函数解题思路方法总结

函数解题思路方法总结
函数解题思路方法总结

函数解题思路方法总结:

⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;

⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数ax 2+bx+c=0中a,b,c 的符号,或由二次函数中a,b,c 的符号判断图象的位置,要数形结合;

⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.

⑸ 与二次函数有关的还有二次三项式,二次三项式ax 2+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:

动点问题题型方法归纳总结

动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)

动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 二、 抛物线上动点

5、(湖北十堰市)如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式;

(2) 设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使△CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.

(3) 如图②,若点E 为第二象限抛物线上一动点,连接BE 、CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标.

注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P坐标----①C为顶点时,以C为圆心CM为半径画弧,与对称轴交点即为所求点P,②M为顶点时,以M为圆心MC为半径画弧,与对称轴交点即为所求点P,③P为顶点时,线段MC的垂直平分线与对称轴交点即为所求点P。

第(3)问方法一,先写出面积函数关系式,再求最大值(涉及二次函数最值);方法二,先求与BC平行且与抛物线相切点的坐标(涉及简单二元二次方程组),再求面积。

07 08 09

动点个数两个一个两个

问题背景特殊菱形两边上移动特殊直角梯形三边

上移动抛物线中特殊直角梯形底边上移动

考查难点探究相似三角形探究三角形面积函

数关系式

探究等腰三角形

考点①菱形性质

②特殊角三角函数

③求直线、抛物线解析式

④相似三角形

⑤不等式

①求直线解析式

②四边形面积的表

③动三角形面积函

数④矩形性质

①求抛物线顶点坐标

②探究平行四边形

③探究动三角形面积是定

④探究等腰三角形存在性

特点①菱形是含60°的特殊菱形;

△AOB是底角为30°的等腰三

角形。

②一个动点速度是参数字母。

③探究相似三角形时,按对应角

不同分类讨论;先画图,再探究。

④通过相似三角形过度,转化相

似比得出方程。

⑤利用a、t范围,运用不等式

求出a、t的值。

①观察图形构造特

征适当割补表示面

②动点按到拐点时

间分段分类

③画出矩形必备条

件的图形探究其存

在性

①直角梯形是特殊的(一底

角是45°)

②点动带动线动

③线动中的特殊性(两个交

点D、E是定点;动线段PF

长度是定值,PF=OA)

④通过相似三角形过度,转

化相似比得出方程。

⑤探究等腰三角形时,先画

图,再探究(按边相等分类

讨论)

共同点:

⑤探究存在性问题时,先画出图形,再根据图形性质探究答案。

二次函数的动态问题(动点)

1.如图,已知抛物线1C 与坐标轴的交点依次是(40)A -,,(20)B -,,(08)E ,. (1)求抛物线1C 关于原点对称的抛物线2C 的解析式; (2)设抛物线1C 的顶点为M ,抛物线2C 与x 轴分别交于C D ,两点(点C 在点D 的左侧),顶点为N ,四边形MDNA 的面积为S .若点A ,点D 同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点M ,点N 同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A 与点D 重合为止.求出四边形MDNA 的面积S 与运动时间t 之间的关系式,并写出自变量t 的取值范围;

(3)当t 为何值时,四边形MDNA 的面积S 有最大值,并求出此最大值; (4)在运动过程中,四边形MDNA 能否形成矩形?若能,求出此时t 的值;若不能,请说明理由.

[解] (1)点(40)A -,,点(20)B -,,点(08)E ,关于原点的对称点分别为(40)D ,,(20)C ,,

(08)F -,.

设抛物线2C 的解析式是

2(0)y ax bx c a =++≠,

则16404208a b c a b c c ++=??

++=??=-?

,,. ①特殊四边形为背景;

②点动带线动得出动三角形;

③探究动三角形问题(相似、等腰三角形、面积函数关系式); ④求直线、抛物线解析式;

解得168a b c =-??

=??=-?

,,.

所以所求抛物线的解析式是268y x x =-+-. (2)由(1)可计算得点(31)(31)M N --,,,.

过点N 作NH AD ⊥,垂足为H .

当运动到时刻t 时,282AD OD t ==-,12NH t =+.

根据中心对称的性质OA OD OM ON ==,,所以四边形MDNA 是平行四边形. 所以2ADN S S =△.

所以,四边形MDNA 的面积2(82)(12)4148S t t t t =-+=-++. 因为运动至点A 与点D 重合为止,据题意可知04t <≤.

所以,所求关系式是24148S t t =-++,t 的取值范围是04t <≤. (3)781

444

S t ??=--+ ???,(04t <≤). 所以74t =

时,S 有最大值814

. 提示:也可用顶点坐标公式来求.

(4)在运动过程中四边形MDNA 能形成矩形.

由(2)知四边形MDNA 是平行四边形,对角线是AD MN ,,所以当AD MN =时四边形

MDNA 是矩形.

所以OD ON =.所以2222

OD ON OH NH ==+.

所以22

420t t +-=.解之得126262t t =-=--,(舍).

所以在运动过程中四边形MDNA 可以形成矩形,此时62t =-.

[点评]本题以二次函数为背景,结合动态问题、存在性问题、最值问题,是一道较传统的压轴题,能力要求较高。

2. (06福建龙岩卷)如图,已知抛物线2

34y x bx c =-++与坐标轴交于A B C ,,三点,点A 的横坐标为1-,过点(03)C ,的直线3

34y x t

=-+与x 轴交于点Q ,

点P 是线段BC 上的一个动点,PH OB ⊥于点H .若5PB t =,且01t <<.

(1)确定b c ,的值:__________b c ==,;

(2)写出点B Q P ,,的坐标(其中Q P ,用含t 的式子表示):

(______)(______)(______)B Q P ,,,,,;

(3)依点P 的变化,是否存在t 的值,使PQB △为等腰三角形?若存在,求出所有t 的值;若不存在,说明理由.

[解] (1)9

4

b =

3c = (2)(40)B , (40)Q t , (443)P t t -,

(3)存在t 的值,有以下三种情况 ①当PQ PB =时

PH OB ⊥ ,则GH HB = 4444t t t ∴--= 1

3

t ∴=

②当PB QB =时 得445t t -= 4

9

t ∴=

③当PQ QB =时,如图

解法一:过Q 作QD BP ⊥,又PQ QB =

则5

22

BP BD t == 又BDQ BOC △∽△

BD BQ BO BC ∴

= 544245t

t -∴= 32

57

t ∴=

解法二:作Rt OBC △斜边中线OE

y

C

A O Q H

B P

x

C

O

P

Q

D

B

则5

22

BC OE BE BE ==

=,, 此时OEB PQB △∽△

BE OB

BQ PB

∴=

5

4

2445t t ∴=-

32

57

t ∴=

解法三:在Rt PHQ △中有222QH PH PQ += 222(84)(3)(44)t t t ∴-+=- 257320t t ∴-= 32

057

t t ∴=

=,(舍去) 又01t <<

∴当13t =或49或32

57

时,PQB △为等腰三角形.

