2017年秋季学期新版新人教版九年级数学上学期第24章、圆单元复习试卷15

合集下载

九年级数学上册第24章圆单元试卷含答案(人教版)

九年级数学上册第24章圆单元试卷含答案(人教版)

九年级数学上册第24章圆单元试卷含答案(人教版)当一条线段绕着它的一个端点在平面内旋转一周时,它的另一个端点的轨迹叫做圆。

查字典数学网小编为大家预备了这篇第24章圆单元试卷,接上去我们一同来练习。

九年级数学上册第24章圆单元试卷含答案(人教版)一、选择题(每题3分,共30分)1.如图,A、B、C是⊙O上的三点,且∠ABC=70°,那么∠AOC 的度数是( )A.35°B.140°C.70°D.70°或140°2.如图,⊙O的直径AB=8,点C在⊙O上,∠ABC=30°,那么AC的长是( )A.2B.2C.2D.43.如图,在△ABC中,AB=BC=2,以AB为直径的⊙O与BC相切于点B,那么AC等于( )A. B. C.2 D.24.如图,PA,PB是⊙O的切线,A,B是切点,点C是劣弧AB上的一个点,假定∠P=40°,那么∠ACB的度数是( )A.80°B.110°C.120°D.140°5.如图,A、B是⊙O上两点,假定四边形ACBO是菱形,⊙O 的半径为r,那么点A与点B之间的距离为( )A. rB. rC.rD.2r6.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周失掉圆锥,那么该圆锥的正面积是( )A.25πB.65πC.90πD.130π7.以下四个命题:①等边三角形是中心对称图形;②在同圆或等圆中,相等的弦所对的圆周角相等;③三角形有且只要一个外接圆;④垂直于弦的直径平分弦所对的两条弧.其中真命题的个数有( )A.1个B.2个C.3个D.4个8.如图,AB是⊙O的直径,CD是弦,AB⊥CD,垂足为点E,衔接OD、CB、AC,∠DOB=60°,EB=2,那么CD的长为( )A. B.2 C.3 D.49.如图,Rt△AB′C′是Rt△ABC以点A为中心逆时针旋转90°而失掉的,其中AB=1,BC=2,那么旋转进程中弧CC′的长为( )A. πB. πC.5πD. π10.如下图,直线CD与以线段AB为直径的圆相切于点D,并交BA的延伸线于点C,且AB=2,AD=1,P点在切线CD上移动.当∠APB的度数最大时,∠ABP的度数为( )A.15°B.30°C.60°D.90°二、填空题(每题4分,共24分)11.在⊙O中,半径长为3,弦AB长为4,那么圆心O到AB 的距离为_____12.如图,点A、B、C、D区分是⊙O上四点,∠ABD=20°,BD是直径,那么∠ACB=_____13.如图,水平放置的圆柱形排水管道的截面直径是1 m,其中水面的宽AB为0.8 m,那么排水管内水的深度为_____ 14.小明用图中所示的扇形纸片作一个圆锥的正面,扇形的半径为5 cm,弧长是6π cm,那么这个圆锥的高是_____ 15.如图,在Rt△ABC中,∠C=90°,∠A=60°,BC=4 cm,以点C为圆心,以3 cm长为半径作圆,那么⊙C与AB的位置关系是_____16.如图,四边形OABC是菱形,点B,C在以点O为圆心的弧EF上,且∠1=∠2,假定扇形OEF的面积为3π,那么菱形OABC的边长为_____三、解答题(共46分)17.(8分)在⊙O中,直径AB⊥CD于点E,衔接CO并延伸交AD于点F,且CF⊥AD.求∠D的度数.18.(8分)如图,四边形ABCD是矩形,以AD为直径的⊙O交BC边于点E、F,AB=4,AD=12.求线段EF的长.19.(10分)如图,AB是⊙O的切线,B为切点,圆心在AC上,∠A=30°,D为弧BC的中点.(1)求证:AB=BC;(2)求证:四边形BOCD是菱形.20.(10分)如图,Rt△ABC中,∠ABC=90°,以AB为直径作半圆⊙O交AC与点D,点E为BC的中点,衔接DE.(1)求证:DE是半圆⊙O的切线;(2)假定∠BAC=30°,DE=2,求AD的长.21.(10分)在?ABCD中,AB=10,∠ABC=60°,以AB为直径作⊙O,边CD切⊙O于点E.(1)求圆心O到CD的距离;(2)求由弧AE,线段AD,DE所围成的阴影局部的面积.(结果保管π和根号)第24章圆单元试卷到这里就完毕了,希望能协助大家提高学习效果。

人教版数学九年级的上《第24章圆》单元综合测试试题(含答案).doc

人教版数学九年级的上《第24章圆》单元综合测试试题(含答案).doc

圆单元综合测试试题一.选择题1.已知⊙O中最长的弦为8cm,则⊙O的半径为()cm.A.2B.4C.8D. 162.如图,AB是⊙O的直径,BC 是⊙ O的弦,已知∠ AOC=80°,则∠ ABC的度数为()A.20°B. 30°C. 40°D. 50°3.如图,AB是⊙O的直径,点C在⊙ O上,∠ ABC=30°, AC=4,则⊙ O的半径为()A.4B. 8C.D.4.如图,AB为⊙O的直径,点 C 为⊙ O上的一点,过点C作⊙ O的切线,交直径AB的延长线于点D;若∠ A = 23°,则∠D的度数是()A.23°B. 44°C. 46°D. 57°5.如图,正三角形ABC的边长为4cm,D, E,F 分别为 BC,AC, AB的中点,以A,B, C三点为圆心,2cm 长为半径作圆.则图中阴影部分的面积为()222 2 A.( 2﹣π )cm B.(π﹣)cm C.( 4﹣2π)cm D.( 2π ﹣2)cm6.如图,将直角三角板60°角的顶点放在圆心O上,斜边和一直角边分别与⊙O相交于 A、B 两点, P 是优弧 AB上任意一点(与A、 B 不重合),则∠ APB的度数为()A .60°B . 45°C . 30°D . 25°7.在平面直角坐标系中,以原点O 为圆心, 5 为半径作圆,若点 P 的坐标是( 3, 4),则点 P 与⊙ O 的位置关系是()A .点 P 在⊙ O 外B .点 P 在⊙ O 内C .点 P 在⊙ O 上D .点 P 在⊙ O 上或在⊙ O 外8.已知⊙ O 的半径为 4,直线 l 上有一点与⊙ O 的圆心的距离为 4,则直线 l 与⊙ O 的位置关系为()A .相离B .相切C .相交D .相切、相交均有可能9.如图, △的内切圆⊙ O 与, , 分别相切于点,, ,且 =2, =5,则△ 的周长为()ABCAB BC CA D E F ADBC ABCA .16B . 14C . 12D . 1010.如图,在矩形 ABCD 中,AB = 8,AD =12,经过 A ,D 两点的⊙ O 与边 BC 相切于点 E ,则⊙ O 的半径为()A .4B .C . 5D .二.填空题11.若四边形是⊙ 的内接四边形,∠ = 120°,则∠ C 的度数是.ABCD OA12.如图,四边形内接于⊙ ,∠ = 130°,则∠的度数是.ABCD OCBOD13.如图,四边形 ABCD 是菱形,∠ B = 60°, AB = 1,扇形 AEF 的半径为 1,圆心角为 60°,则图中阴影部分 的面积是.14.如图,已知 AB 是⊙ O 的直径, AB = 2, C 、 D 是圆周上的点,且∠ CDB =30°,则 BC 的长为 .15.如图,在△中, = ,以 为直径的⊙ O 与边相交于点 ,过点 E 作 ⊥ 于点 ,延长 、ABC AB AC ACBCEEF ABFFEAC 相交于点 D ,若 CD = 4, AF =6,则 BF 的长为.16.如图, AB 是⊙ O 的直径,弦 BC = 6cm , AC = 8cm .若动点 P 以 2cm / s的速度从 B 点出发沿着 B →A 的方向运动,点 Q 以 1cm / s 的速度从 A 点出发沿着 A → C 的方向运动,当点 P 到达点 A 时,点 Q 也随之停止运动. 设运动时间为 t ( s ),当△ APQ 是直角三角形时, t 的值为.3(1)求证:直线CE是⊙O的切线;(2)若AB= 10,CD= 4,求BC的长.18.如图,⊙O的直径AB为 10cm,弦BC= 8cm,∠ACB的平分线交⊙O于点D,连接AD,BD,求四边形ACBD 的面积.19.如图,在△ABC中,AB=AC,∠BAC= 54°,以AB为直径的⊙O分别交AC、BC于点D、E,过点B作直线BF,交 AC的延长线于点F.(1)求证:BE=CE;(2)若AB= 6,求弧DE的长;(3)当∠F的度数是多少时,BF与⊙O相切,证明你的结论.20.如图,AB是⊙O的直径,弦CD⊥ AB于点 E,连接 AC, BC.(1)求证:∠A=∠BCD;(2)若AB= 10,CD= 6,求BE的长.21.如图,在圆O中,弦 AB=8,点 C在圆 O上( C与 A, B 不重合),连接 CA、 CB,过点 O分别作OD⊥AC,OE⊥ BC,垂足分别是点D、 E.(1)求线段DE的长;(2)点O到AB的距离为 3,求圆O的半径.22.如图,AB=AC,CD⊥AB于点D,点O是∠BAC的平分线上一点,⊙O与 AB相切于点 M,与 CD相切于点N(1)求证:∠AOC=135°;(2)若NC= 3,BC= 2 ,求DM的长.23.如图,AB是⊙O的直径,C为AB延长线上一点,过点C作⊙ O的切线 CD, D为切点,点 F 是的中点,连接 OF并延长交 CD于点 E,连接 BD, BF.( 1)求证:BD∥OE;( 2)若OE= 3,tan C=,求⊙ O的半径.5参考答案一.选择题1.解:∵⊙O中最长的弦为8cm,即直径为8cm,∴⊙ O的半径为4cm.故选: B.2.解:∵=,∴∠ ABC=∠AOC=× 80°=40°,故选: C.3.解:∵AB是直径,∴∠ C=90°,∵∠ ABC=30°,∴AB=2AC=8,∴OA=OB=4,故选: A.4.解:连接OC,如图,∵CD为⊙ O的切线,∴ OC⊥CD,∴∠ OCD=90°,∵∠ COD=2∠ A=46°,∴∠ D=90°﹣46°=44°.故选: B.5.解:连接AD,∵△ ABC是正三角形,BD=DC,∴∠ B=60°, AD⊥ BC,∴AD=AB=2,∴图中阴影部分的面积=× 4× 2 ﹣×3=( 4 2﹣ 2π )cm故选: C .6.解:由题意得,∠ AOB = 60°, 则∠ APB = ∠AOB = 30°.故选: C .7.解:∵点 P 的坐标是( 3, 4), ∴ OP ==5,而⊙ O 的半径为 5,∴ OP 等于圆的半径,∴点 P 在⊙ O 上.故选: C .8.解:∵若直线L 与⊙ 只有一个交点,即为点 ,则直线 L 与⊙ O 的位置关系为:相切;OP若直线 L 与⊙ O 有两个交点,其中一个为点,则直线L 与⊙O 的位置关系 为:相交;P∴直线 L 与⊙ O 的位置关系为:相交或相切.故选: D .9.解:∵△ ABC 的内切圆⊙ O 与 AB , BC , CA 分别相切于点D ,E ,F ,∴ AF =AD = 2, BD = BE , CE =CF , ∵ BE +CE = BC = 5,∴ BD +CF = BC = 5,∴△ ABC 的周长= 2+2+5+5= 14,故选: B .10.解:如图,连结 EO 并延长交 AD 于 F ,连接 AO ,∵⊙ O与 BC边相切于点E,∴OE⊥BC,∵四边形 ABCD为矩形,∴BC∥AD,∴OF⊥AD,∴AF=DF= AD=6,∵∠ B=∠ DAB=90°, OE⊥ BC,∴四边形 ABEF为矩形,∴EF=AB=8,设⊙ O的半径为 r ,则 OA=r , OF=8﹣ r ,22 2在 Rt △AOF中,∵OF+AF=OA,∴( 8﹣r)2+62=r2,解得 r =,故选: D.二.填空题(共 6 小题)11.解:四边形ABCD是⊙ O的内接四边形,∴∠ A+∠ C=180°,∴∠ C=180°﹣∠ A=60°,故答案为: 60°.12.解:∵四边形ABCD是⊙ O的内接四边形,∴∠ A+∠ C=180°,∵∠ C=130°,∴∠ A=50°,∴∠ BOD=2∠ A=100°,故答案为100°.13.解:连接∵四边形 ABCD是菱形,∴∠ B=∠ D=60°, AB= AD= DC= BC=1,∴∠ BCD=∠ DAB=120°,∴∠ 1=∠ 2= 60°,∴△ ABC、△ ADC都是等边三角形,∴AC=AD=1,∵ AB=1,∴△ ADC的高为,AC=1,∵扇形 BEF的半径为1,圆心角为60°,∴∠ 4+∠ 5= 60°,∠ 3+∠5= 60°,∴∠ 3=∠ 4,设 AF、DC相交于 HG,设 BC、 AE相交于点G,在△ ADH和△ ACG中,,∴△ ADH≌△ ACG( ASA),∴四边形 AGCH的面积等于△ ADC的面积,∴图中阴影部分的面积是:﹣=﹣×1×=﹣.S 扇形AEF S△ACD故答案为﹣.14.解:∵AB是直径,∴∠ ACB=90°,∵∠ A=∠ CDB=30°,∴BC= AB=1,故答案为1.15.解:如图,连接AE,OE.设 BF= x.∵AC是直径,∴∠ AEC=90°,∴AE⊥BC,∵ AB=AC,∴∠ EAB=∠ EAC,∵ OA=OE,∴∠ OAE=∠ OEA,∴∠ EAB=∠ AEO,∴OE∥AB,∴=,∴AF=6, CD=4, BF= x,∴AC=AB= x+6,∴OE=OA= OD=,∴=,整理得: x2+10x﹣24=0,解得 x=2或﹣12(舍弃),经检验 x=2是分式方程的解,∴BF=2.故答案为 2.16.解:如图,∵AB是直径,∴∠ C=90°.又∵ BC=6cm, AC=8cm,∴根据勾股定理得到AB==10cm.则 AP=(10﹣2t ) cm, AQ= t .∵当点 P 到达点 A 时,点 Q也随之停止运动,∴0<t≤ 2.5 .①如图 1,当PQ⊥AC时,PQ∥BC,则△APQ∽△ ABC.故=,即=,解得t=.②如图 2,当PQ⊥AB时,△APQ∽△ACB,则=,即=,解得 t =.综上所述,当t =s 或 t =时,△ APQ为直角三角形.故答案是:s 或s.三.解答题(共7 小题)17.( 1)证明:连接OC.∵OA=OC,∴∠ OAC=∠ OCA,∵AC平分∠DAB,∴∠ CAD=∠ CAB,∴∠ DAC=∠ ACO,∴ AD∥OC,∵AD⊥DE,∴OC⊥DE,∴直线 CE是⊙ O的切线;(2)解:∵AB是直径,∴∠ ACB=90°,∵ AD⊥CD,∴∠ ADC=∠ ACB=90°,∵∠ DAC=∠ CAB,∴△ DAC∽△ CAB,∴=,∴BC?AC=40,2 2∵BC+AC=100,∴ BC+AC=6,AC﹣BC=2或BC﹣AC=2,∴BC=2或4.18.解:∵AB为直径,∴∠ ADB=90°,又∵ CD平分∠ ACB,即∠ ACD=∠ BCD,∴=,∴AD=BD,∵直角△ ABD中, AD= BD,则 AD=BD=AB=5,△ ABDAD?BD=×5 ×5 2则 S == 25(cm),在直角△ ABC中, AC=== 6(cm),△ ABCAC BC 2S cm2则 S 四边形=S△+S△=25+24=49(cm).ADBC ABD ABC19.( 1)证明:连接AE,如图,∵AB为⊙ O的直径,∴∠ AEB=90°,∴ AE⊥BC,∵AB=AC,∴BE=CE;(2)解:∵AB=AC,AE⊥BC,∴ AE平分∠ BAC,∴∠ CAE=∠BAC=×54°=27°,∴∠ DOE=2∠ CAE=2×27°=54°,∴弧 DE的长==π ;(3)解:当∠F的度数是 36°时,BF与⊙O相切.理由如下:∵∠ BAC=54°,∴当∠ F=36°时,∠ ABF=90°,∴ AB⊥BF,∴ BF为⊙ O的切线.20.( 1)证明:∵直径AB⊥弦 CD,∴弧 BC=弧 BD.∴∠ A=∠ BCD;( 2)连接OC∵直径 AB⊥弦 CD, CD=6,∴CE=ED=3.∵直径 AB=10,∴CO=OB=5.在 Rt △COE中,∵OC= 5,CE= 3,∴ OE==4,∴BE=OB﹣ OE=5﹣4=1.21.解:( 1)∵OD经过圆心O, OD⊥AC,∴AD=DC,同理: CE= EB,∴DE是△ ABC的中位线,∴DE= AB,∵AB=8,∴ DE=4.( 2)过点O作OH⊥AB,垂足为点H, OH=3,连接 OA,∵OH经过圆心 O,∴ AH=BH= AB,∵AB=8,22 2在 Rt △AHO中,AH+OH=AO,∴ AO=5,即圆 O的半径为5.22.解:( 1)如图,作OE⊥ AC于 E,连接 OM, ON.∵⊙ O与 AB相切于点 M,与 CD相切于点 N,∴OM⊥AB, ON⊥ CD,∵OA平分∠ BAC,OE⊥AC,∴ OM=OE,∴ AC是⊙ O的切线,∵ON=OE, ON⊥CD, OE⊥ AC,∴ OC平分∠ ACD,∵CD⊥AB,∴∠ ADC=∠ BDC=90°,∴∠ AOC=180°﹣(∠ DAC+∠ACD)=180°﹣45°=135°.( 2)∵AD,CD,AC是⊙O的切线,M,N,E是切点,∴AM=AE, DM=DN, CN= CE=3,设 DM= DN=x, AM =AE= y,∵ AB=AC,∴BD=3﹣ x,22 2在 Rt △BDC中,∵BC=BD+CD,∴ 20=( 3﹣x)2+( 3+x)2,∴ x=1或﹣1(舍弃)∴ DM=1.23.( 1)证明:∵OB=OF,∴∠ 1=∠ 3,∴∠ 2=∠ 3,∴BD∥OE;(2)解:连接OD,如图,∵直线 CD是⊙ O的切线,∴ OD⊥CD,在 Rt △OCD中,∵ tan C==,∴设 OD=3k, CD=4k.∴OC=5k, BO=3k,∴BC=2k.∵BD∥OE,∴.即.∴DE=6k,22 2在 Rt △ODE中,∵OE=OD+DE,∴( 3)2=(3k)2+(6k)2,解得k=∴OB=3,即⊙ O的半径的长.。

