膜系统常见污染问题及控制
农业面源污染的现状及控制途径

农业面源污染的现状及控制途径摘要农业面源污染是导致目前流域水环境质量恶化的主要原因,本文主要介绍了农业面源污染的现状,产生原因,并着重介绍生态修复方法和新技术处理方法。
关键词农业、面源污染、控制措施、人工湿地技术、STCC技术随着集约化农业在我国经济中的不断深入与进步,随之而来的环境污染问题也日益严重。
农村面源污染已成为我国农业发展中的突出问题。
本文主要介绍农业面源污染的现状,探讨其来源,并提出相关控制途径和修复措施。
1.面源污染概述污染物的发生源通常可分为点源、线源、面源、内源,其中,面源污染是指污染物从非特定的地点,在降雨或融雪冲刷的作用下,通过径流过程而汇入受纳水体(包括河流、湖泊、水库、海湾等),并造成水体的富营养化或其他形式的污染。
美国《清洁水法修正案》对面源污染的定义为:污染物以广义的、分散的、微量的形式进入地表或地下水体。
“微量”是指污染物浓度较点源低,但由于面源污染面积范围较大,其造成的污染往往较为严重。
其中,由于农业生产活动的多样性,实践中的农业面源污染包括土壤侵蚀、农田农药化肥流失、畜禽养殖污染、农村生活污染等。
2. 我国农业面源污染的现状我国农业面源污染的现状比较严重。
第一次全国污染源普查公告显示,2007年通过农业面源污染排放的总氮为270.46万t,总磷为28.47万t,分别占同期全国排放的57.19%和67.27%。
调查表明,农业面源污染即将成为我国流域污染的主要因素,我国七大水系水质总体为中度污染,湖泊(水库)富营养化问题突出。
同时,在农业集约化程度高、氮肥用量大的地区,面临着严重的地下水硝酸盐污染问题。
城乡结合部地区是产生面源污染的主要区域,而农村畜禽养殖业污染是面源污染的主要来源。
3.农业面源污染的来源1)种植业污染:包括化肥、农药、农膜等。
化肥污染是在农业生产中因施用大量化学肥料而引起土壤、水体和大气的污染。
研究表明,氮肥的利用率为30%~40%,磷肥的利用率仅10%~15%,钾肥的利用率为40%~60%。
污水除氟系统的应用与常见故障分析

污水除氟系统的应用与常见故障分析污水除氟系统的应用与常见故障分析引言:随着工业化进程的加快,水源的污染问题日益严重。
其中,污水中氟化物的含量逐渐上升,给人们的生活和环境带来了严重威胁。
为了解决这一问题,污水除氟系统应运而生。
本文将对污水除氟系统的应用进行探讨,并分析其常见的故障原因及解决方案。
一、污水除氟系统的应用1. 离子交换法除氟离子交换法是一种常见的污水除氟方法,主要通过离子交换树脂中的氟离子和污水中的氟离子进行交换,从而达到除氟的目的。
该方法具有操作简单、成本低廉和除氟效果好等优点,在工业和生活污水处理中得到广泛应用。
2. 膜处理法除氟膜处理法是一种高效且可持续的氟离子去除技术,其中包括反渗透膜和超滤膜等。
这些膜能有效过滤污水中的氟化物离子,使其在经过膜处理后的洁净水中含量明显降低。
膜处理法具有除氟效果好、设备体积小等优点,广泛应用于饮用水处理、工业废水处理等领域。
二、污水除氟系统常见故障分析1. 膜污染膜污染是污水除氟系统中常见的故障之一。
膜污染主要是指膜表面附着的污垢、菌藻等物质对膜的堵塞、变形或破裂,影响除氟效果。
膜污染的原因包括水质中的颗粒物、胶体物质和生物污染等。
解决方法可以是加强预处理,例如净水过滤器和消毒装置的安装,定期清洗和维护膜组件等。
2. 设备堵塞在污水除氟系统中,设备堵塞也是常见的故障之一。
设备堵塞主要是由于污水中的悬浮物质或颗粒物质积聚在设备管道或过滤器中,导致通流能力下降,进而影响系统的正常运行。
预防设备堵塞的方法是加强预处理工作,定期清理设备,并设立过滤器等提前截留悬浮物质。
3. 设备性能下降设备性能下降是指污水除氟系统在使用过程中,由于设备本身的老化或损坏等原因,除氟效果出现明显下降。
设备性能下降的原因主要有设备老化、维护不当等。
解决方法是定期检查设备,及时更换老化和损坏的部件,加强设备的维护保养。
4. 运行成本高污水除氟系统的运行成本问题是很多用户关心的。
