二阶线性微分方程的解法

合集下载

二阶次线性微分方程

二阶次线性微分方程

定理 1 如果函数 y1 与 y2 是线性齐次方程的 两个解, 两个解, 则函数 y = C1 y1 + C2 y2 仍为该方程的解, 仍为该方程的解,其中 C1, C2 是任意常数 是任意常数. 证 因为 y1 与 y2 是方程 y″ + p(x)y′ + q(x)y = 0 ″ ′ 的两个解, 的两个解, 所以有
* * y1 + y2 是方程 ① 的特解 的特解, 的特解. 的特解,则


分别是② 的特解, 证 因为 y1* 与 y2* 分别是② 与 ③ 的特解, 所以有 y1*″ + p(x)y1*′ + q(x)y1* = f 1(x), , 与 于是有 y2*″ + p(x)y2*′ + q(x)y2* = f 2(x) .
之比为常数. 反之, 之比为常数, 即 y1 与 y2 之比为常数 反之,若y1 与 y2 之比为常数,
y1 设 = λ , 则 y1 = λ y2,即 y1 - λ y2 = 0. 所以 y1 与 y2 y2 线性相关. 因此,如果两个函数的比是常数 , 则它们 线性相关 因此, 如果两个函数的比是常数,
−p 2° 特征方程具有两个相等的实根,即 r1 = r2 = . ° 特征方程具有两个相等的实根, 2
e rx [u′′ + ( 2r + p )u′ + ( r 2 + pr + q )u] = 0.
−p 注意到 r = 2
是特征方程的重根, 是特征方程的重根, 所 以 有 r2 + pr + q = 0 及 2r + p = 0. 且 e r x ≠ 0 , 因此只要 u(x) 满足
1° 特征方程具有两个不相等的实根 r1 与 r2, 即 ° rx r x r1 ≠ r2. 那么,这时函数 y1 = e 1 和 y2 = e 2 都是 ④ 那么, y1 的解, 的解,且 线性无关, = e ( r1 − r2 ) x ≠ 常数 , 所以 y1 与 y2 线性无关, y2 因而它的通解为 r1 x r2 x y1 = C1e + C 2e . 这时, 这时,由特征根可得到常系数线性齐次方程的一个 特解 y1 = erx. 还需再找一个与 y1 线性无关的特解 y2, 为此, 为此,设 y2 = u(x)y1, 其中 u(x)为待定函数 将 y2 及 为待定函数. 为待定函数 其一阶、 其一阶、二阶导数 y′2 = (uerx)′ = erx(u′(x) + ru(x)), ′ ′ ′ , y″2 = erx (u″(x) + 2ru′(x) + r2u(x)), 代入方程 y″+ ″ ″ ′ , ″ py′ + qy = 0 中,得 ′

二阶微分方程解

二阶微分方程解

二阶微分方程解二阶微分方程分为齐次和非齐次两种类型。

在这里,我们主要讨论二阶常系数齐次线性微分方程的解法。

二阶常系数齐次线性微分方程的一般形式为:ayy'' + by' + cy = 0其中,a、b、c为常数。

求解过程如下:1. 特征方程:首先求出微分方程的特征方程。

特征方程为:r^2 - pr - q = 0其中,p、q为常数。

2. 求解特征方程:求出特征方程的两个根r1和r2。

可以使用公式:r1,2 = (-p ±√(p^2 - 4q)) / 23. 根据根与系数的关系,得出二阶微分方程的通解:通解= yC1* e^(r1x) + yC2 * e^(r2x)其中,yC1和yC2为待定系数,可通过初始条件求解。

4. 求解特解:若需要求解特解,可以先设特解的形式为y = yE(x),然后将其代入原方程,求解待定系数。

举例:求解二阶常系数齐次线性微分方程:yy'' - 2y' + 3y = 01. 特征方程:r^2 - 2r + 3 = 02. 求解特征方程:r1= 1,r2 = 33. 通解:通解= yC1* e^x + yC2* e^-x4. 求解特解:设特解为y = yE(x) = e^(x^2)将其代入原方程,求解得到yE(x)为原方程的特解。

