高中物理气体的实验定律,理想气体

合集下载

8.3 理想气体的状态方程

8.3  理想气体的状态方程

理想气体
假设这样一种气体在任何温度和任何压强下都能严格地遵 循气体实验定律,我们把这样的气体叫做“理想气体”。
理想气体的特点:
1.理想气体是不存在的,是一种理想模型 2.从微观上说:分子间忽略除碰撞外其他的作用力,忽略分子 自身的大小,分子本身没有体积 3.分子之间、分子与器壁之间的碰撞,都是弹性碰撞。除碰撞 以外,分子的运动是匀速直线运动,各个方向的运动机会均等. 4.理想气体分子之间无分子势能,一定质量的理想气体的内能 仅由温度决定,与气体的体积无关.
【变式】如图中,圆筒形容器内的弹簧下端挂一个不计重力的
活塞,活塞与筒壁间的摩擦不计,活塞上面为真空,当弹簧自
然长度时,活塞刚好能触及容器底部,如果在活塞下面充入t1 = 27 ℃的一定质量某种气体,则活塞下面气体的长度 h = 30 cm,问温度升高到t2=90 ℃ 时气柱的长度为多少?
解:
k Δx 1 p1 = S p2= k Δx 2 S p1V 1 p2V 2 = T1 T2
理想气体状态方程:
[例]内径均匀的L形直角细玻璃管,一端封闭,一端开口竖直 向上,用水银柱将一定质量空气封存在封闭端内,空气柱长4 cm,水银柱高58 cm,进入封闭端长2 cm,如图所示,温度是 87 ℃,大气压强为75 cmHg,求: (1)在图示位置空气柱的压强p1. (2)在图示位置,要使空气柱的长度变为3 cm,温度必须降低 到多少度?
理想气体
[例]关于理想气体的性质,下列说法中正确的是: A.理想气体是一种假想的物理模型,实际并不存在 B.理想气体的存在是一种人为规定,它是一种严格 遵守气体实验定律的气体 C.一定质量的理想气体,内能增大,其温度一定升 高
D.氦是液化温度最低的气体,任何情况下均可视为

