二阶常微分方程求解

合集下载

二阶微分方程的常见求解方法和应用

二阶微分方程的常见求解方法和应用

二阶微分方程的常见求解方法和应用二阶微分方程是一类重要的数学模型,在物理和工程学科中得到广泛应用。

本文将介绍几种常见的二阶微分方程求解方法,并探讨其在科学研究和工程实践中的应用。

一、常系数齐次二阶微分方程常系数齐次二阶微分方程形式为:$$ y''+ay'+by=0 $$其中,a和b是常数。

该方程的通解可以用特征方程求解。

特征方程为:$$ r^2+ar+b=0 $$如果特征方程有两个不同的实根$r_1$和$r_2$,通解为:$$ y=c_1e^{r_1x}+c_2e^{r_2x} $$如果特征方程有一个重根$r_1$,通解为:$$ y=(c_1+c_2x)e^{r_1x} $$如果特征方程有两个共轭复根$\alpha\pm\beta i$,通解为:$$ y=e^{\alpha x}(c_1\cos\beta x+c_2\sin\beta x) $$二、非齐次二阶线性微分方程非齐次二阶线性微分方程形式为:$$ y''+ay'+by=f(x) $$其中,f(x)是已知的函数。

我们可以通过猜测特解的形式,利用常数变易法求解。

通常,特解的形式取决于f(x)的形式。

常见的特解形式包括:1. f(x)是常数:特解形式为$y=k$,其中k是常数。

2. f(x)是mx+n型函数:特解形式为$y=mx+n$,其中m和n是常数。

3. f(x)是$e^{ax}$型函数:特解形式为$y=Ae^{ax}$,其中A是常数。

4. f(x)是三角函数型函数:特解形式为$y=A\cos bx+B\sin bx$,其中A和B是常数。

5. f(x)是多项式型函数:特解形式为$y=P_n(x)$,其中P_n(x)是n次多项式。

特解计算出来后,将通解与特解相加即可得到非齐次线性微分方程的通解。

三、应用二阶微分方程在科学研究和工程实践中有着广泛的应用。

以下是一些例子:1. 振动问题:二阶微分方程可以用来描述物体的振动状态。

二阶线性常微分方程的幂级数解法

二阶线性常微分方程的幂级数解法

二阶线性常微分方程的幂级数解法从微分方程学中知道,在满足某些条件下,可以用幂级数来表示一个函数。

因此,自然想到,能否用幂级数来表示微分方程的解呢? 例1、求方程''0y xy -=的通解解:设2012n n y a a x a x a x =+++++……为方程的解,这里(0,1,2,,,)i a i n =……是待定常系数,将它对x 微分两次,有 将y ,'y 的表达式代入方程,并比较的同次幂的系数,得到x -∞<<∞2210a ⋅=,30320,a a ⋅-= 41430,a a ⋅-= 52540,a a ⋅-=或一般的可推得32356(31)3k a a k k =⋅⋅⋅⋅⋅-⋅,13134673(31)k a a k k +=⋅⋅⋅⋅⋅⋅+,其中1a ,2a 是任意的,因而代入设的解中可得:这个幂级数的收敛半径是无限大的,因而级数的和(其中包括两个任意常数0a 及1a )便是所要求的通解。

例6 求方程'''240y xy y --=的满足初值条件(0)0y =及'(0)1y =的解。

解 设级数2012n n y a a x a x a x =+++++……为方程的解。

首先,利用初值条件,可以得到00a =, 11a =,因而将y ,'y ,''y 的表达式带入原方程,合并x 的各同次幂的项,并令各项系数等于零,得到 因而 最后得21111(1)!!k a k k k +=⋅=- , 20k a =, 对一切正整数k 成立。

将i a (0,1,2,)i =的值代回2012n n y a a x a x a x =+++++……就得到 这就是方程的满足所给初值条件的解。

是否所有方程都能按以上方式求出其幂级数解?或者说究竟方程应该满足什么条件才能保证它的解可用幂级数来表示呢?级数的形式怎样?其收敛区间又如何?这些问题,在微分方程解析理论中有完满的解答,但因讨论时需要涉及解析函数等较专门的知识,在此我们仅叙述有关结果而不加证明,若要了解定理的证明过程,可参考有关书籍。

二阶线性常微分方程

二阶线性常微分方程

二阶线性常微分方程二阶线性常微分方程(Second-order linear ordinary differential equation)是微积分中常见的一类数学方程。