人教版数学九年级上册第24章《圆》单元综合练习卷(含详细答案)

人教版数学九年级上册第24章《圆》单元综合练习卷(含详细答案)

人教版数学九年级上册第24章《圆》单元综合练习卷(含详细答案)一.选择题1.已知圆内接四边形ABCD中,∠A:∠B:∠C=1:2:3,则∠D的大小是()A.45°B.60°C.90°D.135°2.如图,AB,AC分别是⊙O的直径和弦,OD⊥AC于点D,连接BD,BC,且AB=10,AC=8,则BD的长为()A.2B.4 C.2D.4.83.下列说法正确的是()A.菱形的对角线垂直且相等B.到线段两端点距离相等的点,在线段的垂直平分线上C.点到直线的距离就是点到直线的垂线段D.过三点确定一个圆4.已知圆锥的底面半径为5cm,母线长为13cm,则这个圆锥的侧面积是()A.60πcm2B.65πcm2C.120πcm2D.130πcm25.如图,已知钝角△ABC内接于⊙O,且⊙O的半径为5,连接OA,若∠OAC=∠ABC,则AC 的长为()A.5B.C.5D.86.如图,在△ABC中,AB=4,AC=2,BC=5,点I为△ABC的内心,将∠BAC平移,使其顶点与点I重合,则图中阴影部分的周长为()A.4 B.5 C.6 D.77.如图,将一块直角三角板△ABC(其中∠ACB=90°,∠CAB=30°)绕点B顺时针旋转120°后得Rt△MBN,已知这块三角板的最短边长为3,则图中阴影部分的面积()A.B.9πC.9π﹣D.8.如图,点A,B,C,D都在半径为3的⊙O上,若OA⊥BC,∠CDA=30°,则弦BC的长为()A.B.3C.3 D.29.边长相等的正方形与正六边形按如图方式拼接在一起,则∠ABC的度数为()A.10°B.15°C.20°D.30°10.如图,在⊙O的内接正六边形ABCDEF中,OA=2,以点C为圆心,AC长为半径画弧,恰好经过点E,得到,连接CE,OE,则图中阴影部分的面积为()A.﹣4B.2π﹣2C.﹣3D.﹣211.如图,从⊙O外一点A引圆的切线AB,切点为B,连接AO并延长交圆于点C,连接BC.若∠A=28°,则∠ACB的度数是()A.28°B.30°C.31°D.32°12.如图,已知正六边形ABCDEF的边长为,点G,H,I,J,K,L依次在正六边形的六条边上,且AG=BH=CI=DJ=EK=FL,顺次连结G,I,K,和H,J,L,则图中阴影部分的周长C的取值范围为()A.6≤C≤6B.3≤C≤3C.3≤C≤6 D.3≤C≤6二.填空题13.已知圆锥底面圆的半径为5,高为12,则圆锥的侧面积为(结果保留π).14.如图,点A,B,C,D是⊙O上的四个点,点B是弧AC的中点,如果∠ABC=70°,那∠ADB=.15.如图,MN为⊙O的直径,MN=10,AB为⊙O的弦,已知MN⊥AB于点P,AB=8,现要作⊙O的另一条弦CD,使得CD=6且CD∥AB,则PC的长度为.16.如图,AB是⊙O的直径,点C、D在⊙O上,若∠DCB=110°,则∠AED=.17.如图,AB是⊙O的直径,点C、D在⊙O上,∠AOC=70°,AD∥OC,则∠ABD=.18.如图,在平面直角坐标系中,⊙O的半径为5,弦AB的长为6,过O作OC⊥AB于点C,⊙O内一点D的坐标为(﹣2,1),当弦AB绕O点顺时针旋转时,点D到AB的距离的最小值是.三.解答题19.已知等边△ABC内接于⊙O,D为弧BC的中点,连接DB、DC,过C作AB的平行线,交BD的延长线于点E.(1)求证:CE与⊙O相切;(2)若AB长为6,求CE长.20.如图,AB是⊙O的直径,弦CD与AB交于点E,过点B的切线BP与CD的延长线交于点P,连接OC,CB.(1)求证:AE•EB=CE•ED;(2)若⊙O的半径为3,OE=2BE,=,求线段DE和PE的长.21.如图,△ABC内接于⊙O,∠ACB=60°,BD是⊙O的直径,点P是BD延长线上一点,且PA是⊙O的切线.(1)求证:AP=AB;(2)若PD=,求⊙O的直径.22.如图所示,⊙O是等腰三角形ABC的外接圆,AB=AC,延长BC至点D,使CD=AC,连接AD交⊙O于点E,连接BE、CE,BE交AC于点F.(1)求证:CE=AE;(2)填空:①当∠ABC=时,四边形AOCE是菱形;②若AE=,AB=,则DE的长为.23.如图,已知AB为⊙O的直径,C为⊙O上异于A、B的一点,过C点的切线于BA的延长线交于D点,E为CD上一点,连EA并延长交⊙O于H,F为EH上一点,且EF=CE,C F 交延长线交⊙O于G.(1)求证:弧AG=弧GH;(2)若E为DC的中点,sim∠CDO=,AH=2,求⊙O的半径.24.在等边△ABC中,BC=8,以AB为直径的⊙O与边AC、BC分别交于点D、E,过点D作DF⊥BC,垂足为F.(1)求证:DF为⊙O的切线.(2)求弧DE的长度;(3)求EF的长.25.如图,△ACB内接于圆O,AB为直径,CD⊥AB与点D,E为圆外一点,EO⊥AB,与BC 交于点G,与圆O交于点F,连接EC,且EG=EC.(1)求证:EC是圆O的切线;(2)当∠ABC=22.5°时,连接CF,①求证:AC=CF;②若AD=1,求线段FG的长.参考答案一.选择题1.解:∵四边形ABCD为圆的内接四边形,∴∠A:∠B:∠C:∠D=1:2:3:2,而∠B+∠D=180°,∴∠D=×180°=90°.故选:C.2.解:∵AB为直径,∴∠ACB=90°,∴BC===3,∵OD⊥AC,∴CD=AD=AC=4,在Rt△CBD中,BD==2.故选:C.3.解:A、菱形的对角线垂直但不一定相等,故错误;B、到线段两端点距离相等的点,在线段的垂直平分线上,正确;C、点到直线的距离就是点到直线的垂线段的长度,故错误;D、过不在同一直线上的三点确定一个圆,故错误,故选:B.4.解:这个圆锥的侧面积=×2π×5×13=65π(cm2).故选:B.5.解:连接OC,如图,设∠OAC=α,则∠OAC=∠ABC=α,∠AOC=2∠ABC=2α,∵OA=OC,∴∠OCA=∠OAC=α,∴α+2α+α=180°,解得α=45°,∴∠AOC=90°,∴△AOC为等腰直角三角形,∴AC=OA=5.故选:A.6.解:连接BI、CI,如图所示:∵点I为△ABC的内心,∴BI平分∠ABC,∴∠ABI=∠CBI,由平移得:AB∥DI,∴∠ABI=∠BID,∴∠CBI=∠BID,∴BD=DI,同理可得:C E=EI,∴△DIE的周长=DE+DI+EI=DE+BD+CE=BC=5,即图中阴影部分的周长为5,故选:B.7.解:∵∠ACB=90°,∠CAB=30°,BC=3,∴AB=2BC=6,∴AC===3,∵O、H分别为AB、AC的中点,∴OB=AB=3,CH=AC=,在Rt△BCH中,BH==,∵旋转角度为120°,∴阴影部分的面积=﹣=π.故选:A.8.【解答】解:OA交BC于E,如图,∵OA⊥BC,∴=,CE=BE,∴∠AOB=2∠CDA=2×30°=60°,在Rt△OBE中,OE=OB=,∴BE=OE=,∴BC=2BE=3.故选:B.9.解:由题意得:正六边形的每个内角都等于120°,正方形的每个内角都等于90°,故∠BAC=360°﹣120°﹣90°=150°,∵AB=AC,∴∠ABC=∠ACB==15°.故选:B.10.解:连接OB、OC、OD,S 扇形CAE ==2π,S △AOC ==,S △BOC ==,S 扇形OBD ==,∴S 阴影=S 扇形OBD ﹣2S △BOC +S 扇形CAE ﹣2S △AOC =﹣2+2π﹣2=﹣4; 故选:A .11.解:连接OB ,如图,∵AB 为切线,∴OB ⊥AB ,∴∠ABO =90°,∴∠AOB =90°﹣∠A =90°﹣28°=62°,∴∠ACB =∠AOB =31°.故选:C .12.解:根据对称性可知,△GKI ,△HLJ 是等边三角形.阴影部分是正六边形,边长为GK的.∵GK 的最大值为2,GK 的最小值为3,∴阴影部分的正六边形的边长的最大值为,最小值为1,∴图中阴影部分的周长C 的取值范围为:4≤C ≤6.故选:C.二.填空题(共6小题)13.解:∵圆锥的底面半径为5,高为12,∴圆锥的母线长为13,∴它的侧面积=π×13×5=65π,故答案为:65π.14.解:∵四边形ABCD内接于⊙O,∴∠ABC+∠ADC=180°,∴∠ADC=180°﹣70°=110°.∵点B是弧AC的中点,∴弧AB=弧BC.∴∠ADB=∠BDC.∴∠ADB=∠ADC=×110°=55°.故答案为55°.15.解:当AB、CD在圆心O的两侧时,如图,连接OA、OC,∵AB∥CD,MN⊥AB,∴AP=AB=4,MN⊥CD,∴CQ=CD=3,在Rt△OAP中,OP==3,同理:OQ=4,则PQ=OQ+OP=7,∴PC===,当AB、CD在圆心O的同侧时,PQ=OQ﹣OP=1,∴PC===;故答案为:或.16.解:连接BE,如图,∵AB是⊙O的直径,∴∠AEB=90°,∵∠DEB+∠DCB=180°,∴∠DEB=180°﹣110°=70°,∴∠AED=∠AEB﹣∠DEB=90°﹣70°=20°.故答案为20°17.解:∵AD∥OC,∴∠BAD=∠AOC=70°,∵AB是⊙O的直径,∴∠D=90°,∴∠ABD=90°﹣70°=20°.故答案为20°.18.解:连接OB,如图所示:∵OC⊥AB,∴BC=AB=3,由勾股定理得,OC===4,当OD⊥AB时,点D到AB的距离的最小,由勾股定理得,OD==,∴点D到AB的距离的最小值为:4﹣,故答案为:4﹣.三.解答题(共7小题)19.(1)证明:连接OC,OB,∵△ABC是等边三角形,∴∠A=∠A BC=60°,∵AB∥CE,∴∠BCE=∠ABC=60°,∵OB=OC,∴∠OBC=∠OCB=30°,∴∠OCE=∠OCB+∠BCE=30°+60°=90°,∴CE与⊙O相切;(2)∵四边形ABDC是圆的内接四边形,∴∠A+∠BDC=180°,∴∠BDC=120°,∵D为弧BC的中点,∴∠DBC=∠BCD=30°,∴∠BEC=180°﹣∠EBC﹣∠BCE=90°,∵AB=BC=6,∴.20.(1)证明:连接AC、BD,如图,∵∠CAE=∠CDB,∠ACE=∠BDE,∴△ACE∽△BDE,∴AE:DE=CE:BE,∴AE•EB=CE•ED;(2)∵OE+BE=3,OE=2BE,∴OE=2,BE=1,∴AE=5,∴CE•DE=5×1=5,∵=,∴CE=DE,∴DE•DE=5,解得DE=,∴CE=3.∵PB为切线,∴PB2=PD•PC,而PB2=PE2﹣BE2,∴PD•PC=PE2﹣BE2,即(PE﹣)(PE+3)=PE2﹣1,∴PE=321.(1)证明:连接OA,如图,∵∠AOB=2∠ACB=2×60°=120°,而OA=OB,∴∠OAB=∠OBA=30°,∠AOP=60°,∵PA是⊙O的切线,∴OA⊥PA,∴∠OAP=90°,∴∠P=90°﹣60°=30°,∴∠ABP=∠P,∴AB=AP;(2)解:设⊙O的半径为r,在Rt△OPA中,∵∠P=30°,∴OP=2OA,即r+=2r,解得r=,∴⊙O的直径为2.22.证明(1)∵AB=AC,AC=CD∴∠ABC=∠ACB,∠CAD=∠D∵∠ACB=∠CAD+∠D=2∠CAD∴∠ABC=∠ACB=2∠CAD∵∠CAD=∠EBC,且∠ABC=∠ABE+∠EBC∴∠ABE=∠EBC=∠CAD,∵∠ABE=∠ACE∴∠CAD=∠ACE∴CE=AE(2)①当∠ABC=60°时,四边形AOCE是菱形;理由如下:如图,连接OE∵OA=OE,OE=OC,AE=CE∴△AOE≌△EOC(SSS)∴∠AOE=∠COE,∵∠ABC=60°∴∠AOC=120°∴∠AOE=∠COE=60°,且OA=OE=OC∴△AOE,△COE都是等边三角形∴AO=AE=OE=OC=CE,∴四边形AOCE是菱形故答案为:60°②如图,过点C作CN⊥AD于N,∵AE=,AB=,∴AC=CD=2,CE=AE=,且CN⊥AD ∴AN=DN在Rt△ACN中,AC2=AN2+CN2,①在Rt△ECN中,CE2=EN2+CN2,②∴①﹣②得:AC2﹣CE2=AN2﹣EN2,∴8﹣3=(+EN)2﹣EN2,∴EN=∴AN=AE+EN==DN∴DE=DN+EN=故答案为:23.