超空泡技术

合集下载

超空泡航行体通气规律数值仿真

超空泡航行体通气规律数值仿真

超空泡航行体通气规律数值仿真孙士明;颜开;陈伟政【摘要】为了研究针对高傅汝德数(Fr数)下超空泡航行体通气规律问题,基于RANS方程,采用流体体积函数(VOF)多相流模型对小空化数下超空泡航行体通气规律进行仿真,分析了通气空化条件下空泡内的流场速度及压力分布,对比不同通气率条件下的空泡形态及空泡壁面压力分布,得出了不同自然空化数和雷诺数(Re数)条件下超空泡通气规律,仿真结果与试验现象一致.基于仿真结果与量纲分析,针对高Fr 数下通气超空泡,给出了考虑自然空化数影响的通气系数计算公式,可为进一步研究人工超空泡通气规律提供参考.【期刊名称】《鱼雷技术》【年(卷),期】2014(022)002【总页数】6页(P81-86)【关键词】超空泡航行体;空化;通气率;流体体积函数;数值仿真【作者】孙士明;颜开;陈伟政【作者单位】中国船舶科学研究中心水动力学重点实验室,江苏无锡,214082;中国船舶科学研究中心水动力学重点实验室,江苏无锡,214082;中国船舶科学研究中心水动力学重点实验室,江苏无锡,214082【正文语种】中文【中图分类】TJ630.1;U661.1通气超空泡技术是指利用人工通气的方式使水下航行体周围完全被气体包裹, 从而大幅降低阻力。

为了维持航行体获得稳定航行所需要的流体动力, 需要保证空泡具有稳定的尺度, 即必须保证空泡内相应的气体含量, 这就需要连续稳定地向空泡内通气。

通气率的大小是控制空泡形态的重要参数, 它受到多参数的影响。

由于通气超空泡涉及很多复杂理论, 目前对通气规律的理论研究多是在大量试验数据基础之上归纳总结得到的。

Logvinovich和Spurk针对高傅汝德数(Fr数)下的通气超空泡通过量纲分析和试验研究分别得到了相应的通气率计算经验公式[1-2]。

随着计算机的发展, 数值仿真可以很好地解决一些理论和试验上的困难, 对超空泡研究的手段进行补充。

Kunz等人基于均值平衡流模型发展了一套完整的超空泡流动计算程序, 可计算自然空化和通气空化流场等[3]。

超空泡航行器流体动力CFD计算

超空泡航行器流体动力CFD计算

超空泡航行器流体动力CFD计算李雨田【摘要】超空泡航行器运动在超空化流动模式下,流场内涉及固、液、气3种介质,空泡与航行器相互耦合作用极为复杂.文中给出了超空泡航行器减阻特性、非线性、非定常与不确定性、流体惯性力较小4种典型流体动力特性,揭示了超空泡航行状态下航行器的流体力学本质.通过仿真计算,得到了空泡外形随空化数、攻角、舵角的变化趋势,利用计算流体力学(CFD)方法计算给定外形航行器在超空泡流型下的受力情况,分析了航行器流体动力特性变化,并给出了影响其变化的相关因素.该研究可为超空泡航行器动力学建模和弹道计算提供参考.【期刊名称】《鱼雷技术》【年(卷),期】2015(023)004【总页数】7页(P262-268)【关键词】超空泡航行器;空泡外形;流体动力特性;计算流体力学(CFD)【作者】李雨田【作者单位】中国船舶重工集团公司第710研究所,湖北宜昌,443003【正文语种】中文【中图分类】TJ630.1;O353长期以来,水下航行器的航速都比较低,制约水下航行器速度提高存在2个障碍:首先是航行阻力大,航行器的航行阻力与流体介质密度成正比,水下航行器与空中飞行器相比,由于水的密度是空气的800倍,同样条件下,水下航行器的航行阻力是空中飞行器飞行阻力的800倍,所以,水下航行器的航行速度比空中飞行器的飞行速度低2~3个量级。

其次,水下航行器随着航行速度的提高,其表面局部的压力就会降至水的饱和蒸汽压力,发生汽化,形成气泡与局部空泡。

这种空泡的起始、发展及溃灭受环境等多种因素影响,十分复杂,难以预计与控制,并且伴随产生振动、噪声与剥蚀等一系列不良后果。

这种空化现象是水下高速航行器的一种客观物理现象,当航速超过60 kn以上时难以避免。

俄罗斯科学家经过长期的研究,提出了“超空泡航行器”的新概念[1],把水下航行器基本包围在空泡之中,如图1所示,使航行器壁面附近的介质由水变为气体,水下航行器表面与水隔绝,从而大大降低航行阻力,解决了水下航行器阻力大的难题。

超空泡射弹运动过程模拟仿真及有限元分析

超空泡射弹运动过程模拟仿真及有限元分析

s u i t s i n t o p r o j e c t i l e A B A Q U S f i n i t e e l e m e n t s i m u l a t i o n a n a l y s i s ,a n a l y z e d t h e p r o j e c t i l e m o t i o n i n w a t e r
t i l e p a r t s .
Ke y w o r d s : s u p e r c a v i t a t i o n ; s i m u l a t i o n ; A B A Q U S ; i f n i t e e l e m e n t
Ci t a t i o n f o r ma t : ZHANG Di n g — x i o n g,W ANG Yi - d o ng,LI U Ti a n— f a n g . S i mu l a t i o n o f S u p e r c a v i t a t i n g P r o —
a nd Fi n i t e El e me n t An a l y s i s
ZHANG Di n g . x i o n g ,W ANG Yi — d o n g ,L I U Ti a n. f a n g
( 1 . N a v a l E q u i p me n t T e c h n o l o g y I n s t i t u t e , B e i j i n g 1 0 2 4 4 2 ,C h i n a ;
40 —43.
中图分 类号 : T P 3 9 9
文献标识码 : A
文章编号 : 1 0 0 6— 0 7 0 7 ( 2 0 1 4 ) 0 2— 0 0 4 0— 0 4

通气超空泡多相流场数值仿真方法

通气超空泡多相流场数值仿真方法

通气超空泡多相流场数值仿真方法佚名【摘要】通气超空泡流动涉及多相流动、湍流、相变及可压缩等流体力学难点问题,流动机理非常复杂。

其中多相流模型是通气超空泡数值仿真研究工作的重点,将严重影响通气超空泡数值仿真结果的精度。

本文有针对性地对比了目前广泛采用的均质平衡流模型和欧拉双流体模型,结合作者所在课题组多年来在水洞试验和数值仿真方面的研究成果,从空泡形态和流体动力两方面分析了欧拉双流体模型在预测通气超空泡方面的优势。