它具有以下标准形式:y'' + p(x)y' + q(x)y = f(x)其中,y是未知函数,x是自变量,y''表示y对x的二阶导数,y'表示y对x的一阶导数。

而p(x),q(x),f(x)是给定的函数。

解二阶线性常微分方程需要求出其一般解或特解。

下面我们将介绍两种常见的解法方法。

1. 特征方程法对于二阶线性常微分方程而言,我们可以首先考虑其对应的特征方程。

将方程转化为特征方程后,解出特征方程的根,再根据不同情况求解方程。

特征方程形式如下:r^2 + p(x)r + q(x) = 0在解特征方程时,可能会出现以下三种情况:情况1:特征方程有两个相异实根r1和r2。

此时,原方程的通解可以表示为:y(x) = C1e^(r1x) + C2e^(r2x)其中C1和C2为待定常数。

情况2:特征方程有两个相等实根r。

此时,原方程的通解可以表示为:y(x) = (C1 + C2x)e^(rx)其中C1和C2为待定常数。

情况3:特征方程有两个共轭虚根α+βi和α-βi。

此时,原方程的通解可以表示为:y(x) = e^(αx)(C1cos(βx) + C2sin(βx))其中C1和C2为待定常数。

通过求解特征方程并根据不同情况求解方程,我们可以得到原方程的一般解。

2. 常数变易法除了特征方程法之外,我们还可以通过常数变易法来解决二阶线性常微分方程。

常数变易法的基本思路是,首先猜测通解形式,然后将通解带入原方程,求解待定常数。

例如,对于形如y'' + p(x)y' + q(x)y = f(x)的方程,我们可以猜测通解形式为y = u(x)y1(x),其中y1(x)是该方程对应的齐次线性方程的一个特解,u(x)是待定函数。

matlab 二阶常微分方程数值求解函数

matlab 二阶常微分方程数值求解函数

MATLAB 二阶常微分方程数值求解函数一、MATLAB 中常微分方程的求解在科学计算领域,常微分方程是一个非常重要的数学工具,常被用于描述动态系统的演变规律。

MATLAB 作为一种功能强大的科学计算软件,提供了丰富的工具箱和函数,用于求解常微分方程。

其中,二阶常微分方程求解函数是其中的重要一部分。

二、二阶常微分方程的数值求解方法1. 常微分方程的基本概念在了解 MATLAB 中的二阶常微分方程数值求解函数之前,首先要明确常微分方程的基本概念。

常微分方程是关于未知函数及其导数的方程,而二阶常微分方程则是包含到二阶导数的方程。

通常情况下,常微分方程不易求解,因此需要借助数值求解方法进行近似求解。

2. MATLAB 中的数值求解函数在 MATLAB 中,有多种数值求解方法可用于求解二阶常微分方程,例如 ODE45、ODE23、ODE113 等。

这些函数可以根据用户输入的微分方程表达式和初始条件,使用不同的数值方法进行求解,得到相应的数值解。

三、使用 MATLAB 数值求解二阶常微分方程的示例考虑一个带有阻尼和弹簧的振动系统,其运动方程为:\[ m\frac {d^2x}{dt^2} + c\frac{dx}{dt} + kx = 0 \]其中,\( m \) 为质量,\( c \) 为阻尼系数,\( k \) 为弹簧刚度。