解法四: 数学往往有两个思考方向:代数和几何,有时可以独立思考,有

时需要综合运用。

代数讨论:计算出△PQB 三边长度,均用t 表示,再讨论分析

Rt △PHQ 中用勾股定理计算PQ 长度,而PB 、BQ 长度都可以直接

直接用t 表示,进行分组讨论即可计算。

[点评]此题综合性较强,涉及函数、相似性等代数、几何知识,1、2小题不难,第3小题是比较常规的关于等腰三角形的分类讨论,需要注意的是在进行讨论并且得出结论后应当检验,在本题中若求出的t 值与题目中的01t <<矛盾,应舍去 3.如图1,已知直线12y x =-

与抛物线21

64

y x =-+交于A B ,两点. (1)求A B ,两点的坐标;

(2)求线段AB 的垂直平分线的解析式;

(3)如图2,取与线段AB 等长的一根橡皮筋,端点分别固定在A B ,两处.用铅笔拉着这根橡皮筋使笔尖P 在直线AB 上方的抛物线上移动,动点P 将与A B ,构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时P 点的坐标;如果不存在,请简要说明理由. C

O

P

Q

E

B

C

O

P

Q

H

B

y x

O

y x

O P B B

[解] (1)解:依题意得2164

12

y x y x

?=-+????=-??解之得12

126432x x y y ==-????=-=?? (63)(42)A B ∴--,,,

(2)作AB 的垂直平分线交x 轴,y 轴于C D ,两点,交AB 于M (如图1) 由(1)可知:3525OA OB ==

55AB ∴=

15

22

OM AB OB ∴=

-=

过B 作BE x ⊥轴,E 为垂足 由BEO OCM △∽△,得:

5

4

OC OM OC OB OE =∴=,, 同理:55500242OD C D ???

?=∴- ? ????

?,,,,

设CD 的解析式为(0)y kx b k =+≠

5204

5522

k k b b b ?

==+????∴∴??=-??-=???

AB ∴的垂直平分线的解析式为:5

22

y x =-

. (3)若存在点P 使APB △的面积最大,则点P 在与直线AB 平行且和抛物线只有一个交

点的直线1

2

y x m =-+上,并设该直线与x 轴,y 轴交于G H ,两点(如图2).

212164

y x m y x ?=-+??∴??=-+??

y

x

O

图1

D

M

A

C B 第26题

211

6042

x x m ∴

-+-= 抛物线与直线只有一个交点,

2

114(6)024m ??

∴--?-= ???

2523144m P ??∴=

∴ ???

, 在直线125

24

GH y x =-

+:中, 25250024G H ????

∴ ? ?????,,,

2554

GH ∴=

设O 到GH 的距离为d ,

11221255125252422455

2

GH d OG OH d d AB GH ∴=∴?=??∴= ,

P ∴到AB 的距离等于O 到GH 的距离d .

另解:过P 做PC ∥y 轴,PC 交AB 于C ,当PC 最大时△PBA 在AB 边上的高h 最大(h 与PC 夹

角固定),则S △PBA 最大 → 问题转化为求PC 最大值,设P (x, ),C (x, ),

从而可以表示PC 长度,进行极值求取。

最后,以PC 为底边,分别计算S △PBC 和S △PAC 即可。

[点评]这是一道涉及二次函数、方程、几何知识的综合压轴题,有一定的能力要求,第3小题是一个最值问题,解此类题时需数形结合方可较轻松的解决问题。

4.如图①,正方形ABCD 的顶点A B ,的坐标分别为()()01084,,,,顶点C D ,在第一象限.点P 从点A 出发,沿正方形按逆时针方向匀速运动,同时,点Q 从点()40E ,出发,沿

x 轴正方向以相同速度运动.当点P 到达点C 时,P Q ,两点同时停止运动,设运动的时

间为t 秒.

(1)求正方形ABCD 的边长.

y

x O

P

A

图2

H G B

(2)当点P 在AB 边上运动时,OPQ △的面积S (平方单位)与时间t (秒)之间的函数图象为抛物线的一部分(如图②所示),求P Q ,两点的运动速度.

(3)求(2)中面积S (平方单位)与时间t (秒)的函数关系式及面积S 取最大值时点P 的坐标.

(4)若点P Q ,保持(2)中的速度不变,则点P 沿着AB 边运动时,OPQ ∠的大小随着时间t 的增大而增大;沿着BC 边运动时,OPQ ∠的大小随着时间t 的增大而减小.当点P 沿着这两边运动时,使90OPQ = ∠的点P 有 个.

(抛物线()2

0y ax bx c a =++≠的顶点坐标是2424b ac b a a ??

-- ???

,.

[解] (1)作BF y ⊥轴于F .

()()01084A B ,,,,

86FB FA ∴==,. 10AB ∴=.

(2)由图②可知,点P 从点A 运动到点B 用了10秒.

又1010101AB =÷= ,

. P Q ∴,两点的运动速度均为每秒1个单位.

(3)方法一:作PG y ⊥轴于G ,则PG BF ∥.

GA AP FA AB ∴

=,即610

GA t =. 3

5

GA t ∴=.

3

105

OG t ∴=-.

y

D A C

P

B

O E

Q

x

O

10 t

20

28

s

4OQ t =+ ,

()113410225S OQ OG t t ?

?∴=??=+- ??

?.

即2319

20105

S t t =-

++. 19

195323

210b a -=-=???- ???

,且190103≤≤, ∴当19

3t =

时,S 有最大值. 此时476331

1051555

GP t OG t ==

=-=,, ∴点P 的坐标为7631155??

???

,.

(8分)

方法二:当5t =时,1637922

OG OQ S OG OQ ==== ,,. 设所求函数关系式为220S at bt =++.

抛物线过点()63102852??

???

,,,,

1001020286325520.2

a b a b ++=??∴?++=??,

31019.5a b ?=-??∴??=??,

2319

20105

S t t ∴=-

++. 19

195323

210b a -=-=???- ???

,且190103≤≤, ∴当19

3

t =

时,S 有最大值.

此时7631155

GP OG =

=,, ∴点P 的坐标为7631155??

???

,.

(4)2.

[点评]本题主要考查函数性质的简单运用和几何知识,是近年来较为流行的试题,解题的关键在于结合题目的要求动中取静,相信解决这种问题不会非常难。

. 5. 如图①,Rt ABC △中,90B ∠= ,30CAB ∠= .它的顶点A 的坐标为(100),,顶点

B 的坐标为(553),,10AB =,点P 从点A 出发,沿A B

C →→的方向匀速运动,同

时点Q 从点(02)D ,出发,沿y 轴正方向以相同速度运动,当点P 到达点C 时,两点同时停止运动,设运动的时间为t 秒. (1)求BAO ∠的度数.

(2)当点P 在AB 上运动时,OPQ △的面积S (平方单位)与时间t (秒)之间的函数图象为抛物线的一部分,(如图②),求点P 的运动速度.

(3)求(2)中面积S 与时间t 之间的函数关系式及面积S 取最大值时点P 的坐标. (4)如果点P Q ,保持(2)中的速度不变,那么点P 沿AB 边运动时,OPQ ∠的大小随着时间t 的增大而增大;沿着BC 边运动时,OPQ ∠的大小随着时间t 的增大而减小,当点

P 沿这两边运动时,使90OPQ ∠= 的点P 有几个?请说明理由.

解: (1)60BAO =

∠.

(2)点P 的运动速度为2个单位/秒. (3)(103)P t t -,(05t ≤≤)

1

(22)(10)2

S t t =

+- (第29题图

A C

B

Q D O

P x

y

31

O

5 t S

(第29题图

2

9121

24t ??=--+ ???

. ∴当92t =

时,S 有最大值为1214

, 此时119322P ??

? ???

,.

(4)当点P 沿这两边运动时,90OPQ = ∠的点P 有2个. ①当点P 与点A 重合时,90OPQ < ∠,

当点P 运动到与点B 重合时,OQ 的长是12单位长度,

作90OPM =

∠交y 轴于点M ,作PH y ⊥轴于点H ,

由OPH OPM △∽△得:203

11.53

OM =

=, 所以OQ OM >,从而90OPQ > ∠.

所以当点P 在AB 边上运动时,90OPQ = ∠的点P 有1个.

②同理当点P 在BC 边上运动时,可算得103

1217.83OQ =+

=. 而构成直角时交y 轴于35303?? ?