随着研究的进一步深入,通气超空泡数值仿真方法有望成为超空泡减阻技术的重要研究手段,可以为工程设计提供参考。

%Ventilated supercavitating flow involves such topics in fluid mechanics as multiphase flow, turbulence, phase change and compressibility, its mechanism is very complex. The multiphase flow model has attracted much more atten-tion in the study of numerical simulation of supercavitating flow, however its accuracy in simulation is not satisfactory. In this paper, the homogeneous model, which are widely used in the world, are compared with the Euler two-fluid model by combining with the authors′ research by means of water tunnel experiments and numerical simulation. The advan-tages of the Euler two-fluid model in predicting ventilated supercavitation is analyzed in terms of cavity shape and hy-drodynamics of a vehicle. Numerical simulation of ventilated supercavitation is expected to become an important ap-proach of drag-reduction technology through supercavitation.【期刊名称】《鱼雷技术》【年(卷),期】2013(000)003【总页数】6页(P165-170)【关键词】通气超空泡;多相流;数值仿真方法;均值平衡流模型;欧拉双流体模型【正文语种】中文【中图分类】TJ630.1;O351.2对于通气超空泡流动的研究, 最早可以追溯到上个世纪40年代。

基于扩张状态观测器和反步法的非线性超空泡航行体纵向控制

基于扩张状态观测器和反步法的非线性超空泡航行体纵向控制

第40卷第2期2023年2月控制理论与应用Control Theory&ApplicationsV ol.40No.2Feb.2023基于扩张状态观测器和反步法的非线性超空泡航行体纵向控制秦华阳1,陈增强1,2,†,孙明玮1,周瑜1,孙青林1(1.南开大学人工智能学院,天津300350;2.天津市智能机器人重点实验室,天津300350)摘要:考虑空泡记忆效应的超空泡航行体控制难度较大,主要体现在滑行力的强非线性、模型中的时延特性以及运动中的未知扰动.对于此类多输入多输出的复杂非线性系统,利用传统反步法控制器设计思想,将其改进以适用于超空泡航行体的纵向运动控制.为了对系统模型中存在的未知扰动进行观测补偿,本文设计了线性扩张状态观测器(LESO),将扰动估计值与控制器设计相结合,使用Lyapunov方法分析系统稳定性.最后在不同条件下进行仿真,结果验证了所设计的LESO估计未知扰动的准确性,以及所提控制方法对超空泡航行体纵向控制的有效性.关键词:空泡记忆效应;超空泡航行体;非线性系统;反步控制;线性扩张状态观测器;Lyapunov分析引用格式:秦华阳,陈增强,孙明玮,等.基于扩张状态观测器和反步法的非线性超空泡航行体纵向控制.控制理论与应用,2023,40(2):373–380DOI:10.7641/CTA.2022.20085Longitudinal control of nonlinear supercavitating vehicle based on extended state observer and backstepping methodQIN Hua-yang1,CHEN Zeng-qiang1,2,†,SUN Ming-wei1,ZHOU Yu1,SUN Qing-lin1(1.College of Artificial Intelligence,Nankai University,Tianjin300350,China;2.Key Laboratory of Intelligent Robotics of Tianjin,Tianjin300350,China)Abstract:The control of a supercavitating vehicle considering the cavitation memory effect is difficult,which is mainly reflected in the strong nonlinearity of the planing force,time-delay properties in models and unknown perturbations in motion.For this kind of complex nonlinear system with multiple inputs and multiple outputs,the traditional backstepping controller is improved to be suitable for longitudinal motion control of supercavitational vehicle.In order to compensate the unknown disturbances in the system model,a linear extended state observer(LESO)is designed to combine the distur-bance estimation with the controller design,and the system stability is analyzed by using the Lyapunov method.Finally, simulations are carried out under different conditions.The results verify the accuracy of the designed LESO for estimating unknown disturbances,and the effectiveness of the proposed control method for the longitudinal control of supercavitating vehicles.Key words:cavitation memory effect;supercavitation vehicle;nonlinear system;backstepping control;linear extended state observer;Lyapunov analysisCitation:QIN Huayang,CHEN Zengqiang,SUN Mingwei,et al.Longitudinal control of nonlinear supercavitating vehicle based on extended state observer and backstepping method.Control Theory&Applications,023,40(2):373–3801引言超空泡航行体的航行状态具有特殊性.常规航行体在水下航行时受到的流体阻力远大于在空气中的阻力,因而其航行速度难以提高.为突破该限制,采用超空泡减阻技术,利用空化器形成空泡层(超空泡)将航行体表面包裹,使航行体在水中的阻力减少约90%,可以实现航行体在水下超高速运行.超空泡减阻技术大幅提高了航行体运行速度,对于军事应用的研发意义重大[1].然而,这种独特的减阻方式也增加了对超空泡航行体的控制难度,使其运动中存在滑行力的强非线性、模型中的时延特性.因此,针对该类系统的特性设计有效的控制方法对超空泡技术的发展具有重要意义.近20年来,诸多学者对超空泡航行体的控制问题展开研究.Dzielski等[2]建立了非线性的超空泡航行体基准模型,并设计了线性反馈控制律.Guo等[3]探索收稿日期:2022−01−28;录用日期:2022−09−16.†通信作者.E-mail:*****************.cn;Tel.:+86130****2991.本文责任编委:龙离军.国家自然科学基金项目(61973175,62073177,61973172)资助.Supported by the National Natural Science Foundation of China(61973175,62073177,61973172).374控制理论与应用第40卷了空化数对航行体动力学特性的影响,提供了线性反馈控制律设计依据.Mao等[4]考虑航行体的非线性控制,解决执行器饱和问题,设计了滑模控制器和线性变参数控制器.