理想气体遵循的三大实验定律

理想气体遵循的三大实验定律

理想气体遵循的三大实验定律第一定律:博伊尔定律在研究理想气体性质时,博伊尔定律是一个重要的实验定律。

它表明,在一定温度下,理想气体的体积与压强成反比,即当温度不变时,气体的体积与压强呈现出明显的正相关关系。

当我们将理想气体装入一个可变体积的容器中,通过改变容器的体积,可以观察到气体压强的变化。

实验证明,当容器体积减小时,气体压强增加;反之,当容器体积增加时,气体压强减小。

这种反比关系可以用博伊尔定律来描述,即P与V成反比关系。

第二定律:查理定律理想气体的第二个重要特性是查理定律,它描述了理想气体在一定压强下的体积与温度的关系。

实验结果表明,当气体的压强不变时,气体的体积与温度成正比关系,即当温度升高时,气体的体积也会相应增加。

通过改变理想气体的温度,我们可以观察到气体体积的变化。

实验结果显示,当温度升高时,气体分子的平均动能增加,分子之间的碰撞频率和力度增加,导致气体体积膨胀。

这种正比关系可以用查理定律来描述,即V与T成正比。

第三定律:盖吕萨克定律盖吕萨克定律是理想气体的第三个重要特性。

它描述了理想气体在一定温度和压强下的体积与物质的量的关系。

实验结果表明,在相同的温度和压强下,理想气体的体积与物质的量成正比,即当物质的量增加时,气体的体积也会相应增加。

通过改变理想气体的物质的量,我们可以观察到气体体积的变化。

实验结果显示,当物质的量增加时,气体分子的数量增加,分子之间的碰撞频率和力度增加,导致气体体积膨胀。

这种正比关系可以用盖吕萨克定律来描述,即V与n成正比。

以上就是理想气体遵循的三大实验定律:博伊尔定律、查理定律和盖吕萨克定律。

这些定律为我们研究理想气体的性质提供了重要的实验基础,也为我们理解气体行为的规律提供了重要的理论依据。

通过这些实验定律,我们可以更好地理解理想气体的特性,探索气体的性质和行为规律。

在工程、化学、物理等领域,这些定律的应用也是非常广泛的。

例如,在工业生产中,通过控制温度、压强和物质的量,可以实现气体的压缩、膨胀、混合等过程,从而实现各种化学反应和工艺操作。

沪教版高中物理选修3-3课件2.4理想气体状态方程

沪教版高中物理选修3-3课件2.4理想气体状态方程

解析:理想气体状态方程pT1V1 1=pT2V2 2中的温度是热力学温度,不 是摄氏温度,A 错误,B 正确;将 C、D 中数据代入公式中即可 判断 C 正确,D 错误。
答案:BC
[例1] 如图所示,粗细均匀一 端封闭一端开口的U形玻璃管,当t1=31 ℃, 大气压强p0=76 cmHg时,两管水银面相平, 这时左管被封闭的气柱长L1=8 cm,则:
答案:30.1 m
[例2] 房间的容积为20 m3,在温度为7 ℃、大气压强为 9.8×104 Pa时,室内空气质量是25 kg。当温度升高到27 ℃, 大气压强变为1.0×105 Pa时,室内空气的质量是多少?