???,,353

20.217.83

=>, 所以90OCQ <

∠,从而90OPQ =

∠的点P 也有1个. 所以当点P 沿这两边运动时,90OPQ =

∠的点P 有2个.

6. (本题满分14分)如图12,直线43

4

+-

=x y 与x 轴交于点A ,与y 轴交于点C ,已知二次函数的图象经过点A 、C 和点()0,1-B .

(1)求该二次函数的关系式;

(2)设该二次函数的图象的顶点为M ,求四边形AOCM 的面积; (3)有两动点D 、E 同时从点O 出发,其中点D 以每秒

2

3

个单位长度的速度沿折线OAC 按O →A →C 的路线运动,点E 以每秒4个单位长度的速度沿折线OCA 按O →C →

A 的路线运动,

当D 、E 两点相遇时,它们都停止运动.设D 、E 同时从点O 出发t 秒第29题图

y

Q M

H D

O

A x

C

B

()

P

E

C

y

M

时,ODE ?的面积为S .

①请问D 、E 两点在运动过程中,是否存在DE

∥OC ,若存在,请求出此时t 的值;若不存在,请说明理由;

②请求出S 关于t 的函数关系式,并写出自变量t 的取值范围; ③设0S 是②中函数S 的最大值,那么0S = .

解:(1)令0=x ,则4=y ;

令0=y 则3=x .∴()30A ,.()04C , ∵二次函数的图象过点()04C ,, ∴可设二次函数的关系式为

42++=bx ax y

又∵该函数图象过点()30A ,.()10B -,

∴093404a b a b =++??

=-+?,

解之,得34-

=a ,3

8=b . ∴所求二次函数的关系式为43

8

342++-

=x x y (2)∵43

8

342++-

=x x y =()3

161342+--x

∴顶点M 的坐标为1613??

???

, 过点M 作MF x ⊥轴于F

E C

A

y

O

B

x

M

D

∴AFM AOCM FOCM S S S =+△四边形梯形 =

()1013164213161321=???

?

??+?+?-? ∴四边形AOCM 的面积为10 (3)①不存在DE ∥OC

∵若DE ∥OC ,则点D ,E 应分别在线段OA ,CA 上,此时12t <<,在Rt AOC △中,5AC =. 设点E 的坐标为()11x y ,∴5

4

43

1-=

t x ,∴512121-=t x ∵DE OC ∥,

t t 2

3

51212=- ∴38=t

∵3

8

=t >2,不满足12t <<.

∴不存在DE OC ∥.

②根据题意得D ,E 两点相遇的时间为

1124

42

3543=

+++(秒) 现分情况讨论如下: ⅰ)当01t <≤时,213

4322

S t t t =

?= ; ⅱ)当12t <≤时,设点E 的坐标为()22x y ,

()5

4454

2--=

t y ,∴516362t y -=

∴t t t t S 5

27

5125163623212+-=-??=

ⅲ)当2

16363t

y -=

设点D 的坐标为()44,y x

∴5

32344

-=t y , ∴5

12

64-=t y

∴AOE AOD S S S =-△△

5

12632151636321-??--??=

t t

=5

72533+-t ③80

243

0=S

7.关于x 的二次函数22(4)22y x k x k =-+-+-以y 轴为对称轴,且与y 轴的交点在x 轴上方.

(1)求此抛物线的解析式,并在下面的直角坐标系中画出函数的草图;

(2)设A 是y 轴右侧抛物线上的一个动点,过点A 作AB 垂直于x 轴于点B ,再过点A 作

x 轴的平行线交抛物线于点D ,过点D 作DC 垂直于x 轴于点C ,得到矩形ABCD .设矩形ABCD 的周长为l ,点A 的横坐标为x ,试求l 关于x 的函数关系式;

(3)当点A 在y 轴右侧的抛物线上运动时,矩形ABCD 能否成为正方形.若能,请求出此时正方形的周长;若不能,请说明理由.

参考资料:抛物线2

(0)y ax bx c a =++≠的顶点坐标是2424b ac b a

a ??

-- ???,,对称轴是直线

2b

x a

=-

. 解:(1)据题意得:240k -=,

2k ∴=±.

当2k =时,2220k -=>. 当2k =-时,2260k -=-<.

又抛物线与y 轴的交点在x 轴上方,2k ∴=.

∴抛物线的解析式为:22y x =-+.

函数的草图如图所示.(只要与坐标轴的三个交点的位置及图象大致形状正确即可)

(2)解:令2

20x -+=,得2x =±.

不02x <<

时,112A D x =,2112A B x =-+,

211112()244l A B A D x x ∴=+=-++.

当2x >

时,222A D x =,

2222(2)2A B x x =--+=-. 222222()244l A D A B x x ∴=+=+-.

4 3

2

1 1-

2

-3

-4

-5

-1-

2-3-4- 1 2 3 4

1D

1A 1B 1C 2C 2

B

2A

2

D x

y

l ∴关于x 的函数关系是:

当02x <<时,2244l x x =-++;

当2x >

时,2244l x x =+-.

(3)解法一:当02x <<时,令1111A B A D =,

得2220x x +-=.

解得13x =--(舍),或13x =-+. 将13x =-+代入2244l x x =-++, 得838l =-. 当2x >

时,令2222A B A D =,得2220x x --=.

解得13x =-(舍),或13x =+.

将13x =+代入2

244l x x =+-,得838l =+.

综上,矩形ABCD 能成为正方形,且当31x =-时正方形的周长为838-;当31x =+时,正方形的周长为838+. 解法二:当02x <<

时,同“解法一”可得13x =-+.

∴正方形的周长1148838l A D x ===-.

当2x >

时,同“解法一”可得13x =+.

∴正方形的周长2248838l A D x ===+.

综上,矩形ABCD 能成为正方形,且当31x =-时正方形的周长为838-;当31x =+时,正方形的周长为838+.

解法三: 点A 在y 轴右侧的抛物线上,

0x ∴>,且点A 的坐标为2(2)x x -+,.

令AB AD =,则222x x -+=.

∴222x x -+=, ①或222x x -+=- ②

由①解得13x =--(舍),或13x =-+; 由②解得13x =-(舍),或13x =+. 又8l x =,

∴当13x =-+时838l =-;

当13x =+时838l =+.

综上,矩形ABCD 能成为正方形,且当31x =-时正方形的周长为838-;当31x =+时,正方形的周长为838+.

8.已知抛物线y =ax 2

+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴的正

半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB

-10x +16=0的两个根,且抛物线的对称轴是直线x =-2.

(1)求A 、B 、C 三点的坐标; (2)求此抛物线的表达式;

(3)连接AC 、BC ,若点E 是线段AB 上的一个动点(与点A 、点B 不重合),过点E 作EF ∥AC 交BC 于点F ,连接CE ,设AE 的长为m ,△CEF 的面积为S ,求S 与m 之间的函数关系式,并写出自变量m 的取值范围;

(4)在(3)的基础上试说明S 是否存在最大值,若存在,请求出S 的最大值,并求出此时点E 的坐标,判断此时△BCE 的形状;若不存在,请说明理由.

解:(1)解方程x 2

-10x +16=0得x 1=2,x 2=8

∵点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,且OB <OC ∴点B 的坐标为(2,0),点C 的坐标为(0,8) 又∵抛物线y =ax 2

+bx +c 的对称轴是直线x =-2 ∴由抛物线的对称性可得点A 的坐标为(-6,0)

第26题图

(2)∵点C (0,8)在抛物线y =ax 2

+bx +c 的图象上 ∴c =8,将A (-6,0)、B (2,0)代入表达式,得

?

??

??

