复数和平面向量知识点总结

合集下载

新教材 人教A版高中数学必修第二册 第七章 复数 知识点汇总及解题规律方法提炼

新教材 人教A版高中数学必修第二册 第七章 复数 知识点汇总及解题规律方法提炼

第七章 复数7.1.1 数系的扩充和复数的概念1.复数的有关概念 (1)复数的定义形如a +b i(a ,b ∈R )的数叫做复数,其中i 叫做虚数单位,满足i 2=-1. (2)复数集全体复数所构成的集合C ={a +b i|a ,b ∈R }叫做复数集. (3)复数的表示方法复数通常用字母z 表示,即z =a +b i(a ,b ∈R ),其中a 叫做复数z 的实部,b 叫做复数z 的虚部.■名师点拨对复数概念的三点说明(1)复数集是最大的数集,任何一个数都可以写成a +b i(a ,b ∈R )的形式,其中0=0+0i.(2)复数的虚部是实数b 而非b i.(3)复数z =a +b i 只有在a ,b ∈R 时才是复数的代数形式,否则不是代数形式.2.复数相等的充要条件在复数集C ={a +b i|a ,b ∈R }中任取两个数a +b i ,c +d i(a ,b ,c ,d ∈R ),我们规定:a +b i 与c +d i 相等当且仅当a =c 且b =d .3.复数的分类(1)复数z =a +b i(a ,b ∈R )⎩⎨⎧实数(b =0),虚数(b ≠0)⎩⎨⎧纯虚数a =0,非纯虚数a ≠0W.(2)复数集、实数集、虚数集、纯虚数集之间的关系■名师点拨复数b i(b ∈R )不一定是纯虚数,只有当b ≠0时,复数b i(b ∈R )才是纯虚数.典型应用1 复数的概念下列命题:①若a ∈R ,则(a +1)i 是纯虚数; ②若a ,b ∈R ,且a >b ,则a +i>b +i ;③若(x 2-4)+(x 2+3x +2)i 是纯虚数,则实数x =±2; ④实数集是复数集的真子集. 其中正确的命题是( ) A .① B .② C .③D .④【解析】 对于复数a +b i(a ,b ∈R ),当a =0且b ≠0时,为纯虚数.对于①,若a =-1,则(a +1)i 不是纯虚数,即①错误;两个虚数不能比较大小,则②错误;对于③,若x =-2,则x 2-4=0,x 2+3x +2=0,此时(x 2-4)+(x 2+3x +2)i =0不是纯虚数,则③错误;显然,④正确.故选D.【答案】 D判断与复数有关的命题是否正确的方法(1)举反例:判断一个命题为假命题,只要举一个反例即可,所以解答这种类型的题时,可按照“先特殊,后一般,先否定,后肯定”的方法进行解答.(2)化代数形式:对于复数实部、虚部的确定,不但要把复数化为a +b i 的形式,更要注意这里a ,b 均为实数时,才能确定复数的实部、虚部.[提醒] 解答复数概念题,一定要紧扣复数的定义,牢记i 的性质. 典型应用2 复数的分类当实数m 为何值时,复数z =m 2+m -6m+(m 2-2m )i :(1)为实数?(2)为虚数?(3)为纯虚数?【解】 (1)当⎩⎨⎧m 2-2m =0,m ≠0,即m =2时,复数z 是实数.(2)当m 2-2m ≠0且m ≠0,即m ≠0且m ≠2时,复数z 是虚数.(3)当⎩⎪⎨⎪⎧m ≠0,m 2+m -6m =0,m 2-2m ≠0,即m =-3时,复数z 是纯虚数.解决复数分类问题的方法与步骤(1)化标准式:解题时一定要先看复数是否为a +b i(a ,b ∈R )的形式,以确定实部和虚部.(2)定条件:复数的分类问题可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)即可.(3)下结论:设所给复数为z =a +b i(a ,b ∈R ), ①z 为实数⇔b =0; ②z 为虚数⇔b ≠0;③z 为纯虚数⇔a =0且b ≠0. 典型应用3 复数相等(1)(2019·浙江杭州期末考试)若z 1=-3-4i ,z 2=(n 2-3m -1)+(n 2-m -6)i(m ,n ∈R ),且z 1=z 2,则m +n =( )A .4或0B .-4或0C .2或0D .-2或0(2)若log 2(x 2-3x -2)+ilog 2(x 2+2x +1)>1,则实数x 的值是________. 【解析】 (1)由z 1=z 2,得n 2-3m -1=-3且n 2-m -6=-4,解得m =2,n =±2,所以m +n =4或0,故选A.(2)因为log 2(x 2-3x -2)+ilog 2(x 2+2x +1)>1,所以⎩⎨⎧log 2(x 2-3x -2)>1,log 2(x 2+2x +1)=0,即⎩⎨⎧x 2-3x -2>2,x 2+2x +1=1,解得x =-2. 【答案】 (1)A (2)-2复数相等的充要条件复数相等的充要条件是“化虚为实”的主要依据,多用来求解参数.解决复数相等问题的步骤是:分别分离出两个复数的实部和虚部,利用实部与实部相等、虚部与虚部相等列方程(组)求解.[注意] 在两个复数相等的充要条件中,注意前提条件是a ,b ,c ,d ∈R ,即当a ,b ,c ,d ∈R 时,a +b i =c +d i ⇔a =c 且b =d .若忽略前提条件,则结论不能成立.7.1.2 复数的几何意义1.复平面建立直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴叫做虚轴.实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数.2.复数的两种几何意义(1)复数z =a +b i(a ,b ∈R )←――→一一对应复平面内的点Z (a ,b ). (2)复数z =a +b i(a ,b ∈R ) ←――→一一对应平面向量OZ →. ■名师点拨(1)复平面内的点Z 的坐标是(a ,b ),而不是(a ,b i).也就是说,复平面内的虚轴上的单位长度是1,而不是i.(2)当a =0,b ≠0时,a +b i =0+b i =b i 是纯虚数,所以虚轴上的点(0,b )(b ≠0)都表示纯虚数.(3)复数z =a +b i(a ,b ∈R )中的z ,书写时应小写;复平面内的点Z (a ,b )中的Z ,书写时应大写.3.复数的模复数z =a +b i(a ,b ∈R )对应的向量为OZ →,则OZ →的模叫做复数z 的模或绝对值,记作|z |或|a +b i|,即|z |=|a +b i|■名师点拨如果b =0,那么z =a +b i 是一个实数a ,它的模等于|a |(a 的绝对值). 4.共轭复数(1)一般地,当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数.(2)虚部不等于0的两个共轭复数也叫做共轭虚数.(3)复数z 的共轭复数用z -表示,即如果z =a +b i ,那么z -=a -b i . ■名师点拨复数z =a +b i 在复平面内对应的点为(a ,b ),复数z -=a -b i 在复平面内对应的点为(a ,-b ),所以两个互为共轭复数的复数,它们所对应的点关于x 轴对称.典型应用1复数与复平面内的点已知复数z =(a 2-1)+(2a -1)i ,其中a ∈R .当复数z 在复平面内对应的点Z 满足下列条件时,求a 的值(或取值范围).(1)在实轴上; (2)在第三象限.【解】 (1)若z 对应的点在实轴上,则有 2a -1=0,解得a =12.(2)若z 对应的点在第三象限,则有 ⎩⎨⎧a 2-1<0,2a -1<0,解得-1<a <12. 故a 的取值范围是⎝ ⎛⎭⎪⎫-1,12.[变条件]本例中复数z 不变,若点Z 在抛物线y 2=4x 上,求a 的值. 解:若z 对应的点(a 2-1,2a -1)在抛物线y 2=4x 上,则有(2a -1)2=4(a 2-1),即4a 2-4a +1=4a 2-4,解得a =54.利用复数与点的对应解题的步骤(1)找对应关系:复数的几何表示法即复数z =a +b i(a ,b ∈R )可以用复平面内的点Z (a ,b )来表示,是解决此类问题的根据.(2)列出方程:此类问题可建立复数的实部与虚部应满足的条件,通过解方程(组)或不等式(组)求解.典型应用2复数与复平面内的向量在复平面内,复数i ,1,4+2i 对应的点分别是A ,B ,C .求平行四边形ABCD 的顶点D 所对应的复数.【解】 法一:由复数的几何意义得A (0,1),B (1,0),C (4,2),则AC 的中点为⎝ ⎛⎭⎪⎫2,32,由平行四边形的性质知该点也是BD 的中点,设D (x ,y ),则⎩⎪⎨⎪⎧x +12=2,y +02=32,所以⎩⎨⎧x =3,y =3,即点D 的坐标为(3,3),所以点D 对应的复数为3+3i. 法二:由已知得OA→=(0,1),OB →=(1,0),OC →=(4,2), 所以BA→=(-1,1),BC →=(3,2), 所以BD→=BA →+BC →=(2,3),所以OD →=OB →+BD →=(3,3), 即点D 对应的复数为3+3i.复数与平面向量的对应关系(1)根据复数与平面向量的对应关系,可知当平面向量的起点在原点时,向量的终点对应的复数即为向量对应的复数,反之复数对应的点确定后,从原点引出的指向该点的有向线段,即为复数对应的向量.(2)解决复数与平面向量一一对应的问题时,一般以复数与复平面内的点一一对应为工具,实现复数、复平面内的点、向量之间的转化.典型应用3 复数的模(1)设复数z 1=a +2i ,z 2=-2+i 且|z 1|<|z 2|,则实数a 的取值范围是( )A .-1<a <1B .a <-1或a >1C .a >1D .a >0(2)(2019·贵州遵义贵龙中学期中测试)已知复数z 满足|z |2-2|z |-3=0,则复数z 在复平面内对应点的集合是( )A .1个圆B .线段C .2个点D .2个圆【解析】 (1)由题意得a 2+22<(-2)2+12,即a 2+4<5(a ∈R ),所以-1<a <1.(2)由题意知(|z |-3)(|z |+1)=0, 即|z |=3或|z |=-1, 因为|z |≥0,所以|z |=3,所以复数z 在复平面内对应点的集合是1个圆. 【答案】 (1)A (2)A求解复数的模的思路解决复数的模的求解问题,应先把复数表示成标准的代数形式,再根据复数的模的定义求解.7.2 复数的四则运算7.2.1 复数的加、减运算及其几何意义1.复数加、减法的运算法则及加法运算律 (1)加、减法的运算法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R )是任意两个复数,则z 1+z 2=(a +c )+(b +d )i ,z 1-z 2=(a -c )+(b -d )i .(2)加法运算律对任意z 1,z 2,z 3∈C ,有 ①交换律:z 1+z 2=z 2+z 1.②结合律:(z 1+z 2)+z 3=z 1+(z 2+z 3). ■名师点拨两个复数相加就是这两个复数的实部与实部相加,虚部与虚部相加.对于复数的加法可以推广到多个复数相加的情形.2.复数加、减法的几何意义如图所示,设复数z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R )对应的向量分别为OZ 1→,OZ 2→,四边形OZ 1ZZ 2为平行四边形,则与z 1+z 2对应的向量是OZ →,与z 1-z 2对应的向量是Z 2Z 1→.典型应用1复数的加、减法运算(1)计算:(5-6i)+(-2-i)-(3+4i);(2)设z 1=x +2i ,z 2=3-y i(x ,y ∈R ),且z 1+z 2=5-6i ,求z 1-z 2. 【解】 (1)原式=(5-2-3)+(-6-1-4)i =-11i. (2)因为z 1=x +2i ,z 2=3-y i ,z 1+z 2=5-6i , 所以(3+x )+(2-y )i =5-6i ,所以⎩⎨⎧3+x =5,2-y =-6,所以⎩⎨⎧x =2,y =8,所以z 1-z 2=(2+2i)-(3-8i)=(2-3)+[2-(-8)]i =-1+10i.解决复数加、减运算的思路两个复数相加(减),就是把两个复数的实部相加(减),虚部相加(减).复数的减法是加法的逆运算,两个复数相减,也可以看成是加上这个复数的相反数.当多个复数相加(减)时,可将这些复数的所有实部相加(减),所有虚部相加(减).典型应用2复数加、减法的几何意义已知平行四边形OABC 的三个顶点O ,A ,C 对应的复数分别为0,3+2i ,-2+4i.(1)求AO→表示的复数; (2)求CA→表示的复数. 【解】 (1)因为AO→=-OA →,所以AO→表示的复数为-(3+2i),即-3-2i. (2)因为CA→=OA →-OC →,所以CA→表示的复数为(3+2i)-(-2+4i)=5-2i.1.[变问法]若本例条件不变,试求点B 所对应的复数.解:因为OB→=OA →+OC →,所以OB →表示的复数为(3+2i)+(-2+4i)=1+6i.所以点B 所对应的复数为1+6i.2.[变问法]若本例条件不变,求对角线AC ,BO 的交点M 对应的复数. 解:由题意知,点M 为OB 的中点,则OM →=12OB →,由互动探究1中知点B 的坐标为(1,6),得点M 的坐标为⎝ ⎛⎭⎪⎫12,3,所以点M 对应的复数为12+3i.复数加、减法几何意义的应用技巧(1)复数的加减运算可以转化为点的坐标或向量运算.