现在,我们可以使用 MATLAB 中的二阶常微分方程数值求解函数来求解该振动系统的运动方程。

```matlabfunction secondOrderODEExample% 定义常数m = 1; % 质量c = 0.1; % 阻尼系数k = 1; % 弹簧刚度% 定义初始条件x0 = 1; % 初位移v0 = 0; % 初速度% 定义时间范围tspan = [0 10]; % 时间范围% 定义运动方程odefun = @(t,x) [x(2); -c/m*x(2) - k/m*x(1)];% 求解微分方程[t, sol] = ode45(odefun, tspan, [x0 v0]);% 绘制位移随时间变化图figure;plot(t, sol(:,1));xlabel('Time');ylabel('Displacement');title('Displacement vs. Time');end```代码中,我们使用了 MATLAB 中的 ode45 函数来求解给定的二阶常微分方程,并绘制了位移随时间变化的图像。

二阶线性常系数齐次微分方程的解

二阶线性常系数齐次微分方程的解
有一对共轭复根 r1, 2i
y C1er1x C2er2x y C1er1x C2xer1x yex(C1cosxC2sinx)
例 3 求微分方程y2y5y 0的通解
解 微分方程的特征方பைடு நூலகம்为
r22r50
特征方程的根为r112i r212i 是一对共轭复根 因此微分方程的通解为yex(C1cos2xC2sin2x)
y C1er1x C2er2x y C1er1x C2xer1x yex(C1cosxC2sinx)
•第一步 写出微分方程的特征方程
r2prq0 •第二步 求出特征方程的两个根r1、r2 •第三步 根据特征方程的两个根的不同情况 写出微分方程的 通解
首页
上页
返回
下页
结束

❖特征方程的根与通解的关系
首页
上页
返回
下页
结束

❖特征方程的根与通解的关系
方程r2prq0的根的情况 方程ypyqy0的通解
有两个不相等的实根 r1、r2 有两个相等的实根 r1r2
有一对共轭复根 r1, 2i
y C1er1x C2er2x y C1er1x C2xer1x yex(C1cosxC2sinx)
例2 求方程y2yy0的通解
中p、q均为常数 ❖特征方程及其根
方程r2prq0叫做微分方程ypyqy0的特征方程 特征方程的求根公式为
r1, 2
p
p2 4q 2
首页
上页
返回
下页
结束

❖特征方程的根与通解的关系
方程r2prq0的根的情况 有两个不相等的实根 r1、r2 有两个相等的实根 r1r2
有一对共轭复根 r1, 2i

二阶常微分方程求解公式

二阶常微分方程求解公式

二阶常微分方程求解公式二阶常微分方程在数学领域中可是个相当重要的家伙呢!咱们先来说说啥是二阶常微分方程。

简单来讲,就是方程里含有未知函数的二阶导数。

比如说,像 y'' + 2y' + y = 0 这样的式子就是二阶常微分方程。

那求解它的公式是咋来的呢?这可得从数学的“大宝藏”里一点点挖掘。

咱们先来说说线性常系数二阶齐次方程的求解。

它的形式一般是 y'' + py' + qy = 0 ,这里的 p 和 q 是常数。

为了找到解,咱们得先假设一个形式,就像侦探找线索一样。

假设y = e^(rx) ,把它代入方程里,就能得到一个关于 r 的方程 r^2 + pr + q = 0 。

这就是所谓的特征方程。

要是这个特征方程有两个不同的实根 r1 和r2 ,那方程的通解就是 y = C1e^(r1x) + C2e^(r2x) 。

就好比有一天我在给学生们讲这个知识点的时候,有个学生瞪着大眼睛问我:“老师,这咋感觉像变魔术似的,咋就这么假设出来啦?”我笑着告诉他:“这可不是变魔术,这是数学的智慧!你就把它想象成一把神奇的钥匙,能打开方程的秘密之门。

”要是特征方程有两个相等的实根 r ,那通解就变成了 y = (C1 +C2x)e^(rx) 。

再来说说线性常系数二阶非齐次方程,它的形式是 y'' + py' + qy = f(x) 。

求解它的办法呢,就是先求出对应的齐次方程的通解,然后再找一个特解。

找特解的方法有很多种,比如待定系数法。

就像上次我在课堂上出了一道题:y'' - 3y' + 2y = e^x ,让同学们自己试着求解。

有的同学一开始抓耳挠腮,不知道从哪儿下手。

我就一点点引导他们,先求出齐次方程的通解,再根据右边的函数形式设特解。

最后,大家都算出了答案,那种成就感满满的样子,让我特别欣慰。

总之,二阶常微分方程的求解公式虽然看起来有点复杂,但只要咱们掌握了方法,多做练习,就一定能把它拿下!就像爬山一样,虽然过程中可能会遇到陡峭的山坡,但只要坚持往上爬,就能看到美丽的风景。

. 二阶常系数线性微分方程

