∂y ∂y∂x
即二阶混合偏导数在连续的条件下, 即二阶混合偏导数在连续的条件下,求导与次序无关
此定理可以推广. 此定理可以推广. 推广
例8
1 ∂ 2u ∂ 2u ∂ 2u 证明函数u = 满足方程 2 + 2 + 2 = 0, r ∂x ∂y ∂z 其中r = x 2 + y 2 + z 2 ,
注意 思考
∂ 2z ∂ 2z 此时 有 = ∂ x ∂ y ∂ y∂ x
混合偏导数都相等吗? 混合偏导数都相等吗?
(不一定 不一定) 不一定
问题: 具备怎样的条件才能使混合偏导数相等? 问题: 具备怎样的条件才能使混合偏导数相等?
偏导数的定义及其计算法

偏导数的定义及其计算法偏导数是多元函数在其中一点上的变化率的一种度量,它描述了函数在其中一方向上的变化速率。
偏导数的定义非常简单,它是将函数的其他自变量视为常数,而对其中一自变量求导得到的导数。
对于一个多元函数 f(x1, x2, ..., xn),它的偏导数可以用∂f/∂xi 或者 fxi 来表示,其中∂表示偏导数的符号,xi 表示自变量 xi 的偏导数。
偏导数的计算方法基本与一元函数的导数计算类似,但在计算过程中需要将其他的自变量视为常数。
举个例子来说明偏导数的计算:假设有一个二元函数f(x1,x2)=x1^2+x2^2,我们要计算该函数关于自变量x1的偏导数∂f/∂x1在计算过程中,我们将x2视为常数,即f(x1,x2)=x1^2+C^2,其中C 表示x2的常数值。
然后我们对f(x1,x2)关于x1求导数,得到f'(x1,x2)=2x1、最后得到∂f/∂x1=f'x1=2x1,即关于x1的偏导数。
在实际应用中,偏导数常常用于优化算法、极值问题的求解等方面。
在多元函数中,偏导数的大小和符号可以用于判断函数的变化趋势和极值点的位置。
除了一阶偏导数,我们还可以计算高阶偏导数。
高阶偏导数描述的是函数对自变量一次、二次、三次...的变化率。
例如,二元函数的二阶偏导数就是对一阶偏导数再次求导,即∂^2f/∂x1^2,表示f(x1,x2)对x1的变化率的变化率。
对于多元函数而言,偏导数的计算可以推广到n阶偏导数,并且可以使用偏导数的混合形式。
例如,对于三元函数f(x1,x2,x3),我们可以计算∂^2f/∂x1∂x2,表示对x1求偏导后再对x2求偏导。
总结来说,偏导数是多元函数关于其中一自变量的变化率的度量。
计算偏导数的方法与一元函数的导数计算类似,但需要将其他自变量视为常数。
偏导数在实际应用中具有广泛的用途,如优化算法、极值问题的求解等。
除了一阶偏导数,我们还可以计算高阶偏导数和混合偏导数。
偏导数的定义及其计算法

(x2 + y2 ≠ 0) 在点O(0,0)处;
(x2 + y2 = 0)
解 根据偏导数的定义,有
f x (0,0)
=
lim
Δx → 0
f
(0
+
Δx,0) Δx
−
f
(0,0)
=
lim
Δx ⋅ 0 (Δx + 0)2 + 02
−0
Δx→0
Δx
= lim 0 Δx→0 Δx
= lim 0 = 0
Δx→0
= tan β x
α
z
Ty
Tx 曲面z = f (x,y)
L
M
0
(x0 , y0 )
平面 x=x0.y.β二、高阶偏导数
一般说来,函数f(x,y)的偏导数
zx
=
∂f
(x, ∂x
y),
zy
=
∂f
(x, y) ∂y
还是x、y的二元函数.如果这两个函数对自变量x和y
的偏导数也存在,则称这些偏导数为f(x,y)的二阶偏
其中,点(x,y,z)是函数u = f (x, y, z)的定义域的内点.
