【真题】2016-2017年北京市海淀区高三(上)期末数学试卷(文科)与答案

合集下载

2016-2017年北京市房山区高三(上)期末数学试卷和参考答案(文科)

2016-2017年北京市房山区高三(上)期末数学试卷和参考答案(文科)

2016-2017学年北京市房山区高三(上)期末数学试卷(文科)一、选择题(共8小题,每小题5分,满分40分)1.(5分)已知全集U=R,集合A={x|x<1},则?U A=()A.(﹣∞,1]B.[1,+∞)C.R D.(1,+∞)2.(5分)抛物线y2=4x的焦点坐标是()A.(1,0) B.(0,1) C.(2,0) D.(0,2)3.(5分)下列函数中为奇函数的是()A.y=sin2x B.y=xcosx C.y=D.y=|x|4.(5分)已知向量=(,),=(0,1),则向量与夹角的大小为()A.B.C.D.5.(5分)一个几何体的三视图如图所示(单位:cm),则此几何体的体积是()A.cm3B.12cm3C.14cm3D.28cm36.(5分)“a3>b3”是“a>b”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.(5分)已知点A(0,2),动点P(x,y)满足条件则|PA|的最小值是()A.1 B.2 C.D.8.(5分)对于100个黑球和99个白球的任意排列(从左到右排成一行),则一定()A.存在一个白球,它右侧的白球和黑球一样多B.存在一个黑球,它右侧的白球和黑球一样多C.存在一个白球,它右侧的白球比黑球少一个D.存在一个黑球,它右侧的白球比黑球少一个二、填空题(共6小题,每小题5分,满分30分)9.(5分)复数z=(i是虚数单位)的实部是.10.(5分)执行如图所示的程序框图,若输入的x值为4,则输出的y值为.11.(5分)某市为了增强市民的消防意识,面向社会招募社区宣传志愿者.现从20岁至45岁的志愿者中随机抽取100名按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示.若用分层抽样的方法从这100名志愿者中抽取20名参加消防演习活动,则从第4组中抽取的人数为.。

北京市海淀区2017届高三上学期期末考试数学理试题(全Word版,含答案)

北京市海淀区2017届高三上学期期末考试数学理试题(全Word版,含答案)