§7.4 二阶常系数线性微分方程二阶常系数线性微分方程的一般形式为)(x f qy y p y =+'+''.这里p 、q 是常数,)(x f 是x 的已知函数.当()f x 恒等于零时,称为二阶常系数齐次线性微分方程,否则称为二阶常系数非齐次线性微分方程.1.二阶常系数齐次线性微分方程定理1 设)(1x y y =与)(2x y y =为二阶常系数齐次线性微分方程0=+'+''qy y p y(1)的相互独立的两个特解(即)()(12x y x y 不恒等于常数),则2211y C y C y +=为方程(1)的通解,这里1C 与2C 为任意常数.证 按假设)(1x y 与)(2x y 为方程(1)的解,所以有下式成立0111=+'+''qy y p y ,0222=+'+''qy y p y . 又 2211y C y C y +=, 2211y C y C y '+'=', 2211y C y C y ''+''=''. 代入(1)式左端,得()()()221122112211y C y C q y C y C p y C y C qy y p y ++'+'+''+''=+'+'' 0)()(22221111=+'+''++'+''=qy y p y C qy y p y C . 即2211y C y C y +=为方程(1)的解. 在)()(12x y x y 不恒等于常数的条件下,2211y C y C y +=中含有两个相互独立的任意常数1C 和2C ,所以2211y C y C y +=是方程(1)的通解.由此定理可知,求方程(1)的通解问题,归结为求(1)的两个相互独立的特解.为了寻找这两个特解,注意到当r 为常数时,指数函数rx y e =和它的各阶导数只相差一个常数因子,因此不妨用rx y e =来尝试.设rx y e =为方程(1)的解,则rx r y e =',rx r y e 2='',代入方程(1)得.0)(2=++rx e q pr r由于0e ≠rx ,所以有.02=++q pr r (2) 只要r 满足(2)式,函数rx y e =就是微分方程(1)的解.我们把代数方程(2)称为微分方程(1)的特征方程,特征方程的根称为特征根.由于特征方程是一元二次方程,故其特征根有三种不同的情况,相应地可得到微分方程(1)的三种不同形式的通解.(ⅰ) 当042>-q p 时,特征方程(8-23)有两个不相等的实根1r 和2r ,此时可得方程(1)的两个特解:x r y 1e 1=, x r y 2e 2=,且≠=-x r r y y )(1212e /常数,故x r x r C C y 21e e 21+=是方程(1)的通解.(ⅱ) 当042=-q p 时,特征方程(8-23)有两个相等的实根21r r =,此时得微分方程(1)的一个特解x r y 1e 1=.为求(1)的通解,还需求出与x r 1e 相互独立的另一解2y .不妨设)(/12x u y y =,则)(e 12x u y x r =, )(e 121u r u y x r +'=', )2(21121u r u r u e y x r +'+''=''. 将22,y y '及2y ''代入方程(1),得 0])()2[(e 12111=++'++'+''qu u r u p u r u r u x r .将上式约去x r 1e 并合并同类项,得0)()2(1211=+++'++''u q pr r u p r u .由于1r 是特征方程(2)的二重根,因此,0121=++q pr r ,且021=+p r ,于是得0=''u .不妨取x u =,由此得到微分方程(1)的另一个特解x r x y 1e 2=,且≠=x y y 12/常数,从而得到微分方程(1)的通解为x r x r x C C y 11e e 21+=,即)(e 211x C C y x r +=.(ⅲ) 当042<-q p 时,特征方程(2)有一对共轭复根βαi r +=1,βαi r -=2.于是得到微分方程(1)的两个特解x i y )(1e βα+=,x i y )(2e βα-=.但它们是复数形式,为应用方便,利用欧拉公式θθθsin cos e i i +=将1y 和2y 改写成)sin (cos e 1x i x y x ββα+=,)sin (cos e 2x i x y x ββα-=.于是得到两个新的实函数x y y y x βαcos e )(21211=+=, x y y iy x βαsin e )(21212=-=. 可以验证它们仍是(1)的解,且≠=x y y βtan /12常数,故微分方程(1)的通解为)sin cos (e 21x C x C y x ββα+=.