(1)证明:如图,连接AC,BC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠B+∠CAO=90°,∵CD为⊙O的切线,∴∠ECA+∠ACO=90°,∵OC=OA,∴∠ACO=∠OAC,∴∠ECA=∠B,∵EF=CE,∴∠ECF=∠EFC,∵∠ECF=∠ECA+∠ACG,∠EFC=∠GAF+∠G,∵∠ECA=∠B=∠G,∴∠ACG=∠GAF=∠GCH,∴;(2)解:∵CH是⊙O的直径,∴∠CAH=90°,∵CD是⊙O的切线,∴∠ECO=90°,设CO=2x,∵sim∠CDO==,∴DO=6x,∴CD==4,∵E为DC的中点,∴CE==2,EH==2,∵∠ECH=∠CAH,∠CHA=∠EHC,∴△CAH∽△ECH,∴,∴CH2=AH•EH,∴AH=,∵AH=2,∴,∴x=3,∴⊙O的半径CO=2x=6.24.(1)证明:连接DO,∵△AB C是等边三角形,∴∠A=∠C=60°,∵OA=OD,∴△OAD是等边三角形,∴∠ADO=60°,∵DF⊥BC,∴∠CDF=90°﹣∠C=30°,∴∠FDO=180°﹣∠ADO﹣∠CDF=90°,即OD⊥DF,∵OD为半径,∴DF为⊙O的切线;(2)解:连接OC,OE,∵在等边△ABC中,OA=OB,∴CO⊥AB,∠OCB=∠OCA=30°,∴OB=BC==4,∵∠AOD=60°,同理∠BOE=60°,∴∠DOE=60°,∴弧DE的长度:=π;(3)解:∵△OAD是等边三角形,∴AD=AO=AB=4,∴CD=AC﹣AD=4,Rt△CDF中,∠CDF=30°,∴CF=CD=2,DF=2,连接OE,∵OB=OE,∠B=60°,∴△OBE是等边三角形,∴OB=BE=4,∴EF=BC﹣CF﹣BE=8﹣2﹣4=2.25.(1)证明:连接OC,∵OC=OB,∴∠OCB=∠B,∵EO⊥AB,∴∠OGB+∠B=90°,∵EG=EC,∴∠ECG=∠EGC,∵∠EGC=∠OGB,∴∠OCB+∠ECG=∠B+∠OGB=90°,∴OC⊥CE,∴EC是圆O的切线;(2)①证明:∵∠ABC=22.5°,∠OCB=∠B,∴∠AOC=45°,∵EO⊥AB,∴∠COF=45°,∴=,∴AC=CF;②解:作CM⊥OE于M,∵AB为直径,∴∠ACB=90°∵∠ABC=22.5°,∠GOB=90°,∴∠A=∠OGB=∠67.5°,∴∠FGC=67.5°,∵∠COF=45°,OC=OF,∴∠OFC=∠OCF=67.5°,∴∠GFC=∠FGC,∴CF=CG,∴FM=GM,∵∠AOC=∠COF,CD⊥OA,CM⊥OF,∴CD=DM,在Rt△ACD和Rt△FCM中∴Rt△ACD≌Rt△FCM(HL),∴FM=AD=1,∴FG=2FM=2.人教版九年级上册第二十三章旋转单元测试(含答案)(1)一、选择题(本大题10小题,每小题3分,共30分)1. 下列图形,既是中心对称图形又是轴对称图形的是()A B C D2. 下列旋转中,旋转中心为点A的是()A B C D3. 已知将数字“6”旋转180°,得到数字“9”;将数字“9”旋转180°,得到数字“6”.若将数字“69”旋转180°,得到的数字是()A.96 B.69 C.66 D.994. 已知△ABO与△A1B1O在平面直角坐标系中的位置如图所示,它们关于点O 成中心对称,其中点A(2,1),则点A1的坐标是()A.(2,-1)B.(-2,-1)C.(-1,-2)D.(1,-2)第4题图第5题图第6题图5. 如图,在44⨯的正方形网格中,△PMN绕某点旋转一定的角度,得到△P1M1N1,其旋转中心是()A.点A B.点B C.点C D.点D6. 如图,以点A为中心,将△ABC逆时针旋转120︒得到△AB′C′(点B,C的对应点分别为点B′,C′),连接BB′.若AC′∥BB′,则∠CAB′的度数为()A.45°B.60°C.70°D.90°7. 如图,若将△ABC绕点O逆时针旋转90°得到△A1B1C1,则顶点B的对应点B1的坐标为()A.(-4,2)B.(-2,4)C. (4,-2)D.(2,-4)第7题图第8题图第9题图8. 如图,正方形ABCD的对角线相交于点O,正方形EFGO绕点O旋转,若两个正方形的边长相等,则两个正方形重合部分的面积()A.由小变大B.由大变小C.始终不变D.先由大变小,再由小变大9. 如图,将Rt△ABC绕其直角顶点C顺时针旋转至△A′B′C,已知AC=8,BC=6,点M,M′分别是AB,A′B′的中点,则MM′的长是()A.52 B. 4 C. 3 D.510. 如图,已知△ABC与△CDA关于点O对称,过点O任作直线EF分别交AD,BC于点E,F,下面的结论:①点E与点F,点B与点D是关于点O的对称点;②直线BD必经过点O;③四边形ABCD是中心对称图形;④四边形DEOC与四边形BFOA的面积相等;⑤△AOE与△COF成中心对称.其中正确的个数为()A.2 B.3 C.4 D.5二、填空题(本大题6小题,每小题4分,共24分)11.时钟上的分针匀速旋转一周需要60分钟,则经过10分钟,分针旋转了度.12. 已知点A(x-2,3)与点B(x+4,y-5)关于原点对称,则y x的值是.13. 如图,△ODC是由△OAB绕点O顺时针旋转40°后得到的图形,若点D恰好落在AB上,且∠AOC=105°,则∠C的度数是.甲乙第13题图第14题图第15题图第16题图14. 图甲和图乙中所有的小正方形都全等,将图甲的正方形放在图乙中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是.(填序号)1 2 3 4 5-1-2-3-4-5-1-2-3-443215xyOABC15. 如图,直线y=-43x+4与x轴,y轴分别交于点A,B,把△AOB绕点A顺时针旋转90°得到△AO′B′,则点B′的坐标是______________.16. 如图,将矩形ABCD绕点A旋转至矩形AB′C′D′的位置,此时AC′的中点恰好与D 点重合,AB′交CD于点E.若DE=1,则AC的长为.三、解答题(本大题7小题,共66分)17.(6分)如图,网格中有一个四边形和两个三角形,请你分别画出三个图形关于点O 的中心对称图形.第17题图第18题图第19题图第20题图第21题图18.(8分)如图,在平面直角坐标系中,△ABC的三个顶点分别是A(3,4),B(1,2),C(5,3).(1)将△ABC平移,使得点A的对应点A1的坐标为(-2,4),在所给图的坐标系中画出平移后的△A1B1C1;(2)将△A1B1C1绕点C1逆时针旋转90°,画出旋转后的△A2B2C1,并直接写出A2,B2的坐标.19.(8分)如图,矩形ABCD绕顶点A旋转后得到矩形AEFG,点B,A,G在同一条直线上,试回答下列问题:(1)旋转角度是多少?(2)判断△ACF的形状,并说明理由.20.(10分)如图,在Rt△ABC中,∠C=90°,把Rt△ABC绕着B点逆时针旋转,得到Rt△DBE,点E在AB上,连接AD.(1)若BC=8,AC=6,求△ABD的面积;(2)设∠BDA=x°,求∠BAC的度数(用含x的式子表示).21.(10分)在四边形ABCD中,∠DAB=60°,AB=AD,线段BC绕点B顺时针旋转60°得到线段BE,连接AC,ED.(1)求证:AC=DE;(2)若DC=4,BC=6,∠DCB=30°,求AC的长.22.(12分)在正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB,DC(或它们的延长线)于点M,N,AH⊥MN于点H.A BDCE(1)如图①,当∠MAN绕点A旋转到BM=DN时,请你直接写出线段AH与AB的数量关系.(不需证明)(2)如图②,当∠MAN绕点A旋转到BM≠DN时,问(1)中线段AH与AB的数量关系还成立吗?若成立,给出证明,若不成立,说明理由.第22题图第23题图23.(12分)在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕着点B顺时针旋转角a(0°<a<90°)得到△A1BC1,A1B交AC于点E,A1C1分别交AC,BC于点D,F.(1)如图①,观察并猜想,在旋转过程中,线段BE与BF有怎样的数量关系?并证明你的结论;(2)如图②,当a=30°时,试判断四边形BC1DA的形状,并写出证明过程.附加题(20分,不计入总分)24. 图①是边长分别为a和b(a>b)的两个等边三角形纸片ABC和C′DE叠放在一起(点C与C′重合)的图形.操作与证明:(1)操作:固定△ABC,将△C′DE绕点C按顺时针方向旋转30°,连接AD,BE,如图②所示,线段BE与AD有怎样的数量关系?证明你的结论;(2)操作:若将图①中的△C′DE,绕点C按顺时针方向任意旋转一个角度α(0º≤α≤180º),连接AD,BE,如图③所示,线段BE与AD有怎样的数量关系?证明你的结论;猜想与发现:根据上面的操作过程,试猜想当α为多少度时,线段AD的长度最大,是多少?当α为多少度时,线段AD的长度最小,是多少?第24题图第二十三章旋转章末检测题一、1. B 2. A 3. B 4. B 5. B 6. D 7. B 8. C 9. A 10. D二、11. 60 12. 1213. 45°14. ③15. (7,3)16.三、17. 解:所画图形如图所示:18.解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C1即为所求,点A2的坐标为(-1,1),点B2的坐标为(1,-1).19. 解:(1)由题意,知∠BAD是旋转角,且旋转角度为90°.(2)△ACF是等腰直角三角形.理由:因为点C绕点A旋转90°到点F,所以AC=AF,∠CAF=90°.所以△ACF是等腰直角三角形.20. 解:(1)因为∠C=90°,BC=8,AC=6,所以10AB==.因为把Rt△ABC绕着B点逆时针旋转,得到Rt△DBE,所以DE=AC=6.所以S△ABD=12AB·DE=12×6×10=30.(2)因为把Rt△ABC绕着B点逆时针旋转,得到Rt△DBE,所以∠DBA=∠ABC,DB=AB.所以∠BDA=∠BAD=x°.因为∠ABD+∠BDA+∠BAD=180°,所以∠ABD=180°-2x°=∠ABC.因为∠BAC=90°-∠ABC,所以∠BAC=90°-(180°-2x°)=(2x-90)°.21.解:(1)连接BD.因为∠DAB=60°,AB=AD,所以△ABD是等边三角形.所以AB=DB,∠ABD=60°.因为线段BC绕点B顺时针旋转60°得到线段BE,所以EB=CB,∠CBE=60°.所以∠ABC=∠DBE.在△ABC和△DBE中,AB DBABC DBECB EB=⎧⎪∠=∠⎨⎪=⎩,,,所以△ABC≌△DBE(SAS).所以AC=DE.(2)连接CE.因为CB=EB,∠CBE=60°,所以△BCE是等边三角形.所以∠BCE=60°,CE=BC=6.又∠DCB=30°,所以∠DCE=90°.在Rt△DCE中,DC=4,CE=6,由勾股定理,得所以AC=DE=.22.解:(1)AH=AB(或相等)理由:因为AB=AD ,∠B=∠D ,BM=DN ,所以△ABM ≌△ADN (SAS ).所以∠BAM=∠DAN ,AM=AN.因为AH ⊥MN ,∠MAN=45°,所以∠BAM=∠MAH=22.5°.因为AM=AM ,∠B=∠AHM=90°,所以△ABM ≌△AHM (AAS ).所以AB=AH .(2)成立.证明:延长CB 至点E ,使BE=DN ,连接AE .因为AB=AD ,BE=DN ,∠ABE=∠D=90°,所以△ABE ≌△ADN (SAS )(或将△ADN 绕点A 顺时针旋转90°得到△ABE ).所以AN=AE ,∠BAE=∠DAN.因为∠MAN=45°,所以∠BAM+∠DAN=45°,即∠BAM+∠BAE=45°.所以∠EAM=∠MAN=45°且AM=AM ,AE=AN.所以△AEM ≌△ANM (SAS ).所以EM=MN ,S △AEM = S △ANM . 所以21EM ·AB=21MN ·AH.所以AB=AH . 23. 证明:(1)BE=BF.理由:因为AB=BC ,∠ABC=120°,所以∠A=∠C=30°.由旋转的性质,知∠C 1=∠C=∠A ,BC 1=BC=AB ,∠A 1BC 1=∠ABC.所以∠ABE+∠EBF=∠EBF+∠C 1BF.所以∠C 1BF=∠ABE.在△ABE 和△C 1BF 中,111ABE A C BA BC C BF ∠=∠=∠⎧⎪=⎪⎩∠⎨,,,所以△ABE ≌△C 1BF (ASA ).所以BE=BF.(2)四边形BC 1DA 是菱形.