海淀区高三年级第一学期期末练习数学(理科) 2017.1本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上 作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项.1.抛物线22y x =的焦点到准线的距离为A .12B .1C .2D .32.在极坐标系中,点π(1,)4与点3π(1,)4的距离为A .1 BCD3.右侧程序框图所示的算法来自于《九章算术》.若输入a 的值为16,b 的值为24,则执行该程序框图输出的结果为A .6B .7C .8D .94.已知向量,a b 满足2+=0a b ,()2+⋅=a b a ,则⋅=a bA .12-B .12C .2-D .25.已知直线l 经过双曲线2214x y -=的一个焦点且与其一条渐近线平行,则直线l 的方程可能是A.12y x =- B.12y x =C.2y x =- D.2y x =-6.设,x y 满足0,20,2,x y x y x -≤⎧⎪+-≥⎨⎪≤⎩则22(1)x y ++的最小值为A .1B .92C .5D .97.在手绘涂色本的某页上画有排成一列的6条未涂色的鱼,小明用红、蓝两种颜色给这些鱼涂色,每条鱼只能涂一种颜色,两条相邻的鱼不.都.涂成红色....,涂色后,既有红色鱼又有蓝色鱼的涂色方法种数为 A .14B .16C .18D .208.如图,已知正方体1111ABCD A B C D -的棱长为1,,E F 分别是棱AD ,B 1C 1上的动点,设1,AE x B F y ==.若棱.1DD 与平面BEF 有公共点,则x y +的取值范围是 A .[0,1] B .13[,]22 C .[1,2]D .3[,2]2二、填空题共6小题,每小题5分,共30分. 9.已知复数z 满足(1i)2z +=,则z =________.10.在261()x x+的展开式中,常数项为________.(用数字作答)11.若一个几何体由正方体挖去一部分得到,其三视图如图所示,则该几何体的体积为________.12.已知圆C :2220x x y -+=,则圆心坐标为_____;若直线l 过点(1,0)-且与圆C 相切,则直线l 的方程为____________.13.已知函数2sin()y x ωϕ=+π(0,||)2ωϕ><.① 若(0)1f =,则ϕ=________;② 若x ∃∈R ,使(2)()4f x f x +-=成立,则ω的最小值是________.14.已知函数||()e cos πx f x x -=+,给出下列命题:①()f x 的最大值为2;②()f x 在(10,10)-内的零点之和为0; ③()f x 的任何一个极大值都大于1. 其中所有正确命题的序号是________.俯视图主视图ABCD1D 1A 1B 1C E F三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程. 15.(本小题满分13分)在∆ABC 中,2c a =,120B = ,且∆ABC. (Ⅰ)求b 的值; (Ⅱ)求tan A 的值.16.(本小题满分13分)诚信是立身之本,道德之基.某校学生会创设了“诚信水站”,既便于学生用水,又推进诚信教育,并用“周实际回收水费周投入成本”表示每周“水站诚信度”.为了便于数据分析,以四周为一周期......,下表为该水站连续十二周(共三个周期)的诚信度数据统计:第一周 第二周 第三周 第四周 第一个周期95% 98% 92% 88% 第二个周期94% 94% 83% 80% 第三个周期 85% 92% 95%96%(Ⅰ)计算表中十二周“水站诚信度”的平均数x ;(Ⅱ)分别从上表每个周期的4个数据中随机抽取1个数据,设随机变量X 表示取出的3个数据中“水站诚信度”超过91%的数据的个数,求随机变量X 的分布列和期望;(Ⅲ)已知学生会分别在第一个周期的第四周末和第二个周期的第四周末各举行了一次“以诚信为本”的主题教育活动.根据已有数据,说明两次主题教育活动的宣传效果,并根据已有数据陈述理由.17.(本小题满分14分)如图1,在梯形ABCD 中,//AB CD ,90ABC ∠= ,224AB CD BC ===,O 是边AB 的中点.将三角形AOD 绕边OD 所在直线旋转到1A OD 位置,使得1120AOB ∠= ,如图2.设m 为平面1A DC 与平面1A OB 的交线.(Ⅰ)判断直线DC 与直线m 的位置关系并证明; (Ⅱ)若直线m 上的点G 满足1OG A D ⊥,求出1A G 的长; (Ⅲ)求直线1A O 与平面1A BD 所成角的正弦值.AOBCD1图ODCB2图1A18.(本小题满分13分)已知(0,2),(3,1)A B 是椭圆G :22221(0)x y a b a b+=>>上的两点.(Ⅰ)求椭圆G 的离心率;(Ⅱ)已知直线l 过点B ,且与椭圆G 交于另一点C (不同于点A ),若以BC 为直径的圆经过点A ,求直线l 的方程.19. (本小题满分14分)已知函数()ln 1af x x x=--. (Ⅰ)若曲线()y f x =存在斜率为1-的切线,求实数a 的取值范围;(Ⅱ)求()f x 的单调区间;(Ⅲ)设函数()ln x ag x x+=,求证:当10a -<<时,()g x 在(1,)+∞上存在极小值.20.(本小题满分13分)对于无穷数列{}n a ,{}n b ,若1212max{,,,}min{,,,}(1,2,3,)k k k b a a a a a a k =-= ,则称{}n b 是{}n a 的“收缩数列”.其中,12max{,,,}k a a a ,12min{,,,}k a a a 分别表示12,,,k a a a 中的最大数和最小数.已知{}n a 为无穷数列,其前n 项和为n S ,数列{}n b 是{}n a 的“收缩数列”. (Ⅰ)若21n a n =+,求{}n b 的前n 项和; (Ⅱ)证明:{}n b 的“收缩数列”仍是{}n b ; (Ⅲ)若121(1)(1)22n n n n n n S S S a b +-+++=+ (1,2,3,)n = ,求所有满足该条件的{}n a .海淀区高三年级第一学期期末练习数学(理科)答案及评分标准2017.1一、选择题(共8小题,每小题5分,共40分)1.B2.B3. C4.C5.A6. B7.D8.C 二、填空题(共6小题,每小题5分,共30分,9. 1i -10.15 11.16312.(1,0);1)y x =+和1)y x =+13.π6,π214.①②③三、解答题(共6小题,共80分) 15.(本小题满分13分)解:(Ⅰ)由∆ABC 面积公式及题设得1sin 2S ac B ==122a a ⨯=解得1,2,a c ==由余弦定理及题设可得2222cos b a c ac B =+-114212()72=+-⨯⨯⨯-=,又0,b b >∴=. (不写b>0不扣分)(Ⅱ)在∆ABC 中,由正弦定理sin sin a bA B =得:sin sin a A B b == 又120B = ,所以A 是锐角(或:因为12,a c =<=)所以cos A ==所以sin tan cos A A A == 16. (本小题满分13分)解:(Ⅰ)十二周“水站诚信度”的平均数为x =95+98+92+88+94+94+83+80+85+92+95+96=91%12100⨯(Ⅱ)随机变量X 的可能取值为0,1,2,3三个周期“水站诚信度”超过91%分别有3次,2次,3次1212(0)44464P X ==⨯⨯=32112112314(1)44444444464P X==⨯⨯+⨯⨯+⨯⨯=32132132330(2)44444444464P X==⨯⨯+⨯⨯+⨯⨯=32318(3)44464P X==⨯⨯=随机变量X的分布列为X0 1 2 3P 1327321532932171590123232323232EX=⨯+⨯+⨯+⨯=.(Ⅲ)本题为开放问题,答案不唯一,在此给出评价标准,并给出可能出现的答案情况,阅卷时按照标准酌情给分.给出明确结论,1分,结合已有数据,能够运用以下三个标准中的任何一个陈述得出该结论的理由,2分.标准1:会用主题活动前后的百分比变化进行阐述标准2:会用三个周期的诚信度平均数变化进行阐述标准3:会用主题活动前后诚信度变化趋势进行阐述可能出现的作答情况举例,及对应评分标准如下:情况一:结论:两次主题活动效果均好.(1分)理由:活动举办后,“水站诚信度”由88%→94%和80%→85%看出,后继一周都有提升.(2分)情况二:结论:两次主题活动效果都不好.(1分)理由:三个周期的“水站诚信度”平均数分别为93.25%,87.75%,92%(平均数的计算近似即可),活动进行后,后继计算周期的“水站诚信度”平均数和第一周期比较均有下降.(2分)情况三:结论:第一次主题活动效果好于第二次主题活动.(1分)理由:第一次主题活动举办的后继一周“水站诚信度”提升百分点(94%-88%=6%)高于第二次主题活动举办的后继一周“水站诚信度”提升百分点(85%-80%=5%).(2分)情况四:结论:第二次主题活动效果好于第一次主题活动.(1分)理由:第一次活动后“水站诚信度”虽有上升,但两周后又有下滑,第二次活动后,“水站诚信度”数据连续四周呈上升趋势. (2分)(答出变化)情况五:结论:两次主题活动累加效果好.(1分)理由:两次主题活动“水站诚信度”均有提高,且第二次主题活动后数据提升状态持续周期好.(2分)情况六:以“‘两次主题活动无法比较’作答,只有给出如下理由才给3分:“12个数据的标准差较大,尽管平均数差别不大,但比较仍无意义”.给出其他理由,则结论和理由均不得分(0分).说明:①情况一和情况二用极差或者方差作为得出结论的理由,只给结论分1分,不给理由分2分.②以下情况不得分. 情况七:结论及理由“只涉及一次主题活动,理由中无法辩析是否为两次活动后数据比较之结果”的. 例:结论:第二次主题活动效果好.理由:第二次主题活动后诚信度有提高.③其他答案情况,比照以上情况酌情给分,赋分原则是:遵循三个标准,能使用表中数据解释所得结论.17. (本小题满分14分) 解:(Ⅰ)直线DC //m .证明:由题设可得//,CD OB 1CD AOB ⊄平面,1OB AOB ⊂平面, 所以//CD 平面1A OB .又因为CD ⊂平面1A DC ,平面1A DC 平面1A OB m = 所以//CD m .法1:(Ⅱ)由已知224AB CD BC ===,O 是边AB 的中点,//AB CD ,所以//CD OB ,因为90ABC ∠= ,所以四边形CDOB 是正方形, 所以在图1中DO AB ⊥,所以结合题设可得,在图2中有1DO OA ⊥,DO OB ⊥, 又因为1OA OB O = , 所以1DO AOB ⊥平面. 在平面AOB 内作OM 垂直OB 于M ,则DO OM ⊥. 如图,建立空间直角坐标系O xyz -,则11,0),(0,2,0),(0,0,2)A B D -,所以1(,2)A D =.