[思路点拨] 室内气体的温度、压强均发生了变化,后 来气体的体积不一定再是20 m3,可能增大,即有气体从房间 内跑出,可能减小,即有气体流入房间内,因此仍以原25 kg 气体,通过计算体积确定20 m3的体积中还有多少气体,再计 算气体的质量。
设钢筒容积为 V,则该部分气体在初状态占有的体积为23V, 末状态时恰充满整个钢筒。
由一定质量理想气体的状态方程pT1V1 1=pT2V2 2 得 p2=pV1V2T1T12=4×V23×V×250300 atm=3.2 atm。 答案:3.2 atm
[例3] 使一定质量的理想气体按图甲中箭头所示的顺序变 化,图中BC段是以纵轴和横轴为渐近线的双曲线。
1.为了测定湖的深度,将一根试管开口向下缓缓压至湖底, 测得进入管中的水的高度为管长的3/4,湖底水温为4 ℃, 湖面水温为10 ℃,大气压强76 cmHg。求湖深多少?
解析:根据理想气体状态方程pT1V1 1=pT2V2 2得: 27763×+V10=2p723V+/44, 解得:p2=297.6 cmHg,相当于29776.6=3.9 atm,水产生的压 强为 2.9 atm,一个大气压支持的水柱为 10.33 m,所以 h= 2.9×10.33 m=30.1 m。

高中物理选修理想气体的状态方程

高中物理选修理想气体的状态方程

低到多少度?
• 【例1】 如图1所示,内径均匀的U形管中 装入水银,两管中水银面与管口的距离均为l =10.0 cm,大气压强p0=75.8 cmHg时,将 右侧管口封闭,然后从左侧管口处将一活塞
缓慢向下推入管在管内移动的 距离.
解析 设活塞移动的距离为 x cm,则左侧气体体积为(l+h2 -x)cm 柱长,右侧气体体积为(l-h2)cm 柱长,取右侧气体 为研究对象.由等温变化规律得 p0l=p2(l-h2) 解得 p2=l-p0lh2=7578 cmHg 左侧气柱的压强为 p1=p2+h=8070 cmHg 取左侧气柱为研究对象,由等温变化规律得
•针对训练 内径均匀的L形直 角细玻璃管,一端封闭,一端 开口竖直向上,用水银柱将一 定质量空气封存在封闭端内, 空气柱长4 cm,水银柱高58 cm,进入封闭端长2 cm,如 图8-3-1所示,温度是87 ℃ ,大气压强为75 cmHg,求:
(1)在图示位置空气柱的压强 p1.
图8-3-1
(2)在图示位置,要使空气柱的长度变为 3 cm,温度必须降
引导学生按以下步骤解答此题:
(1)该题研究对象是什么?
混入水银气压计中的空气
(2)画出该题两个状态的示意图:
解:以混进水银气压计的空气为研究对象
初状态:
p1=758-738=20mmHg V1=80Smm3 T1=273+27=300 K 末状态:
p2=p-743mmHg V2=(738+80)S-743S=75Smm3
例一: 一定质量的理想气体处于某一初始状态, 现要使它的温度经过一系列状态变化后,回到初
始状态的温度,可能实现的过程是( D )
A 先保持压强不变而使体积膨胀 接着保持体积不变而增大压强

