数列知识点及常用解题方法归纳总结

合集下载

数列知识点总结(经典)

数列知识点总结(经典)

数列基础知识点和方法归纳
1.等差数列的定义与性质
定义: ( 为常数),
等差中项: 成等差数列
前n 项和()()11122
n n a a n n n S na d +-==+ 性质: 是等差数列
(1)若 , 则
(2)数列 仍为等差数列, 仍为等差数列, 公差为 ;
(3)若三个成等差数列, 可设为
(4)若 是等差数列, 且前 项和分别为 , 则
(5) 为等差数列 ( 为常数, 是关于 的常数项为0的二次函数) 的最值可求二次函数 的最值;或者求出 中的正、负分界项,
2.等比数列的定义与性质
定义: ( 为常数, ), .
等比中项: 成等比数列 , 或 .
前 项和: (要注意! )
性质: 是等比数列
(1)若 , 则
(2)232n n n n n S S S S S --,,……仍为等比数列,公比为n q .
注意: 由 求 时应注意什么?
时, ;
时, .
4.求数列前n 项和的常用方法
(1) 裂项法
(2)错位相减法
如: ①
()23412341n n n x S x x x x n x nx -=+++++-+·……
② ①—②()21
11n n n x S x x x nx --=++++-……
时, , 时,。

新高考数列知识点总结归纳

新高考数列知识点总结归纳

新高考数列知识点总结归纳数列是数学中重要的概念之一,它是由一系列按特定规律排列的数按一定的次序形成的有序集合。

而在新高考数学考试中,数列作为一个重要的知识点,经常出现在试卷中。

本文将对新高考数列相关的知识点进行总结归纳,以期帮助同学们更好地掌握数列的概念和相关的解题方法。

一、数列的基本概念数列由一系列按特定规律排列的数按照一定的次序形成,通常用{a₁,a₂,a₃,...,aₙ}表示。

其中,a₁表示数列的第一个数,aₙ表示数列的第n个数。

数列中相邻两项之间的差称为公差,通常用d表示。

若给定数列的第一项和公差,可以通过an = a₁ + (n-1)d来计算数列的第n项。

二、等差数列等差数列是指数列中相邻两项之间的差恒定的数列。

在新高考数学中,等差数列是最常见的数列类型之一。

1. 等差数列的通项公式对于等差数列{a₁,a₂,a₃,...,aₙ},如果其公差为d,首项为a₁,那么它的通项公式为an = a₁ + (n-1)d。

2. 等差数列的和等差数列的和可以通过求和公式Sn = n/2[2a₁ + (n-1)d]来计算,其中Sn表示等差数列的前n项和。

3. 等差数列的性质等差数列具有以下性质:- 等差数列的相邻两项的和相等;- 等差数列的前n项和与n成正比;- 等差数列的对称轴为前后两项和的平均值。

三、等比数列等比数列是指数列中相邻两项之间的比恒定的数列。

在新高考数学中,等比数列也是常见的数列类型之一。

1. 等比数列的通项公式对于等比数列{a₁,a₂,a₃,...,aₙ},如果其公比为q,首项为a₁,那么它的通项公式为an = a₁ * q^(n-1)。

2. 等比数列的和等比数列的和可以通过求和公式Sn = a₁ * (1 - q^n)/(1 - q)来计算,其中Sn表示等比数列的前n项和。

3. 等比数列的性质等比数列具有以下性质:- 等比数列的相邻两项的比相等;- 等比数列的前n项和与n无关;- 等比数列的对数轴为前后两项比的平均值的对数。

高二数学必修五--数列知识点总结及解题技巧(含答案)---强烈-推荐

高二数学必修五--数列知识点总结及解题技巧(含答案)---强烈-推荐

数学数列部分知识点梳理一数列的概念1)数列的前n 项和与通项的公式①n n a a a S +++= 21; ⎩⎨⎧≥-==-)2()1(11n S S n S a n n n2)数列的分类:①递增数列:对于任何+∈N n ,均有n n a a >+1.②递减数列:对于任何+∈N n ,均有n n a a <+1.③摆动数列:例如: .,1,1,1,1,1 ---④常数数列:例如:6,6,6,6,…….⑤有界数列:存在正数M 使+∈≤N n M a n ,.⑥无界数列:对于任何正数M ,总有项n a 使得M a n >. 一、等差数列 1)通项公式d n a a n )1(1-+=,1a 为首项,d 为公差。