证明:因为旋转角α=30°,∠ABC=120°,所以∠ABC 1=∠ABC+α=120°+30°=150°.因为∠ABC=120°,AB=BC ,所以∠A=∠C=21(180°-120°)=30°.所以∠ABC 1+∠C 1=150°+30°=180°,∠ABC 1+∠A=150°+30°=180°.所以AB ∥C 1D ,AD ∥BC 1.所以四边形BC 1DA 是平行四边形.又因为AB=BC 1,所以□BC 1DA 是菱形.24. 解:操作与证明:(1)BE=AD .因为△C ′DE 绕点C 按顺时针方向旋转30°,所以∠BCE=∠ACD=30°.因为△ABC 与△C ′DE 是等边三角形,所以CB=CA ,CE=CD.所以△BCE ≌△ACD.所以BE=AD .(2)BE=AD .因为△C ′DE 绕点C 按顺时针方向旋转的角度为α,所以∠BCE=∠ACD=α.因为△ABC 与△C ′DE 是等边三角形,所以CB=CA ,CE=CD.所以△BCE ≌△ACD.所以BE=AD .猜想与发现:当α为180°时,线段AD 的长度最大,为a+b ;当α为0°时,线段AD 的长度最小,等于a-b .人教版九年级数学上册第24章圆单元测试题一、选择题(每小题3分,共18分)1.在⊙O 中,∠AOB =84°,弦AB 所对的圆周角度数为( )A .42°B .138°C .69°D .42°或138°2.如图1,在半径为4的⊙O 中,弦AB ∥OC ,∠BOC =30°,则AB 的长为( )A .2B .2 3C .4D .4 3图1 图23.如图2,在平面直角坐标系中,⊙A 经过原点O ,并且分别与x 轴、y 轴交于点B ,C ,已知B (8,0),C (0,6),则⊙A 的半径为( )A .3B .4C .5D .84.若100°的圆心角所对的弧长为5π cm ,则该圆的半径R 等于( )A .5 cmB .9 cm C.52 cm D.94cm 5.已知OA 平分∠BOC ,点P 在OA 上,如果以点P 为圆心的圆与OC 相离,那么⊙P 与OB 的位置关系是( )A .相离B .相切C .相交D .不能确定6.如图3,以等边三角形ABC 的BC 边为直径画半圆,分别交AB ,AC 于点E ,D ,DF 是半圆的切线,过点F 作BC 的垂线交BC 于点G .若AF 的长为2,则FG 的长为( )A .4B .3 3C .6D .2 3图3 图4二、填空题(每小题4分,共28分)7.如图4,若AB 是⊙O 的直径,AB =10 cm ,∠CAB =30°,则BC =________cm.8.如图5,在△ABC 中,AB =2,AC =2,以点A 为圆心,1为半径的圆与边BC 相切,则∠BAC 的度数是________.图59.如图6,已知在正方形ABCD 中,AB =2,以点A 为圆心,半径为r 画圆,当点D 在⊙A内且点C在⊙A外时,r的取值范围是________.图610.如图7,某同学用纸板做了一个底面圆直径为10 cm,高为12 cm的无底圆锥形玩具(接缝忽略不计),则做这个玩具所需纸板的面积是________cm2(结果保留π).图7 图811.如图8,在⊙O中,AB是⊙O的直径,弦AE的垂直平分线交⊙O于点C,交AE于点F,CD⊥AB于点D,BD=1,AE=4,则AD的长为________.12.半圆形纸片的半径为1 cm,用如图9所示的方法将纸片对折,使对折后半圆弧的中点M与圆心O重合,则折痕CD的长为________cm.图9 图1013.如图10,在矩形ABCD中,AB=5,BC=4,以CD为直径作⊙O.将矩形ABCD绕点C 旋转,使所得矩形A′B′CD′的边A′B′与⊙O相切,切点为E,边CD′与⊙O相交于点F,则CF的长为________.三、解答题(共54分)14.(8分)如图11,⊙O是△ABC的外接圆,直径AD=12,∠ABC=∠DAC,求AC的长.图1115.(10分)如图12,BE是⊙O的直径,A,D是⊙O上的两点,过点A作⊙O的切线交BE的延长线于点C.(1)若∠ADE=25°,求∠C的度数;(2)若AB=AC,CE=2,求⊙O的半径.图1216.(10分)如图13,CD为⊙O的直径,CD⊥AB,垂足为F,AO⊥BC,垂足为E,AO=1.(1)求∠C的度数;(2)求图中阴影部分的面积.图1317.(12分)如图14,在平面直角坐标系中,以点O为圆心,半径为2的圆与y轴交于点A,P(4,2)是⊙O外一点,连接AP,直线PB与⊙O相切于点B,交x轴于点C.(1)求证:PA是⊙O的切线;(2)求点B的坐标.图1418.(14分)如图15,已知△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE 上的一点,且CF∥BD.(1)求证:BE=CE;(2)试判断四边形BFCD的形状,并说明理由;(3)若BC=8,AD=10,求CD的长.图15详解详析1.D2.D [解析] 如图,过点O 作OD ⊥AB 于点D ,则AD =DB .∵AB ∥OC ,∠BOC =30°, ∴∠B =∠BOC =30°.∵在Rt △DOB 中,∠B =30°,OB =4, ∴OD =2.∴DB =42-22=2 3. ∴AB =2DB =4 3.3.C [解析] 连接BC .∵∠BOC =90°, ∴BC 为⊙A 的直径,即BC 过圆心A . 在Rt △BOC 中,OB =8,OC =6,根据勾股定理,得BC =10,则⊙A 的半径为5. 4.B [解析] 由100πR180=5π,求得R =9.5.A6.B [解析] 连接OD .∵DF 为半圆O 的切线,∴OD ⊥DF . ∵△ABC 为等边三角形,∴AB =BC =AC ,∠A =∠B =∠C =60°. 又∵OD =OC ,∴△OCD 为等边三角形,∴∠CDO =∠A =60°,∠DOC =∠ABC =60°, ∴OD ∥AB ,∴DF ⊥AB .在Rt △AFD 中,∵∠ADF =90°-∠A =30°,AF =2,∴AD =4. ∵O 为BC 的中点,易知D 为AC 的中点, ∴AC =8,∴FB =AB -AF =8-2=6.在Rt △BFG 中,∠BFG =90°-∠B =30°, ∴BG =3,根据勾股定理,得FG =3 3. 故选B.7.5 [解析] ∵AB 是⊙O 的直径, ∴∠ACB =90°.又∵AB =10 cm ,∠CAB =30°, ∴BC =12AB =5 cm.8.105° [解析] 设⊙A 与BC 相切于点D ,连接AD ,则AD ⊥BC . 在Rt △ABD 中,AB =2,AD =1, 所以∠B =30°, 因而∠BAD =60°.同理,在Rt △ACD 中,得到∠CAD =45°, 因而∠BAC 的度数是105°.9.2<r <2 210.65π [解析] 如图,过点P 作PO ⊥AB 于点O ,则O 为AB 的中点,即圆锥底面圆的圆心.在Rt △PAO 中,PA =OP 2+OA 2=122+52=13.由题意,得S 侧面积=12lr =12×底面圆周长×母线长=12×π×10×13=65π,∴做这个玩具所需纸板的面积是65π cm 2.故答案为65π.11.4 [解析] ∵CF 垂直平分AE ,∴AF =12AE =2,∠AFO =90°.∵CD ⊥AB ,∴∠ODC =∠AFO =90°. 又∵OA =OC ,∠AOF =∠COD , ∴△AOF ≌△COD (AAS), ∴CD =AF =2.设⊙O 的半径为r ,则OD =r -1.由勾股定理,得OC 2=OD 2+CD 2,即r 2=(r -1)2+22, 解得r =52,∴AD =AB -1=2×52-1=4.故答案为4.12. 3 [解析] 如图,连接MO 交CD 于点E ,则MO ⊥CD ,连接CO .∵MO ⊥CD ,∴CD =2CE .∵对折后半圆弧的中点M 与圆心O 重合, ∴ME =OE =12OC =12cm.在Rt △COE 中,CE =12-⎝ ⎛⎭⎪⎫122=32(cm), ∴折痕CD 的长为2×32=3(cm). 13.4 [解析] 连接OE ,延长EO 交CD ′于点G ,过点O 作OH ⊥B ′C 于点H ,则∠OEB ′=∠OHB ′=90°.∵矩形ABCD 绕点C 旋转所得矩形为A ′B ′CD ′,∴∠B ′=∠B ′CD ′=90°,AB =CD =5,BC =B ′C =4,∴四边形OEB ′H 和四边形EB ′CG 都是矩形,OE =OD =OC =2.5, ∴B ′H =OE =2.5,∴CH =B ′C -B ′H =1.5, ∴CG =B ′E =OH =OC 2-CH 2=2.52-1.52=2.∵四边形EB ′CG 是矩形,∴∠OGC =90°,即OG ⊥CD ′, ∴CF =2CG =4. 故答案为4.14.解:连接CD .∵∠ABC =∠DAC ,∴AC ︵=CD ︵,∴AC =CD . ∵AD 是⊙O 的直径, ∴∠ACD =90°.∴AC 2+CD 2=AD 2,即2AC 2=AD 2.∴AC =22AD =6 2. 15.解:(1)如图,连接OA .∵AC 是⊙O 的切线,OA 是⊙O 的半径,∴OA ⊥AC , ∴∠OAC =90°.∵∠ADE =25°,∴∠AOE =2∠ADE =50°,∴∠C =90°-∠AOE =90°-50°=40°. (2)∵AB =AC ,∴∠B =∠C .∵∠AOC =2∠B ,∴∠AOC =2∠C . ∵∠OAC =90°,∴∠AOC +∠C =90°,∴3∠C =90°,∴∠C =30°,∴OA =12OC .设⊙O 的半径为r . ∵CE =2,∴r =12(r +2),解得r =2,∴⊙O 的半径为216.解:(1)∵CD 是⊙O 的直径,CD ⊥AB , ∴AD ︵=BD ︵,∴∠C =12∠AOD .∵∠AOD =∠COE ,∴∠C =12∠COE .又∵AO ⊥BC ,∴∠C +∠COE =90°, ∴∠C =30°.(2)连接OB ,由(1)知∠C =30°, ∴∠AOD =60°,∴∠AOB =120°. 在Rt △AOF 中,AO =1,∠AOF =60°, ∴∠A =30°,∴OF =12,∴AF =32,∴AB =2AF = 3.故S 阴影=S 扇形OAB -S △OAB =13π-34.17.解:(1)证明:∵⊙O 的半径为2,∴OA =2. 又∵P (4,2),∴PA ∥x 轴,即PA ⊥OA , 则PA 是⊙O 的切线.(2)连接OP ,OB ,过点B 作BQ ⊥OC 于点Q . ∵PA ,PB 为⊙O 的切线,∴PB =PA =4,可证得Rt △PAO ≌Rt △PBO ,∴∠APO =∠BPO . ∵AP ∥OC ,∴∠APO =∠POC , ∴∠BPO =∠POC ,∴OC =PC .设OC =PC =x ,则BC =PB -PC =4-x ,OB =2.在Rt △OBC 中,根据勾股定理,得OC 2=OB 2+BC 2,即x 2=22+(4-x )2, 解得x =52,∴BC =4-x =32.∵S △OBC =12OB ·BC =12OC ·BQ ,∴BQ =2×32÷52=65.在Rt △OBQ 中,根据勾股定理,得OQ =OB 2-BQ 2=85,∴点B 的坐标为(85,-65).18.解:(1)证明:∵AD 是⊙O 的直径,∴∠ABD =∠ACD =90°. 在Rt △ABD 和Rt △ACD 中, ∵⎩⎪⎨⎪⎧AB =AC ,AD =AD ,∴Rt △ABD ≌Rt △ACD ,∴BD =CD . ∵AB =AC ,BD =CD ,∴点A ,D 都在线段BC 的垂直平分线上, ∴AD 垂直平分BC ,∴BE =CE . (2)四边形BFCD 是菱形.理由:由(1)知AD 垂直平分BC ,∴BF =CF . ∵CF ∥BD ,∴∠DBE =∠FCE ,∠BDE =∠CFE . 又∵BE =CE ,∴△BDE ≌△CFE ,∴BD =CF . 又∵BD =CD ,BF =CF , ∴BD =CD =CF =BF , ∴四边形BFCD 是菱形.(3)连接OB .∵BC =8,AD ⊥BC , ∴BE =CE =4.∵AD =10,∴OB =OD =5.在Rt △OBE 中,由勾股定理,得OE =OB 2-BE 2=3, ∴DE =OD -OE =2,∴CD =CE 2+DE 2=42+22=2 5.。