反渗透常见故障及处理办法

反渗透常见故障及处理办法反渗透系统常见故障排除反渗透系统的故障通常至少出现下列情况之一:标准化后产水量下降,通常需要提高运行压力来维持额定的产水量;标准化后脱盐率降低,在反渗透系统中表现为产水电导率升高;压降增加,在维持进水流量不变的情况下,进水与浓水间的压差增大;下面将详细的讨论上述三种主要故障。
一、标准化后产水量下降RO系统出现标准化后产水量降低,可根据下面三种情况寻找原因:RO系统的第一段产水量降低,则存在颗粒类污染物的沉积;RO系统的最后一段产水量降低,则存在结垢污染;RO系统的所有段的产水量都降低,则存在污堵;根据上述症状,出现问题的位置,确定故障的起因,并采取相应的措施,依照“清洗导则”进行清洗等。
另外反渗透系统出现产水量下降的同时还会伴随有脱盐率降低、升高等情况。
(1)标准化后产水量下降脱盐率降低标准化后产水量下降脱盐率降低是最常见的系统故障,其可能的原因是:一、胶体污堵为了辨别胶体污堵,需要:测定原水的SDI值;分析SDI测试膜膜表面的截留物;检查和分析第一段第一支膜元件端面上的沉积物;二、金属氧化物污堵金属氧化物污堵主要发生在第一段,通常的故障原因是:进水中含铁和铝进水中含H2S并有空气进入,产生硫化盐;管道、压力容器等部件产生的腐蚀产物;三、结垢结垢是微溶或难溶盐类沉积在膜的表面,一般出现在预处理较差且回收率较高的苦咸水系统中,常常发生在RO系统的最后一段,然后逐渐向前一段扩镜现象会造成膜元件的机械损坏。
③膜表面磨损这种情况常常是因为RO系统前端的元件受到水中结晶体或具有尖锐外缘的金属悬浮物的磨损造成的。
④产水背压任何时刻,产水压力高于进水或浓水压力0.3bar,复合膜就可能发生复合层间的剥离,从而损坏膜元件。
(2)标准化后脱盐率下降产水量升高产生这种症状的原因有:①膜氧化当膜接触到水中的氧化性物质后,膜被氧化破坏,这是不可逆的化学损伤,一旦出现这种情况,只能更换所有膜元件。
涂装常见问题及解决办法

1、前处理常见问题及解决办法序号发现的问题造成的后果产生原因解决方法1 除油不净含油区域磷化不上,进一步导致锈蚀;污染其它槽液,导致缩孔①加工人粗心未除油②脱脂失效①加强责任心②严格控制脱脂工艺参数2 工件因停线生锈电泳纹、电泳花斑加工人随意按下急停按钮按车间管理规定,不能随意按急停3 驾驶室表面锈蚀未打磨电泳花斑加工人粗心导致按工艺要求对少量锈蚀的工件打磨;大面积锈蚀的情况,及时联系车间处理4 底漆未烘干严重影响漆膜附着力、防锈等各项性能①烘干炉设备故障②烘干炉未达到工艺温度就开始进车①报告给班组长,由设备维护人员维修②监控烘干炉温度,当温度达到工艺要求时,才能进车5 驾驶室表面坑包严重影响驾驶室漆膜外观加工人未钣金修整对其钣金后刮涂腻子修补6 液位报警:前处理槽液超出或低于规定液面范围(即高液位和低液位),绝大多数表现为高出液位液面超高会串液,造成槽液浪费和污染;液面超低,工件处理不彻底①绝大多数原因为槽内加药过多,必须加水稀释,导致液面增高②可能槽液本身未超出液位,但是当车体进入槽内,使槽内液面迅速增高,导致高位报警③电磁阀故障①若为加药因素,可纠正操作者工作②检查PLC输出条件是否满足,有输出③电磁阀故障,检查电磁阀是否动作,检查PLC程序,看是否有信号输出,无输出,检查输出信号线,若信号线良好,更换电磁阀2、电泳常见问题及解决办法序号常见故障产生原因处理措施1 pH值下降过少排放阳极液提高阳极液排放量阳极液渗漏到电泳槽中检查阳极管确认无渗漏阳极液流量不足检查每个阳极管的极液进出管流量阳极管腐蚀严重从工件入槽端开始检查每个阳极管状况阳极膜堵塞检查清理阳极膜控制电路故障检查电导率控制器和电磁阀加入了过量的酸提高阳极液排放量并停止加酸酸污染(前处理带入,纯水水质差等)提高超滤液排放量提高阳极液排放量检查纯水电导和工件滴水电导2 pH值上升阳极液排放过量减少阳极液排放,适当提高阳极液的电导率阳极液流失到电泳槽之外检查阳极液系统确认无渗漏控制电路故障检查电导率控制器和电磁阀碱性物质污染(前处理带入,纯水水质差等)提高超滤液排放量检查纯水电导和工件滴水电导原漆补加量大(中和剂加料量相对不足)补加酸,减少阳极液排放量3 