0=36a -6b +80=4a +2b +8 解得?????

a =-2

3

b =-8

3

∴所求抛物线的表达式为y =-23x 2-8

3x +8

(3)依题意,AE =m ,则BE =8-m , ∵OA =6,OC =8,∴AC =10 ∵EF ∥AC ∴△BEF ∽△BAC

∴EF AC =BE AB 即EF 10=8-m

8

∴EF =40-5m 4

过点F 作FG ⊥AB ,垂足为G ,则sin ∠FEG =sin ∠CAB =4

5

∴FG EF =45 ∴FG =45·40-5m 4

=8-m ∴S =S △BCE -S △BFE =12(8-m )×8-1

2(8-m )(8-m )

=12(8-m )(8-8+m )=12(8-m )m =-12m 2

+4m 自变量m 的取值范围是0<m <8 (4)存在.

理由:∵S =-12m 2+4m =-12(m -4)2

+8 且-12

<0,

第26题图(批卷教师用图)

∴当m =4时,S 有最大值,S 最大值=8 ∵m =4,∴点E 的坐标为(-2,0) ∴△BCE 为等腰三角形.

9.(14分)如图:抛物线经过A (-3,0)、B (0,4)、C (4,0)三点. (1) 求抛物线的解析式.

(2)已知AD = AB (D 在线段AC 上),有一动点P 从点A 沿线段AC 以每秒1个单位长度的速度移动;同时另一个动点Q 以某一速度从点B 沿线段BC 移动,经过t 秒的移动,线段PQ 被BD 垂直平分,求t 的值;

(3)在(2)的情况下,抛物线的对称轴上是否存在一点M ,使MQ+MC 的值最小?若存在,请求出点M 的坐标;若不存在,请说明理由。 (注:抛物线2y ax bx c =++的对称轴为2b x a

=-

(1)解法一:设抛物线的解析式为y = a (x +3 )(x - 4)

因为B (0,4)在抛物线上,所以4 = a ( 0 + 3 ) ( 0 - 4 )解得a= -1/3 所以抛物线解析式为2111

(3)(4)4333

y x x x x =-+-=-

++ 解法二:设抛物线的解析式为2

(0)y ax bx c a =++≠,

依题意得:c=4且934016440a b a b -+=??++=? 解得13

1

3a b ?=-????=??

所以 所求的抛物线的解析式为211

433

y x x =-++

(2)连接DQ ,在Rt △AOB 中,2222345AB AO BO =

+=+=

所以AD=AB= 5,AC=AD+CD=3 + 4 = 7,CD = AC - AD = 7 –

5 = 2

因为BD 垂直平分PQ ,所以PD=QD ,PQ ⊥BD ,所以∠PDB=∠QDB 因为AD=AB ,所以∠ABD=∠ADB ,∠ABD=∠QDB ,所以DQ ∥AB 所以∠CQD=∠CBA 。∠CDQ=∠CAB ,所以△CDQ ∽ △CAB

DQ CD AB CA = 即210

,577

DQ DQ == 所以AP=AD – DP = AD – DQ=5 –107=257 ,2525

177

t =÷=

所以t 的值是25

7

(3)答对称轴上存在一点M ,使MQ+MC 的值最小 理由:因为抛物线的对称轴为122

b x a =-

= 所以A (- 3,0),C (4,0)两点关于直线1

2

x =对称 连接AQ 交直线1

2

x =

于点M ,则MQ+MC 的值最小 过点Q 作QE ⊥x 轴,于E ,所以∠QED=∠BOA=900 DQ ∥AB ,∠ BAO=∠QDE , △DQE ∽△ABO

QE DQ DE BO AB AO == 即 10

7453

QE DE

== 所以QE=87,DE=67,所以OE = OD + DE=2+67=207,所以Q (207,8

7

设直线AQ 的解析式为(0)y kx m k =+≠

则2087730k m k m ?+=???-+=? 由此得 841

2441

k m ?

=???

?=?? 所以直线AQ 的解析式为8244141y x =+ 联立12

8244141x y x ?

=????=+??

由此得128244141

x y x ?

=????=+?? 所以M 128(,

)241 则:在对称轴上存在点M 128

(,)241

,使MQ+MC 的值最小。

10. 如图9,在平面直角坐标系中,二次函数)0(2

>++=a c bx ax y 的图象的顶点为D 点,

圆的解题技巧与方法总结及练习

圆的解题技巧总结 一、垂径定理的应用 1、求半径 例1.高速公路的隧道和桥梁最多.图1是一个隧道的横截面,若它的形状 是以O 为圆心的圆的一部分,路面AB =10米,净高CD =7米,则此圆的半径OA = ( ) (A )5 (B )7 (C )37 5 (D )377 2、求弦长 例2.工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm ,测得钢珠顶端离零件表面的距离为8mm ,如图2所示,则这个小孔的直径AB ____mm . 3、求弦心距 例3.如图4,圆O 的半径为5,弦8AB =,OC AB ⊥于C ,则OC 的长等于 . 4、求拱高(弓形高) 例4.兴隆蔬菜基地建圆弧形蔬菜大棚的剖面如图5所示,已知AB =16m ,半径 OA =10m ,高度CD 为_____m . 5、求角度 例5.如图6,在⊙O 中,AB 为⊙O 的直径,弦CD ⊥AB ,∠AOC =60o,则∠B = . 6、探究线段的最小值 图3 B A 8mm 图2 图1 B 图 6 A 图5

例6.如图,⊙O 的半径OA =10cm ,弦AB =16cm ,P 为AB 上一动点,则点P 到圆心O 的最短距离为 cm . 二、与圆有关的多解题 在解有关圆的问题时,常常会因忽视图形的几种可能性而漏解. 1、点与圆的位置关系不唯一 例1.若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为a ,最小距离为b (a >b ),则此圆的半径为( )。 2、弦与弦的位置关系不唯一 例2.⊙O 的半径为5cm ,弦AB ∥CD ,AB=6cm ,CD=8cm ,则AB 与CD 之间的距离是( )。 (A )7cm (B )8cm (C )7cm 或1cm (D1cm 例3.如图,已知AB 是⊙O 的直径,AC 是⊙O 的弦,AB=2,AC= ,在图中画出弦AD ,使AD 等于1,并 求出∠CAD 的度数。 3、点在直径上的位置不唯一 例4.已知⊙O 的直径AB=10cm ,弦CD ⊥AB 于点M 。若OM :OA=3:5,则弦AC 的长为多少? 4、弦所对圆周角的不唯一 例5.圆的一条弦长等于它的半径,那么这条弦所对的圆周角为( )。 (A )30°或60°(B )60°(C )150°(D )30°或150° 5、圆与圆的位置关系不唯一 例6.如果两圆相切,两圆的圆心距为8cm ,圆A 的半径为3cm ,则圆B 的半径是( )。 (A )5cm (B )11cm (C )3cm (D )11cm 或5cm 6、相交圆圆心与公共弦的位置关系不唯一 图7