李洋等[5]建立了非全包裹超空泡航行体模型,提出了基于反步法的滑模控制律,实现了对超空泡航行体的纵向控制.Wang等[6]针对全包裹超空泡航行体提出了自适应滑模控制器,可以对模型的不确定和未知扰动做出估计.张珂等[7]应用圆柱后体的水洞试验方法,对滑行水动力进行测量实验.范春永等[8]对超空泡航行体的侧方来流对航行体的影响进行了研究,结果表明在受侧方来流冲击时,航行体的相对来流速度决定航行体所受阻力以及空泡形变大小.李洋等[9]研究了超空泡航行体的不确定性问题,基于Lyapunov分析,利用反演控制设计航行体的姿轨控制器,提出了神经网络与自适应控制相结合的控制方法.文献[10]设计了一种变增益鲁棒控制方法,通过增加松弛变量和Lyapunov函数来降低控制系统的保守性和实现系统稳定性,仿真结果表明该系统具有较强的抗干扰性能和鲁棒性.文献[11]设计了线性二次调节器和鲁棒反演控制两类控制器,并通过仿真验证了其有效性.针对模型中存在的时延问题,庞爱平等[12–13]通过对比时滞模型与非时滞模型的仿真曲线,验证了其根据非时滞设计的控制器同样适应于时滞模型.目前已有工作取得了一定效果,但考虑空泡记忆效应的超空泡航行体是涉及多参量、多输入与多输出的复杂非线性时延系统,与其他复杂非线性系统[14–15]不同,其非线性和时延特性主要体现在滑行力的计算上,尾舵与空化器偏转角作为控制输入会同时影响系统的状态,存在耦合特性.然而,控制的核心问题是抑制系统中未知扰动或者不确定性的负面作用[16].为解决此问题,Han[17]提出了自抗扰控制(active disturban-ce rejection control,ADRC),其关键思想是设计扩张状态观测器(extended state observer,ESO),从被控对象的输入或输出信号中提取未知扰动信息,并在控制中进行扰动补偿,可以明显降低扰动带来的负面影响.为便于参数整定,Gao[18]将ADRC简化为线性自抗扰控制(linear active disturbance rejection control,LAD-RC),设计了线性扩张状态观测器(linear extended sta-te observer,LESO),上述工作促进了各领域学者对ADRC的研究与应用[19–26].超空泡航行体运行过程中会受到未知扰动影响,借鉴ADRC的思想,为了估计超空泡航行体运行过程中的未知扰动,设计了基于该系统的LESO.进一步尝试采用较为简单的反步法设计控制器,通过Lyapunov 方法分析系统稳定性.通过与文献[3]中基于极点配置的线性反馈控制方法进行对比仿真,结果验证了所提方法的有效性,对于非线性超空泡航行体的纵向运动,能实现较高的控制品质.2超空泡航行体的非线性动力学模型考虑超空泡航行体在俯仰纵向平面内的运动,首先建立航行体坐标系,其原点位于航行体空化器的顶端面圆心,x轴沿航行体中心轴指向前,z轴垂直于x轴指向下,以地面系为惯性系,z为航行体深度,θ为俯仰角,w为纵向速度且沿航行体z轴方向,q为俯仰角速度,纵向平面内航行体x轴方向速度近似等于空化器的合速度V,并假设为常值,设FΛo=FΛg+FΛp[1L]T,其中FΛp为滑行力F p标准化后的值,定义如下:FΛp=−V2mL(1+h′1+2h′)[1−(R′h′+R′)2]αp,(1)FΛg=791736Lg.(2)根据Dzielski提出的经典基准模型[2],超空泡航行体的俯仰平面动力学方程如下:˙z=w−Vθ,˙θ=q,M[˙w˙q]=A[wq]+B[δfδc]+FΛo,(3)其中:A=CV1−nmL−nm+79C−nm−nLm+1736CL,B=CV2−nmL1mL−nm,M=791736L1736L1160R2+133405L2,δf为尾舵偏转角,δc为空化器偏转角,C=12C x0(1+σ)(R nR)2,(4) R′=(R c−R)/R,(5)K a=LR n(1.92σ−3)−1−1,(6)K b=[1−(1−4.5σ1+σ)K40/17a]1/2,(7) R c=R n[0.82(1+σ)σ]1/2K b.(8)第2期秦华阳等:基于扩张状态观测器和反步法的非线性超空泡航行体纵向控制375考虑空泡的记忆效应,浸入深度h ′和浸入角αp 都是含有状态时延变量的函数,设R 0=R −R c ,z ′(t,τ)=z (t )+θ(t )L −z (t −τ),根据Vanek 的文献[27],其计算公式如下:h ′= 1R [z ′(t,τ)+R ′],上壁接触,0,无接触,1R [R ′−z ′(t,τ)],下壁接触,(9)αp =θ(t )−θ(t −τ)+w (t −τ)−˙R c V,上壁接触,0,无接触,θ(t )−θ(t −τ)+w (t −τ)+˙R c V,下壁接触.(10)3种情形的判断条件为上壁接触,−R 0<z ′(t,τ),无接触,其他,下壁接触,R 0>z ′(t,τ),(11)其中:τ=L /V 表示时间延迟的值,˙Rc 表示空泡半径收缩率,表达式如下:˙R c =−2017(0.821+σσ)1/2V (1−4.5σ1+σ)K 23/17aK b (1.92σ−3).(12)采用超空泡航行体的模型参数见表1.表1超空泡航行体模型参数Table 1Supercavitating vehicle model parameters名称参数值重力加速度g 9.81(m ·s −2)航行体半径R 0.0508m 航行体长度L 1.8m密度比m 2尾翼效率n 0.5升力系数C x00.82空化器半径R n 0.0191m 空化数σ0.02413基于LESO 的反步法控制器设计与稳定性分析由第2节可知,超空泡航行体是涉及多参量,多输入与多输出的复杂非线性时延系统,其非线性和时延特性主要体现在滑行力F p 的计算上,此外,控制输入δf 和δc 会同时影响系统的状态,存在耦合特性.上述特性大大增加了对系统的控制器设计难度,利用反步法,基于Lyapunov 分析,可以在保证系统稳定性的同时有效简化控制器设计,对于系统中的未知扰动,设计LESO 进行扰动观测并补偿.在系统模型(3)中,M 为非奇异矩阵,为便于描述,令x 1=[z θ]T ,x 2=[w q ]T ,考虑系统中存在未知扰动D =[d 1d 2]T ,可将式(3)改写为{˙x 1=A 1x 1+x 2,˙x 2=A 2x 2+B 1u +F gp +D,(13)其中:A 1=[0−V00],A 2=M −1A,B 1=M −1B,u =[δf δc ]T ,F gp=M −1(F Λg +F Λp [1L]).设跟踪指令为x 1d =[z d θd ]T ,(14)跟踪误差为E 1=x 1d −x 1,对E 1求导可得˙E 1=˙x 1d −A 1x 1−x 2,(15)由于扰动项D 未知,将D 作为扩张状态x 3,有{˙x 2=A 2x 2+B 1u +F gp +x 3,˙x 3=˙D,(16)为估计未知扰动D ,构建对应的二阶LESO 如下:e 1=Z 1−x 2,˙Z 1=Z 2+A 2x 2+B 1u +F gp −β1e 1,˙Z 2=−β2e 1,(17)其中:Z 1和Z 2分别为状态变量x 2和未知扰动D 的估计值;β1=2ωo ,β2=ω2o ,ωo 为观测器带宽;假设未知扰动˙D有界,则由文献[18]可知,当t →∞时,有Z 1→x 2,Z 2→D.设虚拟指令x 2d =˙x 1d −A 1x 1+K 1E 1,(18)误差E 2=x 2d −x 2.假设˙x 1d ,¨x 1d 可获知,设计控制律u =B −11(E 1+¨x 1d +K 1˙x 1d −(A 1+K 1)˙x 1−A 2x 2−F gp −Z 2+K 2E 2),(19)其中K 1,K 2均为二阶正定矩阵.下面证明在控制律(19)下,系统(13)是渐近稳定的.证定义Lyapunov 候选函数V =12E T 1E 1+12E T2E 2,(20)则V 0,对V 求导有376控制理论与应用第40卷˙V =E T 1˙E 1+E T 2˙E 2=E T 1(˙x 1d −A 1x 1−x 2)+E T 2˙E 2=E T 1(˙x 1d −A 1x 1−x 2d +E 2)+E T 2˙E 2=−E T 1K 1E 1+E T 1E 2+E T 2˙E 2=−E T 1K 1E 1+E T 2(E 1+˙E 2)=−E T 1K 1E 1−E T 2K 2E 2<0.(21)故V 满足李雅普诺夫定理,系统(13)渐近稳定.证毕.图1为系统的控制原理框图.图1控制原理框图Fig.1Control block diagram4仿真结果为测试所提反步法控制律(19)和LESO(17)观测未知扰动的有效性,使用Simulink 进行仿真,设计不同情形的未知扰动D =[d 1d 2]T ,与文献[3]中的极点配置线性反馈法进行对比,该方法对应本文模型的控制律如下:u =−(B T B )−1B T (C +Ax d )−K f ˜x ,其中:x d =[z d θd 00]T ,˜x =x −x d ,反馈矩阵K f使用极点配置法计算得到,仿真中将极点配置为−2,−3,−4,−5.