综上所述,求微分方程(1)通解的步骤可归纳如下:第一步 写出微分方程(1)的特征方程02=++q pr r ,求出特征根; 第二步 根据特征根的不同形式,按照下表写出微分方程(1)的通解: 表1特征方程02=++q pr r 的根21,r r 微分方程0'''=++qy py y 的通解两个不等实根21r r ≠ x r x r C C y 21e e 21+=两个相等实根21r r = x r x C C y 1e )(21+=一对共轭复根βαi r ±=2,1 )s i n c o s (e 21x C x C y x ββα+=例 1 求微分方程043=-'+''y y y 的通解.解 所给微分方程的特征方程为0432=-+r r .特征根为121, 4.r r ==- 于是,所求微分方程的通解为x x C C y 421e e -+=.例 2 求微分方程044=+'-''y y y 的满足初始条件1|,1|00='===x x y y 的特解.解 所给微分方程的特征方程为0442=+-r r .特征根221==r r .故所求微分方程的通解为)(e 212x C C y x +=.求导得x x C x C C y 22212e )(e 2++='.将初始条件1|0==x y 及1|0='=x y 代入以上两式求得.1,121-==C C 故所求特解为)1(e 2x y x -=.例 3 设函数)(x f 可导,且满足⎰⎰-++=xx t t f x t t tf x x f 00d )(d )(21)(. 试求函数)(x f .解 由上述方程知(0)1f =.方程两边对x 求导得⎰-='xt t f x f 0d )(2)(. 由此可得(0)2f '=.上式两边再对x 求导得)()(x f x f -=''.这是二阶常系数齐次线性方程,其特征方程为,012=+r特征根.,21i r i r =-= 于是,所求微分方程的通解为12()cos sin .f x C x C x =+由此得.cos sin )(21x C x C x f +-='由(0)1f =,(0)2f '=得.2,121==C C 所以.sin 2cos )(x x x f +=本节介绍的求二阶常系数齐次线性微分方程通解的原理和方法,也可以用于求解更高阶的常系数齐次线性方程.例 4 求四阶微分方程08)4(='+y y 的通解.解 所给微分方程的特征方程为084=+r r ,即,0)42)(2(2=+-+r r r r 其特征根为.31,2,04,321i r r r ±=-= 于是得方程的通解).3sin 3cos (e e 43221x C x C C C y x x +++=-2.二阶常系数非齐次线性微分方程从第二节的讨论知,一阶非齐次线性微分方程的通解等于对应的齐次线性方程的通解与非齐次线性方程的一个特解之和.而二阶常系数非齐次线性微分方程具有相类似的性质.定理2 设()y y x **=是二阶常系数非齐次线性微分方程)(x f qy y p y =+'+''(3)的一个特解,而Y 为对应于方程(3)的齐次线性微分方程的通解,则y Y y *=+为方程(3)的通解.由此结论可知,二阶常系数非齐次线性微分方程的通解,可按下面三个步骤来求:错误!未找到引用源。

高数二阶常系数非齐次线性微分方程解法及例题详解


强迫振动问题例题
01
解题步骤
02 1. 将外力函数展开为傅里叶级数或三角级数。
03 2. 将展开后的级数代入原方程,得到一系列简单 的一阶或二阶常系数线性微分方程。
强迫振动问题例题
3. 分别求解这些简单方程,得到原方程的通解。
示例:考虑方程 $y'' + 4y = sin t$,首先将 $sin t$ 展开为三角级数,然后代入原方程进行求解,得到通解为 $y(t) = C_1 cos(2t) + C_2 sin(2t) + frac{1}{8} sin t$。
详细描述
自由振动问题通常可以通过求解特征方程得到,特征方程是一元二次方程,其根决定了 微分方程的解的形式。如果特征方程有两个不相等的实根,则微分方程的解为两个独立 的指数函数;如果特征方程有两个相等的实根,则微分方程的解为单一的指数函数;如
果特征方程有一对共轭复根,则微分方程的解为正弦和余弦函数。
强迫振动问题
方程形式与特点
01
02
03
04
05
二阶常系数非齐次线性 该方程具有以下特点 微分方程的一般形式为: $y'' + p(x)y' + q(x)y = f(x)$,其中$p(x)$、 $q(x)$和$f(x)$是已知函 数,$y$是未知函数。
未知函数$y$的最高阶导 系数是常数,不随$x$变 右边的函数$f(x)$是非齐
高数二阶常系数非齐次线 性微分方程解法及例题详 解
• 引言 • 二阶常系数非齐次线性微分方程的解
法 • 常见题型及解题技巧 • 例题详解 • 总结与思考
01
引言
背景介绍
二阶常系数非齐次线性微分方程在自 然科学、工程技术和社会科学等领域 有广泛应用,如物理学、化学、生物 学、经济学等。

二阶常微分方程解.