前n 项和公式2)(1n n a a n S +=或d n n na S n )1(211-+=. 2)等差中项:b a A +=2。

3)等差数列的判定方法:⑴定义法:d a a n n =-+1(+∈N n ,d 是常数)⇔{}n a 是等差数列;⑵中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列.4)等差数列的性质:⑴数列{}n a 是等差数列,则数列{}p a n +、{}n pa (p 是常数)都是等差数列;⑵在等差数列{}n a 中,等距离取出若干项也构成一个等差数列,即 ,,,,32k n k n k n n a a a a +++为等差数列,公差为kd .⑶d m n a a m n )(-+=;b an a n +=(a ,b 是常数);bn an S n +=2(a ,b 是常数,0≠a )⑷若),,,(+∈+=+N q p n m q p n m ,则q p n m a a a a +=+;⑸若等差数列{}n a 的前n 项和n S ,则⎭⎬⎫⎩⎨⎧n S n 是等差数列; ⑹当项数为)(2+∈N n n ,则nn a aS S nd S S 1,+==-奇偶奇偶;当项数为)(12+∈-N n n ,则nn S S a S S n 1,-==-奇偶偶奇. (7)设是等差数列,则(是常数)是公差为的等差数列;(8)设,,,则有;(9)是等差数列的前项和,则;(10)其他衍生等差数列:若已知等差数列,公差为,前项和为,则①.为等差数列,公差为;②.(即)为等差数列,公差;③.(即)为等差数列,公差为.二、等比数列 1)通项公式:11-=n n q a a ,1a 为首项,q 为公比 。

数列章节知识点归纳总结

数列章节知识点归纳总结

数列章节知识点归纳总结数列是数学中常见的一种数学对象,可以用于描述一系列按照规律排列的数字。

在数学中,数列的研究与应用非常广泛,涉及到各个领域。

本文将对数列的基本概念、分类、性质以及常见的数列类型进行归纳总结。

一、数列的基本概念数列是由一系列有序的数字组成的集合。

其中,每一个数字被称为数列的项,用a₁、a₂、a₃等表示。

数列可以有无穷多个项,也可以有有限个项。

对于一个数列,我们可以通过以下方式来表示:1. 列表法:数列的项按照顺序列出,用逗号隔开。

例如:1, 2, 3, 4, 5, ...2. 通项公式法:数列的每一项都可以用一个公式来表示。

例如:an = 2n,表示数列的第n项是2n。

二、数列的分类根据数列的规律和性质,数列可以分为以下几类:1. 等差数列(Arithmetic Progression, AP):在等差数列中,每一项与它的前一项之差都相等。