(2)复数的加减运算转化为向量运算时,同样满足平行四边形法则和三角形法则.7.2.2 复数的乘、除运算1.复数乘法的运算法则和运算律 (1)复数乘法的运算法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ), 则z 1·z 2=(a +b i)(c +d i)=(ac -bd )+(ad +bc )i . (2)复数乘法的运算律 对任意复数z 1,z 2,z 3∈C ,有对复数乘法的两点说明(1)复数的乘法运算与多项式乘法运算很类似,可仿多项式乘法进行运算,但结果要将实部、虚部分开(i 2换成-1).(2)多项式乘法的运算律在复数乘法中仍然成立,乘法公式也适用. 2.复数除法的运算法则设z 1=a +b i ,z 2=c +d i(c +d i ≠0)(a ,b ,c ,d ∈R ),则z 1z 2=a +b i c +d i =ac +bd c 2+d 2+bc -ad c 2+d 2i(c +d i ≠0).■名师点拨对复数除法的两点说明(1)实数化:分子、分母同时乘以分母的共轭复数,化简后即得结果,这个过程实际上就是把分母实数化,这与根式除法的分母“有理化”很类似.(2)代数式:注意最后结果要将实部、虚部分开. 典型应用1 复数的乘法运算(1)(1-i)⎝ ⎛⎭⎪⎫-12+32i (1+i)=( )A .1+3iB .-1+3i C.3+iD .-3+i(2)已知a ,b ∈R ,i 是虚数单位,若a -i 与2+b i 互为共轭复数,则(a +b i)2=( )A .5-4iB .5+4iC .3-4iD .3+4i(3)把复数z 的共轭复数记作z -,已知(1+2i) z -=4+3i ,求z . 【解】 (1)选B.(1-i)⎝ ⎛⎭⎪⎫-12+32i (1+i)=(1-i)(1+i)⎝ ⎛⎭⎪⎫-12+32i=(1-i 2)⎝ ⎛⎭⎪⎫-12+32i=2⎝ ⎛⎭⎪⎫-12+32i =-1+3i.(2)选D.因为a -i 与2+b i 互为共轭复数, 所以a =2,b =1,所以(a +b i)2=(2+i)2=3+4i. (3)设z =a +b i(a ,b ∈R ),则z -=a -b i ,由已知得,(1+2i)(a -b i)=(a +2b )+(2a -b )i =4+3i ,由复数相等的条件知, 解得a =2,b =1,所以z=2+i.复数乘法运算法则的应用复数的乘法可以按照多项式的乘法计算,只是在结果中要将i2换成-1,并将实部、虚部分别合并.多项式展开中的一些重要公式仍适用于复数,如(a+b i)2=a2+2ab i+b2i2=a2-b2+2ab i,(a+b i)3=a3+3a2b i+3ab2i2+b3i3=a3-3ab2+(3a2b-b3)i.典型应用2复数的除法运算计算:(1)(1+2i)2+3(1-i)2+i;(2)(1-4i)(1+i)+2+4i3+4i.【解】(1)(1+2i)2+3(1-i)2+i=-3+4i+3-3i2+i=i2+i=i(2-i)5=15+25i.(2)(1-4i)(1+i)+2+4i3+4i=5-3i+2+4i3+4i=7+i3+4i=(7+i)(3-4i)(3+4i)(3-4i)=21-28i+3i+425=25-25i25=1-i.复数除法运算法则的应用复数的除法法则在实际操作中不方便使用,一般将除法写成分式形式,采用分母“实数化”的方法,即将分子、分母同乘分母的共轭复数,使分母成为实数,再计算.典型应用3i的运算性质(1)复数z=1-i1+i,则ω=z2+z4+z6+z8+z10的值为()A.1 B.-1C .iD .-i(2)⎝ ⎛⎭⎪⎫1+i 1-i 2 019等于________. 【解析】 (1)z 2=⎝ ⎛⎭⎪⎫1-i 1+i 2=-1,所以ω=-1+1-1+1-1=-1. (2)⎝ ⎛⎭⎪⎫1+i 1-i 2 019=⎣⎢⎡⎦⎥⎤(1+i )(1+i )(1-i )(1+i )2 019=⎝ ⎛⎭⎪⎫2i 2 2 019=i 2 019=(i 4)504·i 3=1504·(-i)=-i.【答案】 (1)B (2)-i(1)i 的周期性要记熟,即i n +i n +1+i n +2+i n +3=0(n ∈N *).(2)记住以下结果,可提高运算速度.①(1+i)2=2i ,(1-i)2=-2i.②1-i 1+i =-i ,1+i 1-i=i. ③1i =-i.典型应用4在复数范围内解方程在复数范围内解下列方程.(1)x 2+5=0;(2)x 2+4x +6=0.【解】 (1)因为x 2+5=0,所以x 2=-5,又因为(5i)2=(-5i)2=-5,所以x =±5i ,所以方程x 2+5=0的根为±5i.(2)法一:因为x 2+4x +6=0,所以(x +2)2=-2,因为(2i)2=(-2i)2=-2,所以x +2=2i 或x +2=-2i ,即x =-2+2i 或x =-2-2i ,所以方程x 2+4x +6=0的根为x =-2±2i.法二:由x 2+4x +6=0知Δ=42-4×6=-8<0,所以方程x 2+4x +6=0无实数根.在复数范围内,设方程x 2+4x +6=0的根为x =a +b i(a ,b ∈R 且b ≠0), 则(a +b i)2+4(a +b i)+6=0,所以a 2+2ab i -b 2+4a +4b i +6=0,整理得(a 2-b 2+4a +6)+(2ab +4b )i =0,所以⎩⎨⎧a 2-b 2+4a +6=0,2ab +4b =0,又因为b ≠0,所以⎩⎨⎧a 2-b 2+4a +6=0,2a +4=0,解得a =-2,b =± 2.所以x =-2±2i ,即方程x 2+4x +6=0的根为x =-2±2i.在复数范围内,实系数一元二次方程ax 2+bx +c =0(a ≠0)的求解方法(1)求根公式法①当Δ≥0时,x =-b ±b 2-4ac 2a. ②当Δ<0时,x =-b ±-(b 2-4ac )i 2a. (2)利用复数相等的定义求解设方程的根为x =m +n i(m ,n ∈R ),将此代入方程ax 2+bx +c =0(a ≠0),化简后利用复数相等的定义求解.7.3* 复数的三角表示1.复数的三角表示式及复数的辐角和辐角的主值一般地,任何一个复数z =a +b i 都可以表示成r (cos θ+isin θ)的形式,其中,r 是复数z 的模;θ是以x 轴的非负半轴为始边,向量OZ→所在射线(射线OZ →)为终边的角,叫做复数z =a +b i 的辐角,我们规定在0≤θ<2π范围内的辐角θ的值为辐角的主值,通常记作arg z .r (cos θ+isin θ)叫做复数z =a +b i 的三角表示式,简称三角形式.a +b i 叫做复数的代数表示式,简称代数形式.■名师点拨(1)任何一个不为零的复数的辐角有无限多个值,且这些值相差2π的整数倍.(2)复数0的辐角是任意的.(3)在0≤θ<2π范围内的辐角θ的值为辐角的主值,通常记作arg z ,且0≤arg z <2π.(4)两个非零复数相等当且仅当它们的模与辐角的主值分别相等.2.复数三角形式的乘、除运算若复数z 1=r 1(cos θ1+isin θ1),z 2=r 2(cos θ2+isin θ2),且z 1≠z 2,则(1)z 1z 2=r 1(cos θ1+isin θ1)·r 2(cos θ2+isin θ2)=r 1r 2[cos(θ1+θ2)+isin(θ1+θ2)].(2)z 1z 2=r 1(cos θ1+isin θ1)r 2(cos θ2+isin θ2)=r 1r 2[cos(θ1-θ2)+isin(θ1-θ2)]. 即:两个复数相乘,积的模等于各复数的模的积,积的辐角等于各复数的辐角的和.两个复数相除,商的模等于被除数的模除以除数的模所得的商,商的辐角等于被除数的辐角减去除数的辐角所得的差.典型应用1复数的代数形式与三角形式的互化角度一 代数形式化为三角形式把下列复数的代数形式化成三角形式: (1)3+i ; (2)2-2i.【解】 (1)r =3+1=2,因为3+i 对应的点在第一象限,所以cos θ=32,即θ=π6,所以3+i =2⎝⎛⎭⎪⎫cos π6+isin π6.(2)r =2+2=2,cos θ=22,又因为2-2i 对应的点位于第四象限,所以θ=7π4.所以2-2i =2⎝⎛⎭⎪⎫cos 7π4+isin 7π4.复数的代数形式化三角形式的步骤(1)先求复数的模.(2)决定辐角所在的象限.(3)根据象限求出辐角.(4)求出复数的三角形式.[提醒] 一般在复数三角形式中的辐角,常取它的主值这既使表达式简便,又便于运算,但三角形式辐角不一定取主值.角度二 三角形式化为代数形式分别指出下列复数的模和辐角的主值,并把这些复数表示成代数形式.(1)4⎝⎛⎭⎪⎫cos π6+isin π6; (2)32(cos 60°+isin 60°);(3)2⎝⎛⎭⎪⎫cos π3-isin π3. 【解】 (1)复数4⎝⎛⎭⎪⎫cos π6+isin π6的模r =4,辐角的主值为θ=π6. 4⎝⎛⎭⎪⎫cos π6+isin π6=4cos π6+4isin π6 =4×32+4×12i =23+2i. (2)32(cos 60°+isin 60°)的模r =32,辐角的主值为θ=60°.32(cos 60°+isin 60°)=32×12+32×32i=34+34i.(3)2⎝⎛⎭⎪⎫cos π3-isin π3 =2⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫2π-π3+isin ⎝⎛⎭⎪⎫2π-π3 =2⎝ ⎛⎭⎪⎫cos 53π+isin 53π. 所以复数的模r =2,辐角的主值为53π.2⎝ ⎛⎭⎪⎫cos 53π+isin 53π=2cos 53π+2isin 53π =2×12+2×⎝ ⎛⎭⎪⎫-32i =1-3i.复数的三角形式z =r (cos θ+isin θ)必须满足“模非负、余正弦、+相连、角统一、i 跟sin ”,否则就不是三角形式,只有化为三角形式才能确定其模和辐角,如本例(3).典型应用2复数三角形式的乘、除运算计算:(1)8⎝ ⎛⎭⎪⎫cos 43π+isin 43π×4⎝ ⎛⎭⎪⎫cos 56π+isin 56π; (2)3(cos 225°+isin 225°)÷[2(cos 150°+isin 150°)];(3)4÷⎝ ⎛⎭⎪⎫cos π4+isin π4. 【解】 (1)8⎝ ⎛⎭⎪⎫cos 43π+isin 43π×4⎝ ⎛⎭⎪⎫cos 56π+isin 56π =32⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫43π+56π+isin ⎝ ⎛⎭⎪⎫43π+56π =32⎝ ⎛⎭⎪⎫cos 136π+isin 136π =32⎝ ⎛⎭⎪⎫cos π6+isin π6=32⎝ ⎛⎭⎪⎫32+12i =163+16i.(2)3(cos 225°+isin 225°)÷[2(cos 150°+isin 150°)]=32[cos(225°-150°)+isin(225°-150°)] =62(cos 75°+isin 75°)=62⎝ ⎛⎭⎪⎫6-24+6+24i =6-238+6+238i=3-34+3+34i.(3)4÷⎝⎛⎭⎪⎫cos π4+isin π4 =4(cos 0+isin 0)÷⎝⎛⎭⎪⎫cos π4+isin π4 =4⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫-π4+isin ⎝ ⎛⎭⎪⎫-π4 =22-22i.(1)乘法法则:模相乘,辐角相加.(2)除法法则:模相除,辐角相减.(3)复数的n 次幂,等于模的n 次幂,辐角的n 倍.典型应用3复数三角形式乘、除运算的几何意义在复平面内,把复数3-3i 对应的向量分别按逆时针和顺时针方向旋转π3,求所得向量对应的复数.【解】 因为3-3i =23⎝ ⎛⎭⎪⎫32-12i =23⎝ ⎛⎭⎪⎫cos 116π+isin 116π所以23⎝ ⎛⎭⎪⎫cos 116π+isin 116π×⎝ ⎛⎭⎪⎫cos π3+isin π3 =23⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫116π+π3+isin ⎝ ⎛⎭⎪⎫116π+π3 =23⎝ ⎛⎭⎪⎫cos 136π+isin 136π =23⎝⎛⎭⎪⎫cos π6+isin π6 =3+3i , 23⎝ ⎛⎭⎪⎫cos 116π+isin 116π×⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫-π3+isin ⎝ ⎛⎭⎪⎫-π3 =23⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫116π-π3+isin ⎝ ⎛⎭⎪⎫116π-π3 =23⎝ ⎛⎭⎪⎫cos 32π+isin 32π =-23i.故把复数3-3i 对应的向量按逆时针旋转π3得到的复数为3+3i ,按顺时针旋转π3得到的复数为-23i.两个复数z 1,z 2相乘时,先分别画出与z 1,z 2对应的向量OZ 1→,OZ 2→,然后把向量OZ 1→绕点O 按逆时针方向旋转角θ2(如果θ2<0,就要把OZ 1→绕点O 按顺时针方向旋转角|θ2|),再把它的模变为原来的r 2倍,得到向量OZ→,OZ →表示的复数就是积z 1z 2.。