设,0)G m ,则由1OG A D ⊥可得10A D OG ⋅=,即(,2),0)30m m ⋅=-+=解得3m =.所以14AG =. (Ⅲ)设平面1A BD 的法向量(,,)x y z =n ,则A110,0,A D A B ⎧⋅=⎪⎨⋅=⎪⎩n n即20,30,y z y ⎧++=⎪⎨+=⎪⎩令1y =,则1x z =,所以=n ,设直线1A O 与平面1A BD 所成角为θ,则sin θ=111cos ,A O n A O n A O n⋅<>==⋅法2:(Ⅱ)由已知224AB CD BC ===,O 是边AB 的中点,//AB CD ,所以//CD OB ,因为90ABC ∠= ,所以四边形CDOB 是正方形, 所以在图1中DO AB ⊥,所以结合题设可得,在图2中有1DO OA ⊥,DO OB ⊥, 又因为1OA OB O = , 所以1DO AOB ⊥平面. 又因为1OG AOB ⊂平面,所以DO OG ⊥. 若在直线m 上的点G 满足1OG A D ⊥,又1OD A D D = , 所以1OG AOD ⊥平面, 所以1OG OA ⊥,因为11120,//AOB OB AG ∠= ,所以160OAG ∠= , 因为12OA =,所以14A G =.(注:答案中标灰部分,实际上在前面表达的符号中已经显现出该条件,故没写不扣分) (Ⅲ)由(II )可知1OD OA OG 、、两两垂直,如图,建立空间直角坐标系O xyz -,则10,0,0),(2,0,0),((0,0,2)O A B D -(,所以11(2,0,2),(A D A B =-=-设平面1A BD 的法向量(,,)n x y z =,则110,0,n A D n A B ⎧⋅=⎪⎨⋅=⎪⎩即220,30,x z x -+=⎧⎪⎨-=⎪⎩令1x =,则1y z ==,所以n =,设直线1A O 与平面1A BD 所成角为θ,则sin θ=111cos ,AO n AO n AO n ⋅<>=⋅18. (本小题满分13分) 解:(Ⅰ)由已知2,b =由点(3,1)B 在椭圆G 上可得29114a +=,解得212,a a ==.所以2228,c a b c =-==, 所以椭圆G的离心率是c e a == (Ⅱ)法1:因为以BC 为直径的圆经过点A ,所以AB AC ⊥,由斜率公式和(0,2),(3,1)A B 可得13AB k =-,所以3Ac k =,设直线AC 的方程为32y x =+. 由2232,1124y x x y =+⎧⎪⎨+=⎪⎩得2790x x +=,由题设条件可得90,7A C x x ==-,所以913()77C -,-,所以直线BC 的方程为213y x =-. 法2:因为以BC 为直径的圆经过点A ,所以AB AC ⊥,由斜率公式和(0,2),(3,1)A B 可得13AB k =-,所以3Ac k =,设C C C x y (,) ,则23C Ac Cy k x -==,即32C C y x =+① 由点C 在椭圆上可得221124C C x y +=②将①代入②得2790C C x x +=,因为点C 不同于点A ,所以97C x =-,所以913()77C -,-,所以直线BC 的方程为213y x =-. 法3:当直线l 过点B 且斜率不存在时,可得点(3,1)C -,不满足条件.设直线BC 的方程为1(3)y k x -=-,点C C C x y (,)由2213,1124y kx k x y =+-⎧⎪⎨+=⎪⎩可得222(31)6(13)3(13)120k x k k x k ++-+--=,显然0∆>,此方程两个根是点B C 和点的横坐标,所以223(13)12331C k x k --=+,即22(13)4,31C k x k --=+所以22361,31C k k y k --+=+因为以BC 为直径的圆经过点A ,所以AB AC ⊥,即0AB AC ⋅=. (此处用1AB AC k k ⋅=-亦可)2222963961(3,1)(,)3131k k k k AB AC k k -----⋅=-⋅=++ 2236128031k k k --=+,即(32)(31)0k k -+=,1221,,33k k ==-当213k =-时,即直线AB ,与已知点C 不同于点A 矛盾,所以12,3BC k k ==所以直线BC 的方程为213y x =-.19. (本小题满分14分) 解:(Ⅰ)由()ln 1af x x x =--得221'()(0)a x af x x x x x+=+=>.由已知曲线()y f x =存在斜率为1-的切线, 所以'()1f x =-存在大于零的实数根, 即20x x a ++=存在大于零的实数根, 因为2y x x a =++在0x >时单调递增, 所以实数a 的取值范围0∞(-,).(Ⅱ)由2'()x af x x+=,0x >,a ∈R 可得 当0a ≥时,'()0f x >,所以函数()f x 的增区间为(0,)+∞; 当0a <时,若(,)x a ∈-+∞,'()0f x >,若(0,)x a ∈-,'()0f x <, 所以此时函数()f x 的增区间为(,)a -+∞,减区间为(0,)a -.(Ⅲ)由()ln x a g x x+=及题设得22ln 1('()(ln )(ln )a x f x x g x x x --==), 由10a -<<可得01a <-<,由(Ⅱ)可知函数()f x 在(,)a -+∞上递增, 所以(1)10f a =--<,取e x =,显然e 1>,(e)lne 10e a af e=--=->, 所以存在0(1,e)x ∈满足0()0f x =,即 存在0(1,e)x ∈满足0'()0g x =,所以(),'()g x g x 在区间(1,)+∞上的情况如下:x0(1,)x 0x 0(,)x +∞'()g x-0 +()g x极小所以当10a -<<时,()g x 在(1,)+∞上存在极小值. (本题所取的特殊值不唯一,注意到0(1)ax x->>),因此只需要0ln 1x ≥即可)20. (本小题满分13分)解:(Ⅰ)由21n a n =+可得{}n a 为递增数列,所以12121max{,,,}min{,,,}21322n n n n b a a a a a a a a n n =-=-=+-=- ,故{}n b 的前n 项和为22(1)2n n n n -⨯=-.- (Ⅱ)因为12121max{,,,}max{,,,}(1,2,3,)n n a a a a a a n +≤= ,12121min{,,,}min{,,,}(1,2,3,)n n a a a a a a n +≥= ,所以1211211212max{,,,}min{,,,}max{,,,}min{,,,}n n n n a a a a a a a a a a a a ++-≥-所以1(1,2,3,)n n b b n +≥= . 又因为1110b a a =-=,所以12121max{,,,}min{,,,}n n n n b b b b b b b b b -=-= , 所以{}n b 的“收缩数列”仍是{}n b .(Ⅲ)由121(1)(1)22n n n n n n S S S a b +-+++=+ (1,2,3,)n = 可得 当1n =时,11a a =;当2n =时,121223a a a b +=+,即221b a a =-,所以21a a ≥;当3n =时,123133263a a a a b ++=+,即3213132()()b a a a a =-+-(*), 若132a a a ≤<,则321b a a =-,所以由(*)可得32a a =,与32a a <矛盾;若312a a a <≤,则323b a a =-,所以由(*)可得32133()a a a a -=-, 所以3213a a a a --与同号,这与312a a a <≤矛盾; 若32a a ≥,则331b a a =-,由(*)可得32a a =. 猜想:满足121(1)(1)22n n n n n n S S S a b +-+++=+ (1,2,3,)n = 的数列{}n a 是: 1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩.经验证,左式=121212(1)[12(1)]2n n n S S S na n a na a -+++=++++-=+ , 右式=112112(1)(1)(1)(1)(1)()22222n n n n n n n n n n n a b a a a na a +-+--+=+-=+.下面证明其它数列都不满足(Ⅲ)的题设条件.法1:由上述3n ≤时的情况可知,3n ≤时,1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩是成立的.假设k a 是首次不符合1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩的项,则1231k k a a a a a -≤===≠ ,由题设条件可得2212(1)(1)222k k k k k k k k a a a b ----+=+(*), 若12k a a a ≤<,则由(*)式化简可得2k a a =与2k a a <矛盾; 若12k a a a <≤,则2k k b a a =-,所以由(*)可得21(1)()2k k k k a a a a --=- 所以21k k a a a a --与同号,这与12k a a a <≤矛盾; 所以2k a a ≥,则1k k b a a =-,所以由(*)化简可得2k a a =.这与假设2k a a ≠矛盾.所以不存在数列不满足1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩的{}n a 符合题设条件.法2:当i n ≤时,11212max{,,,}min{,,,}i i i i a a a a a a a a b -≤-= ,所以1121()ki k i a a b b b =-≤+++∑ ,(1,2,3,,)k n =即112()k k S ka b b b ≤++++ ,(1,2,3,,)k n = 由1(1,2,3,)n n b b n +≥= 可得(1,2,3,,)k n b b k n ≤= 又10b =,所以可得1(1)k n S ka k b ≤+-(1,2,3,)k = ,所以12111(2)[02(1)]n n n n n S S S a a na b b b n b +++≤++++⨯++++- ,即121(1)(1)22n n n n n nS S S a b +-+++≤+ 所以121(1)(1)22n n n n n nS S S a b +-+++≤+ 等号成立的条件是1(1,2,3,,)i i n a a b b i n -=== ,所以,所有满足该条件的数列{}n a 为1212,1,,1,n a n a a a a n =⎧=≥⎨>⎩.(说明:各题的其他做法,可对着参考答案的评分标准相应给分)。