从偏导数的定义可以清楚地知道,求多元函数的 偏导数,并不需要新的方法,求多元函数对哪个自变 量的偏导数,就是将其他自变量看成常量,而将多元 函数看成一元函数去求导,因此,一元函数的求导法 则和求导公式,对多元函数的偏导数仍然适用.
f (x, y0
y)
即
⎧z =
⎨ ⎩
y
=
f (x, y0
y0)
z Tx
L
M
0
曲面z = f (x,y)
平面 y =y0
偏导数知识点公式总结

偏导数知识点公式总结一、偏导数的概念1.1 偏导数的定义偏导数是多元函数对其中一个自变量的导数。
对于一个函数 $f(x_1, x_2, ..., x_n)$,它的偏导数 $\frac{\partial f}{\partial x_i}$ 表示在$x_i$方向上的变化率。
偏导数的定义可以表示为:$$\frac{\partial f}{\partial x_i} = \lim_{\Delta x_i \to 0} \frac{f(x_1, x_2, ..., x_i + \Delta x_i, ..., x_n) - f(x_1, x_2, ..., x_i, ..., x_n)}{\Delta x_i}$$1.2 偏导数的图示解释偏导数可以通过函数曲面的切线来解释。
对于函数 $z = f(x, y)$,在点$(x_0, y_0, z_0)$处的偏导数 $\frac{\partial f}{\partial x}$可以理解为曲面在$x$方向的斜率,即曲面在$x$方向上的变化率。
同样地,$\frac{\partial f}{\partial y}$表示曲面在$y$方向上的变化率。
这样的解释有助于我们更直观地理解偏导数的含义。
二、偏导数的性质2.1 对称性对于二元函数 $f(x, y)$,它的偏导数满足对称性,即$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$。
这一性质表明,在计算混合偏导数时,可以不必考虑自变量的顺序。
2.2 连续性在函数的定义域内,若偏导数存在且连续,则函数规定可微。
这一性质是偏导数与函数连续性的关系,对于函数的导数性质有着重要的影响。
2.3 性质总结:和与积对于函数 $u = u(x, y)$ 和 $v = v(x, y)$,它们的偏导数具有和与积的运算法则。
偏导数的定义与计算方法
偏导数的定义与计算方法偏导数是数学中的一个重要概念。
它可以在多变量函数中反映出每个变量对函数的影响程度。
偏导数的计算方法和一元函数的导数有所不同,下面将详细介绍偏导数的定义、性质以及计算方法。
一、偏导数的定义在多元函数中,每个自变量的取值都会影响函数值的大小。
因此,在计算偏导数时,需要将其他自变量看作常数,只考虑某一个自变量对函数的影响。
对于一个函数f(x1,x2,...xn),对于自变量xi的偏导数定义为:∂f/∂xi=lim (Δxi→0) (f(x1,x2,...,xi+Δxi,...xn)-f(x1,x2,...,xi,...xn))/Δxi其中,Δxi表示自变量xi的增量,是一个很小的数。
当Δxi趋近于0时,称之为f对xi的偏导数。
二、偏导数的性质1. 偏导数存在性对于连续的多元函数,偏导数一定存在。
但对于非连续的函数,偏导数可能不存在。
2. 二阶偏导数如果一个函数的一阶偏导数存在,则可以进行二次偏导数的计算。
二次偏导数的计算方法和一次偏导数类似,只需要在一次偏导数的式子中再次取偏导数即可。
3. 高阶偏导数类似于二次偏导数,多元函数的任意阶偏导数也可以进行计算。
高阶偏导数的符号和计算方法与一阶偏导数相同。
4. 取偏导数的顺序不同的偏导数的计算顺序有可能会影响计算结果。
例如,f(x,y)=x^2y^2,如果先对x求偏导数,再对y求偏导数,得到的结果为:∂f/∂x=2xy^2,∂f/∂y=2x^2y如果先对y求偏导数,再对x求偏导数,得到的结果为:∂f/∂y=2xy^2,∂f/∂x=2x^2y由于偏导数的计算顺序不同,导致结果也不同。
因此,在取偏导数时,需要注意顺序。
三、偏导数的计算方法1. 公式法偏导数的计算可以使用公式法。
首先需要将待求的函数f(x1,x2,...xn)展开为多项式形式,然后按照偏导数的定义进行计算。
例如,对于函数f(x,y)=x^2+y^2,需要求∂f/∂x和∂f/∂y。
一偏导数的定义及其计算法二高阶偏导数三小结