高考数学一轮复习规划第六章平面向量与复数第2讲 平面向量基本定理及坐标表示课件

高考数学一轮复习规划第六章平面向量与复数第2讲 平面向量基本定理及坐标表示课件

以点 O 为坐标原点,OC 所在直线为 x 轴建立如图所示的平面直角坐标
系,
解析
→→

设点 A 在第四象限,因为|OA|=|OB|=1,|OC|= 2,由已知条件可得
A
102,-7102,B
22,
22,C(
→ →→ 2,0),因为OC=mOA+nOB(m∈R,n∈
R),所以-1027m10+2m2+2n=22n=2,0,

6.(2021·长郡中学高三适应性考试)已知向量AC=(1,sinα-1),BA=
→ (3,1),BD=(2,cosα),若 B,C,D 三点共线,则 tan(2021π-α)=________.
答案 -2
解析 ∵B,C,D 三点共线, → → →→
∴BD=xBC=x(BA+AC),
即(2,cosα)=x(4,sinα),则2co=sα4=x,xsinα, 得 x=12,即 cosα=12sinα,
2 2 =54.所以
OA′=B′C=54,又|O→A|=|O→B|
5
=1,所以O→A′=45O→A,O→B′=74O→B,所以 m=54,n=74,所以 n-m=21. 解析
解法二:由已知条件可知,α 为锐角,
由tanα=csoinsαα=7, sin2α+cos2α=1,
解得sinα=7102, cosα= 102,
5.(2021·山东省菏泽市一模)已知向量 a,b 满足 a=(1,2),
a+b=(1+m,1),若 a∥b,则 m=( )
A.2
B.-2
C.21
D.-21
解析 b=(a+b)-a=(1+m,1)-(1,2)=(m,-1).因为 a∥b,所以 2m