预设系统(13)的状态变量初值[z 0θ0w 0q 0]T =[0030.02]T ,跟踪指令x 1d =[z d θd ]T =[10]T ,考虑实际中舵角的限幅特性,仿真设定尾舵偏角δf 和空化器转角δc 的范围均为±25◦,根据经验选取观测器带宽ωo =10,K 1=[30080],K 2=[800015].情形1未知扰动D =[00]T .理想情况下,模型中不存在未知扰动,此时仿真结果如图2–6所示.图2中,由于系统状态初值较大,出现了大小约为500N 的非线性滑行力,在控制器作用下,该滑行力快速消失,4种状态均可在2s 内收敛并稳定至期望值(见图3),控制过程中尾舵偏角和空化器转角都能保证在限幅范围内(见图4–5).图6中,LESO 所估计未知扰动的量级在10−6,接近于0,这与未知扰动为0的情形符合,此时,有无LESO 的反步法控制效果几乎一致,而极点配置线性反馈法存在超调现象.图2情形1–滑行力变化曲线Fig.2F plane curves of Case1(a)深度(b)俯仰角(c)纵向速度(d)俯仰角速度图3情形1状态变化曲线Fig.3State curves of Case 1第2期秦华阳等:基于扩张状态观测器和反步法的非线性超空泡航行体纵向控制377图4情形1–δf 变化曲线Fig.4δf curves of Case1图5情形1–δc 变化曲线Fig.5δc curves of Case1Z 2图6情形1–LESO 估计未知扰动Fig.6Z 2curves of Case 1情形2未知扰动D =[103]T .将模型中的未知扰动设置为常数值,仿真结果如图7–11所示.由于此时极点配置线性反馈法控制下的系统失稳发散,因此仅在图7(a)中绘制了失稳状态下的深度曲线.图8中,由于系统初值和未知扰动的存在,导致滑行力初值达到600N,在反步法控制作用下,非线性滑行力会快速消失.由图7和图11可知,系统状态仍能在2s 内收敛,利用所设计的LESO 可以准确估计未知扰动,加入LESO 补偿未知扰动的反步法控制器可以消除由扰动引起的稳态误差,使系统状态更精确地达到期望值.将图9–10与情形1中的图4–5对比可知,要抵消扰动的作用需要更大的舵角变化范围,由于扰动为常数值,当系统达到稳态时,控制量也会稳定于常值,这与经验相符.对比结果表明,所提方法具有较好的鲁棒性.(a)深度(b)俯仰角(c)纵向速度(d)俯仰角速度图7情形2–状态变化曲线Fig.7State curves of Case2图8情形2–滑行力变化曲线Fig.8F plane curves of Case 2情形3未知扰动D =[10sin t 3sin t ]T .将模型中的未知扰动设置为随时间变化的正弦信号,仿真结果如图12–16所示.378控制理论与应用第40卷图13中,滑行力在控制器作用下,能从较大的初值500N 快速衰减至0.对照图12–16可知,LESO 可以较为准确地估计未知时变扰动,加入扰动补偿后的反步法控制效果更好,可以明显减弱由谐波扰动带来的振荡现象,能使系统在2s 内达到稳态.此外,结合情形1–2不难发现,空化器转角对航行体的俯仰角影响较大,尾舵偏角主要作用于航行体的升降运动,与实际情况相符.而对比方法控制下的系统无法抑制正弦扰动带来的影响,未能将系统状态收敛至期望值.图9情形2–δf 变化曲线Fig.9δf curves of Case2图10情形2–δc 变化曲线Fig.10δc curves of Case2Z 2图11情形2–LESO 估计未知扰动Fig.11Z 2curves of Case2(a)深度(b)俯仰角(c)纵向速度(d)俯仰角速度图12情形3–状态变化曲线Fig.12State curves of Case3图13情形3–滑行力变化曲线Fig.13F plane curves of Case3图14情形3–δf 变化曲线Fig.14δf curves of Case 3第2期秦华阳等:基于扩张状态观测器和反步法的非线性超空泡航行体纵向控制379图15情形3–δc 变化曲线Fig.15δc curves of Case3Z 2图16情形3–LESO 估计未知扰动Fig.16Z 2curves of Case 3综合3种情形下的对比仿真结果可知,所设计基于LESO 的反步控制方法可以精确估计并补偿系统中存在的未知扰动,对于非线性超空泡航行体的纵向运动,能够实现较高的控制品质.5结论考虑非线性超空泡航行体的纵向控制问题,主要难点:空泡记忆效应产生滑行力的强非线性、耦合特性以及模型中存在的未知不确定性.为了降低控制难度,设计了基于LESO 的反步法控制器,使用李雅普诺夫方法分析系统稳定性.在不同的未知扰动情形下进行对比仿真,结果验证了所提方法的有效性.未来工作可以考虑:优化所提控制器的参数,以达到更优的控制效果;将所提控制器改进完善并应用于其他复杂非线性系统.参考文献:[1]PANG Aiping,HE Zhen,WANG Jinghua,et al.H ∞state feedbackdesign for supercavitating vehicles.Control Theory &Applications ,2018,35(2):146–152.(庞爱平,何朕,王京华,等.超空泡航行体H ∞状态反馈设计.控制理论与应用,2018,35(2):146–152.)[2]DZIELSKI J,KURDILA A.A benchmark control problem for super-cavitating vehicles and an initial investigation of solutions.Journal of Vibration and Control ,2003,9(7):791–804.[3]GUO J,BALACHANDRAN B,ABED E H.Dynamics and control ofsupercavitating vehicles.Journal of Dynamic Systems,Measurement,and Control ,2008,130(2):021003.[4]MAO X,WANG Q.Nonlinear control design for a supercavitatingvehicle.IEEE Transactions on Control Systems Technology ,2009,17(4):816–832.[5]LI Yang,LIU Mingyong,YANG Panpan,et al.Modeling andattitude-orbit control for incomplete-encapsulated supercavitating ve-hicles.Control Theory &Applications ,2017,34(7):885–894.(李洋,刘明雍,杨盼盼,等.非全包裹超空泡航行体建模与姿轨控制.控制理论与应用,2017,34(7):885–894.)[6]WANG J,LIU Y ,CAO G,et al.Design of RBF adaptive sliding modecontroller for supercavitating vehicle.IEEE Access ,2021,9:39873–39883.[7]ZHANG Ke,LI Peng,WANG Zhi,et al.Experimental study of plan-ning force on supercavitating vehicle tail.Journal of Ship Mechanics ,2020,24(1):8–17.(张珂,李鹏,王志,等.超空泡航行体尾部滑行力实验研究.船舶力学,2020,24(1):8–17.)[8]FAN Chunyong,LI Zengliang,LIU Bin.Investigation of the influ-ence of lateral flow on the supercavitation for underwater puter Simulation ,2019,36(7):182–186.(范春永,李增亮,刘斌.水下航行体在侧方来流作用下超空化现象研究.计算机仿真,2019,36(7):182–186.)[9]LI Yang,LIU Mingyong,ZHANG Xiaojian.Adaptive RBF neuralnetwork based backsteppting control for supercavitating vehicles.Ac-ta Automatica Sinica ,2020,46(4):734–743.(李洋,刘明雍,张小件.基于自适应RBF 神经网络的超空泡航行体反演控制.自动化学报,2020,46(4):734–743.)[10]HAN Yuntao,CHENG Zhanglong,LI Panpan,et al.Robust vari-able gain control for supercavitating vehicle based on LPV .Journal of Huazhong University of Science and Technology (Natural Science Edition),2017,45(7):127–132.