2016-2017学年北京市朝阳区高三(上)期末数学试卷(文科)

2016-2017学年北京市朝阳区高三(上)期末数学试卷(文科)

2016-2017学年北京市朝阳区高三(上)期末数学试卷(文科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.(5分)已知全集U=R,集合A={x|x<1},B={x|x﹣2<0},则(∁U A)∩B)=()A.{x|x>2}B.{x|1<x≤2}C.{x|1≤x<2}D.{x|x≤2}2.(5分)复数=()A.2﹣i B.2﹣2i C.1+i D.1﹣i3.(5分)已知非零实数a,b满足a<b,则下列不等式中一定成立的是()A.a+b>0 B.C.ab<b2D.a3﹣b3<04.(5分)已知平面向量=(1,0),=(﹣,),则与+的夹角为()A.B.C. D.5.(5分)若a>0,且a≠1,则“函数y=a x在R上是减函数”是“函数y=(2﹣a)x3在R上是增函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.(5分)已知双曲线(a>0,b>0)的左、右焦点分别是F1,F2,M是双曲线上的一点,且|MF1|=,|MF2|=1,∠MF1F2=30°,则该双曲线的离心率是()A.B.C.D.或7.(5分)某四棱锥的三视图如图所示,其俯视图为等腰直角三角形,则该四棱锥的体积为()A.B.C.D.8.(5分)某校高三(1)班32名学生参加跳远和掷实心球两项测试.跳远和掷实心球两项测试成绩合格的人数分别为26人和23人,这两项成绩均不合格的有3人,则这两项成绩均合格的人数是()A.23 B.20 C.21 D.19二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9.(5分)已知等差数列{a n}的前n项和为S n.若a1=2,S2=a3,则a2=,S10=.10.(5分)圆C:x2+y2+2x﹣2y﹣2=0的圆心到直线3x+4y+14=0的距离是.11.(5分)执行如图所示的程序框图,则输出的结果是.12.(5分)在△ABC中,已知,则∠C=.13.(5分)设D为不等式组表示的平面区域,对于区域D内除原点外的任一点A(x,y),则2x+y的最大值是,的取值范围是.14.(5分)甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖.有人走访了四位歌手,甲说:“乙或丙获奖”;乙说:“甲、丙都未获奖”;丙说:“丁获奖”;丁说:“丙说的不对”.若四位歌手中只有一个人说的是真话,则获奖的歌手是.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)已知函数f(x)=2sinxcosx+2cos2x﹣1(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间[﹣,]上的最大值和最小值.16.(13分)已知等比数列{a n}的各项均为正数,且a2=4,a3+a4=24.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}满足b1=3,b2=6,且{b n﹣a n}是等差数列,求数列{b n}的前n 项和.17.(13分)甲乙两位学生参加数学竞赛培训,在培训期间,他们参加了5次预赛成绩记录如下:甲82 82 79 95 87乙95 75 80 90 85(1)用茎叶图表示这两组数据;(2)从甲乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率:(3)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?说明理由.18.(14分)如图,四边形ABCD是边长为2的正方形,平面ABCD⊥平面ABEF,AF∥BE,AB⊥BE,AB=BE=2,AF=1.(Ⅰ)求证:AC⊥平面BDE;(Ⅱ)求证:AC∥平面DEF;(Ⅲ)求三棱锥C﹣DEF的体积.19.(13分)在平面直角坐标系xOy中,动点P与两定点A(﹣2,0),B(2,0)连线的斜率乘积为,记点P的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)若曲线C上的两点M,N满足OM∥PA,ON∥PB,求证:△OMN的面积为定值.20.(14分)设函数f(x)=(x﹣1)e x+ax2,a∈R.(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若函数f(x)有两个零点,试求a的取值范围;(III)设函数g(x)=lnx+x﹣e x+1,当a=0时,证明f(x)﹣g(x)≥0.2016-2017学年北京市朝阳区高三(上)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.(5分)已知全集U=R,集合A={x|x<1},B={x|x﹣2<0},则(∁U A)∩B)=()A.{x|x>2}B.{x|1<x≤2}C.{x|1≤x<2}D.{x|x≤2}【解答】解:∵全集U=R,集合A={x|x<1},B={x|x﹣2<0}={x|x<2},∴∁U A={x|x≥1},则(∁U A)∩B={x|1≤x<2},故选:C2.(5分)复数=()A.2﹣i B.2﹣2i C.1+i D.1﹣i【解答】解:==1﹣i,故选:D.3.(5分)已知非零实数a,b满足a<b,则下列不等式中一定成立的是()A.a+b>0 B.C.ab<b2D.a3﹣b3<0【解答】解:对于A:∵a<b,则a﹣b<0,b﹣a>0,∴A不对.对于B:∵a<b,当a<0<b,则,∴B不对.对于C:∵a<b,当a<b<0,则ab>b2,∴C不对.对于D:∵a<b,则a3<b3,即a3﹣b3<0,∴D对.故选D.4.(5分)已知平面向量=(1,0),=(﹣,),则与+的夹角为()A.B.C. D.【解答】解:∵向量=(1,0),=(﹣,),∴+=(,),•(+)=(1,0)•(,)=,设与+的夹角为θ,θ∈[0,π],则由cosθ===,可得θ=,故选:B.5.(5分)若a>0,且a≠1,则“函数y=a x在R上是减函数”是“函数y=(2﹣a)x3在R上是增函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:若函数y=a x在R上是减函数,则0<a<1,此时2﹣a>0,则函数y=(2﹣a)x3在R上是增函数成立,即充分性成立,若函数y=(2﹣a)x3在R上是增函数,则2﹣a>0,即0<a<2,则函数y=a x在R上不一定是减函数,即必要性不成立,即“函数y=a x在R上是减函数”是“函数y=(2﹣a)x3在R上是增函数”的充分不必要条件,故选:A.6.(5分)已知双曲线(a>0,b>0)的左、右焦点分别是F1,F2,M是双曲线上的一点,且|MF1|=,|MF2|=1,∠MF1F2=30°,则该双曲线的离心率是()A.B.C.D.或【解答】解:∵M是双曲线上的一点,|MF1|=,|MF2|=1,∠MF1F2=30°,由正弦定理可得,=,即=,解得sin∠MF2F1=,∴∠MF2F1=60°或120°,当∠MF2F1=60°时,△MF2F1为直角三角形,此时2c=|F2F1|=2.即c=1,∵2a=|MF1|﹣MF2|=﹣1,即a=∴e==+1,当∠MF2F1=120°时,△MF2F1为直角三角形,此时2c=|F2F1|=|MF1|=1.即c=,∵2a=|MF1|﹣MF2|=﹣1,即a=,∴e===,故选:D.7.(5分)某四棱锥的三视图如图所示,其俯视图为等腰直角三角形,则该四棱锥的体积为()A.B.C.D.【解答】解:由已知中的某四棱锥的三视图,可得:该几何体的直观图如下图所示:其底面面积为:S=2×=,高h=,故体积V==,故选:C8.(5分)某校高三(1)班32名学生参加跳远和掷实心球两项测试.跳远和掷实心球两项测试成绩合格的人数分别为26人和23人,这两项成绩均不合格的有3人,则这两项成绩均合格的人数是()A.23 B.20 C.21 D.19【解答】解:设这两项成绩均合格的人数为x,则跳远合格掷实心球不合格的人数为26﹣x,则26﹣x+23+3=32,得x=20,即这两项成绩均合格的人数是20人,故选:B二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9.(5分)已知等差数列{a n}的前n项和为S n.若a1=2,S2=a3,则a2=4,S10= 110.【解答】解:设等差数列{a n}的公差为d,∵a1=2,S2=a3,∴2a1+d=a1+2d,即2=d,∴a2=2+2=4.S10=10××2=110.故答案为:4,110.10.(5分)圆C:x2+y2+2x﹣2y﹣2=0的圆心到直线3x+4y+14=0的距离是3.【解答】解:把圆的方程化为标准方程得:(x+1)2+(y﹣1)2=4,可得圆心坐标为(﹣1,1),则圆心到直线3x+4y+14=0的距离d==3.故答案为:311.(5分)执行如图所示的程序框图,则输出的结果是20.【解答】解:执行程序框图,有a=1,b=1,s=2c=2,s=4不满足条件c>5,a=1,b=2,c=3,s=7不满足条件c>5,a=2,b=3,c=5,s=12不满足条件c>5,a=3,b=5,c=8,s=20满足条件c>5,退出循环,输出s的值为20.故答案为:20.12.