电导率下降UF液排放过量,包括UF液的意外损失停止UF液排放,并监测电导率,意外损失故障排除NV值太低补足NV值在规定范围之内4 电导率上升UF系统故障尽快恢复UF系统正常工作,增加UF液排放量槽液中游离酸含量增加降低阳极液电导率,排放UF液NV值太高停止补漆槽温及测试温度偏高加强槽温控制,规范测试方法补加纯水电导率过高确保纯水电导率小于10μs/cm原漆加入量过大(超过槽液的5%)采用少量多次的方法补加原漆前处理带入高电导率的物质控制工件滴水电导小于30μs/cm5 NV值降低原漆补给不足根据耗量,及时补给原漆UF液漂洗系统回流入槽失衡,导致槽液体积增加检查UF液贮槽液位,控制0次喷淋和超滤液回流速度槽液流失检查系统中是否泄漏,包括转移贮槽槽液液位太高降低纯水补给速度6 NV值升高原漆加入量过大相应于消耗量,降低原漆加入量往槽中补给纯水不足补足纯水加入量7 灰分下降颜料浆加量不足补加高颜料份色浆NV值下降增加固体份,监测P/B槽液循环不良,以致颜料产生重力沉降检查设备的循环功能及循环喷射管道是否堵塞8 灰分升高颜料浆加量过大补加低颜料份漆,或补加乳液NV值增加降低固体份:监测P/B9 溶剂量下降高挥发损失检查漆液温度是否在所要求的范围内;添加流平剂来调整溶剂含量UF液渗漏过度检查超滤系统是否渗漏UF液清洗喷淋压力过大,导致挥发损失增加调整喷淋压力槽液NV值下降增加槽液固体份10 溶剂含量上升流平助剂和溶剂加量过大停止加入流平剂和溶剂,并监测各项溶剂含量原漆加入过大降低原漆加入量生产量大,槽液更新快增加超滤排放,并监测溶剂含量11 漆膜薄槽液pH值低调整pH值至要求范围内槽温偏低调整槽温至控制范围的上限槽中有机溶剂含量偏低适当补加有机溶剂槽液NV值偏低提高槽液固体份槽液电导偏低减少UF液的损失施工电压低,泳涂时间不足提高泳涂电压,延长泳涂时间极板与电源连接不良,极板被腐蚀,极夜K值低,极罩隔膜堵塞检查极板、极罩和极夜系统,定期清理和更换工件通电不良清理挂具,使工件通电良好磷化膜太厚控制磷化膜厚度在工艺范围内12 漆膜厚泳涂电压偏高调低泳涂电压槽液温度偏高降温至工艺要求范围之内槽液NV值偏高降低槽液的NV 值溶剂含量偏高排放UF液,补加纯水,延长新槽的熟化时间槽液K值高排放UF液增加纯水被涂物周围循环不好通常因泵、过滤器和换热器堵塞所致改善循环系统13起皱涂膜在烘烤时流平性差或在泳涂时成膜性差增加有机溶剂含量湿膜展平性差,漆温过高使漆温度在工艺要求范围内漆膜偏厚降低施工电压烘烤时升温太快,造成漆膜流平性差而造成严重皱纹调节升温曲线14 漆膜粗糙泳涂电压偏高降低电压至要求范围槽温过高降低槽液温度泳涂速度过快除电压和温度外,pH值、K值也应下降磷化膜不均匀消除磷化不均入槽泳涂工件温度偏高确保涂装工件温度在32℃以下工件表面受磷化渣污染改进磷化除渣系统:增加磷化后喷淋清洗电压波动大控制电压脉动不超过5%,用示波器检查整流器,排除故障入槽工件带入的杂质离子多检查去离子水的pH值,K值清除污染源15 漆膜有颗粒槽液pH值偏高,碱性物质混入槽液中;温度偏高,树脂析出或凝聚控制槽液pH值,严禁有碱性物质混入槽中加强过滤,加速槽液的更新槽内有沉淀死角和裸露金属消除沉淀死角和产生沉淀膜的裸露件电泳槽液和后冲洗液杂质污染,过滤不良加强过滤,推荐试验精度为25微米的过滤元件,减少泡沫入槽被涂物表面不洁,磷化后水洗不良确保被涂物表面清洁,不应有磷化沉渣,防止二次污染在烘干过程中落上杂质粒状污物保持烘道清洁,检查并消除空气尘埃污染源补给涂料或树脂溶解不良,有颗粒确保新补涂料溶解良好,中和分散均匀后,检查应无颗粒16 缩孔槽液中混入油污在槽液循环系统设除油过滤袋,同时清查油污源被涂物前处理脱脂不良或清洗后又落油污加强被涂物的脱脂工序,确保磷化膜不被二次污染泳后清洗液中混入油污提高后清洗水质,加强过滤烘干室内不净,循环风内含油保持烘干室和循环热风的清洁P/B比失调,颜料份偏低调整P/B比,补加颜料浆补给涂料有缩孔或树脂溶解不良,中和不好加强涂料补加管理,确保补给涂料的溶解中和,过滤良好17 