需要注意的是,二阶微分方程的解法不仅限于齐次方程,还包括非齐次方程。

非齐次方程的解法通常需要先求解齐次方程的通解,然后通过待定系数法求解特解。

此外,还有其他类型的二阶微分方程,如艾里方程等,其解法更为复杂。

二阶线性微分方程解的结构

二阶线性微分方程解的结构

二阶线性微分方程解的结构\[ \frac{d^2y}{dx^2} + p(x)\frac{dy}{dx} + q(x)y = f(x) \]其中,\(p(x)\)、\(q(x)\)和\(f(x)\)都是定义在一些区间上的函数。

解二阶线性微分方程可以分为齐次方程和非齐次方程两种情况。

齐次方程是指 \( f(x) = 0 \) 的情况,而非齐次方程则是 \( f(x) \neq 0 \) 的情况。

首先来看齐次方程。

对于齐次方程:\[ \frac{d^2y}{dx^2} + p(x)\frac{dy}{dx} + q(x)y = 0 \]可以先求出其特征方程:\[ \lambda^2 + p(x)\lambda + q(x) = 0 \]然后根据特征方程的根来确定齐次方程的解的结构。

1.当特征方程的两个根 \( \lambda_1 \) 和 \( \lambda_2 \) 相异实根时,方程的通解可以表示为:\[ y(x) = C_1e^{\lambda_1x} + C_2e^{\lambda_2x} \]其中,\(C_1\)和\(C_2\)是任意常数。

2.当特征方程的两个根 \( \lambda_1 \) 和 \( \lambda_2 \) 相等实根时,方程的通解可以表示为:\[ y(x) = (C_1 + C_2x)e^{\lambda_1x} \]其中,\(C_1\)和\(C_2\)是任意常数。

3.当特征方程的两个根 \( \lambda_1 \) 和 \( \lambda_2 \) 为共轭复根 \( \alpha \pm \beta i \) 时,方程的通解可以表示为:\[ y(x) = e^{\alpha x}(C_1\cos(\beta x) + C_2\sin(\beta x)) \]其中,\(C_1\)和\(C_2\)是任意常数。

接下来看非齐次方程。

对于非齐次方程:\[ \frac{d^2y}{dx^2} + p(x)\frac{dy}{dx} + q(x)y = f(x) \]其通解可以利用齐次方程的通解和一个特解的和来表示。

微分方程的解法

微分方程的解法

微分方程的解法微分方程是数学中的重要概念,被广泛应用于各个领域。

解微分方程是找到满足给定条件的函数表达式或数值解的过程。

在本文中,我将介绍微分方程的几种解法,并说明其具体应用。

一、一阶微分方程的解法一阶微分方程是最基础的微分方程类型,通常形式为dy/dx=f(x,y),其中f(x,y)是已知函数。

下面介绍两种常见的一阶微分方程的解法:1. 分离变量法:分离变量法适用于可以将微分方程中的变量分开的情况。

具体步骤如下:(1) 将方程变形,将含有dy和dx的项分别放在等式两边;(2) 将等式两边分别关于y和x进行积分;(3) 解得y的表达式,得到方程的通解。

2. 齐次微分方程的解法:齐次微分方程是形如dy/dx=f(y/x)的微分方程。

具体步骤如下:(1) 令v=y/x,将原微分方程化为关于v的方程;(2) 求得关于v的方程的通解;(3) 代入v=y/x,得到原微分方程的通解。

二、二阶微分方程的解法二阶微分方程是更加复杂的微分方程类型,形如d²y/dx²=f(x,y,dy/dx)。

下面介绍两种常见的二阶微分方程的解法:1. 特征方程法:特征方程法适用于二阶常系数线性齐次微分方程。

具体步骤如下:(1) 假设原方程的解为y=e^(rx),代入原方程,求得r的值;(2) 根据r的不同情况分别求得通解。

2. 变量替换法:变量替换法适用于二阶非齐次微分方程,通过适当的变量替换将原方程化简为一阶方程。

具体步骤如下:(1) 假设y=v/u,将原方程变形;(2) 求出v和u的关系式,将原方程转化为v和u的一阶方程组;(3) 解一阶方程组,得到u的表达式;(4) 代入y=v/u,得到原方程的通解。