其中,公差(common difference)表示了相邻两项之间的差值。

通项公式为an = a₁ + (n - 1)d,其中a₁为首项,d 为公差。

2. 等比数列(Geometric Progression, GP):在等比数列中,每一项与它的前一项之比都相等。

其中,公比(common ratio)表示了相邻两项之间的比值。

通项公式为an = a₁ * r^(n-1),其中a₁为首项,r为公比。

3. 斐波那契数列(Fibonacci Sequence):斐波那契数列是一个特殊的数列,其每一项都是前两项之和。

通常情况下,将前两项定义为1,即F₁ = F₂ = 1。

后续项可以通过递推关系式Fn = Fn-1 + Fn-2计算得出。

4. 调和数列(Harmonic Progression):在调和数列中,每一项的倒数与一常数之差都相等。

通项公式为an = 1/(a₁ + (n - 1)d),其中a₁为首项,d为公差。

三、数列的性质除了上述分类,数列还具有一些重要的性质。

数列基础 知识点总结

数列基础 知识点总结

数列基础知识点总结一、概念及基本性质1. 什么是数列数列是按照一定的顺序排列的一组数,这些数依次排列在一条直线上,每个位置都有一个数与之对应。

一般用a1, a2, a3,...an表示数列的各个元素,其中ai称为数列的项,i称为项的序号。

2. 数列的概念数列中的每一个数称为数列的项,这些项的次序具有规律性,规律性可以通过公式、图形、语言等方式来表示。

3. 数列的基本性质数列中的数可以是有限个也可以是无限个。

数列中的数包括有序数列和无序数列。

有序数列又包括等差数列、等比数列、等比对数数列、斐波那契数列等。

二、等差数列1. 等差数列的定义如果一个数列中,从第二个数起,每个数与它的前一个数的差等于同一个常数,那么这个数列就是等差数列。

2. 等差数列的通项公式对于等差数列{an},如果an的通项公式为an=a1+(n-1)d,其中a1为首项,d为公差,n为项数。

3. 等差数列的前n项和公式对于等差数列{an},其前n项和为Sn=n(a1+an)/2。

4. 等差数列的性质(1)等差数列的前两项和后两项等于同一个数。

(2)等差数列的前后两项相等。

(3)等差数列的和的公式Sn=n(a1+an)/2。

5. 等差数列的应用等差数列在实际生活中有很多应用,比如金融领域的利息计算、交通领域的运输成本计算等。

三、等比数列1. 等比数列的定义如果一个数列中,从第二个数起,每个数与它的前一个数的比等于同一个常数,那么这个数列就是等比数列。

2. 等比数列的通项公式对于等比数列{an},如果an的通项公式为an=a1*q^(n-1),其中a1为首项,q为公比,n为项数。

3. 等比数列的前n项和公式对于等比数列{an},如果q≠1,则其前n项和为Sn=a1(1-q^n)/(1-q);如果q=1,则Sn=na1。

4. 等比数列的性质(1)等比数列的前后两项比相等。

(2)等比数列的和的公式Sn=a1(1-q^n)/(1-q)。

(3)等比数列的连乘公式Πn=a1q^(n-1)。

高中数列知识点、解题方法和题型大全

高中数列知识点、解题方法和题型大全

一 高中数列知识点总结1. 等差数列的定义与性质定义:1n n a a d +-=(d 为常数),()11n a a n d =+- 等差中项:x A y ,,成等差数列2A x y ⇔=+ 前n 项和()()11122n n a a n n n S nad +-==+性质:{}n a 是等差数列(1)若m n p q +=+,则m n p q a a a a +=+;(2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2;(3)若三个成等差数列,可设为a d a a d -+,, (4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则2121m m m m a S b T --=(5){}n a 为等差数列2n S an bn ⇔=+(a b ,为常数,是关于n 的常数项为0的二次函数)n S 的最值可求二次函数2n S an bn =+的最值;或者求出{}n a 中的正、负分界项,即:当100a d ><,,解不等式组100n n a a +≥⎧⎨≤⎩可得n S 达到最大值时的n 值.当100a d <>,,由10n n a a +≤⎧⎨≥⎩可得n S 达到最小值时的n 值.(6)项数为偶数n 2的等差数列{}n a ,有),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n Snd S S =-奇偶,1+=n na a S S 偶奇. (7)项数为奇数12-n 的等差数列{}n a ,有)()12(12为中间项n n n a a n S -=-,n a S S =-偶奇,1-=n n S S 偶奇. 2. 等比数列的定义与性质定义:1n na q a +=(q 为常数,0q ≠),11n n a a q -=.等比中项:x G y 、、成等比数列2G xy ⇒=,或G =前n 项和:()11(1)1(1)1n n na q S a q q q =⎧⎪=-⎨≠⎪-⎩(要注意!)性质:{}n a 是等比数列(1)若m n p q +=+,则m n p q a a a a =··(2)232n n n n n S S S S S --,,……仍为等比数列,公比为n q . 注意:由n S 求n a 时应注意什么?1n =时,11a S =;2n ≥时,1n n n a S S -=-.二 解题方法1 求数列通项公式的常用方法 (1)求差(商)法如:数列{}n a ,12211125222n n a a a n +++=+……,求n a解 1n =时,112152a =⨯+,∴114a = ①2n ≥时,12121111215222n n a a a n --+++=-+…… ②①—②得:122n n a =,∴12n n a +=,∴114(1)2(2)n n n a n +=⎧=⎨≥⎩[练习]数列{}n a 满足111543n n n S S a a +++==,,求n a注意到11n n n a S S ++=-,代入得14n nS S +=;又14S =,∴{}n S 是等比数列,4n n S = 2n ≥时,1134n n n n a S S --=-==……·(2)叠乘法如:数列{}n a 中,1131n n a na a n +==+,,求n a解3212112123n n a a a n a a a n --=·……·……,∴11n a a n=又13a =,∴3n a n =. (3)等差型递推公式由110()n n a a f n a a --==,,求n a ,用迭加法2n ≥时,21321(2)(3)()n n a a f a a f a a f n --=⎫⎪-=⎪⎬⎪⎪-=⎭…………两边相加得1(2)(3)()n a a f f f n -=+++……∴0(2)(3)()n a a f f f n =++++……(4)等比型递推公式1n n a ca d -=+(c d 、为常数,010c c d ≠≠≠,,)可转化为等比数列,设()()111n n n n a x c a x a ca c x --+=+⇒=+- 令(1)c x d -=,∴1d x c =-,∴1n d a c ⎧⎫+⎨⎬-⎩⎭是首项为11d a c c +-,为公比的等比数列∴1111n n d d a a c c c -⎛⎫+=+ ⎪--⎝⎭·,∴1111n n d d a a c c c -⎛⎫=+- ⎪--⎝⎭ (5)倒数法如:11212nn n a a a a +==+,,求n a 由已知得:1211122n n n n a a a a ++==+,∴11112n n a a +-= ∴1n a ⎧⎫⎨⎬⎩⎭为等差数列,111a =,公差为12,∴()()11111122n n n a =+-=+·, ∴21n a n =+(附:公式法、利用{1(2)1(1)n n S S n S n n a --≥==、累加法、累乘法.构造等差或等比1n n a pa q +=+或1()n n a pa f n +=+、待定系数法、对数变换法、迭代法、数学归纳法、换元法)2 求数列前n 项和的常用方法 (1) 裂项法把数列各项拆成两项或多项之和,使之出现成对互为相反数的项. 如:{}n a 是公差为d 的等差数列,求111nk k k a a =+∑解:由()()11111110k k k k k k d a a a a d d a a ++⎛⎫==-≠ ⎪+⎝⎭·∴11111223111111111111nnk k k k k k n n a a d a a d a a a a a a ==+++⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-=-+-++-⎢⎥ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦∑∑…… 11111n d a a +⎛⎫=- ⎪⎝⎭[练习]求和:111112123123n+++++++++++ (121)n n a S n ===-+…………, (2)错位相减法若{}n a 为等差数列,{}n b 为等比数列,求数列{}n n a b (差比数列)前n 项和,可由n n S qS -,求n S ,其中q 为{}n b 的公比.如:2311234n n S x x x nx -=+++++……①()23412341n n n x S x x x x n x nx -=+++++-+·……②①—②()2111n n n x S x x x nx --=++++-……1x ≠时,()()2111nnnx nx S xx -=---,1x =时,()11232n n n S n +=++++=……(3)倒序相加法把数列的各项顺序倒写,再与原来顺序的数列相加.121121n n n n n n S a a a a S a a a a --=++++⎫⎬=++++⎭…………相加()()()12112n n n n S a a a a a a -=++++++……[练习]已知22()1x f x x =+,则111(1)(2)(3)(4)234f f f f f f f ⎛⎫⎛⎫⎛⎫++++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭由2222222111()111111x x x f x f x x x xx ⎛⎫ ⎪⎛⎫⎝⎭+=+=+= ⎪+++⎝⎭⎛⎫+ ⎪⎝⎭∴原式11111(1)(2)(3)(4)111323422f f f f f f f ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=++++++=+++= ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦(附:a.用倒序相加法求数列的前n 项和如果一个数列{a n },与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法。