针孔槽液中杂质离子含量过高,电解反应剧烈,被涂物表面产生气体过多排放UF液,加纯水,降低杂质离子含量电泳涂装后,被涂物出槽清洗不及时湿涂膜产生返溶被涂物电泳出槽后,应立即用UF液冲洗,时间不超过1分钟为宜磷化膜空隙率高,易含气泡调整磷化结晶致密槽液温度偏低或搅拌不充分湿膜脱泡不良加强槽液搅拌,确保槽液温度在工艺范围之内被涂物入槽端槽液面流速低,有泡沫堆积控制液面流速大于0.2m/s,消除堆积的泡沫18 水滴痕湿膜带水滴,水珠在烘干前未挥发掉吹掉水滴、水珠,升高晾干区的温度,加强排风从挂具和线链上滴落的水珠采取措施防止水滴落在被涂物上进入烘干室后,升温过急避免升温过急或增加预加热纯水洗不足增加纯水洗19 干漆迹泳后冲洗不良加强泳后冲洗管理,检查喷嘴是否堵塞或布置不当加大冲洗水量槽液温度偏高,涂装环境温度低适当降低温度,提高环境温度入槽段液面有泡沫浮游,泡沫吸附在被涂物表面上,被沉积的漆膜包裹加大入槽部位液面流速,消除液面的泡沫20 涂层斑印入槽段电压过高,造成电解反应剧烈降低入槽段电压,在入槽段不设或少设电极被涂物表面干湿不均或有水滴吹掉被涂物面的水滴,确保被涂物全干或全湿状态进入电泳槽磷化膜疏松或太薄调整前处理工艺,确保磷化膜质量符合入槽电泳工艺要求磷化后水洗不充分加强磷化后清洗工艺磷化后水洗水质不良加强水质管理,纯水清洗后滴水电导率不应大于30μs/cm磷化处理过的被涂面再次被污染防止磷化后湿膜的二次污染,保持环境整洁,防止挂具滴水被涂物的结构造成在可能的条件下改结构21 二次流痕泳后清洗工艺选择不当对复杂结构的被涂物应选用浸喷结合式清洗工艺,或用水冲或用压缩空气吹掉夹层中的槽液进入烘干区时,升温过急加强晾干功能,在烘干前预加热由于电泳系统管路中泵、阀门泄漏造成爆气检查系统有关泵、阀门等设备22 槽液气泡主、副槽溢流落差太大造成气泡调整溢流堰高度,减少落差由于循环不足,造成槽液表面流动不畅,以致涂装件入口处带进的气泡不宜消失且越积越多检查循环系统相关设备的工作正常与否,如有必要则需维修。
反渗透碳酸钙沉淀的判断和防止

反渗透碳酸钙沉淀的判断和防止全文共四篇示例,供读者参考第一篇示例:反渗透碳酸钙沉淀的判断和防止反渗透(RO)技术是一种常用的水处理方法,可以有效去除水中的溶解固体、有机物质和细菌等杂质,使水质达到符合生活和工业用水标准的要求。
在使用反渗透技术处理水质时,经常会出现碳酸钙的沉淀问题,影响了RO膜的使用寿命和水质的净化效果。
1.外观上的判断:碳酸钙沉淀会在反渗透设备中产生白色或浑浊的颗粒物,这些颗粒物会附着在膜面上,导致膜孔堵塞、水通量降低,从而影响反渗透膜的正常运行。
2.水质上的判断:在水质分析中,碳酸钙沉淀会以综合硬度增加或总溶解固体(TDS)升高等形式表现出来,这些指标的异常变化会引起RO设备运行参数的波动,降低了水质的净化效果。
3.操作上的判断:在反渗透设备的实际运行过程中,碳酸钙沉淀会造成设备运行参数的波动,如进水压力下降、产水流量减少、触媒剂使用增加等现象,这些都是影响RO设备正常运行的重要指标。
以上几个方面都可以用来判断反渗透碳酸钙沉淀的存在与否,一旦发现了这些问题,就需要及时采取措施来防止沉淀的发生。
1. 控制水质中的钙硬度:RO设备的进水水质中的钙硬度是造成碳酸钙沉淀的主要原因之一,因此可以通过提前对进水进行软化处理或者添加螯合剂来控制水中的钙硬度,从根本上预防碳酸钙沉淀的发生。
2. 提高反渗透设备的稳定运行:RO设备要求运行参数的稳定性比较高,因此要加强设备的维护管理,保持设备的稳定运行,减少设备的振荡和参数的变化,从而降低沉淀的概率。
3. 定期清洗和维护RO设备:定期对RO设备进行膜元件的清洗和更换,可以有效清除残留在膜面上的碳酸钙沉淀,保持膜的通透性和净化效果,延长设备的使用寿命。
4. 加强设备的水质监测和分析:及时对RO设备的水质进行监测和分析,发现水质变化的异常现象,及时采取措施调整设备的运行参数,防止碳酸钙沉淀的发生。