人教版九年级数学上册第24章 圆单元测试及答案解析【新】

人教版九年级数学上册第24章 圆单元测试及答案解析【新】

第二十四章圆单元测试一、单选题(共10题;共30分)1、如图,⊙O是△ABC的外接圆,已知∠ABO=50°,则∠ACB的大小为()A、40°B、30°C、45°D、50°2、下列说法:①平分弦的直径垂直于弦;②三点确定一个圆;③相等的圆心角所对的弧相等;④垂直于半径的直线是圆的切线;⑤三角形的内心到三条边的距离相等。

其中不正确的有()个。

A、1B、2C、3D、43、如图,四边形ABCD内接于⊙O,已知∠ADC=140°,则∠AOC的大小是()A、80°B、100°C、60°D、40°4、已知Rt△ACB,∠ACB=90°,I为内心,CI交AB于D,BD=,AD=,则S△ACB=()A、12B、6C、3D、7.55、如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为()A、B、C、D、6、如图,⊙O的内接四边形ABCD两组对边的延长线分别交于点E,F,∠E=α,∠F=β,则∠A=()A、α+βB、C、180﹣α﹣βD、7、如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A、2B、2+C、2D、2+8、如图,已知AB是⊙O的直径,∠CAB=50°,则∠D的度数为()A、20°B、40°C、50°D、70°9、已知A、B、C三点在⊙O上,且AB是⊙O内接正三角形的边长,AC是⊙O内接正方形的边长,则∠BAC的度数为()A、15°或105°B、75°或15°C、75°D、105°10、如图,在⊙O中,∠ABC=52°,则∠AOC等于()A、52°B、80°C、90°D、104°二、填空题(共8题;共25分)11、如图,⊙O是ABC的外接圆,OCB=40°,则A的度数等于________°.12、如图,已知半圆O的直径AB=4,沿它的一条弦折叠.若折叠后的圆弧与直径AB相切于点D,且AD:DB=3:1,则折痕EF的长________ .13、如图,若∠1=∠2,那么与 ________相等.(填一定、一定不、不一定)14、如图,AB是半圆O的直径,点C、D是半圆O的三等分点,若弦CD=2,则图中阴影部分的面积为________.15、已知扇形的圆心角为150°,它所对应的弧长20πcm,则此扇形的半径是________ cm,面积是________ cm2.16、如图,△ABC是⊙O的内接三角形,AD是⊙O的直径,∠ABC=50°,则∠CAD=________.17、若一个圆锥的侧面积是它底面积的2倍,则这个圆锥的侧面展开图的圆心角是________.18、已知一圆锥的底面半径为1cm,母线长为4cm,则它的侧面积为________cm2(结果保留π).三、解答题(共5题;共35分)19、已知:△ABC是边长为4的等边三角形,点O在边AB上,⊙O过点B且分别与边AB,BC相交于点D,E,EF⊥AC,垂足为F.(1)求证:直线EF是⊙O的切线;(2)当直线DF与⊙O相切时,求⊙O的半径.20、【阅读材料】已知,如图1,在面积为S的△ABC中,BC=a,AC=b,AB=c,内切圆O的半径为r,连接OA,OB,OC,△ABC被划分为三个小三角形.∵S=S△OBC+S△OAC+S△OAB=BC•r+AC•r+AB•r=ar+br+cr=(a+b+c)r.∴r= .(1)【类比推理】如图2,若面积为S的四边形ABCD存在内切圆(与各边都相切的圆),各边长分别为AB=a,BC=b,CD=c,AD=d,求四边形的内切圆半径r的值;(2)【理解应用】如图3,在Rt△ABC中,内切圆O的半径为r,⊙O与△ABC各边分别相切于D、E和F,已知AD=3,BD=2,求r的值.21、如图,公路MN与公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP=160m.假设拖拉机行驶时,周围100m以内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否受到噪音影响?说明理由;如果受影响,且知拖拉机的速度为18km/h,那么学校受影响的时间是多少秒?22、如图,已知矩形ABCD的边AB=3cm、BC=4cm,以点A为圆心,4cm为半径作⊙A,则点B、C、D与⊙A怎样的位置关系.23、已知圆的半径为R,试求圆内接正三角形、正四边形、正六边形的边长之比.四、综合题(共1题;共10分)24、(2017•襄阳)如图,AB为⊙O的直径,C、D为⊙O上的两点,∠BAC=∠DAC,过点C做直线EF⊥AD,交AD的延长线于点E,连接BC.(1)求证:EF是⊙O的切线;(2)若DE=1,BC=2,求劣弧的长l.答案解析一、单选题1、【答案】 A【考点】圆周角定理【解析】【分析】根据等边对等角及圆周角定理求角即可.【解答】∵OA=OB∴∠OAB=∠OBA=50°∴∠AOB=80°∴∠ACB=40°.故选A.【点评】此题综合运用了等边对等角、三角形的内角和定理以及圆周角定理2、【答案】 D【考点】垂径定理,确定圆的条件,三角形的内切圆与内心【解析】【解答】①中被平分的弦是直径时,不一定垂直,故错误;②不在同一条直线上的三个点才能确定一个圆,故错误;③应强调在同圆或等圆中,否则错误;④中垂直于半径,还必须经过半径的外端的直线才是圆的切线,故错误;⑤三角形的内心是三角形三个角平分线的交点,所以到三条边的距离相等,故正确;综上所述,①、②、③、④错误。

新人教版九年级数学上册第24章 圆 单元试题(无答案)

新人教版九年级数学上册第24章 圆 单元试题(无答案)

优质文档新人教版九年级数学上册第24章 圆单元测试一、精心选一选,慧眼识金:13.如图3,⊙O的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM长的最小值为( ) A .2 B .3 C .4 D .514.如图,点A 、B 、C 在⊙O 上,AO ∥BC ,∠OAC=20°,则∠AOB 是( )A. 1O ° B. 20° C. 40° D. 70°15.如图24—B —4,⊙O 1和⊙O 2内切,它们的半径分别为3和1,过O 1作⊙O 2的切线,切点为A ,则O 1A 的长是( )A .2B .4C .3D .516.圆心在原点O ,半径为5的⊙O,点P (-3,4)与⊙O 的位置关系是( ). A. 在⊙O 内 B. 在⊙O 上 C. 在⊙O 外 D. 不能确定17.两圆的半径分别为R =5,r =3,圆心距d =6,则这两圆的位置关系是 ( ). A .外离 B .外切 C .相交 D .内含18.△ABC 中,∠C =90°,AC =12cm ,BC =5 cm ,若以C 为圆心,5cm 为半径作圆,则斜边AB 与⊙O 的位置关系是 ( ).A .相离B .相切C .相交D .不能确定 19.如图24—A —7,两个半径都是4cm 的圆外切于点C ,一只蚂蚁由点A 开始依A 、B 、C 、D 、E 、F 、C 、G 、A 的顺序沿着圆周上的8段长度相等的路径绕行,蚂蚁在这8段路径上不断爬行,直到行走2006πcm 后才停下来,则蚂蚁停的那一个点为( )A .D 点B .E 点C .F 点D .G 点 20. 如图,在△ABC 中,已知∠C =90°,BC =3,AC =4,则它的内切圆半径是( )A .23 B .32 C .2 D .1二、细心填一填,一锤定音:1.如果圆的内接正六边形的边长为6cm ,则其外接圆的半径为 2.已知一条弧的长是3 厘米, 这条弧所在圆的半径是6 厘米,则这条弧所对的圆心角是 度。

九年级数学上册第24章圆单元测试题(人教版附答案)

九年级数学上册第24章圆单元测试题(人教版附答案)

九年级数学上册第24章圆单元测试题(人教版附答案)第二十四章圆单元测试一、单选题(共10题;共30分) 1、如图,⊙O是△ABC的外接圆,已知∠ABO=50°,则∠ACB的大小为() A、40° B、30° C、45° D、50° 2、下列说法:①平分弦的直径垂直于弦;②三点确定一个圆;③相等的圆心角所对的弧相等;④垂直于半径的直线是圆的切线;⑤三角形的内心到三条边的距离相等。

其中不正确的有()个。

A、1 B、2 C、3 D、4 3、如图,四边形ABCD内接于⊙O,已知∠ADC=140°,则∠AOC的大小是() A、80° B、100° C、60° D、40° 4、已知Rt△ACB,∠ACB=90°,I 为内心,CI交AB于D,BD= , AD= ,则S△ACB=() A、12 B、6 C、3 D、7.5 5、如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为()A、 B、 C、 D、 6、如图,⊙O的内接四边形ABCD两组对边的延长线分别交于点E,F,∠E=α,∠F=β,则∠A=() A、α+βB、C、180�α�β D、 7、如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是() A、2 B、2+ C、2 D、2+ 8、如图,已知AB 是⊙O的直径,∠CAB=50°,则∠D的度数为() A、20° B、40° C、50° D、70° 9、已知A、B、C三点在⊙O上,且AB是⊙O内接正三角形的边长,AC是⊙O内接正方形的边长,则∠BAC的度数为()A、15°或105° B、75°或15° C、75° D、105° 10、如图,在⊙O中,∠ABC=52°,则∠AOC等于() A、52° B、80° C、90° D、104° 二、填空题(共8题;共25分) 11、如图,⊙O是 ABC 的外接圆,OCB=40°,则 A的度数等于________°. 12、如图,已知半圆O的直径AB=4,沿它的一条弦折叠.若折叠后的圆弧与直径AB相切于点D,且AD:DB=3:1,则折痕EF的长________ .13、如图,若∠1=∠2,那么与 ________相等.(填一定、一定不、不一定) 14、如图,AB是半圆O的直径,点C、D是半圆O的三等分点,若弦CD=2,则图中阴影部分的面积为________.15、已知扇形的圆心角为150°,它所对应的弧长20πcm,则此扇形的半径是________ cm,面积是________ cm2 . 16、如图,△ABC是⊙O的内接三角形,AD是⊙O的直径,∠ABC=50°,则∠CAD=________. 17、若一个圆锥的侧面积是它底面积的2倍,则这个圆锥的侧面展开图的圆心角是________. 18、已知一圆锥的底面半径为1cm,母线长为4cm,则它的侧面积为________cm2(结果保留π).三、解答题(共5题;共35分) 19、已知:△ABC是边长为4的等边三角形,点O在边AB上,⊙O过点B且分别与边AB,BC相交于点D,E,EF⊥AC,垂足为F. (1)求证:直线EF是⊙O的切线;(2)当直线DF与⊙O相切时,求⊙O的半径.20、【阅读材料】已知,如图1,在面积为S的△ABC中,BC=a,AC=b,AB=c,内切圆O的半径为r,连接OA,OB,OC,△ABC被划分为三个小三角形.∵S=S△OBC+S△OAC+S△OAB= BC•r+ AC•r+ AB•r= ar+ br+ cr= (a+b+c)r.∴r= .(1)【类比推理】如图2,若面积为S的四边形ABCD存在内切圆(与各边都相切的圆),各边长分别为AB=a,BC=b,CD=c,AD=d,求四边形的内切圆半径r的值;(2)【理解应用】如图3,在Rt△ABC中,内切圆O的半径为r,⊙O与△ABC各边分别相切于D、E和F,已知AD=3,BD=2,求r的值.21、如图,公路MN与公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP=160m.假设拖拉机行驶时,周围100m以内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否受到噪音影响?说明理由;如果受影响,且知拖拉机的速度为18km/h,那么学校受影响的时间是多少秒?22、如图,已知矩形ABCD的边AB=3cm、BC=4cm,以点A为圆心,4cm为半径作⊙A,则点B、C、D与⊙A怎样的位置关系.23、已知圆的半径为R,试求圆内接正三角形、正四边形、正六边形的边长之比.四、综合题(共1题;共10分) 24、(2017•襄阳)如图,AB为⊙O的直径,C、D为⊙O上的两点,∠BAC=∠DAC,过点C做直线EF⊥AD,交AD的延长线于点E,连接BC. (1)求证:EF是⊙O的切线; (2)若DE=1,BC=2,求劣弧的长l.答案解析一、单选题 1、【答案】 A 【考点】圆周角定理【解析】【分析】根据等边对等角及圆周角定理求角即可.【解答】∵OA=OB ∴∠OAB=∠OBA=50° ∴∠AOB=80°∴∠ACB=40°.故选A.【点评】此题综合运用了等边对等角、三角形的内角和定理以及圆周角定理 2、【答案】 D 【考点】垂径定理,确定圆的条件,三角形的内切圆与内心【解析】【解答】①中被平分的弦是直径时,不一定垂直,故错误;②不在同一条直线上的三个点才能确定一个圆,故错误;③应强调在同圆或等圆中,否则错误;④中垂直于半径,还必须经过半径的外端的直线才是圆的切线,故错误;⑤三角形的内心是三角形三个角平分线的交点,所以到三条边的距离相等,故正确;综上所述,①、②、③、④错误。