数列复习基本知识点归纳与总结

数列复习基本知识点归纳与总结

数列基本知识点归纳与总结一、数列的概念:数列是按一定次序排成的一列数。

数列中的每一个数都叫做这个数列的项。

数列是一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n })的特殊函数,如果数列{}a n 的第n 项a n 与n 之间的关系可以用一个公式来表示,则这个公式就叫做这个数列的通项公式。

数列的通项公式也就是相应函数的解析式。

如(1)已知*2()156n n a n N n =∈+,则在数列{}na 的最大项为__(答:125); (2)数列}{n a 的通项为1+=bn ana n ,其中b a ,均为正数,则n a 与1+n a 的大小关系为___(答:n a <1+n a ); (3)已知数列{}n a 中,2n a n n λ=+,且{}n a 是递增数列,求实数λ的取值范围(答:3λ>-);递推关系式:已知数列{}a n 的第一项(或前几项),且任何一项n a 与它的前一项a n-1(前n 项)间的关系可以用一个式子来表示,则这个式子就叫数列的递推关系式。

数列的分类:①按项数多少,分为有穷数列、无穷数列;②按项的增减,分为递增数列、递减数列、摆动数列、常数列。

③按项有无界限,分为有界数列、无界数列。

数列的前n 项和:a a a a s n n ++++= (3)21.已知s n 求a n 的方法(只有一种):即利用公式 a n=⎪⎩⎪⎨⎧≥=--)2(,)1(,11n n s s s n n注意:一定不要忘记对n 取值的讨论!最后,还应检验当n=1的情况是否符合当n ≥2的关系式,从而决定能否将其合并。

二、等差数列的有关概念:1、 等差数列的定义:如果数列{}a n 从第二项起每一项与它的前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫等差数列的公差。

即)2,*(1≥∈=--n N n d a a n n 且.(或)*(1N n d a a n n ∈=-+).(1) 等差数列的判断方法:①定义法:)(1常数d a a n n =-+⇔{}a n 为等差数列。

(完整word版)数列知识点复习总结,推荐文档

(完整word版)数列知识点复习总结,推荐文档

数列高考知识点大扫描数列基本概念数列是一种特殊函数,对于数列这种特殊函数,着重讨论它的定义域、值域、增减性和最值等方面的性质,依据这些性质将数列分类:依定义域分为:有穷数列、无穷数列; 依值域分为:有界数列和无界数列;依增减性分为递增数列、递减数列和摆动数列。

数列的表示方法:列表法、图象法、解析法(通项公式法及递推关系法); 数列通项:()n a f n =2、等差数列1、定义 当n N ∈,且2n ≥ 时,总有 1,()n n a a d d +-=常,d 叫公差。