一偏导数的定义及其计算法二高阶偏导数三小结一、偏导数的定义及其计算法偏导数是多元函数在其中一点上关于其中一个自变量的导数,偏导数描述了函数在其中一点上沿着不同自变量方向的变化率。
对于二元函数(两个自变量的函数),偏导数可以分为两种类型:偏导数∂f/∂x表示函数关于x的偏导数;偏导数∂f/∂y表示函数关于y的偏导数。
在计算中,偏导数可以使用极限的定义进行求取,也可以通过求取对应变量的偏导数公式进行计算。
1.偏导数的计算法(1)使用极限的定义对于函数f(x,y),若要求取关于x的偏导数,可以将y固定为常数,然后使用极限的定义计算:∂f/∂x = lim(h→0) (f(x + h, y) - f(x, y)) / h对于函数f(x,y),若要求关于y的偏导数,可以将x固定为常数,然后使用极限的定义计算:∂f/∂y = lim(h→0) (f(x, y + h) - f(x, y)) / h(2)使用偏导数公式对于特定类型的函数,可以通过使用相应的偏导数公式来计算偏导数。
以下列举了几种常见的偏导数公式:a.对于幂函数f(x,y)=x^n,其中n为常数,偏导数公式为:∂f/∂x=n*x^(n-1)b.对于指数函数f(x,y)=e^x,其偏导数公式为:∂f/∂x=e^xc. 对于对数函数f(x, y) = log(x),其偏导数公式为:∂f/∂x=1/xd. 对于三角函数f(x, y) = sin(x),其偏导数公式为:∂f/∂x = cos(x)e.对于常数乘积规则,偏导数的计算法为:∂(c*f)/∂x=c*(∂f/∂x)二、高阶偏导数高阶偏导数是指对于多元函数的不同自变量求取多次偏导数的过程。
高阶偏导数描述了函数在其中一点上的更高阶导数信息,它可以对函数的多个变量进行多次的偏导运算。
1.二阶偏导数二阶偏导数是指对于二元函数,对其中一个变量求取一次偏导数后,再对另一个变量求取一次偏导数。
二阶偏导数可以通过求取一次偏导数的偏导数来计算,也可以通过直接求取函数的二阶导数来计算。
偏导数的定义和计算方法
偏导数的定义和计算方法偏导数是数学中的一个概念,用于描述标量函数关于一些变量的变化率。
当需要研究多元函数时,偏导数可以帮助我们更好地理解和运用函数。
下面将介绍偏导数的定义和计算方法。
一、偏导数的定义在多元函数中, x 和 y (或更多的变量)的取值可能会相互影响,这样导致的函数变化会比较复杂。
为了深入研究这种情况下的函数特性,我们需要使用偏导数。
偏导数可以理解为,将其它变量视为常数,只从一个变量的角度来观察函数的变化率。
比如,对于一个函数 f(x,y),f 对 x 的偏导数,记作∂f/∂x,表示当 y 固定, x 发生小量变化时, f 的变化率。
偏导数的定义如下:偏导数的计算方法就是对变量求偏导数,即把其它变量视为常数,只对一个变量进行求导。
下面我们将介绍一些具体的计算方法。
二、偏导数的计算方法1. 常数的偏导数为 0如果一个变量是常数,那么它的偏导数就为 0。
因为在求偏导数时,我们只考虑其它变量的变化对函数的影响,而常数固定不变,因此偏导数为 0。
示例:对于函数 f(x,y) = 3x + 5,∂f/∂y = 0,因为常数 5 对函数没有影响。
2. 求导法则对于多元函数,我们可以运用求导法则来求偏导数。
下面是一些求导法则:(1)加减法则:偏导数的加减顺序可以交换。
(2)乘法法则:f(x,y) = u(x,y) * v(x,y),则有∂f/∂x = ∂u/∂x * v+ u * ∂v/∂x。
(3)除法法则:f(x,y) = u(x,y) / v(x,y),则有(4)复合函数法则:如果 z = f(x,y),x = g(t) 且 y = h(t),则3. 链式法则链式法则是求导法则的一个重要应用,用于求解复合函数的偏导数。
下面是链式法则的公式:偏导数计算方法较为简单,但是需要注意的是,当变量较多时,求解偏导数可能需要耗费较多的时间和劳动。
因此,在实际问题中可以运用各种数学工具,如微积分软件等,来简化计算。
一偏导数的定义及其计算法二高阶偏导数三小结
一偏导数的定义及其计算法二高阶偏导数三小结一、偏导数的定义及其计算方法偏导数是多变量函数的导数的一种特殊形式,它描述了函数在其中一给定点沿着坐标轴的变化率。
在多变量函数中,每个自变量的变化都可能对函数的整体形态产生影响。
因此,偏导数的计算方法就是在保持其他自变量不变的情况下,对其中一自变量求导。