(韩云涛,程章龙,李盼盼,等.超空泡航行体LPV 鲁棒变增益控制.华中科技大学学报(自然科学版),2017,45(7):127–132.)[11]ZHANG X,WEI Y ,HAN Y ,et al.Design and comparison of LQRand a novel robust backstepping controller for supercavitating vehi-cles.Transactions of the Institute of Measurement and Control ,2017,39(2):149–162.[12]PANG Aiping,HE Zhen,CHAO Fan,et al.Time delay aanlysisfor supercavitating vehicles.Control Engineering of China ,2019,26(12):2241–2245.(庞爱平,何朕,钞凡,等.超空泡航行体时滞特性分析.控制工程,2019,26(12):2241–2245.)[13]HE Zhen,PANG Aiping.Feedback control design for supercavitatingvehicles.Electric Machines and Control ,2017,21(8):101–108.(何朕,庞爱平.超空泡航行体的反馈控制设计.电机与控制学报,2017,21(8):101–108.)[14]LONG L J.Synchronous vs asynchronous switching-based output-feedback control for switched nonlinear systems with measurement noise sensitivity.Systems &Control Letters ,2021,152:104935.[15]LUO H,SUN Z D,SUN W J,et al.Modeling of dielectrophoreticforces and electrorotational torque towards nonlinear control of mi-cromanipulation system.The 35th Chinese Control Conference (CC-C).Chengdu,China:2016:1135–1140.[16]GAO Zhiqiang.Research on thought of ADRC.Control Theory &Applications ,2013,30(12):1498–1510.(高志强.自抗扰控制思想探究.控制理论与应用,2013,30(12):1498–1510.)[17]HAN J Q.From PID to active disturbance rejection control.IEEETransactions on Industrial Electronics ,2009,56(3):900–906.[18]GAO Z Q.Scaling and bandwidth-parameterization based controllertuning.Proceedings of the 2003American Control Conference .Den-ver,CO,USA:IEEE,2003:4989–4996.[19]LI Jie,QI Xiaohui,WAN Hui,et al.Active disturbance rejection con-trol:Summary and prospect of research results.Control Theory &Applications ,2017,34(3):281–295.(李杰,齐晓慧,万慧,等.自抗扰控制:研究成果总结与展望.控制理论与应用,2017,34(3):281–295.)380控制理论与应用第40卷[20]CHEN Sen,XUE Wenchao,HUANG Yi.Adrc design and controlallocation for thrust vector aircraft.Control Theory&Applications, 2018,35(11):1591–1600.(陈森,薛文超,黄一.推力矢量飞行器的自抗扰控制设计及控制分配.控制理论与应用,2018,35(11):1591–1600.)[21]CHEN Zengqiang,WANG Yongshuai,SUN Mingwei,et al.Globalasymptotic stability of auto-disturbance rejection control for second-order nonlinear systems.Control Theory&Applications,2018, 35(11):1687–1696.(陈增强,王永帅,孙明玮,等.二阶非线性系统自抗扰控制的全局渐近稳定性.控制理论与应用,2018,35(11):1687–1696.)[22]LIU Junjie,CHEN Zengqiang,SUN Mingwei,et al.Application ofactive disturbance rejection control in high-angle-of-attack maneuver for aircraft with thrust vector.Chinese Journal of Engineering,2019, 41(9):1187–1193.(刘俊杰,陈增强,孙明玮,等.自抗扰控制在推力矢量飞机大迎角机动中的应用.工程科学学报,2019,41(9):1187–1193.)[23]ZHONG Sheng,HUANG Yi,HU Jinchang.Active disturbance re-jection control for deep space spacecraft attitude.Control Theory& Applications,2019,36(12):2028–2034.(钟声,黄一,胡锦昌.深空探测航天器姿态的自抗扰控制.控制理论与应用,2019,36(12):2028–2034.)[24]LIU Shengfei,SUN Qinglin,CHEN Zengqiang,et al.Anti-distur-bance commutation hysteresis compensation backstep control for proportional valve-controlled electro-hydraulic systems.Control Theory&Applications,2020,37(7):1521–1534.(刘胜斐,孙青林,陈增强,等.比例阀控电液系统抗扰换向滞后补偿反步控制.控制理论与应用,2020,37(7):1521–1534.)[25]TAN Panlong,QIN Huayang,SUN Mingwei,et al.Sliding mode ac-tive disturbance rejection control for underactuated RTAC.Control Theory&Applications,2021,38(12):2085–2093.(檀盼龙,秦华阳,孙明玮,等.欠驱动RTAC的滑模自抗扰镇定控制.控制理论与应用,2021,38(12):2085–2093.)[26]QIN Huayang,CHEN Zengqiang,SUN Mingwei,et al.Extended s-tate observer based on sliding window real-time wavelet denoising and active disturbance rejection control.Control Theory&Applica-tions,2022,39(1):23–30.(秦华阳,陈增强,孙明玮,等.基于滑动窗实时小波降噪的扩张状态观测器及自抗扰控制.控制理论与应用,2022,39(1):23–30.)[27]V ANEK B,BOKOR J,BALAS G J,et al.Longitudinal motioncontrol of a high-speed supercavitation vehicle.Journal of Vibration and Control,2007,13(2):159–184.作者简介:秦华阳硕士研究生,目前研究方向为超空泡航行体建模与控制、自抗扰控制、智能控制;陈增强教授,博士生导师,目前研究方向为智能控制、预测控制、自抗扰控制,E-mail:*****************.cn;孙明玮教授,博士生导师,目前研究方向为飞行器制导与控制、自抗扰控制;周瑜硕士研究生,目前研究方向为超空泡航行体建模与控制;孙青林教授,博士生导师,目前研究方向为自抗扰控制、自适应控制、嵌入式控制系统、柔性飞行器建模与控制.。