2、通项公式 1(1)n a a n d =+-1)、从函数角度看 1()n a dn a d =+-是n 的一次函数,其图象是以点 1(1,)a 为端点, 斜率为d 斜线上一些孤立点。

2)、从变形角度看 (1)()n n a a n d =+--, 即可从两个不同方向认识同一数列,公差为相反数。

又11(1),(1)n m a a n d a a m d =+-=+-,相减得 ()n m a a n m d -=-,即()n m a a n m d =+-. 若 n>m ,则以 m a 为第一项,n a 是第n-m+1项,公差为d ; 若n<m ,则 m a 以为第一项时,n a 是第m-n+1项,公差为-d.3)、从发展的角度看 若{}n a 是等差数列,则12(2)p q a a a p q d +=++- ,12(2)m n a a a m n d +=++-, 因此有如下命题:在等差数列中,若2m n p q r +=+= , 则2m n p q r a a a a a +=+=.3、前n 项和公式由 1211,n n n n n S a a a S a a a -=+++=+++L L , 相加得 12n n a a S n +=, 还可表示为1(1),(0)2n n n S na d d -=+≠,是n 的二次函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列知识点及常用解题方法归纳总结一、 等差数列的定义与性质() 定义:为常数,a a d d a a n d n n n +-==+-111() 等差中项:,,成等差数列x A y A x y ⇔=+2()()前项和n S a a n nan n d n n =+=+-11212{}性质:是等差数列a n()若,则;1m n p q a a a a m n p q +=++=+{}{}{}()数列,,仍为等差数列;2212a a ka b n n n -+ S S S S S n n n n n ,,……仍为等差数列;232--()若三个数成等差数列,可设为,,;3a d a a d -+ ()若,是等差数列,为前项和,则;42121a b S T n a b S T n n n n m m m m =-- {}()为等差数列(,为常数,是关于的常数项为52a S an bn ab n n n ⇔=+0的二次函数){}S S an bn a n n n 的最值可求二次函数的最值;或者求出中的正、负分界=+2项,即:当,,解不等式组可得达到最大值时的值。

a d a a S n n n n 11000><≥≤⎧⎨⎩+当,,由可得达到最小值时的值。

a d a a S n n n n 110000<>≤≥⎧⎨⎩+{}如:等差数列,,,,则a S a a a S n n n n n n =++===--1831123(由,∴a a a a a n n n n n ++=⇒==----12113331()又·,∴S a a aa 31322233113=+===()()∴·S a a n a a n nn n n =+=+=+⎛⎝ ⎫⎭⎪=-12122131218 ∴=n 27) 二、等比数列的定义与性质 定义:(为常数,),a a q q q a a q n nn n +-=≠=1110 等比中项:、、成等比数列,或x G y G xy G xy ⇒==±2()前项和:(要注意)n S na q a q qq n n ==--≠⎧⎨⎪⎩⎪111111()()!{}性质:是等比数列a n()若,则··1m n p q a a a a m n p q +=+= (),,……仍为等比数列2232S S S S S n n n n n -- 三、求数列通项公式的常用方法1、公式法2、n n a S 求由;(时,,时,)n a S n a S S n n n ==≥=--121113、求差(商)法{}如:满足……a a a a n n n n 121212251122+++=+<>解:n a a ==⨯+=1122151411时,,∴n a a a n n n ≥+++=-+<>--2121212215212211时,……<>-<>=12122得:n n a ,∴a n n =+21,∴a n n n n ==≥⎧⎨⎩+141221()()[练习]{}数列满足,,求a S S a a a n n n n n +==++111534 (注意到代入得:a S S S S n n n n n+++=-=1114 {}又,∴是等比数列,S S S n n n144==n a S S n n n n ≥=-==--23411时,……·4、叠乘法{}例如:数列中,,,求a a a a nn a n n n n 1131==++ 解:a a a a a a n n a a nn n n 213211122311·……·……,∴-=-= 又,∴a a nn 133== 5、等差型递推公式由,,求,用迭加法a a f n a a a n n n -==-110()n a a f a a f a a f n n n ≥-=-=-=⎫⎬⎪⎪⎭⎪⎪-22321321时,…………两边相加,得:()()()a a f f f n n -=+++123()()()…… ∴……a a f f f n n =++++023()()() [练习]{}()数列,,,求a a a a n a n n n n n 111132==+≥--()()a n n=-1231 6、等比型递推公式()a ca d c d c c d n n =+≠≠≠-1010、为常数,,, ()可转化为等比数列,设a x c a x n n +=+-1()⇒=+--a ca c x n n 11令,∴()c x d x d c -==-11∴是首项为,为公比的等比数列a d c a dc c n +-⎧⎨⎩⎫⎬⎭+-111∴·a d c a d c c n n +-=+-⎛⎝ ⎫⎭⎪-1111∴a a d c c dc n n =+-⎛⎝⎫⎭⎪---1111[练习]{}数列满足,,求a a a a a n n n n 11934=+=+()a n n =-⎛⎝ ⎫⎭⎪+-843117、倒数法例如:,,求a a a a a n n n n 11122==++ ,由已知得:1221211a a a a n n n n+=+=+∴11121a a n n +-= , ∴⎧⎨⎩⎫⎬⎭=111121a a n 为等差数列,,公差为 ()()∴=+-=+11112121a n n n · ,∴a n n =+21三、 求数列前n 项和的常用方法1、公式法:等差、等比前n 项和公式2、裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。