高考数学一轮复习 第五章 平面向量与复数5

高考数学一轮复习 第五章 平面向量与复数5

高考数学一轮复习 第五章 平面向量与复数5.3 平面向量的数量积考试要求 1.理解平面向量数量积的含义及其物理意义.2.了解平面向量的数量积与向量投影的关系.3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.会用向量的方法解决某些简单的平面几何问题.知识梳理 1.向量的夹角已知两个非零向量a ,b ,O 是平面上的任意一点,作OA →=a ,OB →=b ,则∠AOB =θ(0≤θ≤π)叫做向量a 与b 的夹角. 2.平面向量的数量积定义设两个非零向量a ,b 的夹角为θ,则数量|a ||b |cos θ叫做a 与b的数量积,记作a ·b投影|a |cos θ叫做向量a 在b 方向上的投影|b |cos θ叫做向量b 在a方向上的投影几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积3.向量数量积的运算律 (1)a ·b =b ·a .(2)(λa )·b =λ(a ·b )=a ·(λb ). (3)(a +b )·c =a ·c +b ·c .4.平面向量数量积的有关结论已知非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ.结论 符号表示 坐标表示模|a |=a ·a |a |=x 21+y 21夹角 cos θ=a ·b |a ||b |cos θ=x 1x 2+y 1y 2x 21+y 21x 22+y 22a ⊥b 的充要条件 a ·b =0 x 1x 2+y 1y 2=0|a ·b |与|a ||b |的关系 |a ·b |≤|a ||b ||x 1x 2+y 1y 2|≤x 21+y 21x 22+y 22常用结论1.平面向量数量积运算的常用公式 (1)(a +b )·(a -b )=a 2-b 2; (2)(a±b )2=a 2±2a ·b +b 2. 2.有关向量夹角的两个结论 已知向量a ,b .(1)若a 与b 的夹角为锐角,则a·b >0;若a·b >0,则a 与b 的夹角为锐角或0. (2)若a 与b 的夹角为钝角,则a·b <0;若a·b <0,则a 与b 的夹角为钝角或π. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)两个向量的夹角的范围是⎣⎡⎦⎤0,π2.( × ) (2)若a ·b >0,则a 和b 的夹角为锐角.( × )(3)两个向量的数量积是一个实数,向量的加、减、数乘运算的结果是向量.( √ ) (4)(a·b )·c =a·(b·c ).( × ) 教材改编题1.(2022·海南省临高二中模拟)设a ,b ,c 是任意的非零向量,则下列结论正确的是( )B .a·b =b·c ,则a =cC .a·b =0⇒a =0或b =0D .(a +b )·(a -b )=|a |2-|b |2 答案 D2.已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________. 答案 2 33.已知向量a ,b 满足3|a |=2|b |=6,且(a -2b )⊥(2a +b ),则a ,b 夹角的余弦值为________. 答案 -59解析 设a ,b 的夹角为θ, 依题意,(a -2b )·(2a +b )=0, 则2a 2-3a ·b -2b 2=0, 故2×4-3×2×3·cos θ-2×32=0, 则cos θ=-59.题型一 平面向量数量积的基本运算例1 (1)(2021·北京)a =(2,1),b =(2,-1),c =(0,1),则(a +b )·c =______;a ·b =______. 答案 0 3解析 ∵a =(2,1),b =(2,-1),c =(0,1), ∴a +b =(4,0),∴(a +b )·c =4×0+0×1=0, a ·b =2×2+1×(-1)=3.(2)(2022·邹城模拟)在平面四边形ABCD 中,已知AB →=DC →,P 为CD 上一点,CP →=3PD →,|AB →|=4,|AD →|=3,AB →与AD →的夹角为θ,且cos θ=23,则AP →·PB →=________.解析 如图所示,∵AB →=DC →,∴四边形ABCD 为平行四边形, ∵CP →=3PD →,∴AP →=AD →+DP →=14AB →+AD →,PB →=AB →-AP →=34AB →-AD →,又∵|AB →|=4,|AD →|=3,cos θ=23,则AB →·AD →=4×3×23=8,∴AP →·PB →=⎝⎛⎭⎫AD →+14AB →·⎝⎛⎭⎫34AB →-AD → =12AB →·AD →-AD →2+316 AB →2 =12×8-9+316×42=-2. 教师备选1.(2019·全国Ⅱ)已知AB →=(2,3),AC →=(3,t ),|BC →|=1,则AB →·BC →等于( ) A .-3 B .-2 C .2 D .3 答案 C解析 因为BC →=AC →-AB →=(1,t -3), 所以|BC →|=12+t -32=1,解得t =3,所以BC →=(1,0),所以AB →·BC →=2×1+3×0=2.2.在边长为2的正三角形ABC 中,M 是BC 的中点,D 是线段AM 的中点.①若BD →=xBA →+yBC →,则x +y =________;②BD →·BM →=________. 答案 341解析 ①∵M 是BC 的中点, ∴BM →=12BC →,∵D 是AM 的中点,∴BD →=12BA →+12BM →=12BA →+14BC →,∴x =12,y =14,∴x +y =34.②∵△ABC 是边长为2的正三角形,M 是BC 的中点, ∴AM ⊥BC ,且BM =1,∴BD →·BM →=|BD →||BM →|cos ∠DBM =|BM →|2=1. 思维升华 计算平面向量数量积的主要方法 (1)利用定义:a·b =|a ||b |cos 〈a ,b 〉.(2)利用坐标运算,若a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2. (3)灵活运用平面向量数量积的几何意义.跟踪训练1 (1)(2021·新高考全国Ⅱ)已知向量a +b +c =0,|a |=1,|b |=|c |=2,a ·b +b ·c +c ·a =________. 答案 -92解析 由已知可得(a +b +c )2 =a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=9+2(a ·b +b ·c +c ·a )=0, 因此a ·b +b ·c +c ·a =-92.(2)(2020·北京)已知正方形ABCD 的边长为2,点P 满足AP →=12(AB →+AC →),则|PD →|=________;PB →·PD →=________. 答案5 -1解析 建立如图所示的平面直角坐标系,∵AP →=12(AB →+AC →),∴P 为BC 的中点.∴点P 的坐标为(2,1),点D 的坐标为(0,2),点B 的坐标为(2,0), ∴|PD →|=5,PB →=(0,-1),PD →=(-2,1), ∴PB →·PD →=-1.题型二 平面向量数量积的应用 命题点1 向量的模例2 已知向量a ,b 满足|a |=6,|b |=4,且a 与b 的夹角为60°,则|a +b |=__________,|a -3b |=________. 答案 219 6 3解析 因为|a |=6,|b |=4,a 与b 的夹角为60°, 所以a ·b =|a ||b |cos 〈a ,b 〉=6×4×12=12,(a +b )2=a 2+2a ·b +b 2=36+24+16=76, (a -3b )2=a 2-6a·b +9b 2=36-72+144=108,所以|a +b |=219,|a -3b |=6 3. 命题点2 向量的夹角例3 (2020·全国Ⅲ)已知向量a ,b 满足|a |=5,|b |=6,a ·b =-6,则cos 〈a ,a +b 〉等于( ) A .-3135B .-1935C.1735D.1935答案 D解析 ∵|a +b |2=(a +b )2=a 2+2a ·b +b 2 =25-12+36=49, ∴|a +b |=7,∴cos 〈a ,a +b 〉=a ·a +b |a ||a +b |=a 2+a ·b |a ||a +b |=25-65×7=1935. 命题点3 向量的垂直例4 (2021·全国乙卷)已知向量a =(1,3),b =(3,4),若(a -λb )⊥b ,则λ=________. 答案 35解析 方法一 a -λb =(1-3λ,3-4λ), ∵(a -λb )⊥b ,∴(a -λb )·b =0, 即(1-3λ,3-4λ)·(3,4)=0, ∴3-9λ+12-16λ=0,解得λ=35.方法二 由(a -λb )⊥b 可知,(a -λb )·b =0,即a ·b -λb 2=0, 从而λ=a ·b b 2=1,3·3,432+42=1525=35. 教师备选1.已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为( ) A.π6 B.π3 C.2π3 D.5π6 答案 B解析 设a 与b 的夹角为α, ∵(a -b )⊥b , ∴(a -b )·b =0, ∴a ·b =b 2,∴|a |·|b |cos α=|b |2,又|a |=2|b |, ∴cos α=12,∵α∈[0,π],∴α=π3.2.已知e 1,e 2是两个单位向量,且|e 1+e 2|=3,则|e 1-e 2|=________. 答案 1解析 由|e 1+e 2|=3,两边平方, 得e 21+2e 1·e 2+e 22=3.又e 1,e 2是单位向量, 所以2e 1·e 2=1,所以|e 1-e 2|2=e 21-2e 1·e 2+e 22=1, 所以|e 1-e 2|=1.