重难点11 气体实验定律和理想气体状态方程(教师版含解析)

重难点11 气体实验定律和理想气体状态方程(教师版含解析)

2021年高考物理【热点·重点·难点】专练(新高考专用)重难点11 气体实验定律和理想气体状态方程【知识梳理】一 分子动理论、内能及热力学定律1.分子动理论要掌握的“一个桥梁、三个核心”(1)宏观量与微观量的转换桥梁(2)分子模型、分子数①分子模型:球模型V =43πR 3,立方体模型V =a 3. ②分子数:N =nN A =m M mol N A =V V mol N A(固体、液体). (3)分子运动:分子永不停息地做无规则运动,温度越高,分子的无规则运动越剧烈,即平均速率越大,但某个分子的瞬时速率不一定大.(4)分子势能、分子力与分子间距离的关系.2.理想气体相关三量ΔU 、W 、Q 的分析思路(1)内能变化量ΔU 的分析思路①由气体温度变化分析气体内能变化.温度升高,内能增加;温度降低,内能减少. ②由公式ΔU =W +Q 分析内能变化.(2)做功情况W 的分析思路①由体积变化分析气体做功情况.体积膨胀,气体对外界做功;体积被压缩,外界对气体做功. ②由公式W =ΔU -Q 分析气体做功情况.(3)气体吸、放热Q 的分析思路:一般由公式Q =ΔU -W 分析气体的吸、放热情况.二 固体、液体和气体1.固体和液体的主要特点(1)晶体和非晶体的分子结构不同,表现出的物理性质不同.晶体具有确定的熔点,单晶体表现出各向异性,多晶体和非晶体表现出各向同性.晶体和非晶体在适当的条件下可以相互转化.(2)液晶是一种特殊的物质状态,所处的状态介于固态和液态之间,液晶具有流动性,在光学、电学物理性质上表现出各向异性.(3)液体的表面张力使液体表面具有收缩到最小的趋势,表面张力的方向跟液面相切.2.饱和汽压的特点液体的饱和汽压与温度有关,温度越高,饱和汽压越大,且饱和汽压与饱和汽的体积无关.3.相对湿度某温度时空气中水蒸气的压强与同一温度时水的饱和汽压之比.即B=pp s.4.对气体压强的两点理解(1)气体对容器壁的压强是气体分子频繁碰撞的结果,温度越高,气体分子数密度越大,气体对容器壁因碰撞而产生的压强就越大.(2)地球表面大气压强可认为是大气重力产生的.三气体实验定律与理想气体状态方程1.气体压强的几种求法(1)参考液片法:选取假想的液体薄片(自身重力不计)为研究对象,分析液片两侧受力情况,建立平衡方程,消去面积,得到液片两侧压强相等方程,求得气体的压强.(2)力平衡法:选与气体接触的液柱(或活塞)为研究对象进行受力分析,得到液柱(或活塞)的受力平衡方程,求得气体的压强.(3)等压面法:在连通器中,同一种液体(中间不间断)同一深度处压强相等.(4)加速运动系统中封闭气体压强的求法:选与气体接触的液柱(或活塞)为研究对象,进行受力分析,利用牛顿第二定律列方程求解.2.巧选“充气、抽气、灌气(分装)、漏气”问题中的研究对象——化变质量为定质量在“充气、抽气、灌气(分装)、漏气”问题中通过巧选研究对象可以把变质量问题转化为定质量的问题.(1)充气问题设想将充进容器内的气体用一个无形的弹性口袋收集起来,那么当我们取容器和口袋内的全部气体为研究对象时,这些气体状态不管怎样变化,其质量总是不变的.这样,就将变质量问题转化为定质量问题.(2)抽气问题用抽气筒对容器抽气的过程中,对每一次抽气而言,气体质量发生变化,其解决方法同充气问题类似,假设把每次抽出的气体包含在气体变化的始末状态中,即把变质量问题转化为定质量问题.(3)灌气(分装)问题将一个大容器里的气体分装到多个小容器中的问题,可以把大容器中的气体和多个小容器中的气体看作整体作为研究对象,可将变质量问题转化为定质量问题.(4)漏气问题容器漏气过程中气体的质量不断发生变化,不能用理想气体状态方程求解.如果选容器内剩余气体为研究对象,可将变质量问题转化为定质量问题.四气体的状态变化图象与热力学定律的综合问题1.一定质量的理想气体的状态变化图象与特点2.对热力学第一定律的考查有定性判断和定量计算两种方式(1)定性判断利用题中的条件和符号法则对W、Q、ΔU中的其中两个量做出准确的符号判断,然后利用ΔU =W+Q对第三个量做出判断.(2)定量计算一般计算等压变化过程的功,即W=p·ΔV,然后结合其他条件,利用ΔU=W+Q进行相关计算.(3)注意符号正负的规定若研究对象为气体,对气体做功的正负由气体体积的变化决定.气体体积增大,气体对外界做功,W<0;气体的体积减小,外界对气体做功,W>0.【命题特点】这部分知识主要考查:分子动理论与气体实验定律的组合;固体、液体与气体实验定律的组合;热力学定律与气体实验定律的组合;热学基本规律与气体实验定律的组合。