小学数学解题方法总结

数学解题方法总结 画图法解决奥数难题 一个山清水秀的村子里有三个好朋友:小明、小刚和小强,他们常在一起合伙打鱼。一次,他们忙碌了大半天,打了一堆鱼。实在太累了,就坐在河边的柳树下休息,一会儿都睡 着了。小明醒了想起家里有事,看小刚和小强睡得正香,没有吵醒他们。他把鱼分成三份, 自己拿一份走了。不一会儿小刚也醒了,要回家。他也把鱼分成三份,自己拿一份走了。太 阳快落山了,小强才醒来。他想,小明和小刚上哪去了?这么晚了,我得回家劈柴去。于是,他又把鱼分成三份,自己拿走一份。最后还剩下8条鱼。 第二天,他们又合伙到河边打鱼,才知道昨天分的鱼不合理。小明立即把剩下的8条鱼给小刚3条,小强5条。你能算出他们原来共打多少条鱼吗? 这个问题直接从文字上分析有一定难度,为了帮助我们理解题意,启发解题思路,可以根据题意,画出下面的线段图。 由于最后剩的8条是小强分的三份中的两份,所以小强拿走的鱼是8÷2条。那么小刚拿走自己分的一份鱼后剩下的鱼是8÷2×3条,这占小刚分的三份中的两份,所以小刚拿走的鱼是(8÷2×3)÷2;同样可得知小明拿走的鱼是[(8÷2×3)÷2×3]÷2条。所以打的鱼一共是[(8÷2×3)÷2×3]÷2×3=27(条)。 当然,我们还可以从小强第一天拿走的鱼是8一条和第二天又拿了5条知道,每人平均拿了8÷2+5条,所以打的鱼一共是(8÷2+5)×3=27(条)。 小明、小刚和小强三个伙伴互相关心,他们每个人无论有什么好事都忘不了另外两个朋 友。 一次,小明从山里来了一筐山梨,他把小刚和小强找来,对他们说:“我把这筐梨先分 给你们一些,剩下的便是我的。”于是,他把山梨的一半给了小刚,然后又给小刚加了1个。接着,他又把剩下的给了小强一半,也同样给小强加了1个,最后剩下5个山梨,他自己留下了。

高中数学-函数定义域、值域求法总结

函数定义域、值域求法总结 一.求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 定义域的求法 1、直接定义域问题 例1 求下列函数的定义域: ① 2 1 )(-=x x f ;② 23)(+=x x f ;③ x x x f -+ +=211)( 解:①∵x-2=0,即x=2时,分式 2 1 -x 无意义, 而2≠x 时,分式 21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-32 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }.

③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ? ??≠-≥+0201x x ? ???≠-≥21 x x 例2 求下列函数的定义域: ①14)(2 --= x x f ②2 14 3)(2-+--= x x x x f ③= )(x f x 11111++ ④x x x x f -+= 0)1()( ⑤3 7 3132+++-=x x y 解:①要使函数有意义,必须:142 ≥-x 即: 33≤≤-x ∴函数14)(2--= x x f 的定义域为: [3,3-] ②要使函数有意义,必须:???≠-≠-≤≥?? ??≠-+≥--131 40210432x x x x x x x 且或 4133≥-≤<--

中考复习:二次函数题型分类总结

【二次函数的定义】 (考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式) 1、下列函数中,是二次函数的是 . ①y=x2-4x+1;②y=2x2;③y=2x2+4x;④y=-3x; ⑤y=-2x-1;⑥y=mx2+nx+p;⑦y =(4,x) ;⑧y=-5x。 2、在一定条件下,若物体运动的路程s(米)与时间t(秒)的关系式为s=5t2+2t,则t=4 秒时,该物体所经过的路程为。 3、若函数y=(m2+2m-7)x2+4x+5是关于x的二次函数,则m的取值范围为。 4、若函数y=(m-2)x m -2+5x+1是关于x的二次函数,则m的值为。 6、已知函数y=(m-1)x m2 +1+5x-3是二次函数,求m的值。 【二次函数的对称轴、顶点、最值】 (技法:如果解析式为顶点式y=a(x-h)2+k,则最值为k; 如果解析式为一般式y=ax2+bx+c,则最值为4ac-b2 4a 1.抛物线y=2x2+4x+m2-m经过坐标原点,则m的值为。 2.抛物y=x2+bx+c线的顶点坐标为(1,3),则b=,c= . 3.抛物线y=x2+3x的顶点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.若抛物线y=ax2-6x经过点(2,0),则抛物线顶点到坐标原点的距离为( ) B. 5.若直线y=ax+b不经过二、四象限,则抛物线y=ax2+bx+c( ) A.开口向上,对称轴是y轴 B.开口向下,对称轴是y轴 C.开口向下,对称轴平行于y轴 D.开口向上,对称轴平行于y轴 6.已知抛物线y=x2+(m-1)x-1 4 的顶点的横坐标是2,则m的值是_ . 7.抛物线y=x2+2x-3的对称轴是。 8.若二次函数y=3x2+mx-3的对称轴是直线x=1,则m=。 9.当n=______,m=______时,函数y=(m+n)x n+(m-n)x的图象是抛物线,且其顶点在原点,此抛物线的开口________. 10.已知二次函数y=x2-2ax+2a+3,当a= 时,该函数y的最小值为0.

圆锥曲线解题技巧经典实用最新

圆锥曲线―概念、方法、题型、及应试技巧总结 1.圆锥曲线的两个定义: (1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 如 (1)已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是 A .4 21=+PF PF B .621=+PF PF C .10 21=+PF PF D .122 2 2 1 =+PF PF (答:C ) ; (2)方程8=表示的曲线是_____(答:双曲线的左 支) (2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率e 。圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。 如已知点)0,22(Q 及抛物线4 2 x y =上一动点P (x ,y ),则y+|PQ|的最小值是_____ (答:2) 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>)? { cos sin x a y b ??==(参数方程, 其中?为参数),焦点在y 轴上时2222b x a y +=1(0a b >>)。方程22 Ax By C +=表示椭 圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。 如(1)已知方程1232 2=-++k y k x 表示椭圆,则k 的取值范围为____(答: 11 (3,)(,2)22 ---) ; (2)若R y x ∈,,且62322=+y x ,则y x +的最大值是____,2 2y x +的最小值是 ___2) (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1 (0,0a b >>)。方程22 Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A , B 异号

高中函数值域求法小结

函数值域求法小结 一、观察法(根据函数图象、性质能较容易得出值域(最值)的简单函数) 1、求242-+-=x y 的值域。 由绝对值函数知识及二次函数值域的求法易得: )[)[∞+-∈∞+∈-+-=,2,,024)(2y x x g 所以 2、求函数1 11 y x = ++的值域。 分析:首先由1x +≥0,得1x ++1≥1,然后在求其倒数即得答案。 解: 1x +≥0∴1x ++1≥1,∴0< 1 11 x ++≤1,∴函数的值域为(0,1]. 二、配方法(当所给函数是二次函数或可化为二次函数的复合函数时,可利用配方法求值域) 1、求函数][)4,0(422∈+--=x x x y 的值域。 设:)0)((4)(2 ≥+-=x f x x x f 配方得:][)4,0(4)2()(2 ∈+--=x x x f 利用二次函数的 相关知识得][4,0)(∈x f ,从而得出:][2,2-∈y 。 说明:在求解值域(最值)时,遇到分式、根式、对数式等类型时要注意函数本身定义域的限制,本题为:0)(≥x f 。 2、求函数3 42-+-=x x e y 的值域。 解答:此题可以看作是u e y =和342-+-=x x u 两个函数复合而成的函数,对u 配方可得: 1)2(2+--=x u ,得到函数u 的最大值1=u ,再根据u e y =得到y 为增函数且0>y 故 函数3 42-+-=x x e y 的值域为:],0(e y ∈。 3、若,42=+y x 0,0>>y x ,试求y x lg lg +的最大值。 本题可看成一象限动点),(y x p 在直线42=+y x 上滑动时函数xy y x lg lg lg =+的最大值。利用两点(4,0),(0,2)确定一条直线,作出图象易得: 2 )1(2lg[)]24(lg[lg lg lg ),2,0(),4,0(2+--=-==+∈∈y y y xy y x y x 而,y=1时,y x lg lg +取最大值2lg 。 三、反函数法(分子、分母只含有一次项的函数,也可用于其它易