思维升华 (1)求平面向量的模的方法①公式法:利用|a |=a ·a 及(a ±b )2=|a |2±2a ·b +|b |2,把向量的模的运算转化为数量积运算; ②几何法:利用向量的几何意义,即利用向量线性运算的平行四边形法则或三角形法则作出所求向量,再利用余弦定理等方法求解. (2)求平面向量的夹角的方法①定义法:cos θ=a·b |a ||b |,求解时应求出a ·b ,|a |,|b |的值或找出这三个量之间的关系;②坐标法.(3)两个向量垂直的充要条件a ⊥b ⇔a ·b =0⇔|a -b|=|a +b|(其中a ≠0,b ≠0).跟踪训练2 (1)已知单位向量a ,b 满足a ·b =0,若向量c =7a +2b ,则sin 〈a ,c 〉等于( ) A.73 B.23 C.79 D.29答案 B解析 方法一 设a =(1,0),b =(0,1), 则c =(7,2), ∴cos 〈a ,c 〉=a ·c |a ||c |=73, ∴sin 〈a ,c 〉=23. 方法二 a ·c =a ·(7a +2b ) =7a 2+2a ·b =7, |c |=7a +2b2=7a 2+2b 2+214a ·b =7+2=3,∴cos 〈a ,c 〉=a ·c |a ||c |=71×3=73, ∴sin 〈a ,c 〉=23. (2)(2021·新高考全国Ⅰ改编)已知O 为坐标原点,点P 1(cos α,sin α),P 2(cos β,-sin β),P 3(cos(α+β),sin(α+β)),A (1,0),则 ①|OP 1—→|=|OP 2—→|; ②|AP 1—→|=|AP 2—→|; ③OA →·OP 3—→=OP 1—→·OP 2—→; ④OA →·OP 1—→=OP 2—→·OP 3—→.以上结论正确的有________.(填序号) 答案 ①③解析 由题意可知, |OP 1—→|=cos 2α+sin 2α=1, |OP 2—→|=cos 2β+-sin β2=1,所以|OP 1—→|=|OP 2—→|,故①正确; 取α=π4,则P 1⎝⎛⎭⎫22,22,取β=5π4,则P 2⎝⎛⎭⎫-22,22, 则|AP 1—→|≠|AP 2—→|,故②错误; 因为OA →·OP 3—→=cos(α+β),OP 1—→·OP 2—→=cos αcos β-sin αsin β=cos(α+β), 所以OA →·OP 3—→=OP 1—→·OP 2—→,故③正确; 因为OA →·OP 1—→=cos α,OP 2—→·OP 3—→=cos βcos(α+β)-sin βsin(α+β) =cos(α+2β), 取α=π4,β=π4,则OA →·OP 1—→=22,OP 2—→·OP 3—→=cos 3π4=-22,所以OA →·OP 1—→≠OP 2—→·OP 3—→,故④错误.题型三 平面向量的实际应用例5 (2022·东莞模拟)在日常生活中,我们会看到两个人共提一个行李包的情况(如图所示).假设行李包所受的重力为G ,所受的两个拉力分别为F 1,F 2,若|F 1|=|F 2|,且F 1与F 2的夹角为θ,则以下结论不正确的是( )A .|F 1|的最小值为12|G |B .θ的范围为[0,π]C .当θ=π2时,|F 1|=22|G |D .当θ=2π3时,|F 1|=|G |答案 B解析 由题意知,F 1+F 2+G =0, 可得F 1+F 2=-G ,两边同时平方得 |G |2=|F 1|2+|F 2|2+2|F 1||F 2|cos θ =2|F 1|2+2|F 1|2cos θ, 所以|F 1|2=|G |221+cos θ.当θ=0时,|F 1|min =12|G |;当θ=π2时,|F 1|=22|G |;当θ=2π3时,|F 1|=|G |,故A ,C ,D 正确;当θ=π时,竖直方向上没有分力与重力平衡,不成立,所以θ∈[0,π),故B 错误. 教师备选若平面上的三个力F 1,F 2,F 3作用于一点,且处于平衡状态,已知|F 1|=1 N ,|F 2|=6+22N ,F 1与F 2的夹角为45°,求: (1)F 3的大小;(2)F 3与F 1夹角的大小. 解 (1)∵三个力平衡, ∴F 1+F 2+F 3=0,∴|F 3|=|F 1+F 2|=|F 1|2+2F 1·F 2+|F 2|2=12+2×1×6+22cos 45°+⎝ ⎛⎭⎪⎫6+222=4+23=1+ 3.(2)方法一 设F 3与F 1的夹角为θ, 则|F 2|=|F 1|2+|F 3|2+2|F 1||F 3|cos θ, 即6+22=12+1+32+2×1×1+3cos θ,解得cos θ=-32, ∵θ∈[0,π], ∴θ=5π6.方法二 设F 3与F 1的夹角为θ, 由余弦定理得cos(π-θ)=12+1+32-⎝⎛⎭⎪⎫6+2222×1×1+3=32, ∵θ∈[0,π],∴θ=5π6.思维升华 用向量方法解决实际问题的步骤跟踪训练3 (2022·沈阳二中模拟)渭河某处南北两岸平行,如图所示,某艘游船从南岸码头A出发航行到北岸,假设游船在静水中航行速度的大小为|ν1|=10 km/h ,水流速度的大小为|ν2|=6 km/h.设ν1与ν2的夹角为120°,北岸的点A ′在码头A 的正北方向,那么该游船航行到北岸的位置应( )A .在A ′东侧B .在A ′西侧C .恰好与A ′重合D .无法确定答案 A解析 建立如图所示的平面直角坐标系,由题意可得ν1=(-5,53),ν2=(6,0), 所以ν1+ν2=(1,53),说明游船有x 轴正方向的速度,即向东的速度,所以该游船航行到北岸的位置应在A ′东侧.极化恒等式:设a ,b 为两个平面向量,则有恒等式a ·b =14[]a +b2-a -b2.如图所示.(1)在平行四边形ABDC 中,AB →=a ,AC →=b , 则a·b =14(|AD →|2-|BC →|2).(2)在△ABC 中,AB →=a ,AC →=b ,AM 为中线, 则a·b =|AM →|2-14|BC →|2.例1 在△ABC 中,M 是BC 的中点,AM =3,BC =10,则AB →·AC →=________. 答案 -16解析 如图所示,由极化恒等式,易得AB →·AC →=AM →2-MB →2=32-52=-16.例2 已知AB 为圆x 2+y 2=1的一条直径,点P 为直线x -y +2=0上任意一点,则P A →·PB →的最小值是________. 答案 1解析 如图所示,由极化恒等式易知,当OP 垂直于直线x -y +2=0时,P A →·PB →有最小值,即P A →·PB →=PO →2-OB →2=(2)2-12=1.例3 已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是( ) A .1 B .2 C. 2 D.22答案 C解析 如图所示,设OA →⊥OB →,记OA →=a ,OB →=b ,OC →=c , M 为AB 的中点, 由极化恒等式有 (a -c )·(b -c )=CA →·CB →=|CM →|2-|AB →|24=0,∴|CM →|2=|AB →|24=12,可知MC →是有固定起点,固定模长的动向量.点C 的轨迹是以AB 为直径的圆,且点O 也在此圆上, 所以|c |的最大值为圆的直径长,即为 2.课时精练1.(2020·全国Ⅱ)已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是( ) A .a +2b B .2a +b C .a -2b D .2a -b 答案 D解析 由题意得|a |=|b |=1, 设a ,b 的夹角为θ=60°,故a ·b =|a ||b |cos θ=12.对A 项,(a +2b )·b =a ·b +2b 2 =12+2=52≠0; 对B 项,(2a +b )·b =2a ·b +b 2 =2×12+1=2≠0;对C 项,(a -2b )·b =a ·b -2b 2 =12-2=-32≠0; 对D 项,(2a -b )·b =2a ·b -b 2=2×12-1=0.2.(2022·四川乐山第一中学模拟)已知向量a =(2,-2),b =(2,1),b ∥c ,a ·c =4,则|c |等于( ) A .2 5 B .4 C .5 2 D .4 2答案 A解析 因为b ∥c ,所以c =λb =(2λ,λ)(λ∈R ), 又a ·c =4λ-2λ=2λ=4,所以λ=2,c =(4,2),|c |=42+22=2 5.3.(2022·宜昌模拟)若两个非零向量a ,b 满足|a +b |=|a -b |=2|a |,则a -b 与b 的夹角为( ) A.π6 B.π3 C.2π3 D.5π6 答案 D解析 |a +b |=|a -b |=2|a |,等号左右同时平方,得|a +b |2=|a -b |2=4|a |2,即|a |2+|b |2+2a ·b =|a |2+|b |2-2a ·b =4|a |2, 所以a ·b =0且|b |2=3|a |2, 所以|a -b |=|a -b |2=|a |2+|b |2-2a ·b =233|b |,所以cos 〈a -b ,b 〉=a -b ·b|a -b ||b |=-|b |2233|b |·|b |=-32,因为〈a -b ,b 〉∈[0,π],所以〈a -b ,b 〉=5π6.4.已知a =(-2,1),b =(k ,-3),c =(1,2),若(a -2b )⊥c ,则与b 共线的单位向量为( ) A.⎝⎛⎭⎫255,-55或⎝⎛⎭⎫-255,55 B.⎝⎛⎭⎫-255,-55或⎝⎛⎭⎫255,55 C.⎝⎛⎭⎫255,55 D.⎝⎛⎭⎫-255,55 答案 A解析 由题意得a -2b =(-2-2k ,7), ∵(a -2b )⊥c , ∴(a -2b )·c =0,即(-2-2k ,7)·(1,2)=0,-2-2k +14=0, 解得k =6, ∴b =(6,-3), ∴e =±b 62+-32=±⎝⎛⎭⎫255,-55. 5.(2022·盐城模拟)下列关于向量a ,b ,c 的运算,不一定成立的是( ) A .