偏导数的定义:设有函数 f(x₁, x₂, ..., xn),如果函数在点 P(x₁₀, x₂₀, ..., xn₀) 的其中一邻域内对自变量 xi(i=1,2,...,n)的偏分之存在极限,那么称函数 f 在点 P 对 xi 的偏导数为 f 在点 P 对 xi 的偏导数。
记作∂f/∂xi 或 fxi'(x₁₀, x₂₀, ..., xn₀),即∂f/∂xi = fxi'(x₁₀, x₂₀, ..., xn₀) = lim[h→0] (f(x₁₀, ...,xi₀+h, ..., xn₀) - f(x₁₀, ..., xi₀, ..., xn₀))/h其中 xi₀是点 P 在第 i 个坐标轴上的对应坐标。
偏导数的计算方法:计算偏导数涉及多个自变量,按照求导的规则进行计算,只对关心的自变量求导,其它自变量视为常数,然后再将结果代入原函数。
二、高阶偏导数高阶偏导数是指对多变量函数连续求导的过程。
一般我们首先计算一阶偏导数,然后继续对一阶偏导数进行求导,得到二阶偏导数,以此类推。
高阶偏导数的求导规则与一阶偏导数相同,只需要按照规则连续求导即可。
高阶偏导数可以提供更多的信息,用于描述函数的曲率、凸凹性等性质。
例如,对于函数f(x,y),首先计算一阶偏导数:∂f/∂x = fx'(x, y) = ...∂f/∂y = fy'(x, y) = ...然后对一阶偏导数继续求导,得到二阶偏导数:∂²f/(∂x)² = (fx')' = ...∂²f/(∂y)² = (fy')' = ...∂²f/∂x∂y = (fx')'(y) = ...∂²f/∂y∂x = (fy')'(x) = ...其中,∂²f/∂x²表示对x进行两次求导,即x的二阶偏导数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
偏导数的定义与计算方法
偏导数是微积分中的一个重要概念,用于计算多元函数在某一点上
的变化率。
它是指在多元函数中,对某一变量求导时,将其他变量视
为常数进行求导的过程。
一、偏导数的定义
对于一个函数f(x1, x2, ..., xn),其中x1, x2, ..., xn为自变量,f为因
变量,偏导数表示函数f对其中一个自变量的变化率。
用∂表示偏导数,∂f/∂xi表示f对第i个自变量的偏导数。
在一元函数中,偏导数即为常
见的导数。
二、偏导数的计算方法
1. 一元函数的偏导数
对于只含有一个自变量的函数f(x),其偏导数即为一元函数的导数,计算方法为:
∂f/∂x = lim(Δx->0) [f(x+Δx) - f(x)] / Δx
在计算过程中,将除数Δx趋近于0,求出极限值即可得到偏导数
的值。
2. 多元函数的偏导数
对于含有多个自变量的函数f(x1, x2, ..., xn),计算偏导数时需要分
别对每个自变量进行求导。
以两个自变量的情况为例,对于f(x, y),分别求取偏导数时,将另
一个自变量视为常数。
具体计算方法为:
∂f/∂x = lim(Δx->0) [f(x+Δx, y) - f(x, y)] / Δx
∂f/∂y = lim(Δy->0) [f(x, y+Δy) - f(x, y)] / Δy
同理,对于包含更多自变量的函数,按照类似的方法分别对每个自
变量求取偏导数。
需要注意的是,在计算偏导数时,需要注意函数的可导性、连续性
等数学性质,以保证计算的准确性。
三、偏导数的几何意义
偏导数具有一定的几何意义,可以用来描述函数在某一点上的变化
率和切线斜率。
对于二元函数f(x, y),若其中两个偏导数∂f/∂x和∂f/∂y均存在,则
可得到函数在某一点上的切平面方程,该切平面的法向量为<∂f/∂x,
∂f/∂y, -1>。
四、应用举例
偏导数在许多领域中都有广泛的应用。
以下是一些常见的应用领域:
1. 物理学中的运动学和力学:偏导数可以用于描述物体在空间中的
运动轨迹和力学性质。
2. 经济学中的边际分析:偏导数可以用于计算经济学中的边际效益、边际成本等重要指标。
3. 工程学中的优化问题:偏导数可以用于优化问题的求解,例如最大最小值、最优路径等。
总结:
偏导数是多元函数中的重要概念,用于计算函数在某一点上的变化率。
通过求取不同自变量的偏导数,可以更好地理解函数的性质,并应用于各个学科领域中的实际问题。
在计算过程中需要注意函数的可导性、连续性等数学性质,以保证结果的准确性。
偏导数的定义与计算方法给了我们一种有效的工具来研究多元函数的变化规律,为深入理解多元函数提供了有力的数学支持。