数学怎么总结解题方法

数学怎么总结解题方法 数学解题要有一定的方法可言,不可以盲目,以下是小编整理的数学怎么总结解题方法,欢迎参考阅读! 1、直接法:根据选择题的题设条件,通过计算、推理或判断,,最后得到题目的所求。 2、特殊值法:有些选择题所涉及的数学命题与字母的取值范围有关,在解这类选择题时,可以考虑从取值范围内选取某几个特殊值,代入原命题进行验证,然后淘汰错误的,保留正确的。 3、淘汰法:把题目所给的四个结论逐一代回原题的题干中进行验证,把错误的淘汰掉,直至找到正确的答案。 4、逐步淘汰法:如果我们在计算或推导的过程中不是一步到位,而是逐步进行,既采用“走一走、瞧一瞧”的策略,每走一步都与四个结论比较一次,淘汰掉不可能的,这样也许走不到最后一步,三个错误的结论就被全部淘汰掉了。 5、数形结合法:根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解题思路,使问题得到解决。 1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,

寻求解体思路,使问题得到解决。 2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。数学学科的各部分之间也是相互联系,可以相互转化的。在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。 3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查,这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。 4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。 5、配方法:就是把一个代数式设法构造成平方式,然后再进行所需要的变化。配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。 6、换元法:在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题

高中数学求函数值域的方法十三种审批稿

高中数学求函数值域的 方法十三种 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

高中数学:求函数值域的十三种方法 一、观察法(☆ ) 二、配方法(☆) 三、分离常数法(☆) 四、反函数法(☆) 五、判别式法(☆) 六、换元法(☆☆☆) 七、函数有界性 八、函数单调性法(☆) 九、图像法(数型结合法)(☆) 十、基本不等式法 十一、利用向量不等式 十二、 十三、一一映射法 十四、 多 种 方 法 综 合 运 用 一、观察法:从自变量x 的范围出发,推出()y f x =的取值范围。 【例1】 求函数1y =的值域。 11≥, ∴函数1y =的值域为[1,)+∞。 【例2】求函数 x 1 y = 的值域。 【解析】∵0x ≠ ∴0 x 1≠ 显然函数的值域是: ),0()0,(+∞-∞ 【例3】已知函数()112--=x y ,{}2,1,0,1-∈x ,求函数的值域。

【解析】因为{}2,1,0,1- =f f,()1 1- f所以: = 2 0= f,()()0 ∈ 3 x,而()()3 -f = 1= {}3,0,1- ∈ y 注意:求函数的值域时,不能忽视定义域,如果该题的定义域为R x∈,则函数的值域为{}1 y。 y ≥ |- 二.配方法:配方法式求“二次函数类”值域的基本方法。形如2 =++的 F x af x bf x c ()()() 函数的值域问题,均可使用配方法。 【例1】求函数225,[1,2] y x x x =-+∈-的值域。 【解析】将函数配方得:∵由二次函数的性质可知:当x=1 ∈[-1,2]时,,当时,故函数的值域是:[4,8] 【变式】已知,求函数的最值。 【解析】由已知,可得,即函数是定义在区间上的二次函数。将二次函数配方得,其对称轴方程,顶点坐标,且图象开口向上。显然其顶点横坐标不在区间内,如图2所示。函数的最小值为,最大值为。 图2

三角函数题型分类总结

专题 三角函数题型分类总结 三角函数公式一览表 ............................................................................................................... 错误!未定义书签。 一 求值问题 ........................................................................................................................................................... - 1 - 练习 ................................................................................................................................................................. - 1 - 二 最值问题 ........................................................................................................................................................... - 2 - 练习 ................................................................................................................................................................. - 3 - 三 单调性问题 ....................................................................................................................................................... - 3 - 练习 ................................................................................................................................................................. - 3 - 四.周期性问题 ........................................................................................................................................................ - 4 - 练习 ................................................................................................................................................................. - 4 - 五 对称性问题 ....................................................................................................................................................... - 5 - 练习 ................................................................................................................................................................. - 5 - 六.图象变换问题 .................................................................................................................................................... - 6 - 练习 ................................................................................................................................................................. - 7 - 七.识图问题 ......................................................................................................................................................... - 7 - 练习 ................................................................................................................................................................. - 9 - 一 求值问题 类型1 知一求二 即已知正余弦、正切中的一个,求另外两个 方法:根据三角函数的定义,注意角所在的范围(象限),确定符号; 例 4 s i n 5 θ=,θ是第二象限角,求cos ,tan θθ 类型2 给值求值 例1 已知2tan =θ,求(1) θ θθθsin cos sin cos -+;(2)θθθθ2 2cos 2cos .sin sin +-的值. 练习 1、sin 330?= tan 690° = o 585sin = 2、(1)α是第四象限角,12 cos 13 α=,则sin α= (2)若4 sin ,tan 05 θθ=- >,则cos θ= . (3)已知△ABC 中,12 cot 5 A =-,则cos A = . (4) α是第三象限角,2 1)sin(=-πα,则αcos = )25cos(απ += 3、(1) 已知5 sin ,5 α= 则44sin cos αα-= .

小学数学解题的19种方法总结

小学数学解题的19种方法总结 一、形象思维方法 形象思维方法是指人们用形象思维来认识、解决问题的方法。它的思维基础是具体形象,并从具体形象展开来的思维过程。形象思维的主要手段是实物、图形、表格和典型等形象材料。它的认识特点是以个别表现一般,始终保留着对事物的直观性。它的思维过程表现为表象、类比、联想、想象。它的思维品质表现为对直观材料进行积极想象,对表象进行加工、提炼进而提示出本质、规律,或求出对象。它的思维目标是解决实际问题,并且在解决问题当中提高自身的思维能力。 1、实物演示法 利用身边的实物来演示数学题目的条件和问题,及条件与条件,条件与问题之间的关系,在此基础上进行分析思考、寻求解决问题的方法。这种方法可以使数学内容形象化,数量关系具体化。比如:数学中的相遇问题。通过实物演示不仅能够解决“同时、相向而行、相遇”等术语,而且为学生指明了思维方向。再如,在一个圆形(方形)水塘周围栽树问题,如果能进行一个实际操作,效果要好得多。 二年级数学教材中,“三个小朋友见面握手,每两人握一次,共要握几次手”与“用三张不同的数字卡片摆成两位数,共可以摆成多少个两位数”。像这样的有关排列、组合的知识,在小学教学中,如果实物演示的方法,是很难达到预期的教学目标的。 特别是一些数学概念,如果没有实物演示,小学生就不能真正掌握。长方形的面积、长方体的认识、圆柱的体积等的学习,都依赖于实物演示作思维的基础。 所以,小学数学教师应尽可能多地制作一些数学教(学)具,而且这些教(学)具用过后要好好保存,可以重复使用。这样可以有效地提高课堂教学效率,提升学生的学习成绩。

2、图示法 借助直观图形来确定思考方向,寻找思路,求得解决问题的方法。图示法直观可靠,便于分析数形关系,不受逻辑推导限制,思路灵活开阔,但图示依赖于人们对表象加工整理的可靠性上,一旦图示与实际情况不相符,易使在此基础上的联想、想象出现谬误或走入误区,最后导致错误的结果。比如有的数学教师爱徒手画数学图形,难免造成不准确,使学生产生误解。 在课堂教学当中,要多用图示的方法来解决问题。有的题目,图画出来了,结果也就出来的;有的题,图画好了,题意学生也就明白了;有的题,画图则可以帮助分析题意、启迪思路,作为其他解法的辅助手段。 例1把一根木头锯成3段需要24分钟,锯成6段需要多少分钟?(图略) 思维方法是:图示法。 思维方向是:锯几次,每次用几分钟。 思路是:锯3段锯了几次,每次用几分钟,锯6段锯了几次,需要多少分钟。 例2判断等腰三角形中,点D是底边BC的中点,图甲的面积比图乙的面积大,图甲的周长比图乙的周长长。(图略) 思维方法:图示法。 思维方向:先比较面积,再比较周长。 思路:作条辅助线。图甲占的面积大,图乙所占面积小,所以“图甲的面积比图乙的面积大”是正确的。线段AD比曲线AD短,所以“图甲的周长比图乙的周长长”是错误的。 3、列表法 运用列出表格来分析思考、寻找思路、求解问题的方法叫做列表法。列表法清晰明了,便于分析比较、提示规律,也有利于记忆。它的局限性在于求解范围小,适用题型狭窄,大