人教版九年级数学上册《第二十四章圆 》测试卷-附参考答案

人教版九年级数学上册《第二十四章圆》测试卷-附参考答案一、单选题1.已知AB是⊙O的直径,的度数为60°,⊙O的半径为2cm,则弦AC的长为()A.2cm B.cm C.1cm D.cm2.已知圆O的半径为5,同一平面内有一点P,且OP=4,则点P与圆O的关系是()A.点P在圆内B.点P在圆外C.点P在圆上D.无法确定3.如图,是的直径,若,则圆周角的度数是()A.B.C.D.4.如图,已知半圆O与四边形的边相切,切点分别为D,E,C,设半圆的半径为2,则四边形的周长为()A.7 B.9 C.12 D.145.如图,是的内接三角形,作,并与相交于点D,连接BD,则的大小为()A.B.C.D.6.如图,点A,B,C在上,四边形是平行四边形.若对角线,则的长为()A.B.C.D.7.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若QP=QO,则的值为()A.B.C.D.8.如图,半径为的扇形中,是上一点,垂足分别为,若,则图中阴影部分面积为( )A.B.C.D.二、填空题9.如图,是的弦,C是的中点,交于点D.若,则的半径为 .10.如图,是的直径,交于点,且,则的度数= .11.AB为半圆O的直径,现将一块等腰直角三角板如图放置,锐角顶点P在半圆上,斜边过点B,一条直角边交该半圆于点Q.若AB=2,则线段BQ的长为.12.如图,为的外接圆,其中点在上,且,已知和则.13.如图,以正方形的顶点为圆心,以对角线为半径画弧,交的延长线于点,连结,若,则图中阴影部分的面积为.(结果用表示)三、解答题14.如图,CD是⊙O的直径,弦AB⊥CD于E,是的中点,连接BC,AO,BD.求的大小.15.如图,是的外接圆,且,点M是的中点,作交的延长线于点N,连接交于点D.(1)求证:是的切线;(2)若,求的半径.16.如图,等腰内接于,AC的垂直平分线交边BC于点E,交于F,垂足为D,连接AF并延长交BC的延长线于点P.(1)求证:;(2)若,求的度数.17.如图,在中,是边上一点,以为圆心,为半径的圆与相交于点,连接,且.(1)求证:是的切线;(2)若,求的长.18.如图,⊙O的半径OC垂直于弦AB于点D,点P在OC的延长线上,AC平分∠PAB.(1)判断AP与⊙O的位置关系,并说明理由;(2)若⊙O的半径为4,弦AB平分OC,求与弦AB、AC围成的阴影部分的面积.参考答案:1.A2.A3.B4.D5.A6.C7.D8.B9.510.24°11.12.13.14.解:又是中点在和中≌∴BD=OA是直径,OA是半径90°且30°. 15.(1)证明:∵∴∵点M是的中点∴∴∴∴是的直径∴∵∴∴是的切线;(2)解:如图所示,连接,设交于D∵∴设的半径为r,则∵∴在中,由勾股定理的∴∴∴的半径为.16.(1)证明:如图,连接BF.∵AC的垂直平分线交边BC于点E,交于F,且圆是轴对称图形,∴O,E,F三点共线,∴∴∴,∵,∴(2)解:如图,连接CF,设,则∵∴∵∴∴∴.∵∴,即易证(SAS),∴∵,∴,∴,∴,解得∴∴的度数为108°.17.(1)证明:连接OD.∵AC=CD∴∠A=∠ADC.∵OB=OD∴∠B=∠BDO.∵∠ACB=90°∴∠A+∠B=90°.∴∠ADC+∠BDO=90°.∴∠ODC=180°﹣(∠ADC+∠BDO)=90°.又∵OD是⊙O的半径∴CD是⊙O的切线.(2)解:∵AC=CD,∠A=60°∴△ACD是等边三角形.∴∠ACD=60°.∴∠DCO=∠ACB﹣∠ACD=30°.在Rt△OCD中,OD=CDtan∠DCO tan30°=2.∵∠B=90°﹣∠A=30°,OB=OD∴∠ODB=∠B=30°.∴∠BOD=180°﹣(∠B+∠BDO)=120°.∴的长18.(1)解:AP与⊙O的位置关系是相切,理由如下:连接平分垂直于弦,且是半径是的切线;(2)解:连接OB,如图所示:∵弦AB垂直平分OC∴∴∴∵OA=OC∴△OAC是等边三角形∴∴△OBD≌△CAD(ASA)∴。

人教版九年级数学上册 第24章 圆 单元检测试卷(有答案)

人教版九年级数学上册第24章圆单元检测试卷一、单选题(共10题;共30分)1.如图,⊙O的直径AB=6,若∠BAC=50°,则劣弧AC的长为()A. 2πB.C.D.2.如图,ABCD为⊙O内接四边形,若∠D=85°,则∠B=()A. 85°B. 95°C. 105°D. 115°3.如图,正方形ABCD的边长为2cm,以点B为圆心,AB的长为半径作弧AC,则图中阴影部分的面积为()A. (4-π)cm2B. (8-π)cm2C. (2π-4)cm2D. (π-2)cm24.如图,在⊙O中,弦AB与直径CD垂直,垂足为E,则下列结论中错误的是()A. AE=BEB. CE=DEC. AC=BCD. AD=BD5.如图,两圆相交于A,B两点,小圆经过大圆的圆心O,点C、D分别在两圆上,若∠ADB=110°,则∠ACB 的度数为()A. 35°B. 40°C. 50°D. 80°6.圆的半径为13cm,两弦AB∥CD,AB=24cm,CD=10cm,则两弦AB和CD的距离是()A. 7cmB. 17cmC. 12cmD. 7cm或17cm7.如图,AB为⊙O的直径,点C在⊙O上,若∠C=16°,则∠BOC的度数是()A. 74°B. 48°C. 32°D. 16°8.如图,四边形ABCD内接于圆O,AB为圆O的直径,CM切圆O于点C,∠BCM=60º,则∠B的正切值是()A. B. C. D.9.如图,BD是⊙O的直径,点A,C在⊙O上,,∠AOB=60°,则∠BDC的度数是()A. 60°B. 45°C. 35°D. 30°10.已知AB是半径为1的圆O的一条弦,且AB=a<1,以AB为一边在圆O内作正△ABC,点D为圆O上不同于点A的一点,且DB=AB=a,DC的延长线交圆O于点E,则AE的长为()A. B. 1 C. D. a二、填空题(共10题;共30分)11.如图,MN为⊙O的弦,∠M=50°,则∠MON等于________.12.在直径为10cm的圆中,弦的长为8cm,则它的弦心距为________cm.13.(2016•徐州)如图,⊙O是△ABC的内切圆,若∠ABC=70°,∠ACB=40°,则∠BOC=________°.14.如图,在边长为2的正八边形中,把其不相邻的四条边均向两边延长相交成一个四边形ABCD,则四边形ABCD的周长是________.15.(2017•玉林)如图,在边长为2的正八边形中,把其不相邻的四条边均向两边延长相交成一个四边形ABCD,则四边形ABCD的周长是________.16.已知的半径为,,是的两条弦,,,,则弦和之间的距离是________ .17.圆锥的底面直径为40cm,母线长90cm则它的侧面展开图的圆心角度数为________18.如图,等腰△ABC的底边BC的长为4cm,以腰AB为直径的⊙O交BC于点D,交AC于点E,则DE的长为________ cm.19.如图,点C是⊙O优弧ACB上的中点,弦AB=6cm,E为OC上任意一点,动点F从点A出发,以每秒1cm的速度沿AB方向向点B匀速运动,若y=AE2﹣EF2,则y与动点F的运动时间x(0≤x≤6)秒的函数关系式为________.20.如图,圆心都在x轴正半轴上的半圆O1,半圆O2,…,半圆O n与直线l相切.设半圆O1,半圆O2,…,半圆O n的半径分别是r1,r2,…,r n,则当直线l与x轴所成锐角为30°,且r1=1时,r2018=________.三、解答题(共8题;共60分)21.如图,要把残破的轮片复制完整,已知弧上的三点A、B、C.①用尺规作图法找出所在圆的圆心(保留作图痕迹,不写作法);②设△ABC是等腰三角形,底边BC=8cm,腰AB=5cm,求圆片的半径R.22.如图,在⊙O中,半径OA⊥OB,∠B=28°,求∠BOC的度数.23.如图,是⊙D的圆周,点C在上运动,求∠BCD的取值范围.24.如图,AB和CD是⊙O的弦,且AB=CD,E、F分别为弦AB、CD的中点,证明:OE=OF.25.如图,AB是⊙O的直径,CD切⊙O于点C,AC平分∠DAB,求证:AD⊥CD.26.如图,在△ABC中,BA=BC,以AB为直径的⊙O分别交AC,BC于点D,E,BC的延长线与⊙O的切线AF交于点F.(1)求证:∠ABC=2∠CAF;(2)若AC=2,CE:EB=1:4,求CE,AF的长.27.如图,AB为⊙O的直径,AD与⊙O相切于一点A,DE与⊙O相切于点E,点C为DE延长线上一点,且CE=CB.⑴求证:BC为⊙O的切线;⑵若AB=2,AD=2,求线段BC的长.28.如图,四边形OBCD中的三个顶点在⊙O上,点A是⊙O上的一个动点(不与点B、C、D重合).(1)若点A在优弧上,且圆心O在∠BAD的内部,已知∠BOD=120°,求∠OBA+∠ODA度数(2)若四边形OBCD为平行四边形.①当圆心O在∠BAD的内部时,求∠OBA+∠ODA的度数;②当圆心O在∠BAD的外部时,请画出图形并直接写出∠OBA与∠ODA的数量关系.答案解析部分一、单选题1.【答案】D2.【答案】B3.【答案】A4.【答案】B5.【答案】A6.【答案】D7.【答案】C8.【答案】D9.【答案】D10.【答案】B二、填空题11.【答案】80°12.【答案】313.【答案】12514.【答案】8+815.【答案】8+816.【答案】2或1417.【答案】80°18.【答案】219.【答案】y=6x﹣x220.【答案】32017三、解答题21.【答案】解:①作法:分别作AB和AC的垂直平分线,设交点为O,则O为所求圆的圆心;②连接AO、BO,AO交BC于E,∵AB=AC,∴AE⊥BC,∴BE= BC= ×8=4,在Rt△ABE中,AE= =3,设⊙O的半径为R,在Rt△BEO中,OB2=BE2+OE2,即R2=42+(R-3)2,∴R= (cm),答:圆片的半径R为cm22.【答案】解:∵OA⊥OB,∴∠AOB=90°,∴∠A=90°﹣∠B=90°﹣28°=62°,∵OA=OC,∴∠ACO=∠A=62°,而∠ACO=∠BOC+∠B,∴∠BOC=62°﹣28°=34°.23.【答案】解:∵是⊙D的圆周,∴∠BDE= ×360°=90°,∵DB=DC,∴∠B=∠BCD,∴∠BCD= (180°﹣∠BDC)=90°﹣∠BDC,而0≤∠BDC≤90°,∴45°≤∠BCD≤90°24.【答案】证明:连结OA、OC,如图,∵E、F分别为弦AB、CD的中点,∴OE⊥AB,AE=BE,OF⊥CD,CF=DF,∵AB=CD,∴AE=CF,在Rt△AEO和Rt△COF中,,∴Rt△AEO≌Rt△COF(HL),∴OE=OF.25.【答案】证明:连接OC,如图所示:∵CD为圆O的切线,∴OC⊥CD,∴∠OCD=90°,∵AC平分∠DAB,∴∠DAC=∠OAC,又OA=OC,∴∠OAC=∠OCA,∴∠DAC=∠OCA,∴AD∥OC,∴∠OCD+∠ADC=180°,又∠OCD=90°,∴∠ADC=90°,∴AD⊥DC.26.【答案】(1)证明:如图,连接BD.∵AB为⊙O的直径,∴∠ADB=90°,∴∠DAB+∠ABD=90°.∵AF是⊙O的切线,∴∠FAB=90°,即∠DAB+∠CAF=90°.∴∠CAF=∠ABD.∵BA=BC,∠ADB=90°,∴∠ABC=2∠ABD.∴∠ABC=2∠CAF.(2)解:如图,连接AE.∴∠AEB=90°.设CE=x,∵CE:EB=1:4,∴EB=4x,BA=BC=5x,AE=3x.在Rt△ACE中,AC2=CE2+AE2.即(2)2=x2+(3x)2.∴x=2.∴CE=2,∴EB=8,BA=BC=10,AE=6.∵tan∠ABF=.∴.∴AF=.27.【答案】(1)证明:连接OE、OC.∵CB=CE,OB=OE,OC=OC,∴△OBC≌△OEC.∴∠OBC=∠OEC.又∵DE与⊙O相切于点E,∴∠OEC=90°.∴∠OBC=90°.∴BC为⊙O的切线.(2)解:过点D作DF⊥BC于点F,则四边形ABFD是矩形,BF=AD=2,DF=AB=2.∵AD、DC、BC分别切⊙O于点A、E、B,∴DA=DE,CE=CB.设BC为x,则CF=x-2,DC=x+2.在Rt△DFC中,(x+2)2-(x-2)2=(2)2,解得x=.∴BC=.28.【答案】解:(1)如图1,连接BD,∵∠BOD=120°,∴∠BAD=120°÷2=60°,∴∠0BD+∠ODB=180°﹣∠BOD=180°﹣120°=60°,∴∠OBA+∠ODA=180°﹣(∠0BD+∠ODB)﹣∠BAD=180°﹣60°﹣60°=120°﹣60°=60°(2)①如图2,∵四边形OBCD为平行四边形,∴∠BOD=∠BCD,∠OBC=∠ODC,又∵∠BAD+∠BCD=180°,∠∠,∴∠∠°,∴∠B0D=120°,∠BAD=120°÷2=60°,∴∠OBC=∠ODC=180°﹣120°=60°,又∵∠ABC+∠ADC=180°,∴∠OBA+∠ODA=180°﹣(∠OBC+∠ODC)=180°﹣(60°+60°)=180°﹣120°=60°②Ⅰ、如图3,∵四边形OBCD为平行四边形,∴∠BOD=∠BCD,∠OBC=∠ODC,又∵∠BAD+∠BCD=180°,∠∠,∴∠∠°,∴∠B0D=120°,∠BAD=120°÷2=60°,∴∠OAB=∠OAD+∠BAD=∠OAD+60°,∵OA=OD,OA=OB,∴∠OAD=∠ODA,∠OAB=∠OBA,∴∠OBA=∠ODA+60°.Ⅱ、如图4,,∵四边形OBCD为平行四边形,∴∠BOD=∠BCD,∠OBC=∠ODC,又∵∠BAD+∠BCD=180°,∠∠,∴∠∠°,∴∠B0D=120°,∠BAD=120°÷2=60°,∴∠OAB=∠OAD﹣∠BAD=∠OAD﹣60°,∵OA=OD,OA=OB,∴∠OAD=∠ODA,∠OAB=∠OBA,∴∠OBA=∠ODA﹣60°,即∠ODA=∠OBA+60°.。

人教版九年级数学上《第24章圆》单元检测试题(有答案)