(a +b )·c =a ·c +b ·c B .(a ·b )·c =a ·(b ·c )C.a·b≤|a||b|D.|a-b|≤|a|+|b|答案 B解析根据数量积的分配律可知A正确;选项B中,左边为c的共线向量,右边为a的共线向量,故B不正确;根据数量积的定义,可知a·b=|a||b|cos〈a,b〉≤|a||b|,故C正确;|a-b|2=|a|2+|b|2-2a·b=|a|2+|b|2-2|a||b|cos〈a,b〉≤|a|2+|b|2+2|a||b|=(|a|+|b|)2,故|a-b|≤|a|+|b|,故D正确.6.已知向量a=(2,1),b=(1,-1),c=(m-2,-n),其中m,n均为正数,且(a-b)∥c,则下列说法正确的是()A.a与b的夹角为钝角B.向量a在b上的投影为-2 2C.2m+n=4D.mn的最小值为2答案 C解析对于A,向量a=(2,1),b=(1,-1),则a·b=2-1=1>0,又a,b不共线,所以a,b的夹角为锐角,故A错误;对于B,设向量a,b的夹角为θ,则cos θ=a·b|a||b|=15×2=1010,所以向量a在b上的投影为|a |cos θ=5×1010=22,故B 错误; 对于C ,a -b =(1,2),若(a -b )∥c ,则-n =2(m -2),变形可得2m +n =4,故C 正确; 对于D ,由2m +n =4,且m ,n 均为正数,得mn =12(2m ·n )≤12⎝⎛⎭⎫2m +n 22=2,当且仅当m =1,n =2时,等号成立,即mn 的最大值为2,故D 错误.7.(2021·全国甲卷)已知向量a =(3,1),b =(1,0),c =a +k b .若a ⊥c ,则k =________. 答案 -103解析 c =(3,1)+(k ,0)=(3+k ,1),a ·c =3(3+k )+1×1=10+3k =0,得k =-103.8.(2020·全国Ⅰ)设a ,b 为单位向量,且|a +b |=1,则|a -b |=________. 答案3解析 将|a +b |=1两边平方, 得a 2+2a ·b +b 2=1. ∵a 2=b 2=1,∴1+2a ·b +1=1,即2a ·b =-1. ∴|a -b |=a -b2=a 2-2a ·b +b 2=1--1+1= 3.9.(2022·长沙模拟)在△ABC 中,BC 的中点为D ,设向量AB →=a ,AC →=b . (1)用a ,b 表示向量AD →;(2)若向量a ,b 满足|a |=3,|b |=2,〈a ,b 〉=60°,求AB →·AD →的值. 解 (1)AD →=12(AB →+AC →)=12a +12b ,所以AD →=12a +12b .(2)AB →·AD →=a ·⎝⎛⎭⎫12a +12b =12a 2+12a·b =12×32+12×3×2×cos 60°=6, 所以AB →·AD →=6.10.(2022·南昌模拟)已知向量m =(3sin x ,cos x -1),n =(cos x ,cos x +1),若f (x )=m·n . (1)求函数f (x )的单调递增区间;(2)在Rt △ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若∠A =90°,f (C )=0,c =3,CD 为∠BCA 的角平分线,E 为CD 的中点,求BE 的长. 解 (1)f (x )=m ·n =3sin x ·cos x +cos 2x -1 =32sin 2x +12cos 2x -12=sin ⎝⎛⎭⎫2x +π6-12. 令2x +π6∈⎣⎡⎦⎤2k π-π2,2k π+π2(k ∈Z ), 则x ∈⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z ). 所以函数f (x )的单调递增区间为⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z ). (2)f (C )=sin ⎝⎛⎭⎫2C +π6-12=0, sin ⎝⎛⎭⎫2C +π6=12,又C ∈⎝⎛⎭⎫0,π2, 所以C =π3.在△ACD 中,CD =233, 在△BCE 中,BE =22+⎝⎛⎭⎫332-2×2×33×32=213.11.(2022·恩施质检)圆内接四边形ABCD 中,AD =2,CD =4,BD 是圆的直径,则AC →·BD →等于( )A .12B .-12C .20D .-20答案 B解析 如图所示,由题知∠BAD =∠BCD =90°,AD =2,CD =4,∴AC →·BD →=(AD →+DC →)·BD →=AD →·BD →+DC →·BD →=|AD →||BD →|cos ∠BDA -|DC →||BD →|cos ∠BDC=|AD →|2-|DC →|2=4-16=-12.12.在△ABC 中,已知⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,且AB →|AB →|·AC →|AC →|=12,则△ABC 为( ) A .等边三角形B .直角三角形C .等腰三角形D .三边均不相等的三角形答案 A解析 AB →|AB →|,AC →|AC →|分别为与AB →,AC →方向相同的单位向量,由平行四边形法则可知向量AB →|AB →|+AC →|AC →|所在的直线为∠BAC 的角平分线.因为⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0, 所以∠BAC 的角平分线垂直于BC ,所以AB =AC .又AB →|AB →|·AC →|AC →|=⎪⎪⎪⎪⎪⎪AB →|AB →|⎪⎪⎪⎪⎪⎪AC →|AC →|·cos ∠BAC =12, 所以cos ∠BAC =12,∠BAC =60°. 所以△ABC 为等边三角形.13.(2022·潍坊模拟)如图所示,一个物体被两根轻质细绳拉住,且处于平衡状态,已知两条绳上的拉力分别是F 1,F 2,且F 1,F 2与水平夹角均为45°,|F 1|=|F 2|=10 2 N ,则物体的重力大小为________ N.答案 20解析 如图所示,∵|F 1|=|F 2|=10 2 N ,∴|F 1+F 2|=102×2=20 N ,∴物体的重力大小为20 N.14.(2021·天津)在边长为1的等边三角形ABC 中,D 为线段BC 上的动点,DE ⊥AB 且交AB于点E ,DF ∥AB 且交AC 于点F ,则|2BE →+DF →|的值为________;(DE →+DF →)·DA →的最小值为________.答案 1 1120 解析 设BE =x ,x ∈⎝⎛⎭⎫0,12, ∵△ABC 为边长为1的等边三角形,DE ⊥AB ,∴∠BDE =30°,BD =2x ,DE =3x ,DC =1-2x ,∵DF ∥AB ,∴△DFC 为边长为1-2x 的等边三角形,DE ⊥DF ,∴(2BE →+DF →)2=4BE →2+4BE →·DF →+DF →2=4x 2+4x (1-2x )×cos 0°+(1-2x )2=1,∴|2BE →+DF →|=1,∵(DE →+DF →)·DA →=(DE →+DF →)·(DE →+EA →)=DE →2+DF →·EA →=(3x )2+(1-2x )×(1-x )=5x 2-3x +1=5⎝⎛⎭⎫x -3102+1120, ∴当x =310时,(DE →+DF →)·DA →的最小值为1120.15.定义一种向量运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ·b ,当a ,b 不共线时,|a -b |,当a ,b 共线时(a ,b 是任意的两个向量).对于同一平面内的向量a ,b ,c ,e ,给出下列结论,正确的是( )A .a ⊗b =b ⊗aB .λ(a ⊗b )=(λa )⊗b (λ∈R )C .(a +b )⊗c =a ⊗c +b ⊗cD .若e 是单位向量,则|a ⊗e |≥|a |+1答案 A解析 当a ,b 共线时,a ⊗b =|a -b |=|b -a |=b ⊗a ,当a ,b 不共线时,a ⊗b =a ·b =b ·a =b ⊗a ,故A 正确;当λ=0,b ≠0时,λ(a ⊗b )=0,(λa )⊗b =|0-b |≠0,故B 错误;当a +b 与c 共线时,则存在a ,b 与c 不共线,(a +b )⊗c =|a +b -c |,a ⊗c +b ⊗c =a ·c +b ·c ,显然|a +b -c |≠a ·c +b ·c ,故C 错误;当e 与a 不共线时,|a ⊗e |=|a ·e |<|a |·|e |<|a |+1,当e 与a 共线时,设a =u e ,u ∈R ,|a ⊗e |=|a -e |=|u e -e |=|u -1|≤|u |+1,故D 错误.16.已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(sin A ,sin B ),n =(cos B ,cos A ),m·n =sin 2C .(1)求角C 的大小;(2)若sin A ,sin C ,sin B 成等差数列,且CA →·(AB →-AC →)=18,求c .解 (1)m·n =sin A cos B +sin B cos A=sin(A +B ),在△ABC 中,A +B =π-C ,0<C <π,所以sin(A +B )=sin C ,所以m·n =sin C ,又m·n =sin 2C ,所以sin 2C =sin C ,cos C =12, 又因为C ∈(0,π),故C =π3. (2)由sin A ,sin C ,sin B 成等差数列,可得2sin C =sin A +sin B ,由正弦定理得2c =a +b .因为CA →·(AB →-AC →)=18,所以CA →·CB →=18,即ab cos C =18,ab =36.由余弦定理得c 2=a 2+b 2-2ab cos C =(a +b )2-3ab , 所以c 2=4c 2-3×36,c 2=36, 所以c =6.。