{}如:是公差为的等差数列,求a d a a n k k k n111+=∑ 解:()()由·11111011a a a a d d a a d k k k k k k ++=+=-⎛⎝ ⎫⎭⎪≠∴11111111a a d a a k k k nk k k n+=+=∑∑=-⎛⎝ ⎫⎭⎪=-⎛⎝ ⎫⎭⎪+-⎛⎝ ⎫⎭⎪++-⎛⎝ ⎫⎭⎪⎡⎣⎢⎤⎦⎥=-⎛⎝ ⎫⎭⎪++11111111111223111d a a a a a a d a a n n n ……[练习] 求和:…………111211231123+++++++++++n(…………,)a S n n n ===-+2113、错位相减法:{}{}{}若为等差数列,为等比数列,求数列(差比数列)前项a b a b n n n n n{}和,可由求,其中为的公比。

S qS S q b n n n n -如:……S x x x nxn n =+++++<>-12341231()x S x x x x n x nx n n n ·……=+++++-+<>-234122341()<>-<>-=++++--121121:……x S x x xnx n n n ()()x S x x nx xnnn≠=----11112时,()x S n n n n ==++++=+112312时,……4、倒序相加法:把数列的各项顺序倒写,再与原来顺序的数列相加。

S a a a a S a a a a n n n n n n =++++=++++⎫⎬⎪⎭⎪--121121…………相加()()()21211S a a a a a a n n n n =++++++-………… [练习]已知,则f x x x f f f f f f f ()()()()()=+++⎛⎝ ⎫⎭⎪++⎛⎝ ⎫⎭⎪++⎛⎝ ⎫⎭⎪=2211212313414(由f x f x x x x x x x x ()+⎛⎝ ⎫⎭⎪=++⎛⎝ ⎫⎭⎪+⎛⎝ ⎫⎭⎪=+++=1111111112222222 ∴原式=++⎛⎝ ⎫⎭⎪⎡⎣⎢⎤⎦⎥++⎛⎝ ⎫⎭⎪⎡⎣⎢⎤⎦⎥++⎛⎝ ⎫⎭⎪⎡⎣⎢⎤⎦⎥f f f f f f f ()()()()1212313414=+++=12111312)例1设{a n }是等差数列,若a 2=3,a 7=13,则数列{a n }前8项的和为( )A .128B .80C .64D .56 (福建卷第3题)略解:∵ a 2 +a 7= a 1+a 8=16,∴{a n }前8项的和为64,故应选C .例2 已知等比数列{}n a 满足122336a a a a +=+=,,则7a =( ) A .64B .81C .128D .243 (全国Ⅰ卷第7题)答案:A .例3 已知等差数列{}n a 中,26a =,515a =,若2n n b a =,则数列{}n b 的前5项和等于( )A .30B .45C .90D .186 (北京卷第7题)略解:∵a 5-a 2=3d=9,∴ d=3,b 1=26a =,b 5=a 10=30,{}n b 的前5项和等于90,故答案是C .例4 记等差数列的前n 项和为n S ,若244,20S S ==,则该数列的公差d =( )A .2B .3C .6D .7 (错误!未找到引用源。