反鱼雷技术——精选推荐

反鱼雷技术——精选推荐

反鱼雷技术什么是反鱼雷技术反鱼雷技术是指各国海军为其水面舰艇和潜艇提供足够的对抗鱼雷攻击所研制和应用的技术。

反鱼雷技术的类型水面舰艇是未来海战的主要兵力之一。

随着鱼雷技术的不断发展,鱼雷对水面舰艇和潜艇的威胁越来越大,已成为制约水面舰艇发展的因素之一。

随着鱼雷从自控鱼雷、声自导鱼雷、线导鱼雷,逐渐发展到最先进的尾流自导鱼雷,各国海军研制的反鱼雷技术也在不断向前发展,目前已形成了比较完善的反鱼雷防御系统。

为了抗击鱼雷的攻击,目前世界各国研究开发的反鱼雷技术可分为两类:一:是被动防御,二:是主动进攻。

被动防御主要是通过在舰艇上涂层、贴片、敷设橡胶等措施来降低舰艇的噪音,使舰艇隐身,以降低被敌声纳发现的概率和减小声自导鱼雷的自导作用距离,从而达到减少被声自导鱼雷命中的目的。

如原苏联潜艇表面的吸声材料“集束卫士(Clusterguard)”,能吸收入射波的1/3,而且由于吸声层使入射声波成漫反射,类似尾流层回波,影声纳工作,使声纳探测和鱼雷自导装置的作用距离缩短约1/3。

潜艇指挥塔部分涂敷这吸声材料,使声纳识别图象中的最显著特征消失,难以识别。

同时,在舰艇两侧或尾部拖带防鱼雷网,以阻拦鱼雷,使舰艇免受损伤;或改进舰艇装甲,采用钛等高强度合金材料;或将舰艇外壳作成耐冲压隔层(称舰舷防雷结构)或防雷隔舱(一般用在潜艇上,使固壳和外壳间有一段距离),以对抗鱼雷战斗部的穿甲和杀伤力。

个别舰艇还进行了消磁处理,降低磁探仪的探测效果,并且导致磁和电磁引信鱼雷失效。

主动防御又可分为战术防御和器材对抗防御。

战术防御主要通过改变舰艇的航向、航速及航深(用于潜艇)的方法来规避直航鱼雷的雷迹和自导鱼雷的探测,从而达到避开被敌雷击中的目的。

器材对抗措施又包括软杀伤(软对抗)和硬杀伤(硬对抗)两种。

软杀伤主要是通过采用各种诱饵、干扰器和气幕弹等,使来袭鱼雷跟踪或攻击假目标或偏离航向,迷盲、消耗鱼雷的动力,造成鱼雷攻击失效。

硬杀伤主要是使用反鱼雷浮标、反鱼雷深弹(炸弹)、反鱼雷水雷、反鱼雷鱼雷等,把来袭鱼雷拦截、摧毁或让其失去战斗力。

超空泡航行体加速过程流动特性研究

超空泡航行体加速过程流动特性研究

第22卷第4期 2018年4月船舶力学Journal of Ship MechanicsVol.22 No.4Apr. 2018文章编号院1007-7294(2018)04-0397-08超空泡航行体加速过程流动特性研究周景军,李育英,赵京丽(中国船舶重工集团公司第七O五研究所,西安710075)摘要:超空泡航行体加速过程是航行体进人髙速巡航状态的重要阶段。

为了深人了解超空泡航行体加速过程中 的流动特性,文中采用基于欧拉两流体模型的CFD方法以及基于相对运动的源项法对超空泡航行体全沾湿加 速过程、通气加速过程进行了数值模拟,其中全沾湿过程主要研究了加速过程附加质量变化规律,通气加速过程 研究了通气量、重力效应以及航行体攻角对空泡发展速度的影响。

研究结果表明全沾湿加速过程中由于加速度 较大,附加惯性力影响不能忽略;通气量、航行体攻角对超空泡生成速度均有较大影响,当速度达到50m/s以上 时,重力效应对空泡生成速度影响可以忽略。

关键词院通气超空泡;加速过程;空泡生成速度;CFD方法中图分类号:TV131 文献标识码:A doi:10.3969/j.issn.1007-7294.2018.04.002Research on the flow characteristic of supercavitatingvehicle in the process of accelerationZHOU Jing-jun,LI Yu-ying,ZHAO Jing-li(705 Research Institute, China Shipbuilding Industry Corporation, Xi5an 710075, China) Abstract:The accelerating process of the vehicle is the important stage for the high-speed cursing status. In order to understand the flow characteristics in the accelerating process,the CFD method based on Euler two-fluid model and the source method based on the relative motion are used to study the whole-wet and ventilating accelerating process,in which the change raw of the added mass is investigated during the whole-wet process and the influence on the developing velocity from ventilating volume,the gravity effect as well as the attack angle is studied.The results show that the influence of the accessional inertia force can not be ignored due to the large acceleration in the whole-wet process;the ventilating volume and the attack angle seriously affect the developing velocity of supercavity,the influence of the gravity can be ignored when the velocity is above 50 m/s.Key words:ventilated supercavity;accelerating process;developing velocity of supercavity;CFD method 0引言超空泡航行体运动过程要经历流体动力剧烈变化的加速过程,其中全沾湿阶段(未通气)随着速 度的增加,自然空化现象愈加明显,附加质量除了依赖于航行体外形外,还受到自然空化的影响。