5. 合理使用化学品和剂量控制:对RO设备的水质处理过程中,选择合适的阻垢剂和螯合剂,并严格控制化学品的投加剂量,避免过量使用化学品引起残留物的沉淀,从而保证设备的正常运行。
平板膜MBR

设备维护保养方法
膜组件的清洗
定期对膜组件进行清洗, 去除表面的污垢和沉积物, 以保证膜通量和处理效果。
设备润滑
对平板膜MBR系统中的轴 承、齿轮等部件进行定期 润滑,以减少磨损和故障。
紧固与调整
定期对设备各部件进行紧 固,防止松动和脱落;对 需要调整的部件进行调整, 以保证设备正常运行。
故障诊断与排除技巧
曝气装置
控制系统
曝气装置为生物反应器提供充足的氧气,保 证微生物的正常代谢和生长。
控制系统对整个平板膜MBR系统进行智能化 控制,保证系统的稳定运行和出水水质。
工艺特点与优势分析
01
02
03
04
高效固液分离
平板膜具有高精度的过滤性能, 能够实现高效的固液分离,保
证出水水质。
占地面积小
相比传统污水处理工艺,平板 膜MBR系统占地面积小,可节
新型材料在平板膜MBR中应用
高分子材料
采用高性能高分子材料,如聚偏氟乙 烯(PVDF)等,提高膜材料的耐化 学腐蚀性和机械强度。
生物相容性材料
选用具有良好生物相容性的材料,减 少膜污染和生物垢的形成,延长膜的 使用寿命。
纳米材料
引入纳米技术,制备纳米复合平板膜, 提高膜的通量、截留性能和抗污染能 力。
06
平板膜MBR经济效益及 环境效益评价
投资成本分析
1 2
膜组件及附属设备投资 包括平板膜、膜架、曝气装置等直接材料成本。
土建及安装工程投资 涉及MBR池体、设备基础、管道阀门等间接投资。
3
其他费用 包括设计费、监理费、调试费等前期投入。
运营成本核算
能耗费用
平板膜MBR运行过程中的电费、水费等能源 消耗。
MBR工艺简介培训讲义(2024)
缺点剖析
2024/1/30
投资及运行费用较高
01
MBR工艺需要采用高性能的膜组件和相应的膜清洗设备,使得
投资及运行费用相对较高。
膜污染问题
02
膜污染是MBR工艺中不可避免的问题,膜污染会导致膜通量下
降,需要定期进行清洗和更换。
能耗较大
03
MBR工艺需要消耗大量的能源来维持膜组件的运行和清洗,使
发展历程
MBR工艺自20世纪60年代问世以来, 经历了实验室研究、中试规模验证和 大规模应用等阶段,现已成为污水处 理领域的重要技术之一。
2024/1/30
4
原理及特点分析
原理
MBR工艺通过膜的高效分离作用,将污水中的悬浮物、胶体、细菌等有害物质 截留,同时利用生物处理技术降解污水中的有机污染物,从而达到净化水质的 目的。
与SBR工艺比较
MBR工艺与SBR工艺都是序批 式处理工艺,但是MBR工艺通 过膜的高效分离作用实现了连 续进水、连续出水的运行模式 ,使得处理效率更高。同时, MBR工艺的出水水质更加稳定 。
2024/1/30
19
05
MBR工艺设计要点与 案例分析
2024/1/30
20
设计原则和方法论述
2024/1/30
通过曝气装置提供氧气,使微生物降 解有机物,同时硝化作用将氨氮转化 为硝态氮。
2024/1/30
9
膜分离单元
膜组件
采用微滤或超滤膜,具有 优异的截留性能和通量稳 定性。
2024/1/30
产水泵
将经过膜过滤的清水抽出 ,实现产水与污泥的分离 。
清洗系统
定期对膜组件进行清洗, 以恢复膜通量和截留性能 。
根据处理水量和曝气需求选择 合适的曝气设备类型和数量。
MBR常见问题及解决办法
MBR常见问题及解决办法1、膜组件在安装过程中未加以保护或保护不当,导致组件或膜片损坏规范要求:a、试水前勿拆除出厂包装,组件就位后需立即遮盖,避免焊接施工时焊渣灼伤膜片。
b、吊装时取4个吊耳起吊,防止组件变形,吊装时严禁碰撞、倾斜、侧翻。
2、现场不具备吊装条件或吊装困难处理方法:a、吊装困难时,需结合当地天气及污水站周围土质和起吊距离选用合适的吊车;b、不具备吊装条件时,将膜片拆出,曝气箱和膜组件拆分后由人力往池内吊放。