理想气体遵循的三大实验定律

理想气体遵循的三大实验定律

理想气体遵循的三大实验定律1. 定律一:波义尔定律(Boyle's Law)波义尔定律是理想气体的第一个基本定律,描述了在恒温条件下,理想气体的压力与体积之间的关系。

根据波义尔定律,当温度不变时,气体的压力与其体积成反比关系。

换句话说,当气体的体积增加时,其压力会减小,反之亦然。

这个定律可以用以下公式表示:P₁V₁= P₂V₂,其中P₁和V₁表示初始状态下的压力和体积,P₂和V₂表示变化后的压力和体积。

2. 定律二:查理定律(Charles's Law)查理定律是理想气体的第二个基本定律,描述了在恒压条件下,理想气体的体积与温度之间的关系。

根据查理定律,当压力保持不变时,理想气体的体积与其温度成正比关系。

简而言之,当气体的温度增加时,其体积也会增加,反之亦然。

这个定律可以用以下公式表示:V₁/T₁= V₂/T₂,其中V₁和T₁表示初始状态下的体积和温度,V₂和T₂表示变化后的体积和温度。

3. 定律三:盖-吕萨克定律(Gay-Lussac's Law)盖-吕萨克定律是理想气体的第三个基本定律,描述了在恒体积条件下,理想气体的压力与温度之间的关系。

根据盖-吕萨克定律,当体积保持不变时,理想气体的压力与其温度成正比关系。

简单来说,当气体的温度增加时,其压力也会增加,反之亦然。

这个定律可以用以下公式表示:P₁/T₁= P₂/T₂,其中P₁和T₁表示初始状态下的压力和温度,P₂和T₂表示变化后的压力和温度。

这三大实验定律为理想气体提供了基本的物理规律。

它们的发现和理解对于理解和预测气体行为以及工程和科学应用非常重要。

然而,需要注意的是,这些定律只适用于理想气体的近似模型,而在实际情况中,气体的行为可能会受到其他因素的影响,例如压力过高或温度过低等。

因此,在特定的条件下,这些定律可能需要结合其他因素进行修正。

理想气体和气体定律的实验

理想气体和气体定律的实验
01 定律实验验证
各定律符合情况
02 应用总结
理想气体定律实验意义
03 实验总结
实验结果结论总览
实验数据分析
通过对Boyle、Charles和Gay-Lussac三个定律 实验结果的分析,我们得出了实验数据的科学结 论。在实验中,温度、压强和体积之间的关系得 到了验证和解释,为理解气体性质提供了重要依 据。通过实验的综合结果,我们深入探讨了理想 气体定律在实验中的应用,展示了气体物理性质 的重要性。
Charles定律实验结果
温度变化
对气体体积的影 响
Charles定律 验证
实验结论一致性
实验数据符 合度
分析结果精准性
Gay-Lussac定律实验结果
温度变化
探讨温度对气体压强的影 响
实验数据对比
分析不同温度下的压强变 化
Gay-Lussac 定 律 应 用
探究气体压强与温度的关 系
综合实验结果
理想气体的性质
波义耳定律
压强与体积成反 比
摩尔气体定 律
气体摩尔数与气 体体积成正比
查理定律
温度与体积成正 比
理想气体的方程
P
V
压力
体积
n
摩尔数
R
气体常数
理想气体的温度单位
01 开尔文(K)
摄氏度 + 273.15 02
03
深入理解理想气体
理想气体的状态方程PV nRT是在一定条件下适 用的简化模型,通过这个方程可以推导出气体在 不同条件下的变化规律,帮助我们更好地理解气 体的行为。温度单位的转换是在实验和计算中必 不可少的步骤,开尔文温度是绝对温度的量度, 可以保证物理定律在不同温度下成立。
通过曲线拟合方 法,找出数据之 间的规律和趋势

气体实验定律和理想气体的定义

气体实验定律和理想气体的定义

气体实验定律气体实验定律,即关于气体热学行为的5个基本实验定律,也是建立理想气体概念的实验依据。

这5个定理分别是:①玻意耳定理、②盖·吕萨克定律、③查理定律、④阿伏伽德罗定律、⑤道耳顿定律。

①玻意耳定律一定质量的气体,当温度保持不变时,它的压强p和体积V的乘积等于常量,即pV=常量式中常量由气体的性质、质量和温度确定。

②盖·吕萨克定律一定质量的气体,当压强保持不变时,它的体积V随温度t线性地变化,即V=V0(1+avt)式中V0,V分别是0℃和t℃时气体的体积;av是压力不变时气体的体膨胀系数。

实验测定,各种气体的av≈1/273°。

③查理定律一定质量的气体,当体积保持不变时,它的压力p随温度t线性地变化,即p=p0(1+apt)式中p0,p分别是0℃和t℃时气体的压强,ap是体积不变的气体的压力温度系数。

实验测定,各种气体的ap≈1/273°。

实验表明,对空气来说,在室温和大气压下,以上三条定律近似正确,温度越高,压力越低,准确度越高;反之,温度越低,压力越高,偏离越大。

(以空气为例,在0℃,若压强为1大气压时体积为1升,即pV等于1大气压·升,则当压力增为500和1000大气压时,pV乘积增为1.34和1.99大气压·升,有明显差别。

)另外,同种气体的av、ap都随温度变化,且稍有差别;不同气体的av、ap也略有不同。

温度越高,压力越低,这些差别就小,常温下在压力趋于零的极限情形,对于一切气体,av=ap=1/273.15°。

④阿伏伽德罗定律在相同的温度和压力下,1摩尔任何气体都占有同样的体积。

在T0=273.15K和p0=1大气压的标准状态下,1摩尔任何气体所占体积为V0=22.41410×10-3米3/摩尔(m3·mol-1)。

它也可表述为:在相同的温度和压力下,相同体积的任何气体的分子数(或摩尔数)相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理气体的实验定律,理想气体
1、理想气体的状态参量:
理想气体:始终遵循三个实验定律(玻意耳定律、查理定律、盖·吕萨克定律)的气体。