通气超空泡水下射弹数值模拟及试验研究

通气超空泡水下射弹数值模拟及试验研究
d s lc me tu d rt e c n to ft e s me mu ze v lc t ip a e n n e h o di n o h a z l e o i i y.
K y wo d l i c a is e t ae u ec vt e rs:f d me h nc ;v ni td s p ra i u l y;u d r ae rjci n e trp oe te;c vtt n n mb r a i w l a i i u e ;c vt ao y
0 1以上 .
。介 于二者 之 间 的情况 ( 速度 比较 高 ,
作 者 简 介 :金 大 桥 ( 9 4 ) 男 , 士研 究 生 。E m i: i a i 0 @ 1 3 C B; 17 一 , 博 - a j d qa 3 6 . O l n o 王聪(96 )男 , 1 6 一 , 教授 , 士 研 究 生 导 师 。 E ma : ln a g hte u C 博 — i aa w n @ i d . F l . I
s p r a i o ms n h r g c e ce t e ry r man t e s me a i e e tv lct u e c v t f r ,a d t e d a o f i ns n al e i h a tdf r n eo i y i f y.Co mpae t r d wih
u v ni td poe te h e tae u ec vtt n poe teh v malv lct e a aea d ln e n e tae rjci ,te v ni td s p r a i i rjci a e s l eo i d c y rt n o g r l l l ao l y
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水翼表面产生的空泡形态
导弹表面产生的空泡形态
超空泡形态特性
超空泡形成方法
超空泡分为自然超空泡和通气超空泡 两种,形成超空泡一般有三种途径:
1)提高航行体的速度; 2)降低流场压力; 3)在低速情况下,利用人工通气的方法 增加空泡内部压力。前两种方法形成的为 自然超空泡,最后一种方法所得到的就是 所谓的通气超空泡。
“梭鱼”超空泡水下导弹 ”
“梭鱼”是一种德国试验用超空泡水下导弹,具有全 新的速度范围和机动性。最近,德国在MOD北海试验 场成功地进行了该导弹水下惯性制导飞行试验,速 度超过370km/h。该导弹采用空化器偏转控制,串级 滚转-俯仰控制系统直接安装在导弹头锥内,因而导 弹具有极高的转弯速率。内部子系统如惯导系统、 自动驾驶仪-电子设备、机械设备和声纳部件可以承 受较高的过载环境以及强烈振动。由于“梭鱼”导 弹具有极高的速度并且采用火箭发动机技术,因此 适用于近程水下防御。导弹的高速度、快速反应和 高机动性可有效支持水面舰和潜艇的近程防御。
超空泡减阻发展现状——乌克兰/俄罗斯
在前苏联时期,俄罗斯和乌克兰的超空泡研究工作实为一体, 多数超空泡试验都在乌克兰进行。俄罗斯莫斯科大学数学力 学系流体力学教研室,莫斯科大学力学研究所,中央空气、 水动力学研究院以及乌克兰科学院流体力学研究所等部门开 展了超空泡问题的试验研究。莫斯科大学的主要试验设备是 大型高速水洞。乌克兰科学院流体力学研究所具有多个大型 超空泡试验设备,其中一个多功能的水利试验台,主要进行 小模型的约束模弹射或自推力飞行试验;在1986年建成的高 速开路型水洞,最大水流速度32m/s,是其最主要的试验装置。 乌克兰/俄罗斯的研究人员通过大量的试验,获得了不同模型 和空化器下超空泡的形态、通气及稳定性规律,设计出一系 列可以调节升力和阻力系数值的不同类型的空化器;得到了3 0~140m/s速度下自然及通气超空泡的试验数据,并通过40~13 00m/s速度下的高速射弹试验总结出轴对称超空泡形态和尺寸 的计算公式等。
超空泡鱼雷基本构造
超空泡鱼雷基本构造
• 空化器。内部装有传感器,空化器的主要功能是诱导生 成空泡,提供升力和姿态控制,可影响航行体的阻力, 海水可以通过空化器上的孔道进入航行体内部; • 通气管口。通过人工通气使空泡伸长并覆盖航行体表面 以降低阻力; • 导引系统。安装有微型传感器,可以进行先进的信号处 理、波形优化,收发声纳信号; • 推进及通气系统。可能采用水反应推进系统,对航行体 进行推力矢量控制,利用喷嘴喷射气体以稳定空泡的形 态; • 控制尾翼。大部分表面穿过空泡壁面,提供航行体尾部 升力、滚转及姿态控制。尾翼处还可能有海水入口以及 制导导线的连接出口。
自然超空泡与通气超空泡区别
需要指出的是虽然通气空泡由超空泡、附着空泡到游移空泡的溃灭 过程与生成过程类似,但是两者并非可逆的,溃灭过程与生成过程 相比存在滞后效应。如上所述,当局部空泡转变为超空泡时存在某 一临界空泡数,与之相对应存在某一临界通气量。所谓滞后效应是 指生成过程中形成超空泡所需的临界通气量大于溃灭过程中超空泡 消失时的临界通气量。滞后效应的形成原因可能与通气超空泡产生 的自激振有关。
“暴风”号超高速鱼雷 ”
• 第一代“暴风”鱼雷的优缺点同样明显,其优点是高速、 强打击能力和抗干扰能力;而缺点则是射程短(10公里), 只能作直线航行,目标搜寻能力有限,打击敌人的同时, 自身潜艇也难以逃脱敌舰的报复。因此第一代“暴风”鱼 雷不久就退出了现役。但苏军及其后的俄军一直没有放弃 对这种鱼雷的技术改进,改进后的“暴风”鱼雷长8.29m, 质量2697kg,头部装有空化器和战斗部,靠火箭动力推进, 水下行进速度达到230节,比西方国家最先进鱼雷的速度要 快几倍。 • 据报道,俄正在研制配有声纳制导,可以60节速度搜索目 标,当发现目标后,以300节高速攻击目标的专用重型超高 速鱼雷及速度可达500节的新型超高速鱼雷,这就是第二代 “暴风”鱼雷。传言其速度可达720 km/h以上,射程进一 步扩大,达100km以上,而且是可以制导的,在加速攻击之 前,如果需要可以减速和重新选择攻击。