三、应用案例微分方程作为数学工具,在物理学、生物学、工程学等领域有广泛的应用。

以下是一些实际应用案例:1. 弹簧振动方程:假设弹簧的振动满足y''+k/m*y=0,其中k是弹簧的劲度系数,m是弹簧的质量。

二阶线性微分方程的解法

二阶线性微分方程的解法

l6
中央 民 族 大 学 学 报 (自然 科 学 版 )
第 27卷
微 分方 程 和函数 系数 的二 阶线性 齐次 微分 方程 ,它们 的一 般形 式分别 为
Y + P1Y + P2Y 0
(4
2.1 常 系 数 的 微 分 方 程 的 解 法
Y +P1( )Y +P2( )Y = 0
摘 要 : 本 文 讨 论 了二 阶线 性 微 分 方 程 的解 法 .由于 二 阶线 性 微 分 方 程解 法 的 难 易 程 度 取 决 于 其 系 数 形 式 , 为 此 讨 论 系 数 是 常数 和 函 数 的 二 阶 线 性 常 微 分 方 程 .分 别 应 用 特 征 方 程 法 和 幂 级 数 大 意 法 求 解 这 两 种 形 式 的 二 阶 方 程 ,并 给 出具 体 实 例 . 关 键 词 : 二 阶 线 性 微 分 方 程 ;特 征 方 程 ;幂 级 数 大 意 中 图分 类 号 :013 文 献 标 识 码 :A 文 章 编 号 :1005—8036(2018)03—0015—03
牛顿 利用 二 阶微 分方程 表述 了合 外 力和 物体 运动 位 移之 间的关 系… .勒 维 烈 和亚 当斯 分别 通 过 建 立微 分方 程模 型 ,得 出当时 尚未 发现 的海 王星 之存 在 .洛 伦 茨利 用 微分 方 程讨 论 热 对 流 问题 ,提 出 著 名 的 Lorenz系统 ,揭开 了混 沌理 论 的神秘 面纱 .Voherra和 Lotka提 出 了 Voherra.Lotka微 分 方程模 型 , 模 型 奠定 了种 间竞 争关 系 的理论基 础 .诸 多例 子说 明微 分方 程模 型 的重要 作用 ,因此 根 据 实际 问题 建立 解决 问题 的微 分方 程模 型是 非常 重要 的 ,但是 要用 方 程模 型 揭 示 和预 测 实 际 问题 就需 要 知 道 该方 程 的解 .本 文讨 论 一类 二 阶线性微 分 方程 的解 法.

二阶线性常微分方程的幂级数解法

二阶线性常微分方程的幂级数解法

二阶线性常微分方程的幂级数解法从微分方程学中知道,在满足某些条件下,可以用幂级数来表示一个函数。

因此,自然想到,能否用幂级数来表示微分方程的解呢? 例1、求方程''0y xy -=的通解解:设2012n n y a a x a x a x =+++++……为方程的解,这里(0,1,2,,,)i a i n =……是待定常系数,将它对x 微分两次,有 将y ,'y 的表达式代入方程,并比较的同次幂的系数,得到x -∞<<∞2210a ⋅=,30320,a a ⋅-= 41430,a a ⋅-= 52540,a a ⋅-=或一般的可推得32356(31)3k a a k k =⋅⋅⋅⋅⋅-⋅,13134673(31)k a a k k +=⋅⋅⋅⋅⋅⋅+,其中1a ,2a 是任意的,因而代入设的解中可得:这个幂级数的收敛半径是无限大的,因而级数的和(其中包括两个任意常数0a 及1a )便是所要求的通解。

例6 求方程'''240y xy y --=的满足初值条件(0)0y =及'(0)1y =的解。

解 设级数2012n n y a a x a x a x =+++++……为方程的解。

首先,利用初值条件,可以得到00a =, 11a =,因而将y ,'y ,''y 的表达式带入原方程,合并x 的各同次幂的项,并令各项系数等于零,得到 因而 最后得21111(1)!!k a k k k +=⋅=- , 20k a =, 对一切正整数k 成立。