第七节 二阶常系数线性微分方程的解法在上节我们已经讨论了二阶线性微分方程解的结构,二阶线性微分方程的求解问题,关键在于如何求二阶齐次方程的通解和非齐次方程的一个特解。

本节讨论二阶线性方程的一个特殊类型,即二阶常系数线性微分方程及其求解方法。

先讨论二阶常系数线性齐次方程的求解方法。

§7.1 二阶常系数线性齐次方程及其求解方法设给定一常系数二阶线性齐次方程为22dxyd +p dx dy +qy =0 (7.1)其中p 、q 是常数,由上节定理二知,要求方程(7.1)的通解,只要求出其任意两个线性无关的特解y 1,y 2就可以了,下面讨论这样两个特解的求法。

我们先分析方程(7.1)可能具有什么形式的特解,从方程的形式上来看,它的特点是22dxy d ,dx dy,y 各乘以常数因子后相加等于零,如果能找到一个函数y ,其22dxy d ,dx dy,y 之间只相差一个常数因子,这样的函数有可能是方程(7.1)的特解,在初等函数中,指数函数e rx ,符合上述要求,于是我们令 y =e rx(其中r 为待定常数)来试解将y =e rx,dx dy =re rx ,22dx y d =r 2e rx代入方程(7.1)得 r 2e rx +pre rx +qe rx=0或 e rx (r 2+pr +q )=0 因为e rx ≠0,故得 r 2+pr +q =0 由此可见,若r 是二次方程r 2+pr +q =0 (7.2) 的根,那么e rx 就是方程(7.1)的特解,于是方程(7.1)的求解问题,就转化为求代数方程(7.2)的根问题。

称(7.2)式为微分方程(7.1)的特征方程。

特征方程(7.2)是一个以r 为未知函数的一元二次代数方程。

特征方程的两个根r 1,r 2,称为特征根,由代数知识,特征根r 1,r 2有三种可能的情况,下面我们分别进行讨论。

(1)若特证方程(7.2)有两个不相等的实根r 1,r 2,此时er 1x,e r2x是方程(7.1)的两个特解。

2.2-二阶常系数线性微分方程的解法


∴对应的齐次方程的通解为Y e x (C1 C2 x) 。 ∵ f ( x) xe x ,属 f ( x) Pm ( x)e x 型( m 1, 1 ),
而 1是特征方程的重根,
∴设
y x2 ( A x A1 )e x
,A
ቤተ መጻሕፍቲ ባይዱ
1 6

A1

0

∴ y 1 x3ex ,
取 u( x) 0 的一个解 u( x) x ,则 y2 xerx 。
∴方程①的通解为 y C1erx C2 xerx , 即 y erx (C1 C2 x) 。
3 . 特 征 方 程 的 根 是 一 对 共 轭 复 数 的 情 形 。
∵ y1 e( i ) x 、 y2 e( i ) x 是方程①的特解,
将 y , ( y ) A , ( y ) 0 ,代入原方程后得
5A 6( A x A1 ) 6A x (6A1 5A ) 2x 3 ,有
6A 2

6
A1

5
A
3


A A1

1 3 7 9
. 故原方程的特解为 y
∴设 Qm ( x) A0 x m A1 x m1 Am1 x Am 。
把 Qm ( x) 代入 ④ 式,比较等式两端 x 同次幂的系数, 就得到以 A0 , A1 ,, Am1 , Am 作为未知数的 m 1 个方程 的联立方程组,从而可以定出这些 Ai (i 0, 1, , m) ,

y1 y2

e( i ) x e( i ) x
e2 i x 不为常数,它们是线性无关的,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二阶常微分方程求解
二阶线性微分方程是指未知函数及其一阶、二阶导数都是一次方的二阶方程,简单称
为二阶线性方程。二阶线性微分方程的求解方式分为两类,一是二阶线性齐次微分方程,
二是线性非齐次微分方程。

如果一个二阶方程中,未知函数及其一阶、二阶导数都是一次方的,就称它为二阶线
性微分方程,简单称为二阶线性方程。

二阶线性微分方程的解方式分成两类,一就是二阶线性齐次微分方程,二就是线性非
齐次微分方程。前者主要就是使用特征方程解,后者在对应的齐次方程的吉龙德上加之直
和即为非齐次方程的吉龙德。齐次和非齐次的微分方程的吉龙德都涵盖一切的求解。二阶
线性微分方程定义: y ′ ′ + p ( x ) y ′ + q ( x ) y = f ( x ) 方程称作二阶线
性微分方程

当 f ( x ) = 0 恒成立时,称该方程为二阶线性齐次方程;
当 f ( x ) ≠ 0 指该方程为二阶线性非齐次方程。
定 理 : 若 y 1 , y 2 是 二 阶 线 性 齐 次 方 程 y ′ ′ + p ( x ) y ′ +
q ( x ) y = 0 的 解 , 则 y = c 1 y 1 + c 2 y 2 ( c 1 , (c1,c 2 ∈ r ) 仍
是 它 的 解 。

相关文档
最新文档