2017-2018学年度第一学期人教版九年级数学上第24章圆单元检测试题考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.下列说法正确的是()A.长度相等的两条弧是等弧B.优弧一定大于劣弧C.直径是圆中最长的弦D.不同的圆中不可能有相等的弦2.如图,在中,直径于点,则下列结论错误的是()A. B. C. D.3.如图,在中,,则的度数是()A. B. C. D.4.如图所示的工件槽的两个底角均为,尺寸如图(单位),将形状规则的铁球放入槽内,若同时具有,,三个接触点,则该球的半径是.A. B. C. D.5.如图,、、、四点在同一个圆上.下列判断正确的是()A. B.当为圆心时,C.若是的中点,则一定是此圆的圆心D.6.如图,是圆的直径,弦,相交于点,,是的中点,则的值是()A. B. C. D.7.的半径为,的一条弦长,以为半径的同心圆与直线的位置关系是()A.相离B.相交C.相切D.不能确定8.如图,是的外接圆,已知,则的大小为()A. B. C. D.9.正方形的外接圆半径与内切圆的半径之比为()A. B. C. D.10.已知一个圆锥形的漏斗侧面展开图的圆心角为,圆锥的高为.则圆锥的全面积()A. B. C. D.二、填空题(共 10 小题,每小题 3 分,共 30 分)11.已知的面积为,当________时,点在上.12.在中,的圆心角所对的弧长是,则的半径________.13.已知,点在的平分线上,,以为圆心,为半径作圆,则与的位置关系是________.14.现有一个边长为的正方形,绕它的一边旋转一周,得到的几何体体积是________.(结果用含的式子表示)15.一个圆锥的侧面积是,底面直径是,则这个圆锥的母线长是________ .16.已知圆锥的母线长为,侧面展开后所得扇形的圆心角为,则该圆锥的底面半径为________.17.如图,圆柱底面半径为,高为,点、分别是圆柱两底面圆周上的点,且、在同一母线上,用一棉线从顺着圆柱侧面绕圈到,求棉线最短为________.18.如图,的直径,,则大小为________.19.如图,在中,,,分别以,,为圆心,以为半径画弧,三条弧与所围成的阴影部分的周长是________.20.已知等腰内接于,底边,圆心到的距离等于,则腰长________ .三、解答题(共 6 小题,每小题 10 分,共 60 分)21.如图.是半圆的直径,为中点,、两点在弧上,且,连接、.若的度数为,求的度数.22.如图,是的一条弦,点是弧的中点,交于点,点在上.若,求的度数.23.如图,已知是的弦,,,是弦上任意一点(不与点、重合),连接并延长交于点,连接.弦________(结果保留根号);当时,求的度数.24.如图,圆内接四边形,是的直径,于.求证:;若,,求.25.如图,形如量角器的半圆的直径,形如三角板的中,,,,半圆以的速度从左向右运动,在运动过程中,点、始终在直线上,设运动时间为,当时,半圆在的左侧,.当时,点在半圆________,当时,点在半圆________;当为何值时,的边与半圆相切?当为何值时,的边与半圆相切?26.如图,有一直径的半圆形纸片,其圆心为点,从初始位置开始,在无滑动的情况下沿数轴向右翻滚至位置,其中,位置中的平行于数轴,且半与数轴相切于原点;位置和位置中的垂直于数轴;位置中的在数轴上;位置中半与数轴相切于点,且此时为等边三角形.解答下列问题:(各小问结果保留)位置中的点到直线的距离为________;位置中的半与数轴的位置关系是________;位置中的圆心在数轴上表示的数为________;求的长.答案1.C2.B3.D4.A5.B6.A7.C8.A9.A10.B11.12.13.相交14.15.16.17.18.19.20.或21.解:∵ 是直径,∴ ,∵ ,∴ ,∴ ,∴的度数是:.22.解:∵点是弧的中点,∴,,∴.∵ ,∴ ,∴.23.解:如图,过作于,∴ 是的中点,在中,,,∴ ,∴,∴;解法一:∵ ,.∴ .…又∵ ,,,∴ ,,…∴ .…解法二:如图,连接.∵ ,,∴ ,,∴ .…又∵ ,,∴ ,…∴ (同弧所对的圆周角等于它所对圆心角的一半).…24.解: ∵ 于,∴,∴ ,∴ ; ∵ 是的直径,∴ ,∵ 于,∴ ,∵点是的中点,∴ 是的中位线,∴,在中,∵ ,,∴,即,∴ .25.外外26.相切 ∵ 为等边三角形,∴ .从而弧的长为,于是的长为.。

人教版数学九年级上册第24章《圆》单元综合练习卷(含详细答案)

人教版数学九年级上册第24章《圆》单元综合练习卷(含详细答案)一.选择题1.已知圆内接四边形ABCD中,∠A:∠B:∠C=1:2:3,则∠D的大小是()A.45°B.60°C.90°D.135°2.如图,AB,AC分别是⊙O的直径和弦,OD⊥AC于点D,连接BD,BC,且AB=10,AC=8,则BD的长为()A.2B.4 C.2D.4.83.下列说法正确的是()A.菱形的对角线垂直且相等B.到线段两端点距离相等的点,在线段的垂直平分线上C.点到直线的距离就是点到直线的垂线段D.过三点确定一个圆4.已知圆锥的底面半径为5cm,母线长为13cm,则这个圆锥的侧面积是()A.60πcm2B.65πcm2C.120πcm2D.130πcm25.如图,已知钝角△ABC内接于⊙O,且⊙O的半径为5,连接OA,若∠OAC=∠ABC,则AC 的长为()A.5B.C.5D.86.如图,在△ABC中,AB=4,AC=2,BC=5,点I为△ABC的内心,将∠BAC平移,使其顶点与点I重合,则图中阴影部分的周长为()A.4 B.5 C.6 D.77.如图,将一块直角三角板△ABC(其中∠ACB=90°,∠CAB=30°)绕点B顺时针旋转120°后得Rt△MBN,已知这块三角板的最短边长为3,则图中阴影部分的面积()A.B.9πC.9π﹣D.8.如图,点A,B,C,D都在半径为3的⊙O上,若OA⊥BC,∠CDA=30°,则弦BC的长为()A.B.3C.3 D.29.边长相等的正方形与正六边形按如图方式拼接在一起,则∠ABC的度数为()A.10°B.15°C.20°D.30°10.如图,在⊙O的内接正六边形ABCDEF中,OA=2,以点C为圆心,AC长为半径画弧,恰好经过点E,得到,连接CE,OE,则图中阴影部分的面积为()A.﹣4B.2π﹣2C.﹣3D.﹣211.如图,从⊙O外一点A引圆的切线AB,切点为B,连接AO并延长交圆于点C,连接BC.若∠A=28°,则∠ACB的度数是()A.28°B.30°C.31°D.32°12.如图,已知正六边形ABCDEF的边长为,点G,H,I,J,K,L依次在正六边形的六条边上,且AG=BH=CI=DJ=EK=FL,顺次连结G,I,K,和H,J,L,则图中阴影部分的周长C的取值范围为()A.6≤C≤6B.3≤C≤3C.3≤C≤6 D.3≤C≤6二.填空题13.已知圆锥底面圆的半径为5,高为12,则圆锥的侧面积为(结果保留π).14.如图,点A,B,C,D是⊙O上的四个点,点B是弧AC的中点,如果∠ABC=70°,那∠ADB=.15.如图,MN为⊙O的直径,MN=10,AB为⊙O的弦,已知MN⊥AB于点P,AB=8,现要作⊙O的另一条弦CD,使得CD=6且CD∥AB,则PC的长度为.16.如图,AB是⊙O的直径,点C、D在⊙O上,若∠DCB=110°,则∠AED=.17.如图,AB是⊙O的直径,点C、D在⊙O上,∠AOC=70°,AD∥OC,则∠ABD=.18.如图,在平面直角坐标系中,⊙O的半径为5,弦AB的长为6,过O作OC⊥AB于点C,⊙O内一点D的坐标为(﹣2,1),当弦AB绕O点顺时针旋转时,点D到AB的距离的最小值是.三.解答题19.已知等边△ABC内接于⊙O,D为弧BC的中点,连接DB、DC,过C作AB的平行线,交BD的延长线于点E.(1)求证:CE与⊙O相切;(2)若AB长为6,求CE长.20.如图,AB是⊙O的直径,弦CD与AB交于点E,过点B的切线BP与CD的延长线交于点P,连接OC,CB.(1)求证:AE•EB=CE•ED;(2)若⊙O的半径为3,OE=2BE,=,求线段DE和PE的长.21.如图,△ABC内接于⊙O,∠ACB=60°,BD是⊙O的直径,点P是BD延长线上一点,且PA是⊙O的切线.(1)求证:AP=AB;(2)若PD=,求⊙O的直径.22.如图所示,⊙O是等腰三角形ABC的外接圆,AB=AC,延长BC至点D,使CD=AC,连接AD交⊙O于点E,连接BE、CE,BE交AC于点F.(1)求证:CE=AE;(2)填空:①当∠ABC=时,四边形AOCE是菱形;②若AE=,AB=,则DE的长为.23.如图,已知AB为⊙O的直径,C为⊙O上异于A、B的一点,过C点的切线于BA的延长线交于D点,E为CD上一点,连EA并延长交⊙O于H,F为EH上一点,且EF=CE,C F 交延长线交⊙O于G.(1)求证:弧AG=弧GH;(2)若E为DC的中点,sim∠CDO=,AH=2,求⊙O的半径.24.在等边△ABC中,BC=8,以AB为直径的⊙O与边AC、BC分别交于点D、E,过点D作DF⊥BC,垂足为F.(1)求证:DF为⊙O的切线.(2)求弧DE的长度;(3)求EF的长.25.如图,△ACB内接于圆O,AB为直径,CD⊥AB与点D,E为圆外一点,EO⊥AB,与BC 交于点G,与圆O交于点F,连接EC,且EG=EC.(1)求证:EC是圆O的切线;(2)当∠ABC=22.5°时,连接CF,①求证:AC=CF;②若AD=1,求线段FG的长.参考答案一.选择题1.解:∵四边形ABCD为圆的内接四边形,∴∠A:∠B:∠C:∠D=1:2:3:2,而∠B+∠D=180°,∴∠D=×180°=90°.故选:C.2.解:∵AB为直径,∴∠ACB=90°,∴BC===3,∵OD⊥AC,∴CD=AD=AC=4,在Rt△CBD中,BD==2.故选:C.3.解:A、菱形的对角线垂直但不一定相等,故错误;B、到线段两端点距离相等的点,在线段的垂直平分线上,正确;C、点到直线的距离就是点到直线的垂线段的长度,故错误;D、过不在同一直线上的三点确定一个圆,故错误,故选:B.4.解:这个圆锥的侧面积=×2π×5×13=65π(cm2).故选:B.5.解:连接OC,如图,设∠OAC=α,则∠OAC=∠ABC=α,∠AOC=2∠ABC=2α,∵OA=OC,∴∠OCA=∠OAC=α,∴α+2α+α=180°,解得α=45°,∴∠AOC=90°,∴△AOC为等腰直角三角形,∴AC=OA=5.故选:A.6.解:连接BI、CI,如图所示:∵点I为△ABC的内心,∴BI平分∠ABC,∴∠ABI=∠CBI,由平移得:AB∥DI,∴∠ABI=∠BID,∴∠CBI=∠BID,∴BD=DI,同理可得:C E=EI,∴△DIE的周长=DE+DI+EI=DE+BD+CE=BC=5,即图中阴影部分的周长为5,故选:B.7.解:∵∠ACB=90°,∠CAB=30°,BC=3,∴AB=2BC=6,∴AC===3,∵O、H分别为AB、AC的中点,∴OB=AB=3,CH=AC=,在Rt△BCH中,BH==,∵旋转角度为120°,∴阴影部分的面积=﹣=π.故选:A.8.【解答】解:OA交BC于E,如图,∵OA⊥BC,∴=,CE=BE,∴∠AOB=2∠CDA=2×30°=60°,在Rt△OBE中,OE=OB=,∴BE=OE=,∴BC=2BE=3.故选:B.9.解:由题意得:正六边形的每个内角都等于120°,正方形的每个内角都等于90°,故∠BAC=360°﹣120°﹣90°=150°,∵AB=AC,∴∠ABC=∠ACB==15°.故选:B.10.解:连接OB、OC、OD,S 扇形CAE ==2π,S △AOC ==,S △BOC ==,S 扇形OBD ==,∴S 阴影=S 扇形OBD ﹣2S △BOC +S 扇形CAE ﹣2S △AOC =﹣2+2π﹣2=﹣4; 故选:A .11.解:连接OB ,如图,∵AB 为切线,∴OB ⊥AB ,∴∠ABO =90°,∴∠AOB =90°﹣∠A =90°﹣28°=62°,∴∠ACB =∠AOB =31°.故选:C .12.解:根据对称性可知,△GKI ,△HLJ 是等边三角形.阴影部分是正六边形,边长为GK的.∵GK 的最大值为2,GK 的最小值为3,∴阴影部分的正六边形的边长的最大值为,最小值为1,∴图中阴影部分的周长C 的取值范围为:4≤C ≤6.故选:C.二.填空题(共6小题)13.解:∵圆锥的底面半径为5,高为12,∴圆锥的母线长为13,∴它的侧面积=π×13×5=65π,故答案为:65π.14.解:∵四边形ABCD内接于⊙O,∴∠ABC+∠ADC=180°,∴∠ADC=180°﹣70°=110°.∵点B是弧AC的中点,∴弧AB=弧BC.∴∠ADB=∠BDC.∴∠ADB=∠ADC=×110°=55°.故答案为55°.15.解:当AB、CD在圆心O的两侧时,如图,连接OA、OC,∵AB∥CD,MN⊥AB,∴AP=AB=4,MN⊥CD,∴CQ=CD=3,在Rt△OAP中,OP==3,同理:OQ=4,则PQ=OQ+OP=7,∴PC===,当AB、CD在圆心O的同侧时,PQ=OQ﹣OP=1,∴PC===;故答案为:或.16.解:连接BE,如图,∵AB是⊙O的直径,∴∠AEB=90°,∵∠DEB+∠DCB=180°,∴∠DEB=180°﹣110°=70°,∴∠AED=∠AEB﹣∠DEB=90°﹣70°=20°.故答案为20°17.解:∵AD∥OC,∴∠BAD=∠AOC=70°,∵AB是⊙O的直径,∴∠D=90°,∴∠ABD=90°﹣70°=20°.故答案为20°.18.解:连接OB,如图所示:∵OC⊥AB,∴BC=AB=3,由勾股定理得,OC===4,当OD⊥AB时,点D到AB的距离的最小,由勾股定理得,OD==,∴点D到AB的距离的最小值为:4﹣,故答案为:4﹣.三.解答题(共7小题)19.(1)证明:连接OC,OB,∵△ABC是等边三角形,∴∠A=∠A BC=60°,∵AB∥CE,∴∠BCE=∠ABC=60°,∵OB=OC,∴∠OBC=∠OCB=30°,∴∠OCE=∠OCB+∠BCE=30°+60°=90°,∴CE与⊙O相切;(2)∵四边形ABDC是圆的内接四边形,∴∠A+∠BDC=180°,∴∠BDC=120°,∵D为弧BC的中点,∴∠DBC=∠BCD=30°,∴∠BEC=180°﹣∠EBC﹣∠BCE=90°,∵AB=BC=6,∴.20.(1)证明:连接AC、BD,如图,∵∠CAE=∠CDB,∠ACE=∠BDE,∴△ACE∽△BDE,∴AE:DE=CE:BE,∴AE•EB=CE•ED;(2)∵OE+BE=3,OE=2BE,∴OE=2,BE=1,∴AE=5,∴CE•DE=5×1=5,∵=,∴CE=DE,∴DE•DE=5,解得DE=,∴CE=3.∵PB为切线,∴PB2=PD•PC,而PB2=PE2﹣BE2,∴PD•PC=PE2﹣BE2,即(PE﹣)(PE+3)=PE2﹣1,∴PE=321.(1)证明:连接OA,如图,∵∠AOB=2∠ACB=2×60°=120°,而OA=OB,∴∠OAB=∠OBA=30°,∠AOP=60°,∵PA是⊙O的切线,∴OA⊥PA,∴∠OAP=90°,∴∠P=90°﹣60°=30°,∴∠ABP=∠P,∴AB=AP;(2)解:设⊙O的半径为r,在Rt△OPA中,∵∠P=30°,∴OP=2OA,即r+=2r,解得r=,∴⊙O的直径为2.22.证明(1)∵AB=AC,AC=CD∴∠ABC=∠ACB,∠CAD=∠D∵∠ACB=∠CAD+∠D=2∠CAD∴∠ABC=∠ACB=2∠CAD∵∠CAD=∠EBC,且∠ABC=∠ABE+∠EBC∴∠ABE=∠EBC=∠CAD,∵∠ABE=∠ACE∴∠CAD=∠ACE∴CE=AE(2)①当∠ABC=60°时,四边形AOCE是菱形;理由如下:如图,连接OE∵OA=OE,OE=OC,AE=CE∴△AOE≌△EOC(SSS)∴∠AOE=∠COE,∵∠ABC=60°∴∠AOC=120°∴∠AOE=∠COE=60°,且OA=OE=OC∴△AOE,△COE都是等边三角形∴AO=AE=OE=OC=CE,∴四边形AOCE是菱形故答案为:60°②如图,过点C作CN⊥AD于N,∵AE=,AB=,∴AC=CD=2,CE=AE=,且CN⊥AD ∴AN=DN在Rt△ACN中,AC2=AN2+CN2,①在Rt△ECN中,CE2=EN2+CN2,②∴①﹣②得:AC2﹣CE2=AN2﹣EN2,∴8﹣3=(+EN)2﹣EN2,∴EN=∴AN=AE+EN==DN∴DE=DN+EN=故答案为:23.(1)证明:如图,连接AC,BC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠B+∠CAO=90°,∵CD为⊙O的切线,∴∠ECA+∠ACO=90°,∵OC=OA,∴∠ACO=∠OAC,∴∠ECA=∠B,∵EF=CE,∴∠ECF=∠EFC,∵∠ECF=∠ECA+∠ACG,∠EFC=∠GAF+∠G,∵∠ECA=∠B=∠G,∴∠ACG=∠GAF=∠GCH,∴;(2)解:∵CH是⊙O的直径,∴∠CAH=90°,∵CD是⊙O的切线,∴∠ECO=90°,设CO=2x,∵sim∠CDO==,∴DO=6x,∴CD==4,∵E为DC的中点,∴CE==2,EH==2,∵∠ECH=∠CAH,∠CHA=∠EHC,∴△CAH∽△ECH,∴,∴CH2=AH•EH,∴AH=,∵AH=2,∴,∴x=3,∴⊙O的半径CO=2x=6.24.(1)证明:连接DO,∵△AB C是等边三角形,∴∠A=∠C=60°,∵OA=OD,∴△OAD是等边三角形,∴∠ADO=60°,∵DF⊥BC,∴∠CDF=90°﹣∠C=30°,∴∠FDO=180°﹣∠ADO﹣∠CDF=90°,即OD⊥DF,∵OD为半径,∴DF为⊙O的切线;(2)解:连接OC,OE,∵在等边△ABC中,OA=OB,∴CO⊥AB,∠OCB=∠OCA=30°,∴OB=BC==4,∵∠AOD=60°,同理∠BOE=60°,∴∠DOE=60°,∴弧DE的长度:=π;(3)解:∵△OAD是等边三角形,∴AD=AO=AB=4,∴CD=AC﹣AD=4,Rt△CDF中,∠CDF=30°,∴CF=CD=2,DF=2,连接OE,∵OB=OE,∠B=60°,∴△OBE是等边三角形,∴OB=BE=4,∴EF=BC﹣CF﹣BE=8﹣2﹣4=2.25.(1)证明:连接OC,∵OC=OB,∴∠OCB=∠B,∵EO⊥AB,∴∠OGB+∠B=90°,∵EG=EC,∴∠ECG=∠EGC,∵∠EGC=∠OGB,∴∠OCB+∠ECG=∠B+∠OGB=90°,∴OC⊥CE,∴EC是圆O的切线;(2)①证明:∵∠ABC=22.5°,∠OCB=∠B,∴∠AOC=45°,∵EO⊥AB,∴∠COF=45°,∴=,∴AC=CF;②解:作CM⊥OE于M,∵AB为直径,∴∠ACB=90°∵∠ABC=22.5°,∠GOB=90°,∴∠A=∠OGB=∠67.5°,∴∠FGC=67.5°,∵∠COF=45°,OC=OF,∴∠OFC=∠OCF=67.5°,∴∠GFC=∠FGC,∴CF=CG,∴FM=GM,∵∠AOC=∠COF,CD⊥OA,CM⊥OF,∴CD=DM,在Rt△ACD和Rt△FCM中∴Rt△ACD≌Rt△FCM(HL),∴FM=AD=1,∴FG=2FM=2.人教版九年级上册第24章数学圆单元测试卷(含答案)(5)一、填空题(每题5分,计40分)1、已知点O 为△ABC 的外心,若∠A=80°,则∠BOC 的度数为( ) A .40° B .80° C .160° D .120°2.点P 在⊙O 内,OP =2cm ,若⊙O 的半径是3cm ,则过点P 的最短弦的长度为( ) A .1cmB .2cmCD.3.已知A 为⊙O 上的点,⊙O 的半径为1,该平面上另有一点P,PA =P 与⊙O 的位置关系是( )A .点P 在⊙O 内B .点P 在⊙O 上C .点P 在⊙O 外D .无法确定4.如图,A B C D ,,,为O 的四等分点,动点P 从圆心O 出发,沿O C D O ---路线作匀速运动,设运动时间为t (s ).()APB y =∠,则下列图象中表示y 与t 之间函数关系最恰当的是( )5. 在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定( ) A .与x轴相离、与y 轴相切 B .与x 轴、y 轴都相离 C .与x轴相切、与y 轴相离 D .与x 轴、y 轴都相切6 如图,若⊙的直径AB 与弦AC 的夹角为30°,切线CD 与AB 的延长线交于点D,且⊙O 的半径为2,则CD 的长为 ( )A.B.C.2D. 47.如图,△PQR 是⊙O 的内接三角形,四边形ABCD 是⊙O 的内接正方形,BC ∥QR,则∠DOR 的度数是 ( )A.60B.65C.72D. 75第4题图A B C D O PB .D .A .C .第6题图O P Q D B AC第7题图R8.如图,A ⊙、B ⊙、C ⊙、D ⊙、E ⊙相互外离,它们的半径都是1,顺次连结五个圆心得到五边形ABCDE ,则图中五个扇形(阴影部分)的面积之和是( )A .πB .1.5πC .2πD .2.5π 二 选择题(每题5分,计30分) 9.如图,直角坐标系中一条圆弧经过网格点A 、B 、C ,其中,B 点坐标为(4,4),则该圆弧所在圆的圆心坐标为 .10. 如图,在ΔABC 中,∠A=90°,AB=AC=2cm ,⊙A 与BC 相切于点D ,则⊙A 的半径长为 cm.11.善于归纳和总结的小明发现,“数形结合”是初中数学的基本思想方法,被广泛地应用在数学学习和解决问题中.用数量关系描述图形性质和用图形描述数量关系,往往会有新的发现.小明在研究垂直于直径的弦的性质过程中(如图,直径AB ⊥弦CD 于E ),设AE x =,BE y =,他用含x y ,的式子表示图中的弦CD 的长度,通过比较运动的弦CD 和与之垂直的直径AB 的大小关系,发现了一个关于正数x y ,的不等式,你也能发现这个不等式吗?写出你发现的不等式 .(12题图)12.如图,∠AOB=300,OM=6,那么以M 为圆心,4为半径的圆与直OA 的位置关系是_________________.13.如图,△㎝,则AC 的长等于_______㎝。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小专题(十四) 求阴影部分的面积
方法归纳:求阴影部分(或不规则图形)的面积时,常用图形割补的方法(图形变换),或用几个特殊图形的面积
和或差来求.
【例】 (盐城中考)如图,在△ABC中,∠BAC=90°,AB=5 cm,AC=2 cm,将△ABC绕顶点C按顺时针方向
旋转45°至△A1B1C的位置,求线段AB扫过区域(图中阴影部分)的面积.