平面复数知识点总结

平面复数知识点总结

平面复数知识点总结一、复数的概念复数是由实数与虚数相加而成的数。

即由实部和虚部组成的数,通常表示为a+bi,其中a为实部,b为虚部,i是虚数单位,满足i²=-1。

复数可以表示为向量形式,即点(a,b)在复平面上对应于复数a+bi。

二、复平面复平面是由实部与虚部组成的平面,实部轴为x轴,虚部轴为y轴。

在复平面中,复数a+bi对应于坐标(a,b),这样复数a+bi可以看作是复平面上的一个点。

三、复数的运算1. 加法复数的加法即实部与实部相加,虚部与虚部相加,如(a+bi)+(c+di)=(a+c)+(b+d)i。

2. 减法复数的减法即实部与实部相减,虚部与虚部相减,如(a+bi)-(c+di)=(a-c)+(b-d)i。

3. 乘法复数的乘法即按照分配率相乘,如(a+bi)(c+di)=ac+adi+bci+bdi²=(ac-bd)+(ad+bc)i。

4. 除法复数的除法即利用公式(a+bi)/(c+di)=(a+bi)(c-di)/(c+di)(c-di)=(ac+bd)/(c²+d²)+(bc-ad)i/(c²+d²)。

5. 共轭复数a+bi的共轭是a-bi。

四、复数的表示形式1. 三角形式正弦余弦定理可将复数表示为三角形式,即a+bi=r(cosθ+isinθ),其中r为复数的模,θ为复数的幅角。

2. 指数形式欧拉公式将复数表示为指数形式,即a+bi=re^(iθ),其中r为复数的模,θ为复数的幅角。

3. 幂指数形式复数的n次幂用指数形式表示,即(a+bi)^n=r^n(e^(iθ))^n=r^n(e^(inθ))。

五、复数的几何意义1. 复数的模复数a+bi的模为√(a²+b²),即复平面上复数到原点的距离。

2. 复数的幅角复数a+bi的幅角为arctan(b/a),即复平面上复数与实轴正方向的夹角。

3. 复数的乘法复数在复平面上的乘法即为长度和角度的变化,模为乘积的模,幅角为乘积的幅角之和。

高一数学复数与平面向量的联系

高一数学复数与平面向量的联系

例2、 分别画出复平面上满足下列
条件的区域 : (1) z的实部不小于1 (2) z的虚部不小于2 (3) z的实部绝对值小于2
(4) z (2 3i) 3
(5) z 4 z 4 10 (6) z和它的共轭复数的积小于 等于2大于等于1
;欧亿注册 / 欧亿注册
点Z (a,b), 向量OZ是复数
z a bi(a,b R)的另外两种
表示形式, 它们都是复数z的 几何表示。
z a bi(a,b R)
复平面上的点
向量OZ
这种对应关系的建立,为我们 用向量方法解决复数问题,或 用复数方法解决向量问题创造 了条件。
二、复数的模:
向量OZ的模r叫做复数z a bi的
(7)( z1 z2
)
ห้องสมุดไป่ตู้

z1 z2
(z2

0)
例1、 已知复数z1 m2 1 (m2 m)i
与z2 2 (1 3m)i(m R)是共轭
复数, 求m.
四、复数加减法的几何意义:
(1)复数z a bi(a,b R)的几何 表示为点Z (a,b)或向量OZ ,由向量
例、1 2i 2 4i的几何表示。
请问: 向量的三角形法则在这
还适不适用?
(3)复数减法的几何意义 :
请同学们根据向量的减法去考虑,
应该怎样做呢 ?
五、 复平面上两点的距离公式 :
d

z1

z2
,
其中z1与z
是复平面内
2
的两点z1, z2所对应的复数,d 表示
z1
,
z
间的距离。
2

版高考数学一轮总复习复数与平面向量联系实例详解

版高考数学一轮总复习复数与平面向量联系实例详解

版高考数学一轮总复习复数与平面向量联系实例详解复数与平面向量是高中数学中的重要内容之一,它们之间存在着紧密的联系。

在高考数学一轮总复习中,掌握复数与平面向量的联系对于解题非常有帮助。

本文将以实例的方式详解复数与平面向量的联系,并提供具体的解题步骤和思路。

1. 复数的表示与平面向量复数可以表示为a+bi的形式,其中a和b分别为实部和虚部,i为虚数单位。

而平面向量可以表示为⟨x,y⟩的形式,其中x和y分别为向量在x轴和y轴上的分量。

可以发现,复数与平面向量都以坐标形式来表示,这就是它们之间的联系之一。

2. 复数的加减与平面向量的运算在复数中,加法和减法的运算规则与平面向量的运算相同。

例如,将两个复数相加,我们只需要将它们的实部和虚部分别相加即可。

同样地,在平面向量中,两个向量相加只需要将它们的x轴和y轴分量相加。

这表明复数的加减运算与平面向量的运算存在着一定的联系。

3. 复数与平面向量的长度在复数中,我们可以通过利用勾股定理求得其模长。

同样地,在平面向量中,我们也可以通过勾股定理求得向量的长度。

这个长度在复数中被称为模长,在平面向量中被称为长度或模长。

可以看出,复数与平面向量在长度的求解上有相似之处。

4. 复数的乘法与平面向量的运算复数的乘法可以看作是平面向量的旋转与放缩操作。

当两个复数相乘时,实部和虚部的乘积分别由矢量的分量和长度决定。

类似地,在平面向量中,两个向量的数量积也可以看作是向量的旋转和放缩操作。

通过比较复数的乘法与平面向量的运算,我们可以发现它们之间的联系。

5. 复数与平面向量的应用举例(1)解析几何问题:在平面几何中,我们经常会遇到求解直线、平面的方程等问题。

通过将复数与平面向量相结合,我们可以更方便地解决这些问题,并且可以得到更加简洁的解题步骤。

(2)复数与三角函数的关系:复数与三角函数存在着密切的联系,通过复数的运算可以简化三角函数的运算,并且可以方便地应用到解题中。

通过将复数与平面向量结合,我们可以更加深入地理解复数与三角函数之间的关系。

平面向量与复数的联系与应用

平面向量与复数的联系与应用一、引言平面向量和复数是高中数学中常见的概念,它们在几何学和代数学中有着密切的联系与应用。

本文将探讨平面向量和复数之间的联系,以及它们在数学和物理中的应用。

二、平面向量与复数的定义和表示方法1. 平面向量的定义和表示方法平面向量是具有大小和方向的量,可以用有向线段来表示。

通常用字母加上一个箭头来表示向量,如A B⃗,其中A和B表示向量的起点和终点。

平面向量也可以用坐标表示,如A B⃗= (x,y),其中(x,y)为向量的坐标。

2. 复数的定义和表示方法复数是由实数部分和虚数部分组成的数,通常表示为a+bi,其中a 和b为实数,i为虚数单位。

复数可以用平面上的点表示,其中实数部分对应横坐标,虚数部分对应纵坐标。

三、平面向量与复数的联系平面向量和复数之间有着密切的联系,具体体现在以下几个方面。

1. 向量的加法与复数的加法向量的加法满足平行四边形法则,即A B⃗ +B C⃗ =A C⃗。

复数的加法满足实部相加,虚部相加的规则,即(a+bi)+(c+di)=(a+c)+(b+d)i。

2. 向量的数量积与复数的乘法向量的数量积满足A B⃗·B C⃗=|A B⃗||B C⃗|cosθ,其中θ为两向量夹角。

复数的乘法满足(a+bi)(c+di)=(ac-bd)+(ad+bc)i。

3. 平面向量与复数的相互转换对于平面上的向量A B⃗,可以与点B对应的复数表示形式相互转换。

即向量A B⃗对应的复数表示为z=x+yi,其中x和y分别为向量的分量。

四、平面向量与复数的应用平面向量和复数在数学和物理中有广泛的应用。

1. 平面向量的应用平面向量常用于解决几何学中的问题,如直线的判定、线段的长度和夹角的计算等。

此外,在力学和电磁学中,平面向量也被广泛应用于力的合成、力矩的计算等物理问题的求解。

2. 复数的应用复数在代数学的求解中有重要的应用。

它可以用于解决各类代数方程,如一元二次方程、三角方程等。

第六章 平面向量和复数第二节平面向量的数量积

第六章 平面向量和复数
第一节 平面向量的概念及加、减、数乘 第二节 平面向量的数量积 *第三节 复数的概念 *第四节 复数的四则运算 *第五节 复数的三角形式及乘除运算 *第六节 复数的指数形式及在电工学中的应用
第二节 平面向量的数量积
向量的加法和数乘统称为向量的线性运算,这一节再介绍 向量的又一种运算.
答案
也常称为点积,又称标量积.)
a b = a b cos a,b
平面上两个向量的夹角,我们这样规定:在平面上任取一点 O, 以 O 为始点作 OA a, OB b, 则 OA 与 OB 之间大于
等于零,小于等于 的夹角,称为 a,b 的夹角,记为a,b.
两个向量的数量积是一个数而不是向量.
如果a 0,b 0,那么有 :
在物理学中,我们知道一个质点在力f 的作用下,经过位 移s.那么这个力所做的功为
W = f s cos 其中为f 与s的夹角,这里的功W 是由向量f 与s按上式确定
的一个数量.
定义1 平面上两个向量a与b的模和它们的夹角余弦的乘积,
叫做向量a,b的数量也称内积,记作a b或ab,即:(!a与b的数量积
cos a,b a b
ab 定理 两个向量a,b相互垂直的充要条件是a b = 0(. 若 a b = 0,是否有a = 0或b = 0)
证明 充分性 由a b = 0,可知 a b cos a,b 0,若 a 0,
则a = 0,于是a b;同理,若 b 0,则a b;若cosa,b 0,可
得a,b ,即 a b.
2
必要性 由a b,可知a,b , 那么, a • b = a b cos 0
2
2
特别地, a a = a 2 ,习惯上写成a2 a 2 .