3、膜组件地脚固定不牢或没有固定,导致使用时组件移位或损坏连接管道,后期加固难度增加规范要求:组件曝气箱严格定位,同时采用不锈钢膨胀螺丝固定,防止组件长时间动荡、移位,甚至拉断上方抽吸管。
4、各膜组件空气放空管道没有接到水池上部用总管连接规范要求:将每个膜组件的气管放空管单独接至水池上部,并在液面上适当位置设置阀门,再用总管将伸上来的管道统一连接。
5、膜组件安装完成后必要的检查措施规范要求:在膜组件安装后进水调试前需要检查组件连接管、硅胶管是否安装合格,有无泄漏隐患。
组件出水管安装电接点真空压力表部位比较容易出现漏气现象,需要重点检查生料带是否缠绕仔细。
6、膜池内施工垃圾较多,对膜组件正常运行留有隐患规范要求:安装前反应池内的施工应已完成,并请检查清扫工作。
大块的垃圾(混凝土块、切削屑粒、零碎材料)等不得残留在槽内,请务必将其除去。
在清水调试前再次检查池体,如有必要必须再次清扫。
7、浮球安装随意,造成浮球到处移动,液位控制不准,同时造成浮球控制失灵。
规范要求:就位准确、固定牢固,确保浮球在合理的范围上下浮动。
8、加药管路安装不正确安装方式:必须有喇叭口,药剂由喇叭口自流进入膜组件,喇叭口到膜池液位距离不能大于1米,若是封口(没有喇叭口)安装加药管路,加药时的压力可能会将膜组件损坏,使出水浑浊或产生大量气泡。
6、膜池内施工垃圾较多,对膜组件正常运行留有隐患规范要求:安装前反应池内的施工应已完成,并请检查清扫工作。
污染源自动监控常见问题及现场检查要点
• 常见问题:未及时添加分析试剂或无试剂。 • 对系统和数据影响:1、系统无法正常工作;2、
测量数据异常 。 • 核查方法:1、现场观察试剂瓶内是否有试剂。2、
试剂瓶内取液管是否插入液面以下〔假设试剂没 有正常添加,但分析仪表数据显示正常,那么可 能存在人为作假〕。3、观察试剂标签,明确试剂 是否在有效期内。
• 对系统和数据影响:1、伴热温度缺乏,烟气结露, 使测定结果偏低,腐蚀设备;2、易导致颗粒物集聚, 堵塞探头或管路,进而导致采样流量不正确、响应时 间增长甚至系统运行不正常;3、可导致液态水积聚, 设备报警停运或水滴进入分析仪器导致仪器停运。
氨气敏电极法
氨气敏电极构造
• 氨气敏电极法所用的试剂主要有三种:碱 溶液〔逐出溶液〕:氢氧化钠溶液〔各厂 浓度不一样〕
• 标准溶液:氯化铵溶液〔一种或2种〕
• 蒸馏水
• 常见问题:电极未及时维护或更换,电极 老化。
• 核查方法:检查电极出厂时间和更换记录,
纳氏试剂比色法
• 常见问题:比色池内 有漏液现象、结晶、 污染〔正常测定必定 导致污染,一般1个 月需清洗一次〕。
• 3、与标准进展比照。
废水-采样和预处理
• 常见问题:1、采样探头安装位置不 当。2、在堰槽采样探头附近排入浓 度较低的水。
• 对系统和数据影响:1、采样探头堵 塞,引起数据异常波动。2、所取水 样不具有代表性。 3、人为作假, 导致数据失真。
• 核查方法:1、观察采样探头安装位 置,是否设置在废水排放堰槽头部。 如巴歇尔槽应安装在收缩段上游明 渠。2、观察采样探头是否在取水口 流路中央。3、在测量合流排水时, 采样探头是否在合流后充分混合处。 4、在采样探头上游一定距离处采样 进展比对。
印刷覆膜常见问题及解决
案例二:某印刷厂覆膜开裂问题解决
总结词:覆膜开裂
详细描述:某印刷厂在覆膜过程中,偶尔出 现膜开裂的情况。经过调查,发现开裂主要 是由于印刷品表面油墨过厚或干燥不彻底, 导致膜与印刷品之间的粘附力不足。为了解 决这一问题,印刷厂调整了油墨配方,加强 了油墨干燥环节的监管,并适当增加粘合剂 的使用量,最终有效减少了覆膜开裂现象的
备进行维护和保养,最终提高了覆膜的附着力。
案例四:某包装公司颜色偏差问题解决
01
总结词:颜色偏差
04
$item4_c{文字是您思想的提炼,为了最终呈现发布的良 好效果,请尽量言简意赅的阐述观点;根据需要可酌情增 减文字,4行*25字}
02
详细描述:某包装公司在印刷品覆膜过程中,偶尔出现颜 色偏差的问题。经过调查,发现主要是由于油墨配方调整 不当以及印刷工艺参数设置不合理所致。为了解决这一问 题,包装公司重新调整了油墨配方和印刷工艺参数,加强 了生产过程中的颜色校准和质量控制,最终有效避免了颜