第4题) 略解:∵422412,3S S S d d --===,故选B. 例5在数列{}n a 中,542n a n =-,212n a a a an bn +++=+,*n N ∈,其中,a b 为常数,则ab = .(安徽卷第15题)答案:-1.例6 在数列{}n a 中,12a =, 11ln(1)n n a a n+=++,则n a =( )A .2ln n +B .2(1)ln n n +-C .2ln n n +D .1ln n n ++(江西卷第5题) 答案:A .例7 设数列{}n a 中,112,1n n a a a n +==++,则通项n a = ___________.(四川卷第16题)此题重点考查由数列的递推公式求数列的通项公式,抓住11n n a a n +=++中1,n n a a +系数相同是找到方法的突破口.略解:∵112,1n n a a a n +==++ ∴()111n n a a n -=+-+,()1221n n a a n --=+-+,()2331n n a a n --=+-+,,3221a a =++,2111a a =++,1211a ==+.将以上各式相加,得()()()123211n a n n n n =-+-+-+++++⎡⎤⎣⎦()()111122n n n n n -+=++=+,故应填(1)2n n ++1. 例8 若(x +12x)n 的展开式中前三项的系数成等差数列,则展开式中x 4项的系数为( )A .6B .7C .8D .9 (重庆卷第10题) 答案:B .使用选择题、填空题形式考查的文科数列试题,充分考虑到文、理科考生在能力上的差异,侧重于基础知识和基本方法的考查,命题设计时以教材中学习的等差数列、等比数列的公式应用为主,如,例4以前的例题.例5考查考生对于等差数列作为自变量离散变化的一种特殊函数的理解;例6、例7考查由给出的一般数列的递推公式求出数列的通项公式的能力;例8则考查二项展开式系数、等差数列等概念的综合运用.重庆卷第1题,浙江卷第4题,陕西卷第4题,天津卷第4题,上海卷第14题,全国Ⅱ卷第19题等,都是关于数列的客观题,可供大家作为练习.例9 已知{a n }是正数组成的数列,a 1=11n a +)(n ∈N*)在函数y =x 2+1的图象上. (Ⅰ)求数列{a n }的通项公式; (Ⅱ)若数列{b n }满足b 1=1,b n +1=b n +2n a,求证:b n ·b n +2<b 2n +1. (福建卷第20题) 略解:(Ⅰ)由已知,得a n +1-a n =1,又a 1=1,所以数列{a n }是以1为首项,公差为1的等差数列.故a n =1+(n -1)×1=n.(Ⅱ)由(Ⅰ)知,a n =n ,从而b n +1-b n =2n ,b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1=2n -1+2n -2+…+2+1=2n-1.∵. b n •b n +2-b 21+n =(2n-1)(2n +2-1)-(2n+1-1)2= -2n<0, ∴ b n ·b n +2<b 21+n .对于第(Ⅱ)小题,我们也可以作如下的证明:∵ b 2=1,b n ·b n +2- b 21+n =(b n +1-2n)(b n +1+2n +1)- b 21+n =2n +1·b n +1-2n·b n +1-2n·2n +1=2n(b n +1-2n +1)=2n (b n +2n -2n +1)=2n (b n -2n )=…=2n (b 1-2)=-2n <0,∴ b n -b n +2<b 2n +1.例10 在数列{}n a 中,11a =,122n n n a a +=+.(Ⅰ)设12nn n a b -=.证明:数列{}n b 是等差数列;(Ⅱ)求数列{}n a 的前n 项和n S .(全国Ⅰ卷第19题)略解:(Ⅰ)1n n b b +-=1122n n n n a a +--=122n n na a +-=22nn =1,则{}n b 为等差数列,11b =, n b n =,12n n a n -=.(Ⅱ)01211222(1)22n n n S n n --=+++-+,12121222(1)22n nn S n n -=+++-+.两式相减,得01121222221n n n n n S n n -=----=-+=(1)21n n -+.对于例10第(Ⅰ)小题,基本的思路不外乎推出后项减前项差相等,即差是一个常数.可以用迭代法,但不可由b 2-b 1=1,b 3-b 2=1等有限个的验证归纳得到{}n b 为等差数列的结论,犯“以偏盖全”的错误.第(Ⅱ)小题的“等比差数列”,在高考数列考题中出现的频率很高,求和中运用的“错项相减”的方法,在教材中求等比数列前n 项和时给出,是“等比差数列”求和时最重要的方法.一般地,数学学习中最为重要的内容常常并不在结论本身,而在于获得这一结论的路径给予人们的有益启示.例9、例10是高考数学试卷中数列试题的一种常见的重要题型,类似的题目还有浙江卷第18题,江苏卷第19题,辽宁卷第20题等,其共同特征就是以等差数列或等比数列为依托构造新的数列.主要考查等差数列、等比数列等基本知识,考查转化与化归思想,考查推理与运算能力.考虑到文、理科考生在能力上的差异,与理科试卷侧重于理性思维,命题设计时以一般数列为主,以抽象思维和逻辑思维为主的特点不同;文科试卷则侧重于基础知识和基本方法的考查,以考查具体思维、演绎思维为主.