将i a (0,1,2,)i =的值代回2012n n y a a x a x a x =+++++……就得到 这就是方程的满足所给初值条件的解。

是否所有方程都能按以上方式求出其幂级数解?或者说究竟方程应该满足什么条件才能保证它的解可用幂级数来表示呢?级数的形式怎样?其收敛区间又如何?这些问题,在微分方程解析理论中有完满的解答,但因讨论时需要涉及解析函数等较专门的知识,在此我们仅叙述有关结果而不加证明,若要了解定理的证明过程,可参考有关书籍。

二阶微分方程

二阶微分方程

是线性非齐次方程的解, 这说明函数 y = Y + y* 是线性非齐次方程的解, 是二阶线性齐次方程的通解, 又 Y 是二阶线性齐次方程的通解,它含有两个任意常 数,故 y = Y + y* 中含有两个任意常数 即 y = Y + y* 中含有两个任意常数. 的通解. 是线性非齐次方程 y″ + p(x)y′ + q(x)y = f (x) 的通解 ″ ′ 求二阶线性非齐次方程通解的一般步骤为: 求二阶线性非齐次方程通解的一般步骤为: (1) 求线性齐次方程 y″ + p(x)y′ + q(x)y = 0 的线性 ) ″ ′ 无关的两个特解 y1 与 y2, 得该方程的通解 Y=C1 y1 + C2 y2. (2) 求线性非齐次方程 y″ + p(x)y′ + q(x)y = f (x) 的 ) ″ ′ 一个特解 y*. 那么,线性非齐次方程的通解为 y = Y + y*. 那么,
1.二阶常系数线性齐次方程的解法 .
④ 考虑到左边 p,q 均为常数, 我们可以猜想该方程 , 均为常数, ′ 形式的解, 为待定常数. 具有 y = erx 形式的解,其中 r 为待定常数 将 y′ = 代入上式, rerx, y″ = r2erx 及 y = erx 代入上式,得 ″ erx (r2 + pr + q) = 0 . ⑤ rx 是上述一元二次方程的根时, 即 r 是上述一元二次方程的根时, y = e 就是 式的解. 方程⑤称为方程④ 特征方程. ④式的解 方程⑤称为方程④的特征方程 特征方 程的根称为特征根 特征根. 程的根称为特征根 由于e 由于 rx ≠ 0,因此,只要 r 满足方程 ,因此, r2 + pr + q = 0, , 设二阶常系数线性齐次方程为 y″ + py′ + qy = 0 . ″ ′

二阶常系数线性微分方程的解法

二阶常系数线性微分方程的解法
1
二阶常系数齐次线性方程解的性质 回顾
一阶齐次线性方程 y P( x) y 0 (1)
1、方程(1)的任意两个解的和仍是(1)的解; 2、方程(1)的任意一个解的常数倍仍是(1)的解;
2
二阶常系数齐次线性方程解的性质 y ay by 0 (2)
1、方程(2)的任意两个解的和仍是(2)的解; 2、方程(2)的任意一个解的常数倍仍是(2)的解;
Q( x) Qm ( x) , 即 y Qm ( x) erx 情形2 若 r 是特征方程的单根, 即 r2 ar b 0 ,
而 2r a 0 , 则令 Q( x) xQm ( x) , 即
y xQm ( x)erx
14
Q (2r a)Q (r 2 ar b)Q Pm ( x) (*) 情形3 若 r 是特征方程的二重根, 即 r2 ar b 0 ,
2
2
此时原方程的通解为
y
(C1
C 2 x)e2x
1 2
x 2e2x