(5分)在△ABC中,已知,则∠C=105°.【解答】解:由题意:已知,即b=a由正弦定理=,则有sinA=,∵0°<A<135°∴A=30°则C=180°﹣30°﹣45°=105°故答案为:105°13.(5分)设D为不等式组表示的平面区域,对于区域D内除原点外的任一点A(x,y),则2x+y的最大值是,的取值范围是[﹣,0] .【解答】解:先根据约束条件不等式组画出可行域:当直线2x+y=t过点A时,2x+y取得最大值,由,可得A(,)时,z最大是2×=,由约束条件x﹣y≤0,可知≤0,令z=,可得z2==1﹣,令t=,由可行域可得∈(﹣∞,﹣1]∪[1,+∞).求解的最小值,就是解z2的最大值,即1﹣的最大值,可知∈(﹣∞,﹣1],显然=﹣1时,z2取得最大值2.所以z,的取值范围是[﹣,0).故答案为:.[﹣,0).14.(5分)甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖.有人走访了四位歌手,甲说:“乙或丙获奖”;乙说:“甲、丙都未获奖”;丙说:“丁获奖”;丁说:“丙说的不对”.若四位歌手中只有一个人说的是真话,则获奖的歌手是甲.【解答】解:若乙是获奖的歌手,则甲、乙、丁都说真话,不符合题意.若丙是获奖的歌手,则甲、丁都说真话,不符合题意若丁是获奖的歌手,则乙、丙都说真话,不符合题意.若甲是获奖的歌手,则甲、乙、丙都说假话,丁真话,符合题意.故答案为:甲三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)已知函数f(x)=2sinxcosx+2cos2x﹣1(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间[﹣,]上的最大值和最小值.【解答】解:(Ⅰ)∵f(x)=2sinxcosx+2cos2x﹣1=sin2x+cos2x=2sin(2x+)∴T=.(Ⅱ)∵x∈[﹣,],∴2x+∈[﹣,]∴﹣1≤2sin(2x+)≤2∴函数f(x)在区间[﹣,]上的最小值为﹣1,最大值为2.16.(13分)已知等比数列{a n}的各项均为正数,且a2=4,a3+a4=24.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}满足b1=3,b2=6,且{b n﹣a n}是等差数列,求数列{b n}的前n 项和.【解答】(本小题满分13分)解:(Ⅰ)设等比数列{a n}的公比为q,依题意q>0.因为,两式相除得:q2+q﹣6=0,解得q=2,q=﹣3(舍去).所以.所以数列{a n}的通项公式为.…(6分)(Ⅱ)解:由已知可得b1﹣a1=3﹣2=1,b2﹣a2=6﹣4=2,因为{b n﹣a n}为等差数列,所以数列{b n﹣a n}是首项为1,公差为d=1的等差数列.所以b n﹣a n=1+(n﹣1)=n.则.因此数列{b n}的前n项和:=(1+2+3+…+n)+(2+22+23+…+2n)=.…(13分)17.(13分)甲乙两位学生参加数学竞赛培训,在培训期间,他们参加了5次预赛成绩记录如下:甲82 82 79 95 87乙95 75 80 90 85(1)用茎叶图表示这两组数据;(2)从甲乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率:(3)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?说明理由.【解答】解:(1)茎叶图如图,(2)设甲被抽到的成绩鞥即为x,乙被抽到的成绩为y,则从甲乙两人的成绩中各随机抽取一个的基本事件个数为5×5=25.其中甲的成绩比乙的成绩高的个数为(82,75),(82,80),(79,75),(87,75),(87,80),(87,85)(95,90),(95,75),(95,80),(95,85),(82,75),(82,80)共12个.所以从甲乙两人的成绩中各随机抽取一个,甲的成绩比乙高的概率为;(3)派甲参赛比较合理.理由是..==31.6.因为甲乙的平均数相同,甲的方差小于乙的方差,所以甲发挥稳定.18.(14分)如图,四边形ABCD是边长为2的正方形,平面ABCD⊥平面ABEF,AF∥BE,AB⊥BE,AB=BE=2,AF=1.(Ⅰ)求证:AC⊥平面BDE;(Ⅱ)求证:AC∥平面DEF;(Ⅲ)求三棱锥C﹣DEF的体积.【解答】(本小题满分14分)证明:(Ⅰ)因为平面ABCD⊥平面ABEF,平面ABCD∩平面ABEF=AB,且AB⊥BE,所以BE⊥平面ABCD.因为AC⊂平面ABCD,所以BE⊥AC.又因为四边形ABCD为正方形,所以AC⊥BD.因为BD∩BE=B,所以AC⊥平面BDE.…(4分)(Ⅱ)设AC∩BD=O,因为四边形ABCD为正方形,所以O为BD中点.设G为DE的中点,连结OG,FG,则OG∥BE,且.由已知AF∥BE,且,则AF∥OG,且AF=OG.所以四边形AOGF为平行四边形.所以AO∥FG,即AC∥FG.因为AC⊄平面DEF,FG⊂平面DEF,所以AC∥平面DEF.…(9分)解:(Ⅲ)由(Ⅰ)可知BE⊥平面ABCD,因为AF∥BE,所以AF⊥平面ABCD,所以AF⊥AB,AF⊥AD.又因为四边形ABCD为正方形,所以AB⊥AD,所以AD⊥平面ABEF.由(Ⅱ)可知,AC∥平面DEF,所以,点C到平面DEF的距离等于A点到平面DEF的距离,=V A﹣DEF.所以V C﹣DEF因为AB=AD=2AF=2.所以=.故三棱锥C﹣DEF的体积为.…(14分)19.(13分)在平面直角坐标系xOy中,动点P与两定点A(﹣2,0),B(2,0)连线的斜率乘积为,记点P的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)若曲线C上的两点M,N满足OM∥PA,ON∥PB,求证:△OMN的面积为定值.【解答】解:(Ⅰ)设P(x,y),则,整理得(x≠±2).…(5分)(Ⅱ)依题直线OM,ON的斜率乘积为.当直线MN的斜率不存在时,直线OM,ON的斜率为,设直线OM的方程是,由得,y=±1.取,则.所以△OMN的面积为.当直线MN的斜率存在时,设方程为y=kx+m.由得,(2k2+1)x2+4kmx+2m2﹣4=0.因为M,N在椭圆C上,所以△=16k2m2﹣4(2k2+1)(2m2﹣4)>0,解得4k2﹣m2+2>0.设M(x1,y1),N(x2,y2),则,;所以=.设点O到直线MN的距离为d,则.所以△OMN的面积为…①.因为OM∥PA,ON∥PB,直线OM,ON的斜率乘积为,所以.所以=.由,得2k2+1=m2…②.由①②,得.…(13分)20.(14分)设函数f(x)=(x﹣1)e x+ax2,a∈R.(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若函数f(x)有两个零点,试求a的取值范围;(III)设函数g(x)=lnx+x﹣e x+1,当a=0时,证明f(x)﹣g(x)≥0.【解答】解:(Ⅰ)当a=1时,函数f(x)=xe x+x2,因为f'(x)=xe x+2x,所以f'(1)=e+2.又f(1)=1,则所求的切线方程为y﹣1=(e+2)(x﹣1).化简得:y=(e+2)x﹣e﹣1.…(3分)(Ⅱ)因为f'(x)=x(e x+2a)①当a=0时,函数f(x)=(x﹣1)e x只有一个零点;②当a>0,函数当x∈(﹣∞,0)时,f'(x)<0;函数当x∈(0,+∞)时,f'(x)>0.所以f(x)在(﹣∞,0)上单调递减,在(0,+∞)上单调递增.又f(0)=﹣1,f(1)=a,因为x<0,所以x﹣1<0,e x<1,所以e x(x﹣1)>x﹣1,所以g(x)>ax2+x ﹣1取,显然x0<0且g(x0)>0所以f(0)f(1)<0,f(x0)f(0)<0.由零点存在性定理及函数的单调性知,函数有两个零点.③当a<0时,由f'(x)=x(e x+2a)=0,得x=0,或x=ln(﹣2a).若,则ln(﹣2a)≤0.故当x∈(0,+∞)时,f'(x)>0,所以函数f(x)在(0,+∞)在单调递增,所以函数f(x)在(0,+∞)至多有一个零点.又当x∈(﹣∞,0)时,f(x)<0,所以函数f(x)在(﹣∞,0)上没有零点.所以函数f(x)不存在两个零点.若,则ln(﹣2a)>0.当(ln(﹣2a),+∞)时,f'(x)>0,所以函数f(x)在(ln(﹣2a),+∞)上单调递增,所以函数f(x)在(ln(﹣2a),+∞)至多有一个零点.当x∈(﹣∞,0)时,f'(x)>0;当x∈(0,ln(﹣2a))时,f'(x)<0;所以函数f(x)在(﹣∞,0)上单增,(0,ln(﹣2a))上单调递减,所以函数f(x)在(﹣∞,ln(﹣2a))上的最大值为f(0)=﹣1<0,所以函数f(x)在(﹣∞,ln(﹣2a))上没有零点.所以f(x)不存在两个零点.综上,a的取值范围是(0,+∞).…(9分)(III)证明:当a=0时,f(x)﹣g(x)=(x﹣1)e x+e x﹣lnx﹣x﹣1.设h(x)=xe x﹣lnx﹣x﹣1,其定义域为(0,+∞),则证明h(x)>0即可.因为,所以h'(0.1)<0,h'(1)>0.又因为,所以函数h'(x)在(0,+∞)上单调递增.所以h'(x)=0有唯一的实根x0∈(0,1),且.当0<x<x0时,h'(x)<0;当x>x0时,h'(x)>0.所以函数h(x)的最小值为h(x0).所以=1+x0﹣x0﹣1=0.所以f(x)﹣g(x)≥0.…(14分)。