复数的应用平面向量

复数的应用平面向量复数的应用——平面向量复数是数学中的一个重要分支,它在平面向量的研究中起到了关键作用。

平面向量是指在平面内具有大小和方向的量,它可以用复数来表示。

本文将介绍复数在平面向量中的应用。

一、复数的定义与基本运算复数是由实数和虚数构成的数,形式可表示为a+bi,其中a为实数部分,b为虚数部分,i为虚数单位。

复数的加减法与实数的加减法相似,乘法与实数的乘法也遵循相同的规律。

二、复数表示平面向量复数可以表示平面向量的长度和方向。

对于平面上的向量AB,可以用复数表示为a+bi,其中a和b分别为向量的水平分量和竖直分量。

复数的模表示向量的长度,辐角表示向量的方向。

三、复数的加法平面向量的加法可以转化成复数的加法。

设有两个向量A和B,分别表示为a+bi和c+di,则其相加的结果为(a+c)+(b+d)i,即两个复数实部相加得到新复数的实部,虚部相加得到新复数的虚部。

四、复数的乘法平面向量的乘法可以通过复数的乘法运算来实现。

设有两个向量A和B,分别表示为a+bi和c+di,则其相乘的结果为(ac-bd)+(ad+bc)i,即两个复数的实部和虚部按照一定规律相乘。

五、复数的共轭与模的平方复数的共轭指将复数的虚部取相反数,记作z*。

对于复数z=a+bi,其共轭为z*=a-bi。

复数的模表示复数到原点的距离,可以通过复数的实部和虚部计算得到,即|z|=√(a²+b²)。

复数的模的平方可以表示为|z|²=a²+b²。

六、复数表示向量的旋转复数的辐角可以表示向量的旋转角度。

将平面上的向量表示为复数z=a+bi,其辐角θ可以通过计算得到,即θ=arctan(b/a)。

同时,可以通过构造模为1的复数来表示旋转角度θ的向量,即z=cosθ+isinθ。

七、复数的应用举例1. 平面向量的加减法可通过复数的加法和减法来实现,简化了运算过程。

2. 复数的乘法可以用于向量的缩放和旋转操作,方便了平面向量的变换。

高中数学必修二知识点全面归纳2024新版

高中数学必修二知识点全面归纳2024新版 第一章 平面向量 1.1 向量的概念 向量是既有大小又有方向的量。 向量的表示方法:用有向线段表示,记作 vec{AB}。

零向量、单位向量和平行向量的定义和性质。 向量的几何意义:向量可以表示位移、速度、力等物理量。

1.2 向量的运算 向量的加法和减法:平行四边形法则和三角形法则。 平行四边形法则:两个向量的和可以通过平行四边形的对角线来表示。 三角形法则:两个向量的和可以通过三角形的第三边来表示。 向量的数乘:数乘向量的几何意义和运算性质。 数乘向量的几何意义:数乘向量会改变向量的大小,但不改变其方向。 数乘向量的运算性质:数乘向量满足分配律、结合律等运算性质。 向量的线性运算:向量的线性组合及其应用。 向量的线性组合:两个或多个向量的线性组合可以表示为这些向量的加权和。 向量的线性相关性:判断向量组是否线性相关的方法。

1.3 向量的基本定理及坐标表示 向量的坐标表示方法:在平面直角坐标系中表示向量。 向量的坐标表示:向量可以用其起点和终点的坐标差来表示。 向量的分解:向量可以分解为两个或多个方向上的分量。 向量的模:向量的长度计算公式。 向量的模:向量的模是向量的长度,可以通过勾股定理计算。 向量的单位化:将向量单位化的方法及其应用。

向量的方向角和方向余弦。 向量的方向角:向量与坐标轴之间的夹角。 向量的方向余弦:向量与坐标轴方向的余弦值。

1.4 向量的应用 向量在物理中的应用:力的合成与分解。 力的合成:多个力的合成可以通过向量的加法来实现。 力的分解:一个力可以分解为多个方向上的分力。 向量在几何中的应用:点到直线的距离公式。 点到直线的距离:利用向量的方法计算点到直线的距离。 向量在几何变换中的应用:向量在平移、旋转等几何变换中的作用。

第二章 复数 2.1 复数的概念 复数的定义:形如 a+bi 的数,其中 i 是虚数单位,满足 i^2=1。 实数和虚数:复数由实数部分和虚数部分组成。 复数的分类:纯虚数、实数和一般复数。 复数的表示方法:代数形式和几何形式。 代数形式:复数的代数表示方法。 几何形式:复数在复平面上的几何表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复数和平面向量知识点总结
一、复数的定义和性质
1.1 复数的定义
复数是形如 a+bi 的数,其中 a 和 b 是实数,i 是虚数单位,满足 i²=-1。

1.2 复数的加减法
复数的加减法与实数类似,直接对应实部和虚部进行运算。

1.3 复数的乘法
复数的乘法满足交换律,结合律和分配律。

(a+bi)(c+di) = ac + adi + bci - bd = (ac-bd) + (ad+bc)i
1.4 共轭复数
若 z=a+bi,则其共轭复数为 z* =a-bi。

共轭复数的性质是 z*z = |z|² = a² + b²,其中 |z| 表示
z 的模。

1.5 复数的除法
复数的除法可以借助共轭复数进行运算。

1.6 复数的几何意义
复平面上,复数 a+bi 对应于坐标为 (a, b) 的点,即复数与点的对应关系。

复数的模 |z| 对
应于复平面上点到原点的距离,幅角 arg(z) 对应于复平面上与正实轴的夹角。

二、平面向量的定义和性质
2.1 平面向量的定义
平面向量是具有大小和方向的量,可以表示为有向线段,通常用 (x, y) 表示。

其中 x 和 y
是有向线段在 x 轴和 y 轴上的投影长度。

2.2 平面向量的加法
平面向量的加法采用平行四边形法则,也可以通过坐标表示进行运算。

2.3 平面向量的数量积
平面向量的数量积定义为a•b = |a||b|cosθ,其中 |a| 和 |b| 是向量的模,θ 是 a 和 b 的夹角。

2.4 平面向量的叉乘
平面向量的叉乘定义为a×b = |a||b|sinθn,其中 n 是向量 a 和 b 所在平面上的法向量。

2.5 平面向量的应用
平面向量广泛应用于几何、物理等领域,包括力、速度、位移等概念。

三、复数与平面向量的关系
3.1 复数与平面向量的对应关系
复数 z=a+bi 可以看作是平面向量 (a, b),二者之间存在一一对应的关系。

3.2 复数与平面向量的加法和乘法
复数的加法和乘法与平面向量的加法和数量积类似,可以通过坐标表示进行运算。

3.3 复数与平面向量的角度表示
复数的幅角 arg(z) 对应于复平面上与正实轴的夹角,与平面向量的方向角类似。

3.4 复数在平面几何中的应用
复数可以用于表示平面几何中的点、直线、多边形等对象,简化运算。

四、复平面中的向量运算
4.1 复平面中的向量加法和减法
复平面中的向量加法和减法类似于平面向量的运算,只是将复数的加法和减法转化为对应的向量运算。

4.2 复平面中的向量乘法
复平面中的向量乘法对应于向量的数量积,其模为两个复数模的乘积,幅角为两个复数幅角的和。

4.3 复平面中的向量除法
复平面中的向量除法可以借助共轭复数进行运算,即由 z=a+bi 和 w=c+di 的商为 (a+bi) / (c+di) = (ac+bd)/(c²+d²) + (bc-ad)/(c²+d²)i。

五、复数与平面向量的应用
5.1 复数与平面向量在几何中的应用
复数与平面向量可用来表示点、直线、多边形等几何对象,并进行相应的计算和推导。

5.2 复数与平面向量在物理中的应用
复数与平面向量可以描述物理中的力、速度、位移等量,计算和推导相应的物理问题。

5.3 复数与平面向量在工程中的应用
复数与平面向量在工程领域中有广泛的应用,例如电路分析、信号处理等方面。

六、结语
复数与平面向量是数学中重要的概念,它们不仅有着丰富的数学理论,还有着广泛的应用领域。

掌握复数与平面向量的知识,对于理解和应用数学和物理问题都具有重要意义。

希望本文能对读者有所帮助,谢谢阅读!。

相关文档
最新文档