Q( x) Ax2 , Q Pm ( x) , 2 A 1
21
y 4 yAe x ,
代入原方程,得
A
(
1 2)2
,
即特解为
y
(
1 2)2
e
x
,
此时原方程的通解为
于是 y x( 1 x 1)e2x ,
2
2
原方程通解为
y
C1e x
C 2e2 x
x(1 2
x
1) e2 x
.
18
例6 求微分方程 y 6 y 9 y x e3x 的通解.
解 特征方程 2 6 9 0 , 特征根 1,2 3 ,
对应齐次方程通解 Y (C1 C2 x)e3x . 因为 r 3 是二重特征根,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二阶常系数线性微分方程一、二阶常系数线形微分方程的概念形如 )(x f qy y p y =+'+'' (1)的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的连续函数.如果0)(≡x f ,则方程式 (1)变成0=+'+''qy y p y (2)我们把方程(2)叫做二阶常系数齐次线性方程,把方程式(1)叫做二阶常系数非齐次线性方程. 本节我们将讨论其解法.二、二阶常系数齐次线性微分方程1.解的叠加性定理1 如果函数1y 与2y 是式(2)的两个解, 则2211y C y C y +=也是式(2)的解,其中21,C C 是任意常数.证明 因为1y 与2y 是方程(2)的解,所以有0111=+'+''qy y p y 0222=+'+''qy y p y 将2211y C y C y +=代入方程(2)的左边,得)()()(221122112211y C y C q y C y C p y C y C ++'+'+''+'' =0)()(22221111=+'+''++'+''qy y p y C qy y p y C 所以2211y C y C y +=是方程(2)的解.定理1说明齐次线性方程的解具有叠加性.叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式(2)的通解.2.线性相关、线性无关的概念设,,,,21n y y y 为定义在区间I 内的n 个函数,若存在不全为零的常数,,,,21n k k k 使得当在该区间内有02211≡+++n n y k y k y k , 则称这n个函数在区间I 内线性相关,否则称线性无关.例如 x x 22sin ,cos ,1在实数范围内是线性相关的,因为0sin cos 122≡--x x又如2,,1x x 在任何区间(a,b)内是线性无关的,因为在该区间内要使 02321≡++x k x k k必须0321===k k k .对两个函数的情形,若=21y y 常数, 则1y ,2y 线性相关,若≠21y y 常数, 则1y ,2y 线性无关.3.二阶常系数齐次微分方程的解法定理 2 如果1y 与2y 是方程式(2)的两个线性无关的特解,则212211,(C C y C y C y +=为任意常数)是方程式(2)的通解.例如, 0=+''y y 是二阶齐次线性方程,x y x y cos ,sin 21==是它的两个解,且≠=x y y tan 21常数,即1y ,2y 线性无关, 所以 x C x C y C y C y cos sin 212211+=+=( 21,C C 是任意常数)是方程0=+''y y 的通解.由于指数函数rxe y =(r 为常数)和它的各阶导数都只差一个常数因子,根据指数函数的这个特点,我们用rx e y =来试着看能否选取适当的常数r ,使rx e y =满足方程(2).将rxe y =求导,得 rx rx e r y re y 2,=''='把y y y ''',,代入方程(2),得0)(2=++rx eq pr r 因为0≠rx e , 所以只有 02=++q pr r (3)只要r 满足方程式(3),rx e y =就是方程式(2)的解.我们把方程式(3)叫做方程式(2)的特征方程,特征方程是一个代数方程,其中r r ,2的系数及常数项恰好依次是方程(2)y y y ,,'''的系数. 特征方程(3)的两个根为 2422,1q p p r -±-=, 因此方程式(2)的通解有下列三种不同的情形. (1) 当042>-q p 时,21,r r 是两个不相等的实根. 2421q p p r -+-=,2422q p p r ---= x r x r e y e y 2121,==是方程(2)的两个特解,并且≠=-x r r e y y )(2121常数,即1y 与2y 线性无关.根据定理2,得方程(2)的通解为 x r x r e C e C y 2121+=(2) 当042=-q p 时, 21,r r 是两个相等的实根. 221p r r -==,这时只能得到方程(2)的一个特解x r e y 11=,还需求出另一个解2y ,且≠12y y 常数,设)(12x u y y =, 即 )(12x u e y x r =)2(),(21121211u r u r u e y u r u e y x r x r +'+''=''+'='.