圆的解题技巧总结0608

圆的解题技巧总结 、垂径定理的应用 给出的圆形纸片如图所示,如果在圆形纸片上任意画一条垂直于直径 CD 的弦AB,垂足 为P,再将纸片沿着直径 CD 对折,我们很容易发现 A B 两点重合,即有结论AP=BP 弧AC= 弧BC.其实这个结论就是“垂径定理”,准确地叙述为:垂直于弦的直径平分这条弦,并 且平分弦所对的弧. 垂径定理是“圆”这一章最早出现的重要定理, 它说明的是圆的直径与弦及弦所对的弧 之间的垂直或平分的对应关系, 是解决圆内线段、弧、角的相等关系及直线间垂直关系的重 要依据,同时,也为我们进行圆的有关计算与作图提供了方法与依据. 例1某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形 截面的半径,下图是水平放置的破裂管道有水部分的截面. (1) 请你补全这个输水管道的圆形截面; (2) 若这个输水管道有水部分的水面宽 AB=16cm 水面最深地方的高度为 4cm,求这个圆 形截面的半径. 例3 如图,已知OO 中,直径 MN=10正方形 ABCD 的四个顶点分别在半径 OM 0P 以 及OO 上,并且/ POM=4°,贝U AB 的长为多少? 例4图为小自行车内胎的一部分,如何将它平均分给两个小朋发做玩具 ? 例2如图,PQ=3以PQ 为直径的圆与一个以 5为半径的圆相切于点 P,正方形ABCD 的顶点A 、B 在大圆上,小圆在正方形的外部且与 CD 切于点Q,贝U AB= ?

二、与圆有关的多解题 几何题目一般比较灵活,若画图片面,考虑不周,很容易漏解,造成解题错误,在解有关圆的问题时,常常会因忽视图形的几种可能性而漏解. 1.忽视点的可能位置. 例5 △ ABC是半径为2的圆的内接三角形,若BC=2庐cm,贝卩/A的度数为__________________ 2.忽视点与圆的位置关系. 例6 点P到O0的最短距离为2 cm,最长距离为6 cm,则O 0的半径是__________________ 3?忽视平行弦与圆心的不同位置关系. 例7 已知四边形ABCD是O0的内接梯形,AB// CD AB=8 cm, CD=6 cm O0的半径是 5 cm ,则梯形的面积是_________ . 4.忽略两圆相切的不同位置关系 例8 点P在O0外,0P=13 cm PA切O 0于点A, PA=12 cm ,以P为圆心作O P与O0 相切,贝UOP 的半径是______________________ . 例9 若O O与O0 2相交,公共弦长为24 cm, O 0与O0 2的半径分别为13 cm和15 cm, 则圆心距0102的长为_________________ . 三、巧证切线 切线是圆中重要的知识点,而判断直线为圆的切线是中考的重要考点. 判断直线是否是圆的切线,主要有两条途径: 1?圆心到直线的距离等于半径

求函数值域 、 周期的方法总结(适合高一)

求函数值域 、 周期的方法总结(适合高一) 求值域 一、直接法:(从自变量x 的范围出发,推出()y f x =的取值范围)例1.求函数2+=x y 的值域。 二、配方法(是求二次函数值域的基本方法,如2()()()F x af x bf x c =++的函数的值域问题,均可使用配方法)例2.求函数242y x x =-++([1,1]x ∈-)的值域。 三、分离常数法(分子、分母是一次函数得有理函数,可用分离常数法,此类问题一般也可以利用反函数法)例3.求函数125 x y x -=+的值域。 四、换元法(运用代数代换,将所给函数化成值域容易确定的另一函数,从而求得原函 数的值域,如y ax b =+a 、b 、c 、d 均为常数,且0a ≠)的函数常用此法 求解。例4.求函数2y x = 五、函数的单调性法(确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值域,形如求函数()0>+=k x k x y 的值域(k x <<0时为减函数;k x >时为 增函数))例5.求函数y x = 六、利用有界性(利用某些函数有界性求得原函数的值域)例6求函数2211 x y x -=+的值域。 七、数型结合法(函数图像是掌握函数的重要手段,利用数形结合的方法,根据函数图像求得函数值域,是一种求值域的重要方法)例7.求函数11-++=x x y 的值域。 除此之外,还有反函数法(即利用函数和它的反函数的定义域与值域的关系,通过求反函数的定义域而得到原函数的值域)和判别式法(即把函数转化成关于x 的二次方程()0,=y x F ,通过方程有实根,0≥?,从而求得原函数的值域,需熟练掌握一元二次不等式的解法),在今后的学习中,会具体讲述。 周期 一.定义:若T 为非零常数,对于定义域内的任一x ,使)()(x f T x f =+恒成立 则f (x )叫做周期函数,T 叫做这个函数的一个周期。 二.重要结论 1、()()f x f x a =+,则()y f x =是以T a =为周期的周期函数; 2、 若函数y=f(x)满足f(x+a)=-f(x)(a>0),则f(x)为周期函数且2a 是它的一个周期。 3、 若函数()()f x a f x a +=-,则()x f 是以2T a =为周期的周期函数

三角函数知识点及题型归纳

三角函数高考题型分类总结 一.求值 1.若4sin ,tan 05 θθ=->,则cos θ=. 2.α是第三象限角,2 1)sin(= -πα,则αcos =)25cos(απ+= 3.若角α的终边经过点(12)P -,,则αcos = tan 2α= 4.下列各式中,值为 2 3 的是 ( ) (A )2sin15cos15?? (B )?-?15sin 15cos 22(C )115sin 22-?(D )?+?15cos 15sin 22 5.若02,sin απαα≤≤> ,则α的取值范围是: ( ) (A),32ππ?? ???(B),3ππ?? ???(C)4,33ππ?? ???(D)3,32 ππ ?? ??? 二.最值 1.函数()sin cos f x x x =最小值是。 2.若函数()(1)cos f x x x =+,02 x π ≤< ,则()f x 的最大值为 3.函数()cos 22sin f x x x =+的最小值为最大值为。 4.已知函数()2sin (0)f x x ωω=>在区间,34ππ?? - ???? 上的最小值是2-,则ω的最小值等于 5.设02x π?? ∈ ??? ,,则函数22sin 1sin 2x y x +=的最小值为. 6.将函数x x y cos 3sin -=的图像向右平移了n 个单位,所得图像关于y 轴对称,则n 的最小正值是 A . 6π7 B .3π C .6π D .2 π 7.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为( ) A .1 B C D .2 8.函数2 ()sin cos f x x x x =+在区间,42ππ?? ? ??? 上的最大值是 ( ) A.1 32

中考数学圆的解题方法归纳总结与例题分析报告

中考数学圆的解题方法归纳总结及例题分析 1.遇到弦时(解决有关弦的问题时) 常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。 作用:①利用垂径定理; ②利用圆心角及其所对的弧、弦和弦心距之间的关系; ③利用弦的一半、弦心距和半径组成直角三角形,根据勾股定理求有关量。 例1:

例2:

2.遇到有直径时 常常添加(画)直径所对的圆周角。 作用:利用圆周角的性质,得到直角或直角三角形。 3.遇到90°的圆周角时 常常连结两条弦没有公共点的另一端点。 作用:利用圆周角的性质,可得到直径。 例题:如图,已知在等腰△ABC中,∠A=∠B=30°,过点C作CD⊥AC交AB于点D;求证:BC是过A,D,C三点的圆的切线

解:(1)作出圆心O, 以点O为圆心,OA长为半径作圆 (2)证明:∵CD⊥AC,∴∠ACD=90°∴AD是⊙O的直径 连结OC,∵∠A=∠B=30°,∴∠ACB=120°,又∵OA=OC,∴∠ACO=∠A =30° ∴∠BCO=∠ACB-∠ACO =120°-30°=90°∴BC⊥OC,∴BC是⊙O的切线. 4.遇到弦时 常常连结圆心和弦的两个端点,构成等腰三角形,还可连结圆周上一点和弦的两个端点。 作用:①可得等腰三角形; ②据圆周角的性质可得相等的圆周角。 如图,△ABC是⊙O的接三角形,AD是⊙O 的直径,若∠ABC=50°,求∠CAD的度数。 解:连接CD,∠ADC=∠ABC=50°,∵AD是⊙O 的直径,∴∠ACD=90°∴∠CAD+∠ADC=90°∴∠CAD=90°-∠ADC=90°-50°= 40° 5.遇到有切线时 (1)常常添加过切点的半径(连结圆心和切点) 作用:利用切线的性质定理可得到直角或直角三角形。 (2)常常添加连结圆上一点和切点 作用:可构成弦切角,从而利用弦切角定理。

求函数定义域和值域方法和典型题归纳

<一>求函数定义域、值域方法和典型题归纳 一、基础知识整合 1.函数的定义:设集合A 和B 是非空数集,按照某一确定的对应关系f ,使得集合A 中任意一个数x,在集合B 中都有唯一确定的数f(x)与之对应。则称f:为A 到B 的一个函数。 2.由定义可知:确定一个函数的主要因素是①确定的对应关系(f ),②集合A 的取值范围。由这两个条件就决定了f(x)的取值范围③{y|y=f(x),x ∈A}。 3.定义域:由于定义域是决定函数的重要因素,所以必须明白定义域指的是: (1)自变量放在一起构成的集合,成为定义域。 (2)数学表示:注意一定是用集合表示的范围才能是定义域,特殊的一个个的数时用“列举法”;一般表示范围时用集合的“描述法”或“区间”来表示。 4.值域:是由定义域和对应关系(f )共同作用的结果,是个被动变量,所以求值域时一定注意求的是定义域范围内的函数值的范围。 (1)明白值域是在定义域A 内求出函数值构成的集合:{y|y=f(x),x ∈A}。 (2)明白定义中集合B 是包括值域,但是值域不一定为集合B 。 二、求函数定义域 (一)求函数定义域的情形和方法总结 1已知函数解析式时:只需要使得函数表达式中的所有式子有意义。 (1)常见要是满足有意义的情况简总: ①表达式中出现分式时:分母一定满足不为0; ②表达式中出现根号时:开奇次方时,根号下可以为任意实数;开偶次方时,根号下满足大于或等于0(非负数)。 ③表达式中出现指数时:当指数为0时,底数一定不能为0. ④根号与分式结合,根号开偶次方在分母上时:根号下大于0. ⑤表达式中出现指数函数形式时:底数和指数都含有x ,必须满足指数底数大于0且不等于1.(0<底数<1;底数>1) ⑥表达式中出现对数函数形式时:自变量只出现在真数上时,只需满足真数上所有式子大于0,且式子本身有意义即可;自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大于0且不等于 1. (2 ()log (1)x f x x =-) 注:(1)出现任何情形都是要注意,让所有的式子同时有意义,及最后求的是所有式子解集的交集。 (2)求定义域时,尽量不要对函数解析式进行变形,以免发生变化。(形

2020高考数学函数与导数综合题型分类总结

函数综合题分类复习 题型一:关于函数的单调区间(若单调区间有多个用“和”字连接或用“逗号”隔开),极值,最值;不等式恒成立;此类问题提倡按以下三个步骤进行解决: 第一步:令 0)('=x f 得到两个根;第二步:列表如下;第三步:由表可知; 不等式恒成立问题的实质是函数的最值问题,常见处理方法有四种: 第一种:变更主元(即关于某字母的一次函数)-----题型特征(已知谁的范围就把谁作为主元);第二种:分离变量求最值(请同学们参考例5);第三种:关于二次函数的不等式恒成立;第四种:构造函数求最值----题型特征 )()(x g x f >恒成立 0)()()(>-=?x g x f x h 恒成立;参考例4; 例1.已知函数32 1()23 f x x bx x a =-++,2x =是)(x f 的一个极值点. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)若当[1, 3]x ∈时,2 2()3 f x a ->恒成立,求a 的取值范围. 例2.已知函数b ax ax x x f +++=2 3)(的图象过点)2,0(P . (1)若函数)(x f 在1-=x 处的切线斜率为6,求函数)(x f y =的解析式;(2)若3>a ,求函数)(x f y =的单调区间。 例3.设2 2(),1 x f x x = +()52(0)g x ax a a =+->。 (1)求()f x 在[0,1]x ∈上的值域; (2)若对于任意1[0,1]x ∈,总存在0[0,1]x ∈,使得01()()g x f x =成立,求a 的取值范围。 例4.已知函数 32()f x x ax =+图象上一点(1,)P b 的切线斜率为3-, 32 6()(1)3(0)2 t g x x x t x t -=+-++> (Ⅰ)求,a b 的值; (Ⅱ)当[1,4]x ∈-时,求()f x 的值域; (Ⅲ)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。 例5.已知定义在R 上的函数 32()2f x ax ax b =-+) (0>a 在区间[]2,1-上的最大值是5,最小值是-11. (Ⅰ)求函数()f x 的解析式;(Ⅱ)若]1,1[-∈t 时,0(≤+'tx x f )恒成立,求实数x 的取值范围. 例6.已知函数 2233)(m nx mx x x f +++=,在1-=x 时有极值0,则=+n m 例7.已知函数23)(a x x f =图象上斜率为3的两条切线间的距离为 510 2,函数33)()(2 2 +-=a bx x f x g . (1) 若函数)(x g 在1=x 处有极值,求)(x g 的解析式; (2) 若函数)(x g 在区间]1,1[-上为增函数,且)(42 x g mb b ≥+-在区间]1,1[-上都成立,求实数m 的取值范围. 答案: 1、解:(Ⅰ) '2()22f x x bx =-+. ∵2x =是)(x f 的一个极值点, ∴2x =是方程2 220x bx -+=的一个根,解得32 b =. 令'()0f x >,则2 320x x -+>,解得1x <或2x >. ∴函数()y f x =的单调递增区间为(, 1)-∞,(2, +)∞. (Ⅱ)∵当(1,2)x ∈时 '()0f x <,(2,3)x ∈时'()0f x >, ∴ ()f x 在(1,2)上单调递减,()f x 在(2,3)上单调递增. ∴(2)f 是()f x 在区间[1,3]上的最小值,且 2 (2)3 f a = +. 若当[1, 3]x ∈时,要使 22()3f x a -> 恒成立,只需22(2)3f a >+, 即2 2233 a a +>+,解得 01a <<. 2、解:(Ⅰ)a ax x x f ++='23)(2 . 由题意知? ??=+-=-'==623)1(2)0(a a f b f ,得 ???=-=23b a . ∴ 233)(23+--=x x x x f . (Ⅱ)023)(2=++='a ax x x f . ∵ 3>a ,∴ 01242>-=?a a .

相关文档
最新文档