2023-2024学年北京市海淀区高三(上)期末数学试卷【答案版】

2023-2024学年北京市海淀区高三(上)期末数学试卷【答案版】

2023-2024学年北京市海淀区高三(上)期末数学试卷一、选择题共10小题,每小题4分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.已知集合U={1,2,3,4,5,6},A={1,3,5},B={1,2,3},则∁U(A∩B)=()A.{2,4,5,6}B.{4,6}C.{2,4,6}D.{2,5,6}2.如图,在复平面内,复数z1,z2对应的点分别为Z1,Z2,则复数z1•z2的虚部为()A.﹣i B.﹣1C.﹣3i D.﹣33.已知直线l1:x+y2=1,直线l2:2x﹣ay+2=0,且l1∥l2,则a=()A.1B.﹣1C.4D.﹣44.已知抛物线C:y2=8x的焦点为F,点M在抛物线C上,且|MF|=4,O为坐标原点,则|OM|=()A.4√2B.4C.5D.2√55.在正四棱锥P﹣ABCD中,AB=2,二面角P﹣CD﹣A的大小为π4,则该四棱锥的体积为()A.4B.2C.43D.236.已知⊙C:x2+2x+y2﹣1=0,直线mx+n(y﹣1)=0与⊙C交于A,B两点.若△ABC为直角三角形,则()A.mn=0B.m﹣n=0C.m+n=0D.m2﹣3n2=07.若关于x的方程log a x−a x=0(a>0且a≠1)有实数解,则a的值可以为()A.10B.e C.2D.5 48.已知直线l1,l2的斜率分别为k1,k2,倾斜角分别为α1,α2,则“cos(α1﹣α2)>0”是“k1k2>0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件9.已知{a n}是公比为q(q≠1)的等比数列,S n为其前n项和.若对任意的n∈N*,S n<a11−q恒成立,则()A .{a n }是递增数列B .{a n }是递减数列C .{S n }是递增数列D .{S n }是递减数列10.蜜蜂被誉为“天才的建筑师”.蜂巢结构是一种在一定条件下建筑用材面积最小的结构.右图是一个蜂房的立体模型,底面ABCDEF 是正六边形,棱AG ,BH ,CI ,DJ ,EK ,FL 均垂直于底面ABCDEF ,上顶由三个全等的菱形PGHI ,PIJK ,PKLG 构成.设BC =1,∠GPI =∠IPK =∠KPG =θ≈109°28',则上顶的面积为( )(参考数据:cosθ=−13,tan θ2=√2)A .2√2B .3√32C .9√22D .9√24二、填空题共5小题,每小题5分,共25分。

2016年度-2017年度海淀高三期中练习进步数学文科试题及其规范标准答案

2016年度-2017年度海淀高三期中练习进步数学文科试题及其规范标准答案

海淀区高三年级第一学期期中练习数 学(文科) 2016.11本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上 作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1. 已知集合{2}A x x =>,{(1)(3)0}B x x x =--<,则A B =IA. {1}x x >B. {23}x x <<C. {13}x x <<D. {2x x >或1}x < 2. 已知向量(1,),(2,4)x =-=-a b . 若a b P ,则x 的值为 A. 2-B. 12-C. 12D. 23. 已知命题p :0x ∀>,1x x+≥2命题q :若a b > ,则ac bc >. 下列命题为真命题的是 A. q B. p ⌝ C. p q ∨ D. p q ∧ 4. 若角θ的终边过点(3,4)P -,则tan(π)θ+= A.34 B.34- C. 43 D. 43- 5. 已知函数,log ab y x y x ==的图象如图所示,则 A. 1b a >> B. 1b a >> C. 1a b >> D. 1a b >>6. 设,a b 是两个向量,则“+>-a b a b ”是“0⋅>a b ”的 A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件D. 既不充分也不必要条件7. 给定条件:①0x ∃∈R ,00()()f x f x -=-;②x ∀∈R ,(1)(1)f x f x -=+ 的函数个数是下列三个函数:3,|1|,cos πy x y x y x ==-=中,同时满足条件①②的函数个数是 A .0B .1C .2D .38.已知定义在R 上的函数f (x )={2x +a,x ≤0,ln (x +a ),x >0. 若方程1()2f x =有两个不相等的实数根,则a 的取值范围是 A. 1122a -≤≤ B. 102a ≤< C. 01a ≤< D. 102a -<≤第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

2017年北京市海淀区高三上学期期末数学试卷与解析答案(理科)

2017年北京市海淀区高三上学期期末数学试卷与解析答案(理科)