例11 等差数列{}n a 的各项均为正数,13a =,前n 项和为n S ,{}n b 为等比数列, 11b =,且2264,b S =33960b S =.(Ⅰ)求n a 与n b ; (Ⅱ)求和:12111nS S S +++.(江西卷第19题)略解:(Ⅰ)设{}n a 的公差为d ,{}n b 的公比为q ,依题意有22233(6)64,(93)960.S b d q S b d q =+=⎧⎨=+=⎩解之,得2,8;d q =⎧⎨=⎩或6,540.3d q ⎧=-⎪⎪⎨⎪=⎪⎩(舍去,为什么?)故132(1)21,8n n na n nb -=+-=+=.(Ⅱ)35(21)(2)n S n n n =++++=+,∴121111111132435(2)n S S S n n +++=++++⨯⨯⨯+111111(1232435=-+-+-+11)2n n +-+1111(1)2212n n =+--++32342(1)(2)n n n +=-++. “裂项相消”是一些特殊数列求和时常用的方法.使用解答题形式考查数列的试题,其内容还往往是一般数列的内容,其方法是研究数列通项及前n 项和的一般方法,并且往往不单一考查数列,而是与其他内容相综合,以体现出对解决综合问题的考查力度.数列综合题对能力有较高的要求,有一定的难度,对合理区分较高能力的考生起到重要的作用.例12 设数列{}n a 的前n 项和为22nn n S a =-,(Ⅰ)求14,a a ;(Ⅱ)证明: {}12n n a a +-是等比数列;(Ⅲ)求{}n a 的通项公式.(四川卷第21题)略解:(Ⅰ)∵1111,22a S a S ==+,所以112,2a S ==.由22n n n a S =+知,11122n n n a S +++=+112n n n a S ++=++得,112n n n a S ++=+ ①∴222122226,8a S S =+=+==,3332328216,24a S S =+=+==,443240a S =+=.(Ⅱ)由题设和①式知,()()11222n n n n n n a a S S ++-=+-+122n n +=-2n =,∴{}12n n a a +-是首项为2,公比为2的等比数列.(Ⅲ)()()()21112211222222n n n n n n n a a a a a a a a -----=-+-++-+()112n n -=+⋅此题重点考查数列的递推公式,利用递推公式求数列的特定项,通项公式等.推移脚标,两式相减是解决含有n S 的递推公式的重要手段,使其转化为不含n S 的递推公式,从而有针对性地解决问题.在由递推公式求通项公式时,首项是否可以被吸收是易错点.同时,还应注意到题目设问的层层深入,前一问常为解决后一问的关键环节,为求解下一问指明方向.例13 数列{}n a 满足,2,021==a a 222(1cos)4sin ,1,2,3,,22n n n n a a n ππ+=++=(I )求43,a a ,并求数列{}n a 的通项公式;(II )设1321k k S a a a -=+++,242k k T a a a =+++, 2(2kk kS W k T =∈+)N *,求使1k W >的所有k 的值,并说明理由.(湖南卷第20题)略解:(I )22311(1cos )4sin 44,22a a a ππ=++=+=22422(1cos )4sin 24,a a a ππ=++==一般地, 当21()n k k N *-∈=时,22212121(21)(21)[1cos]4sin 4,22k k k k k a a a ππ+----=++=+即2121 4.k k a a +--= 所以数列{}21k a -是首项为0、公差为4的等差数列,因此214(1).k a k -=-当2()n k k N *∈=时,22222222(1cos )4sin 2,22k k k k k a a a ππ+=++=所以数列{}2k a 是首项为2、公比为2的等比数列,因此22.kk a =故数列{}n a 的通项公式为22(1),21(),2,2().n n n n k k N a n k k N **⎧-=-∈⎪=⎨⎪=∈⎩(II )由(I )知,1321k k S a a a -=+++=044(1)2(1),k k k +++-=-242k kT a a a =+++2122222,k k +++=-12(1).22k k k k S k k W T --==+ 于是,10,W =21,W =33,2W =43,2W =55,4W =61516W =. 下面证明:当6k ≥时, 1.k W <事实上, 当6k ≥时,11(1)(1)(3)0,222k k k k kk k k k k k W W +-+---=-=<即1.k k W W +<又61,W <所以当6k ≥时,1.k W <故满足1k W >的所有k 的值为3,4,5.数列知识点回顾第一部分:数列的基本概念1.理解数列定义的四个要点⑴数列中的数是按一定“次序”排列的,在这里,只强调有“次序”,而不强调有“规律”.因此,如果组成两个数列的数相同而次序不同,那么它们就是不同的数列.⑵在数列中同一个数可以重复出现.⑶项an与项数n是两个根本不同的概念.⑷数列可以看作一个定义域为正整数集(或它的有限子集)的函数当自变量从小到大依次取值时对应的一列函数值,但函数不一定是数列.2.数列的通项公式一个数列{ an }的第n项an与项数n之间的函数关系,如果用一个公式an =)(nf来表示,就把这个公式叫做数列{ an}的通项公式。

相关文档
最新文档