“梭鱼”超空泡水下导弹 ”
超空泡减阻发展现状——中国
• 国内从20世纪六、七十年代开始了空化与空蚀问题 的研究,当时以研究水翼、螺旋桨等水下物体的空 化噪声和空蚀等为主。20世纪八、九十年代,开始 研究水下物体局部空泡的稳定性和升、阻力特性, 空泡对水下兵器的水动力特性影响、带空泡航行体 的水下弹道以及出水冲击等问题。 • 以上研究主要针对局部空泡,而超空泡技术的研究 最近几年刚刚起步,目前主要在空泡水洞、拖曳水 池和射弹试验水槽中进行模型试验,侧重于低速通 气超空泡的生成与发展、稳定性和通气规律、升力 和阻力特性等超空泡基础问题的研究
船舶与海洋工程前沿技术讲座
Harbin Engineering University
超空泡减阻技术简介
主讲人:张学伟
库尔斯克号沉没之谜
俄罗斯“库尔斯克”号多用途战役导弹核潜艇是由俄 “王牌”武器设计局-“红宝石”设计局设计的,潜 艇上的许多设计方案都是世界上独一无二的。该艇由 俄北德文斯克造船厂制造,1994年5月下水,1995年1 月正式加入俄北方舰服役,为“奥斯卡‖”级核潜艇, 是俄海军最新的战略核潜艇之一,也是当今世界最大 的核潜艇之一,造价10亿美元的库尔斯克号核潜艇, 是俄罗斯最先进的防御武器。它有两座核反应堆,潜 艇长150米,有6层楼高,体积达到了大型喷气式客机 的两倍以上。库尔斯克号拥有独特的双壳艇身和9个防 水隔舱,即使被鱼雷直接击中也不会沉没。2000年8月 12日上午,一阵猛烈的爆炸发生在库尔斯克号上,这 场危机为什么发展得如此之快,竟使潜艇来不及浮出 水面?为什么没有人生还?
伊朗试射神秘潜射导弹
2006年4月2日,伊朗在波斯湾海域举行大规 模军演时发射一枚名为“鲸”(波斯语“胡 特”)的高速鱼雷。该鱼雷从一艘水面舰艇 上发射,入水后以极快的速度(100米/秒) 成功击沉一艘靶舰。从该鱼雷的外形、速度、 发射尾焰和气泡轨迹来看,都与俄罗斯的 “暴风”超空泡鱼雷相似。专家普遍认为, 这是一种超空泡鱼雷,由此也引发世人对超 空泡武器的关注。
• 超空泡射弹武器系统是一种潜在的有效的反鱼雷近程防 御武器系统,其作用类似于“密集阵”近程反导武器系 统。目前世界上已接近实用的、唯一的超空泡射弹武器 系统是美国正在开发的机载快速灭雷系统(RAMICS——R apid Airborne Mine Clearance System)。该系统于19 94年开始概念设计,计划2006年开始少量生产,2007年 批量生产。美海军将为MH-60R和MH-60S直升机采购44套R AMICS系统。 • RAMICS系统的各部件构成如上图所示。RAMICS近程武器 系统超空泡射弹是一种直升机机载武器,利用它可以消 灭水面和近水面水雷。它是平头炮弹,可由一种改型速 射炮发射,可以在空气和水中平稳航行。射弹除具有穿 透目标的功能外,还释放出一种反应强烈、非炸弹锂高 氯酸盐氧化剂,使水雷炸弹迅速燃烧。
空化对于水利机械的影响
• 插入空化影响图片
超空泡技术概述
当航行体与水之间发生高速相对运动时,航行体表面附 近的水因低压而发生相变,形成覆盖航行体大部分或全 部表面的超空泡。形成超空泡之后,航行体将在气体中 航行,由于航行体在水中的摩擦阻力约为擦阻力大幅减小,从而使鱼雷等大尺度水下航行 体的速度提高到100m/s的量级,使水下射弹等小尺度水 下航行体的航速提高到1000m/s的量级
超空泡发展过程
当航行体在流体中高速运动时,航行体表 面的流体压力就会降低,当航行体的速度 增加到某一临界值时,流体的压力将达到 汽化压,此时流体就会发生相变,由液相 转变为汽相,这就是空化现象。随着航行 体速度的不断增加,空化现象沿着航行体 表面不断后移、扩大、进而发展成超空化。 其发展过程一般可以分为四个状态:游离 型空泡、云状空泡、片状空泡和超空泡。
自然超空泡形态特性
弹体入水时速度最大,空泡数最小,超空泡稍微滞后达 到最大尺寸;随着速度逐渐降低,空泡数逐渐增大,超 空泡的尺寸逐渐减小;当弹体速度降低到较小值时,超 空泡的边界逐渐模糊、蜕化为局部空泡;速度继续降低, 则空泡进一步剥离溃灭气泡融入尾流,直至消失。
通气超空泡形态特性
通气开始时在空化器后形成一个有大量气泡组成的游移型空泡,当 通气量足够大以至气泡密度达到某一临界值时,游移型空泡转变为 椭球形的附着空泡,在附着空泡内部可以看到剧烈的回注射流向前 发展并与通入的气体相互作用形成雾状多相流区域,使得附着空泡 看上去比较混浊。继续增加通气量使得通气空泡数降低到某一阀值 后,空泡长度和厚度突然明显增加,由混浊的局部空泡转变为覆盖 模型大部分表面的透明的超空泡。
超空泡减阻发展现状——德国
德国早在第二次世界大战期间就开始了超空泡的理 论与实践研究。为了完成超空泡射弹和超空泡火箭 武器的研制,启用了两个主要的试验场地,其一为 梅尔多夫水下试验靶场,试验场配有由磁探头组成 的传感器场,可跟踪水下火箭的弹道和速度;沿着 试验场地设置着大量的普通电视摄像机,以观察火 箭排气的轨迹。其二为德国南方第52技术中心的垂 直水洞,水深60m,直径5m,可以研究空泡与深度的 关系及气体发生器的性能。 20世纪70年代后,德国主要进行了超空泡射弹和火 箭的研究,获得了火箭的稳定的水下弹道,对多种 不同的气体发生器进行了试验,并开发了适于超空 泡航行体的固体火箭发动机等,目前正在致力于超 空泡火箭的制导、控制及发射等方面的研究。
俄罗斯暴风鱼雷
超空泡减阻发展现状——美国
美国从20世纪50年代开始高速推进器和水翼方面的 超空泡研究,目前主要致力于发展超空泡高速射弹 和超空泡鱼雷两类超空泡武器,其中机载快速灭雷 系统(RAMICS)已于1995年研制成功,该系统使用2 0mm的超空泡射弹,可穿透水下15m处的水雷。
机载快速灭雷系统
超空泡减阻技术主要内容
• 超空泡中的基本概念 • 超空泡中的关键技术 • 超空泡技术的研究方法
相关文档
最新文档