将222,,y y y '''代入方程(2), 得 []0)()2(12111=++'++'+''qu u r u p u r u r u e x r 整理,得0])()2([12111=+++'++''u q pr r u p r u e x r由于01≠x r e , 所以 0)()2(1211=+++'++''u q pr r u p r u 因为1r 是特征方程(3)的二重根, 所以02,01121=+=++p r q pr r从而有 0=''u因为我们只需一个不为常数的解,不妨取x u =,可得到方程(2)的另一个解 x r xe y 12=.那么,方程(2)的通解为x r x r xe C e C y 1121+=即 xr e x C C y 1)(21+=.(3) 当042<-q p 时,特征方程(3)有一对共轭复根 βαβαi r i r -=+=21, (0≠β)于是 x i x i e y ey )(2)(1,βαβα-+== 利用欧拉公式 x i x e ix sin cos +=把21,y y 改写为)sin (cos )(1x i x e e e e y x x i x x i ββαβαβα+=⋅==+)sin (cos )(2x i x e e e e y x x i x xi ββαβαβα-=⋅==-- 21,y y 之间成共轭关系,取-1y =x e y y x βαcos )(2121=+,x e y y iy x βαsin )(2121_2=-= 方程(2)的解具有叠加性,所以-1y ,-2y 还是方程(2)的解,并且≠==--x xe x e y y x x βββααtan cos sin 12常数,所以方程(2)的通解为 )sin cos (21x C x C e y x ββα+=综上所述,求二阶常系数线性齐次方程通解的步骤如下:(1)写出方程(2)的特征方程02=++q pr r(2)求特征方程的两个根21,r r(3)根据21,r r 的不同情形,按下表写出方程(2)的通解.例1求方程052=+'+''y y y 的通解.解: 所给方程的特征方程为0522=++r ri r i r 21,2121--=+-=所求通解为 )2sin 2cos (21x C x C e y x +=-.例 2 求方程0222=++S dt dS dtS d 满足初始条件2,400-='===t t S S 的特解.解 所给方程的特征方程为0122=++r r121-==r r通解为 t e t C C S -+=)(21 将初始条件40==t S 代入,得 41=C ,于是t e t C S -+=)4(2,对其求导得te t C C S ---=')4(22 将初始条件20-='=t S 代入上式,得 22=C所求特解为t e t S -+=)24(例3求方程032=-'+''y y y 的通解.解 所给方程的特征方程为 0322=-+r r其根为 1,321=-=r r所以原方程的通解为 x x e C e C y 231+=-二、二阶常系数非齐次方程的解法1.解的结构定理3 设*y 是方程(1)的一个特解,Y 是式(1)所对应的齐次方程式(2)的通解,则*+=y Y y 是方程式(1)的通解.证明 把*+=y Y y 代入方程(1)的左端:)()()(*++*'+'+*''+''y Y q y Y p y Y=)()(*+*'+*''++'+''qy py y qY Y p Y=)()(0x f x f =+*+=y Y y 使方程(1)的两端恒等,所以*+=y Y y 是方程(1)的解. 定理4 设二阶非齐次线性方程(1)的右端)(x f 是几个函数之和,如 )()(21x f x f qy y p y +=+'+'' (4) 而*1y 与*2y 分别是方程 )(1x f qy y p y =+'+''与 )(2x f qy y p y =+'+''的特解,那么**+21y y 就是方程(4)的特解, 非齐次线性方程(1)的特解有时可用上述定理来帮助求出.2.)()(x P e x f m x λ=型的解法 )()(x P e x f m x λ=,其中λ为常数,)(x P m 是关于x 的一个m 次多项式. 方程(1)的右端)(x f 是多项式)(x P m 与指数函数x e λ乘积的导数仍为同一类型函数,因此方程(1)的特解可能为x e x Q y λ)(=*,其中)(x Q 是某个多项式函数.把 x e x Q y λ)(=*x e x Q x Q y λλ)]()(['+=*'x e x Q x Q x Q y λλλ)]()(2)([2''+'+=*''代入方程(1)并消去xe λ,得)()()()()2()(2x P x Q q p x Q p x Q m =+++'++''λλλ (5) 以下分三种不同的情形,分别讨论函数)(x Q 的确定方法:(1) 若λ不是方程式(2)的特征方程02=++q pr r 的根, 即02≠++q p λλ,要使式(5)的两端恒等,可令)(x Q 为另一个m 次多项式)(x Q m :m m m x b x b x b b x Q ++++= 2210)(代入(5)式,并比较两端关于x 同次幂的系数,就得到关于未知数m b b b ,,,10 的1+m 个方程.