2016-2017学年北京市海淀区高三(上)期末数学试卷(理科)一、选择题(共8小题,每小题5分,满分40分)1.(5分)抛物线y2=2x的焦点到准线的距离为()A.B.1 C.2 D.3

2.(5分)在极坐标系中,点(1,)与点(1,)的距离为()A.1 B.C.D.3.(5分)如图程序框图所示的算法来自于《九章算术》,若输入a的值为16,b的值为24,则执行该程序框图的结果为()

A.6 B.7 C.8 D.94.(5分)已知向量,满足,()=2,则=()A.﹣ B.C.﹣2 D.25.(5分)已知直线l经过双曲线的一个焦点且与其一条渐近线平行,则直线l的方程可以是()A.y=﹣B.y=C.y=2x﹣D.y=﹣2x+6.(5分)设x,y满足,则(x+1)2+y2的最小值为()

A.1 B.C.5 D.97.(5分)在手绘涂色本的某页上画有排成一列的6条未涂色的鱼,小明用红、蓝两种颜色给这些鱼涂色,每条鱼只能涂一种颜色,两条相邻的鱼不都涂成红色,涂色后,既有红色鱼又有蓝色鱼的涂色方法种数为()A.14 B.16 C.18 D.208.(5分)如图,已知正方体ABCD﹣A1B1C1D1的棱长为1,E,F分别是棱AD,

B1C1上的动点,设AE=x,B1F=y,若棱DD1与平面BEF有公共点,则x+y的取值

范围是()

A.[0,1]B.[,]C.[1,2]D.[,2]二、填空题(共6小题,每小题5分,满分30分)9.(5分)已知复数z满足(1+i)z=2,则z=.10.(5分)(x2+)6的展开式中常数项是.(用数字作答)

11.(5分)若一个几何体由正方体挖去一部分得到,其三视图如图所示,则该几何体的体积为.

【优质文档】2016-2017学年北京市海淀区高一(上)期末数学试卷


A. B. C. D.
7.( 4 分)如果函数 f(x)=3sin( 2x+φ)的图象关于点 ( ,0)成中心对称 (| φ|
< ),那么函数 f( xC.x=
D.x=
8.(4 分)已知函数 f( x)=
其中 M∪P=R,则下列结论中一定正确的
是( )
第 1页(共 16页)
18.( 10 分)已知函数 f(x)的定义域为 R,若存在常数 T≠0,使得 f (x)=Tf ( x+T)对任意的 x∈R 成立,则称函数 f(x)是 Ω函数. ( Ⅰ)判断函数 f( x)=x,g(x) =sin π是x否是 Ω函数;(只需写出结论) ( Ⅱ)说明:请在( i)、(ii)问中选择一问解答即可,两问都作答的按选择( i) 计分 ( i)求证:若函数 f(x)是 Ω函数,且 f( x)是偶函数,则 f( x)是周期函数; ( ii)求证:若函数 f(x)是 Ω函数,且 f(x)是奇函数,则 f( x)是周期函数; ( Ⅲ)求证:当 a> 1 时,函数 f(x)=ax 一定是 Ω函数.
第 8页(共 16页)
c<b
故答案为: c< b< a.
《创新设计》图书
11.(4 分)已知角 α终边上有一点 P(x,1),且 cos α﹣= ,则 tan α=﹣ .
【解答】 解:∵角 α终边上有一点 P(x,1),且 cosα=﹣ =
,∴x=﹣ ,
∴ tan α==﹣ , 故答案为:﹣ .
12.( 4 分)已知△ ABC中,点 A(﹣ 2,0),B(2,0), C( x,1) ( i)若∠ ACB是直角,则 x=
∴ 2× +φ=kπ,k∈Z,解得: φ=kπ﹣ , k∈ Z,
∵ | φ| < ,

2016-2017年北京市朝阳区高三上学期期末数学试卷(文科)及答案WORD版

----<<本文为word格式,下载后方便编辑修改,也可以直接使用>>------<<本文为word格式,下载后方便编辑修改,也可以直接使用>>----2016-2017学年北京市朝阳区高三上学期期末数学试卷(文科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.(5分)已知全集U=R,集合A={x|x<1},B={x|x﹣2<0},则(?U A)∩B)=()A.{x|x>2}B.{x|1<x≤2}C.{x|1≤x<2}D.{x|x≤2}2.(5分)复数=()A.2﹣i B.2﹣2i C.1+i D.1﹣i3.(5分)已知非零实数a,b满足a<b,则下列不等式中一定成立的是()A.a+b>0 B.C.ab<b2D.a3﹣b3<04.(5分)已知平面向量=(1,0),=(﹣,),则与+的夹角为()A.B.C. D.5.(5分)若a>0,且a≠1,则“函数y=a x在R上是减函数”是“函数y=(2﹣a)x3在R上是增函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.(5分)已知双曲线(a>0,b>0)的左、右焦点分别是F1,F2,M是双曲线上的一点,且|MF1|=,|MF2|=1,∠MF1F2=30°,则该双曲线的离心率是()A.B.C.D.或7.(5分)某四棱锥的三视图如图所示,其俯视图为等腰直角三角形,则该四棱锥的体积为()A.B.C.D.8.(5分)某校高三(1)班32名学生参加跳远和掷实心球两项测试.跳远和掷实心球两项测试成绩合格的人数分别为26人和23人,这两项成绩均不合格的有3人,则这两项成绩均合格的人数是()A.23 B.20 C.21 D.19二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9.(5分)已知等差数列{a n}的前n项和为S n.若a1=2,S2=a3,则a2=,S10=.10.(5分)圆C:x2+y2+2x﹣2y﹣2=0的圆心到直线3x+4y+14=0的距离是.11.(5分)执行如图所示的程序框图,则输出的结果是.12.(5分)在△ABC中,已知,则∠C=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1页(共20页) 2016-2017学年北京市海淀区高三(上)期末数学试卷(文科) 一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.(5分)复数i(2﹣i)在复平面内对应的点的坐标为( ) A.(﹣2,1) B.(2,﹣1) C.(1,2) D.(﹣1,2) 2.(5分)抛物线y2=2x的焦点到准线的距离为( ) A. B.1 C.2 D.3 3.(5分)下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是( ) A. B.y=﹣x2 C.y=log2x D.y=|x|+1

4.(5分)已知向量,满足=0,()•=2,则||=( ) A. B.1 C. D.2 5.(5分)如图程序框图所示的算法来自于《九章算术》,若输入a的值为16,b的值为24,则执行该程序框图的结果为( )

A.6 B.7 C.8 D.9 第2页(共20页)

6.(5分)在△ABC中,“A<30°”是“”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 7.(5分)已知某四棱锥的三视图如右图所示,则该几何体的体积为( )

A. B. C.2 D. 8.(5分)如图,已知正方体ABCD﹣A1B1C1D1的棱长为1,E,F分别是棱AD,B1C1上的动点,设AE=x,B1F=y,若棱DD1与平面BEF有公共点,则x+y的取值范围是( )

A.[0,1] B.[,] C.[1,2] D.[,2] 二、填空题共6小题,每小题5分,共30分. 9.(5分)已知双曲线C:,则双曲线C 的一条渐近线的方程为 . 10.(5分)已知数列{an} 满足an+1﹣an=2,n∈N*,且a3=3,则a1= ,其前n 项和Sn= . 11.(5分)已知圆C:x2+y2﹣2x=0,则圆心C 的坐标为 ,圆C截直线y=x 的弦长为 . 第3页(共20页)

12.(5分)已知x,y满足,则2x+y的最大值为 . 13.(5分)如图所示,点D 在线段AB 上,∠CAD=30°,∠CDB=50°.给出下列三组条件(给出线段的长度): ①AD,DB ②AC,DB ③CD,DB 其中,能使△ABC 唯一确定的条件的序号为 .(写出所有所和要求的条件的序号)

14.(5分)已知A、B两所大学的专业设置都相同(专业数均不小于2),数据显示,A大学的各专业的男女生比例均高于B大学的相应专业的男女生比例(男女生比例是指男生人数与女生人数的比). 据此, 甲同学说:“A大学的男女生比例一定高于B大学的男女生比例”; 乙同学说:“A大学的男女生比例不一定高于B大学的男女生比例”; 丙同学说:“两所大学的全体学生的男女生比例一定高于B大学的男女生比例”. 其中,说法正确的同学是 .