印刷覆膜的分类根据使用的薄膜材料和工艺方法的不同,可分为塑性覆膜 和涂塑覆膜两类。
印刷覆膜的用途
保护印刷品表面
薄膜可以有效地保护印刷品表面,防止磨损、污染和紫外线照射, 延长印刷品的使用寿命。
提高印刷品光泽度
覆膜可以使印刷品表面更加光滑、有光泽,提高印刷品的视觉效果。
增加印刷品的防水性能
薄膜具有良好的防水性能,可以防止水和其他液体对印刷品表面的 渗透,保持印刷品干燥、整洁。
颜色偏差
总结词
颜色偏差是指覆膜后的印刷品颜色与预期颜色存在差异。
详细描述
这可能是由于印刷过程中油墨的选择、调配或使用不当,导 致颜色偏差。此外,覆膜过程中温度和压力的控制不当也可 能影响颜色的表现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
膜系统常见污染问题及控制
反渗透系统在日常的运行中,难免会出现系统的无机物结垢、胶体颗粒物的
沉积、微生物的滋生、化学污染以及其它问题,这些因素影响着系统安全稳定的
运行。下面主要阐述膜系统在日常中出现的问题及控制方法。
一、无机物的结垢
在水中存在Ca2+、Mg2+、Ba2+、Sr2+、CO32-、SO42-、PO43-、SiO2
等离子。在一般的情况下是不会造成无机物结垢,但是在反渗透系统中,由于源
水一般浓缩4倍,并且pH也有较大的提高,因此比较难溶解的物质就会沉积,
在膜表面形成硬垢,导致系统压力升高、产水量下降,严重的还会造成膜表面的
损伤,使系统脱盐率降低。
衡量水质是否结垢有两种计算方法:
控制苦咸水结垢指标
对于浓水含盐量TDS≤10,000mg/L的苦咸水,朗格利尔指数(LSIC)作为表
示CaCO3结垢可能性的指标:
LSIC=pHC-pHS
式中:LSIC:反渗透浓水的朗格利尔指数
pHC:反渗透浓水pH值
pHS:CaCO3溶液饱和时的pH值
当LSIC≥0,就会出现CaCO3结垢。
控制海水及亚海水结垢指标及处理方法:
当浓水含盐量TDS>10,000mg/L的高盐度苦咸水或海水水源,斯蒂夫和大卫
饱和指数(S&DSIC)作为表示CaCO3结垢可能性的指标。
S&DSIC=pHC-pHS
式中:S&DSIC:反渗透浓水的斯蒂夫和大卫饱和指数
pHC:反渗透浓水pH值
pHS:CaCO3溶液饱和时的pH值
当S&DSIC≥0,就会出现CaCO3结垢。
其它无机盐结垢预处理的控制方案
2
碳酸钙结垢预处理的控制方案
在反渗透系统的结垢中,以碳酸盐垢为主,大多数地表水和地下水中的
CaCO3几乎呈饱和状态,由下式表示CaCO3化学平衡:
Ca2+ + HCO3– <——> H+ + CaCO3
从化学平衡式可以看出,要抑制CaCO3的结垢,有几种途径:
降低Ca2+的含量
降低了Ca2+含量,可以使化学平衡向左侧移动,不利于形成CaCO3垢。
达到这种目的的方法有:离子交换软化法、石灰软化法、电渗析、纳滤等方
法,他们都能有效地降低的Ca2+含量,从而达到抑制钙垢的生成。
Ca2+的增溶
主要是以增加Ca2+的溶解度,从而降低结垢的风险。
方法:添加螯合剂、阻垢剂,增加Ca2+的溶解度,使平衡向左移动。
调节pH值
主要是通过添加无机酸,从而提高H+的浓度,使平衡向左移动。化学原理
如下:
CO2 + H2O <——> H2CO3 ――――⑴
H2CO3 <——> H+ + HCO3- ――――⑵
HCO3- <——> H+ + CO32- ――――⑶
离子交换除碱法
主要是通过降低CO32-的浓度来降低碳酸钙结垢的风险。
3
硫酸钙结垢预处理的控制方案
离子交换除钙
石灰软化除钙
添加反渗透专用阻垢剂
氟化钙结垢预处理的控制方案
离子交换除钙
石灰软化除钙
阴树脂交换
添加反渗透专用阻垢剂
硫酸锶结垢预处理的控制方案
离子交换除锶
阴树脂交换
添加反渗透专用阻垢剂
硫酸钡结垢预处理的控制方案
离子交换除钡
阴树脂交换
添加反渗透专用阻垢剂
硅酸盐结垢预处理的控制方案
预处理中的过滤