描述一定质量理想气体在平衡态的状态参量为:
温度:气体分子平均动能的标志。

体积:气体分子所占据的空间。

许多情况下等于容器的容积。

压强:大量气体分子无规则运动碰撞器壁所产生的。

其大小等于单位时间内、器壁单位积上所受气体分子碰撞的总冲量。

内能:气体分子无规则运动的动能. 理想气体的内能仅与温度有关。

求解下面各种状态下的压强大小
(1)p a=p0,
(2)p b=p0+p h,
(3)p c=p0-p h。

强调处理上述问题的思路方法:
(1)等压面法(取小“液片”平衡),
(2)液柱(活塞)平衡法:p x S=p0S±(mg)。

例1、在一端封闭粗细均匀的竖直放置的U形管内,有密度为ρ的液体封闭着两段气柱A、B,大气压强为p0,各部分尺寸如所示,求A、B气体的压强?
解法1:取液柱h1为研究对象. 设管的横截面积为S,h1受到向下的重力ρgSh1,A气体向下的压力p A S,大气向上的压力p0S,因为h1
静止,所以
再取液柱h2为研究对象,由帕斯卡定律,h2上端受到A气体通过液体传递过来的向下的压力p A S,B气体向上的压力p B S,液柱自身重力ρgSh2,由于液柱静止,则
解法2:求p B时,由连通器的知识可知,同种液体在同一水平面上的压强处处相等,取同一水平面CD,则
2、玻-马定律及其相关计算:
(1)玻-马定律的内容是:一定质量的某种气体,在温度不变时,压强和体积的乘积是恒量。

(2)表达式: p1V1=p2V2=k
(3)图像:
讨论:上面的p—V图中,A、B表示一定质量的某种气体的两条等温线,则T A T B(填>、=、<=,一定质量的某种气体的p—V图像上的等温线越向右上方,温度越高,即pV的乘积越大。

气体性质计算题基本解题思路可概括为四句话:
1、选取研究对象. 它可以是由两个或几个物体组成的系统或全部气体和某一部分气体。

(状态变化时质量必须一定。


2、确定状态参量. 对功热转换问题,即找出相互作用前后的状态量,对气体即找出状态变化前后的p、V、T数值或表达式。

3、认识变化过程. 除题设条件已指明外,常需通过研究对象跟周围环境的相互关系确定。

4、列出相关方程.
例2、一根长度为1m,一端封闭的内径均匀的细直玻璃管,管内
用20cm长的水银柱封住一部分空气. 当管口向上竖直放置时,被封住的空气柱长49cm. 问缓慢将玻璃旋转,当管口向下倒置时,被封住的空气柱长度是多少?假设p0=76cmHg,气体温度不变.
错解:对例题5大多数学生做出如下解答:
p1=p0+h=76+20=96(cmHg)
V1=49S
p2=p0-h=76-20=56(cmHg)
V2=HS
p1V1=p2V2
所以H=84(cm)
正解:解答到此,有部分同学意识到此时空气柱加水银柱的长度H+h=84+20=104(cm)已大于玻璃管的长度1m了,
说明水银早已经溢出!
所以,管倒置后,
p2=p0-h′
V2=HS,H+h′=L
所以h=18.5(cm),H=81.5(cm)
3、等容过程——查理定律
(1)内容:一定质量的气体,在体积不变的情况下,温度每升高(或降低)1℃,增加(或减少)的压强等于它0℃时压强的1/273. 一定质量的气体,在体积不变的情况下,它的压强和热力学温标成正比。

(2)表达式:数学表达式是:
4、等压变化——盖·吕萨克定律
(1)内容:一定质量的气体,在压强不变的情况下,它的体积和热力学温标成正比.
(2)
5、气体状态方程:
pV/T=恒量
=
说明:(1)一定质量理想气体的某个状态,对应于p—V(或p—T、V—T)图上的一个点,从一个状态变化到另一个状态,相当于从图上一个点过渡到另一个点,可以有许多种不同的方法。

如从状态A变化到B,可以经过许多不同的过程。

为推导状态方程,可结合图象选用任意两个等值过程较为方便。

(2)当气体质量发生变化或互有迁移(混合)时,可采用把变质量问题转化为定质量问题,利用密度公式、气态方程分态式等方法求解。

例3、一根内径均匀,一端封闭,另一端开口的直玻璃管,长l=100cm,用一段长h=25cm的水银柱将一部分空气封在管内,将其开口朝上竖直放置,被封住的气柱长l0=62.5cm。