三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程. 15.(13分)已知数列{an} 是各项均为正数的等比数列,且a2=1,a3+a4=6 (Ⅰ)求数列{an} 的通项公式; (Ⅱ)设数列{an﹣n} 的前n 项和为Sn,比较S4 和S5 的大小,并说明理由. 16.(13分)已知函数 (Ⅰ)求f(x) 的定义域及 的值; (Ⅱ)求f(x) 在 上的单调递增区间. 17.(13分)诚信是立身之本,道德之基.某校学生会创设了“诚信水站”,既便于学生用水,又推进诚信教育,并用“ 第4页(共20页)

”表示每周“水站诚信度”.为了便于数据分析,以四周为一个周期,下表为该水站连续八周(共两个周期)的诚信度数据统计,如表1: 第一周 第二周 第三周 第四周 第一个周期 95% 98% 92% 88% 第二个周期 94% 94% 83% 80% (Ⅰ)计算表1中八周水站诚信度的平均数 (Ⅱ)从表1诚信度超过91% 的数据中,随机抽取2个,求至少有1个数据出现在第二个周期的概率; (Ⅲ)学生会认为水站诚信度在第二个周期中的后两周出现了滑落,为此学生会举行了“以诚信为本”主题教育活动,并得到活动之后一个周期的水站诚信度数据,如表2: 第一周 第二周 第三周 第四周 第三个周期 85% 92% 95% 96% 请根据提供的数据,判断该主题教育活动是否有效,并根据已有数据说明理由. 18.(14分)如图,在四棱锥P﹣ABCD 中,PD⊥底面ABCD,AB∥DC,CD=2AB,AD⊥CD,E为棱PD的中点. (Ⅰ)求证:CD⊥AE; (Ⅱ)求证:平面PAB⊥平面PAD; (Ⅲ)试判断PB与平面AEC是否平行?并说明理由.

19.(13分)已知椭圆 的离心率为,直线l 过椭圆G 的右顶点A(2,0),且交椭圆G于另一点C (Ⅰ)求椭圆G 的标准方程; 第5页(共20页)

(Ⅱ)若以AC 为直径的圆经过椭圆G 的上顶点B,求直线l 的方程. 20.(14分)已知函数. (Ⅰ)求曲线y=f(x) 在函数f(x) 零点处的切线方程; (Ⅱ)求函数y=f(x) 的单调区间; (Ⅲ)若关于x 的方程f(x)=a 恰有两个不同的实根x1,x2,且x1<x2,求证:. 第6页(共20页) 2016-2017学年北京市海淀区高三(上)期末数学试卷(文科) 参考答案与试题解析

一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.(5分)复数i(2﹣i)在复平面内对应的点的坐标为( ) A.(﹣2,1) B.(2,﹣1) C.(1,2) D.(﹣1,2) 【解答】解:复数i(2﹣i)=2i+1在复平面内对应的点的坐标为(1,2), 故选:C.

2.(5分)抛物线y2=2x的焦点到准线的距离为( ) A. B.1 C.2 D.3 【解答】解:抛物线y2=2x的焦点到准线的距离为:p=1. 故选:B.

3.(5分)下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是( ) A. B.y=﹣x2 C.y=log2x D.y=|x|+1

【解答】解:A.是减函数,为非奇非偶函数,不满足条件. B.y=﹣x2是偶函数,在区间(0,+∞)上单调递减,不满足条件. C.y=log2x在区间(0,+∞)上单调递增,为非奇非偶函数,不满足条件. D.y=|x|+1是偶函数又在区间(0,+∞)上单调递增,满足条件. 故选:D.

4.(5分)已知向量,满足=0,()•=2,则||=( ) A. B.1 C. D.2 【解答】解:∵向量,满足=0,()•=﹣=2﹣==2, 第7页(共20页)

则||=, 故选:C.

5.(5分)如图程序框图所示的算法来自于《九章算术》,若输入a的值为16,b的值为24,则执行该程序框图的结果为( )

A.6 B.7 C.8 D.9 【解答】解:模拟程序的运行,可得 a=16,b=24 满足条件a≠b,不满足条件a>b,b=24﹣16=8, 满足条件a≠b,满足条件a>b,a=16﹣8=8, 不满足条件a≠b,输出a的值为8. 故选:C.

6.(5分)在△ABC中,“A<30°”是“”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 【解答】解:由,则0°<A<30°或150°<A<180°, 第8页(共20页)

则A<30°”是“”的充分不必要条件, 故选:A.

7.(5分)已知某四棱锥的三视图如右图所示,则该几何体的体积为( )

A. B. C.2 D. 【解答】解:由三视图可知,几何体是以俯视图为底面,高为2的四棱锥, 体积为=, 故选:B.

8.(5分)如图,已知正方体ABCD﹣A1B1C1D1的棱长为1,E,F分别是棱AD,B1C1上的动点,设AE=x,B1F=y,若棱DD1与平面BEF有公共点,则x+y的取值范围是( )

A.[0,1] B.[,] C.[1,2] D.[,2] 【解答】解:由题意,若x=y=1,则棱DD1与平面BEF交于点D,符合题意; 若x=1,y=0,则棱DD1与平面BEF交于线段DD1,符合题意. 故选:C. 第9页(共20页)

二、填空题共6小题,每小题5分,共30分. 9.(5分)已知双曲线C:,则双曲线C 的一条渐近线的方程为 y=2x或(y=﹣2x) . 【解答】解:由双曲线C:得到a=1,b=2, 则双曲线C 的渐近线方程为y=±2x, 故答案为:y=2x或(y=﹣2x).

10.(5分)已知数列{an} 满足an+1﹣an=2,n∈N*,且a3=3,则a1= ﹣1 ,其前n 项和Sn= n2﹣2n . 【解答】解:∵数列{an} 满足an+1﹣an=2,n∈N*,且a3=3, ∴数列{an} 是公差d=2的等差数列, ∴a3=a1+2d=a1+4=3, 解得a1=﹣1, ∴Sn==﹣1+=n2﹣2n. 故答案为:﹣1,n2﹣2n.

11.(5分)已知圆C:x2+y2﹣2x=0,则圆心C 的坐标为 (1,0) ,圆C截直线y=x 的弦长为 . 【解答】解:圆C方程x2+y2﹣2x=0化为标准方程得:(x﹣1)2+y2=1, 则圆C的半径为1,圆心C坐标为(1,0); 圆心C(1,0)到直线l:x﹣y=0的距离d=,

∴圆C截直线y=x 的弦长为2=, 故答案为(1,0),.

12.(5分)已知x,y满足,则2x+y的最大值为 10 .

相关文档
最新文档