1.(泰安中考)如图,半径为2 cm,圆心角为90°的扇形OAB中,分别以OA,OB为直径作半圆,则图中阴影部分
的面积为( )

A.(π2-1)cm2 B.(π2+1)cm2 C.1 cm2 D.π2 cm2

2.(重庆中考)如图,菱形ABCD的对角线AC,BD相交于点O,AC=8,BD=6,以AB为直径作一个半圆,则图中阴
影部分的面积为( )

A.25π-6 B.25π2-6 C.25π6-6 D.25π8-6

3.(乐山中考)如图,正方形ABCD的边长为3,以A为圆心,2为半径作圆弧,以D为圆心,3为半径作圆弧.若图
中阴影部分的面积分别为S1,S2,则S1-S2=__________.

4.(河南中考)如图,在菱形ABCD中,AB=1,∠DAB=60°.把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,
其中点C的运动路径为CC′︵,则图中阴影部分的面积为____________.

5.(南通中考)如图,PA,PB分别与⊙O相切于A,B两点,∠ACB=60°.
(1)求∠P的度数;
(2)若⊙O的半径长为4 cm,求图中阴影部分的面积.
6.(丽水中考)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,
交AC于点F.
(1)求证:DF⊥AC;
(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.

7.(本溪中考)如图,点D是等边△ABC中BC边的延长线上一点,且AC=CD,以AB为直径作⊙O,分别交边AC,BC
于点E,点F.
(1)求证:AD是⊙O的切线;

(2)连接OC,交⊙O于点G,若AB=4,求线段CE、CG与GE︵围成的阴影部分的面积S.

8.(襄阳中考)如图,在正方形ABCD中,AD=2,E是AB的中点,将△BEC绕点B逆时针旋转90°后,点E落在CB
的延长线上点F处,点C落在点A处.再将线段AF绕点F顺时针旋转90°得线段FG,连接EF,CG.
(1)求证:EF∥CG;

(2)求点C,点A在旋转过程中形成的AC︵,AG︵与线段CG所围成的阴影部分的面积.

参考答案
【例】 ∵∠BAC=90°,
∴BC2=AB2+AC2=52+22=29.
∵S阴影=S扇形CBB1+S△A1B1C-S△ABC-S扇形CAA1,
又∵△ABC旋转得到△A1B1C,
∴S△ABC=S△A1B1C.

∴S阴影=S扇形CBB1-S扇形CAA1=45×π×29360-45×π×22360=258π(cm2).

1.A 2.D 3.134π-9 4.π4-3+32
5.(1)连接OA,OB.
∵PA,PB分别与⊙O相切于A,B两点,
∴∠PAO=90°,∠PBO=90°.
∴∠AOB+∠APB=180°.
∵∠AOB=2∠C=120°,
∴∠P=60°.
(2)连接OP.
∵PA,PB分别与⊙O相切于A,B两点,

∴∠APO=12∠APB=30°.在Rt△APO中,
∵OA=4 cm,
∴PO=2×4=8(cm).由勾股定理得AP=OP2-OA2=82-42=43(cm).
∴阴影部分的面积=2×(12×4×43-60×π×42360)=(163-163π)(cm2).
6.(1)证明:连接OD.
∵OB=OD,
∴∠ABC=∠ODB.
∵AB=AC,
∴∠ABC=∠ACB.
∴∠ODB=∠ACB.
∴OD∥AC.
∵DF是⊙O的切线,
∴DF⊥OD.
∴DF⊥AC.(2)连接OE.
∵DF⊥AC,∠CDF=22.5°,
∴∠ABC=∠ACB=67.5°.
∴∠BAC=45°.
∵OA=OE,
∴∠AOE=90°.
∵⊙O的半径为4,
∴S扇形AOE=4π,S△AOE=8.
∴S阴影=S扇形AOE-S△AOE=4π-8.
7.(1)证明:∵△ABC为等边三角形,
∴AC=BC.
∵AC=CD,
∴AC=BC=CD,
∴△ABD为直角三角形,
∴AB⊥AD,
∵AB为直径,
∴AD是⊙O的切线.(2)连接OE,
∵OA=OE,∠BAC=60°,
∴△OAE是等边三角形,
∴∠AOE=60°.
∵CB=CA,OA=OB,
∴CO⊥AB,
∴∠AOC=90°,
∴∠EOC=30°.
∵△ABC是边长为4的等边三角形,
∴AO=2.由勾股定理得:OC=42-22=23.同理等边三角形AOE边AO上的高是22-12=3,S阴影=S△AOC-S
等边△AOE

-S扇形EOG=12×2×23-12×2×3-30×π×22360=3-π3. 8.(1)证明:

∵四边形ABCD是正方形,
∴AB=BC=AD=2,∠ABC=90°.
∵△BEC绕点B逆时针旋转90°得△BFA,
∴△ABF≌△CBE.
∴∠FAB=∠ECB,∠ABF=∠CBE=90°,AF=EC.
∴∠AFB+∠FAB=90°.
∵线段AF绕点F顺时针旋转90°得线段FG,
∴∠AFB+∠CFG=∠AFG=90°,AF=FG.
∴∠CFG=∠FAB=∠ECB.
∴EC∥FG.
∵AF=EC,AF=FG,
∴EC=FG.
∴四边形EFGC是平行四边形.
∴EF∥CG.
(2)∵△ABF≌△CBE,

∴FB=BE=12AB=1.
∴AF=AB2+BF2=5.在△FEC和△CGF中,
∵EC=FG,∠ECB=∠CFG,FC=CF,
∴△FEC≌△CGF.
∴S△FEC=S△CGF.

∴S阴影=S扇形BAC+S△ABF+S△FGC-S扇形FAG=90π×22360+12×2×1+12×(1+2)×1-90π×(5)2360=52-π4(或10-π4).

相关文档
最新文档