联立解方程组可以确定出),,1,0(m i b i =.从而得到所求方程的特解为x m e x Q y λ)(=*(2) 若λ是特征方程02=++q pr r 的单根, 即02,02≠+=++p q p λλλ,要使式(5)成立, 则)(x Q '必须要是m 次多项式函数,于是令)()(x xQ x Q m =用同样的方法来确定)(x Q m 的系数),,1,0(m i b i =.(3) 若λ是特征方程02=++q pr r 的重根,即,02=++q p λλ 02=+p λ.要使(5)式成立,则)(x Q ''必须是一个m 次多项式,可令)()(2x Q x x Q m =用同样的方法来确定)(x Q m 的系数.综上所述,若方程式(1)中的x m e x P x f λ)()(=,则式(1)的特解为x m k e x Q x y λ)(=*其中)(x Q m 是与)(x P m 同次多项式,k 按λ不是特征方程的根,是特征方程的单根或是特征方程的重根依次取0,1或2.例4 求方程x e y y 232-='+''的一个特解.解 )(x f 是x m e x p λ)(型, 且2,3)(-==λx P m对应齐次方程的特征方程为 022=+r r ,特征根根为2,021-==r r . λ=-2是特征方程的单根, 令x e xb y 20-=*,代入原方程解得230-=b 故所求特解为 x xe y 223--=* . 例5 求方程x e x y y )1(2-='-''的通解.解 先求对应齐次方程02=+'-''y y y 的通解.特征方程为 0122=+-r r , 121==r r齐次方程的通解为 x e x C C Y )(21+=.再求所给方程的特解1)(,1-==x x P m λ由于1=λ是特征方程的二重根,所以 x e b ax x y )(2+=*把它代入所给方程,并约去xe 得 126-=+x b ax比较系数,得61=a 21-=b 于是 x e x x y )216(2-=* 所给方程的通解为 x e x x x C C y y y )6121(3221+-+=+=* 3.x B x A x f ϖϖsin cos )(+=型的解法,sin cos )(x B x A x f ωω+=其中A 、B 、ω均为常数.此时,方程式(1)成为x B x A q y p y ωωsin cos +=+'+'' (7)这种类型的三角函数的导数,仍属同一类型,因此方程式(7)的特解*y 也应属同一类型,可以证明式(7)的特解形式为)sin cos (x b x a x y k ωω+=*其中b a ,为待定常数.k 为一个整数.当ω±i 不是特征方程02=++q pr r 的根, k 取0;当ω±i 不是特征方程02=++q pr r 的根, k 取1;例6 求方程x y y y sin 432=-'+''的一个特解.解 1=ω,ω±i i ±=不是特征方程为0322=-+r r 的根,0=k .因此原方程的特解形式为x b x a y sin cos +=* 于是 x b x a y cos sin +-=*'x b x a y sin cos --=*''将*''*'*y y y ,,代入原方程,得⎩⎨⎧=--=+-442024b a b a 解得 54,52-=-=b a 原方程的特解为: x x y sin 54cos 52--=* 例7 求方程x e y y y x sin 32+=-'-''的通解.解 先求对应的齐次方程的通解Y .对应的齐次方程的特征方程为0322=--r r3,121=-=r rx x e C e C Y 321+=-再求非齐次方程的一个特解*y .由于x e x x f -+=2cos 5)(,根据定理4,分别求出方程对应的右端项为,)(1x e x f =x x f sin )(2=的特解*1y 、*2y ,则 **+=*21y y y 是原方程的一个特解.由于1=λ,ω±i i ±=均不是特征方程的根,故特解为)sin cos (21x c x b ae y y y x ++=+=*** 代入原方程,得x e x c b x c b ae x x sin sin )42(cos )24(4=-++--比较系数,得14=-a 024=+c b 142=-c b解之得 51,101,41-==-=c b a . 于是所给方程的一个特解为 x x e y x sin 51cos 10141-+-=* 所以所求方程的通解为x x e e C e C y Y y x x x sin 51cos 10141321-+-+=+=-*.。

相关文档
最新文档