石灰软化
提高进水的温度
提高进水的pH值
添加硅分散剂
二、胶体、颗粒物沉积
胶体、颗粒物污染是比较常见的反渗透系统污染。水中大量存在粘泥、胶体
硅、金属的氧化物及有机质等颗粒物,在反渗透系统预处理中可以将源水中的这
些污染源控制在一定程度,不致使对系统短期运行造成一定的影响。但由于系统
长时间的运行预处理处理效果不理想、预处理反冲洗不彻底、操作人员的日常操
作不到位等原因,都会造成系统胶体、颗粒物的污染。
4
针对胶体污染,通过淤泥密度指数(Silt Density Index ,SDI)来衡量。
SDI数值反应了在规定时间内,孔径为0.45um测试膜片被测试给水中的淤泥、
胶体、黏土、硅胶体、铁的氧化物、腐植质等污染物堵塞的比率和污染程度。
测试如下:首先应充分排除过滤池中的空气压力,使给水以30psi 的恒定
压力通过直径为Φ 47mm 、孔径为0.45um的测试滤膜后开始测定:首先测定开
始通过滤膜的500毫升水所需要的时间T0;在使水连续通过滤膜15分钟(T)
后,再次测得通过滤膜的500毫升水所需要的时间T1;在取得以上3个时间数
据之后,由此可以计算出该水源的SDI值:
即 SDI=(1-T0 /T1)×100/T
在实际中,当T1为T0的四倍时,SDI为5;在SDI为6.7时,水会完全堵
塞测试膜,而无法取得时间数据T1,在这种情况下需要对反渗透预处理系统进
行调整,使其SDI值降至5.0以下。SDI值不能反应完全反渗透系统的污堵情况,
因为SDI仪测试是死端过滤,而反渗透系统是错流过滤。
为了防止反渗透系统胶体污染,我们要求进水SDI值小于5(最好是小于3),
这样有利于系统长期安全运行。
降低反渗透进水胶体、颗粒物污染最有效的方法:
合适的预处理(锰砂过滤、多介质过滤、活性炭过滤、超滤、微滤等等);
添加胶体分散剂;
5
系统预防性的清洗;
三、微生物的污染
自来水一般通过控制余氯来抑制微生物的滋生,但是余氯有较强的氧化性,
它能使反渗透膜表面氧化,影响膜的寿命和产水水质,因此反渗透系统运行对余
氯要求非常严格(<0.1),这给微生物的生存繁殖提供了有利的环境。微生物生
长及排泄出的酸性粘泥会堵塞膜的微孔,致使压差上升,给系统的安全运行埋下
了严重的安全隐患。
微生物的污染也是最常见的污染,经过大量的元件解剖及污染物分析实验,
大多数污染是由微生物的繁殖引起的。
微生物污染过程主要有以下阶段:第一阶段腐殖质、聚糖至于其他微生物代
谢产物等大分子在膜面上的吸附,形成具备微生物生存条件的生物膜;第二阶段
进水微生物中黏附速度快的细胞形成初期黏附过程(生物膜生长缓慢);第三阶
段后续大量菌种的黏附,特别是EPS(细胞聚合物,Extracelluar Polymers.它
黏附在膜面上的细胞体包裹起来,形成黏度很大的税和凝胶层,进一步增强了污
垢和膜的结合力)的形成,加剧了微生物的繁殖和群聚;第四阶段生物污染的最
终形成阶段,生物膜的生长和脱除达到平衡。造成膜的不可逆的堵塞氏过滤阻力
上升,膜通量下降。
抑制反渗透系统微生物繁殖的方法:
反渗透进水微生物的控制。通过源水的菌藻控制(一般通过控制余氯),尽
量减少预处理的死角,防止微生物繁殖;
反渗透系统微生物控制。通过连续式或间歇式加入非氧化性且对膜没有影响
的杀菌剂,可以有效地控制和杀死反渗透系统滋生的微生物,再通过浓水将其带
出系统。
四、化学污染
化学污染是指进水中某些物质与膜面发生化学反应,从而引起沉积、沉淀以
及膜表面的非常规老化,使膜表面发生污染或使膜的性能变差。
常见的情况有:预处理时絮凝剂选用不当;运行时阻垢剂的选用不当;清洗
时清洗药剂选用不当;预处理控制不严格,致使进水中带入对膜有危害的物质
(如:余氯的超标导致膜面活性层的氧化)。
6
化学污染处理主要从系统预处理的完善及操作人员技术水平的提高来进行
预防,污染一旦产生很难清洗或者很难使膜的性能恢复。
除了上述几种常见的问题,我们也会碰到沙砾、活性进入膜系统造成膜的划
伤,这些主要是预处理的缺陷或者操作的失误造成,这些也应该引起足够的重视。