这时外部的大气压p0=75cmHg,环境温度t0=-23℃,见下图,现在使气柱温度缓慢地逐渐升高,外界大气压保持不变,试分析为保持管内被封气体具有稳定的气柱长,温度能升高的最大值,并求出这个温度下气柱的长。

解析:这是一个关于气体在状态变化过程中,状态参量存在极值的问题,首先,对过程进行分析,当管内气体温度逐渐升高时,管内气体体积要逐渐增大,气体压强不变,pV值在增大。

当上水银面升到管口时,水银开始从管内排出,因为=C,当管内水银开始排出后,空气柱体积增大,而压强减小,若pV值增大,则温度T继续升高,当pV值最大时温度最高。

如果温度再升高不再满足=C,管内气体将不能保持稳定长度。

选取封闭气体为研究对象,在温度升高过程中,可分成两个过程
研究。

第一过程:从气体开始升温到水银升到管口,此时气体温度为T,管的横截面积为S,此过程为等压过程,根据盖·吕萨克定律有:=所以T=T0
其中:T0=t0+273=250K l′=75cm l0=62.5cm。

代入数据解得T=300(K)
第二过程,温度达到300K时,若继续升温,水银开始溢出,设当温度升高到T′时,因水银溢出使水银减短了x,此过程气体的三个状态参量p、V、T均发生了变化。

p1=p0+h=75+25=100(cmHg) V1=l′s=7.5S
T1=300K
p2=(p0+h-x)=(100-x)cmHg V2=(75+x)S
T2=?
根据状态方程=则有
=
所以T2=(100-x)(75+x)=- x2+x+300
根据数学知识得当x=12.5m时 T2取得最大值,且最大值T2max=306.25K即当管内气体温度升高到T2max=33.25℃时,管内气柱长为87.5cm。

例4、如图所示,两端封闭、粗细均匀的细玻璃管,中间用长为h 的水银柱将其分为两部分,分别充有空气,现将玻璃管竖直放置,两段空气柱长度分别为L1,L2,已知L1>L2,如同时对它们均匀加热,使之升高相同的温度,这时出现的情况是:()
A. 水银柱上升
B. 水银柱下降
C. 水银柱不动
D. 无法确定
错解:假设两段空气柱的压强p1,p2保持不变,它们的初温为T 当温度升高△T时,空气柱1的体积由V1增至V'1;,增加的体积△V1=V'1-V1,考虑到空气柱的总长度不变,空气柱2的体积从V2增至V'2,且△V2=V'-V2,
由盖·吕萨克定律得:
在T,△T都同的情况下,因为V1>V2,所以△V1>△V2,所以,水银柱应向下移动。

选B。

这道题因为初温一样,又升高相同的温度,所以比较液柱移动,可能有两种假设,一种为设压强不变,另一种是设体积不变。

而上述解法中假定压强不变而导出水银柱下降这本身就是自相矛盾的。

水银柱的移动情况是由水银柱的受力情况决定的,而受力情况是由两边压强的大小决定的,因此不能假设压强不变。

正解:假定两段空气柱的体积不变,即V1,V2不变,初始温度为T,当温度升高△T时,空气柱1的压强由p1增至p'1,△p1=p'1-p1,空气柱2的压强由p2增至p'2,△p2= p'2-p2。

由查理定律得:
因为p2=p1+h>p1,所以△p1<△p2,即水银柱应向上移动。

所以正确答案应选A。

小结:(1)这类题目只能按等容过程求解。

因为水银柱的移动是由于受力不平衡而引起的,而它的受力改变又是两段空气柱压强增量的不同造成的,所以必须从压强变化入手。

压强的变化由压强基数(即原来气体的压强)决定,压强基数大,升高相同的温度,压强增量就大。

同理,若两段空气柱同时降低相同的温度,则压强基数大的,压强减少量大。

就本题而言,水银柱将向下移动。

相关文档
最新文档